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Abstract

Collective behavior is an emergent property of numerous complex systems, from financial

markets to cancer cells to predator-prey ecological systems. Characterizing modes of col-

lective behavior is often done through human observation, training generative models, or

other supervised learning techniques. Each of these cases requires knowledge of and a

method for characterizing the macro-state(s) of the system. This presents a challenge for

studying novel systems where there may be little prior knowledge. Here, we present a new

unsupervised method of detecting emergent behavior in complex systems, and discerning

between distinct collective behaviors. We require only metrics, d(1), d(2), defined on the set

of agents, X, which measure agents’ nearness in variables of interest. We apply the method

of diffusion maps to the systems (X, d(i)) to recover efficient embeddings of their interaction

networks. Comparing these geometries, we formulate a measure of similarity between two

networks, called the map alignment statistic (MAS). A large MAS is evidence that the two

networks are codetermined in some fashion, indicating an emergent relationship between

the metrics d(1) and d(2). Additionally, the form of the macro-scale organization is encoded in

the covariances among the two sets of diffusion map components. Using these covariances

we discern between different modes of collective behavior in a data-driven, unsupervised

manner. This method is demonstrated on a synthetic flocking model as well as empirical fish

schooling data. We show that our state classification subdivides the known behaviors of the

school in a meaningful manner, leading to a finer description of the system’s behavior.

Author summary

Many complex systems in society and nature exhibit collective behavior where individu-

als’ local interactions lead to system-wide organization. One challenge we face today is to

identify and characterize these emergent behaviors, and here we have developed a new

method for analyzing data from individuals, to detect when a given complex system is

exhibiting system-wide organization. Importantly, our approach requires no prior knowl-

edge of the fashion in which the collective behavior arises, or the macro-scale variables in

which it manifests. We apply the new method to an agent-based model and empirical
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observations of fish schooling. While we have demonstrated the utility of our approach to

biological systems, it can be applied widely to financial, medical, and technological sys-

tems for example.

Introduction

Collective behavior is an emergent property of many complex systems in society and nature

[1]. These behaviors range from the coordinated behaviors of fish schools, bird flocks, and

animal herds [2–4], to human social dynamics such as those of traders in stock markets that

have led to bubbles and crashes [5] in the past, and opinions on social networks [6]. Collec-

tive behavior amplifies the transfer of information between individuals and enables groups

to solve problems which would be impossible for any single group member alone [7]. Fur-

thermore, manifestations of collective behavior in both social and ecological systems regu-

larly influence our individual welfare [8–10] through political and economic instability,

disease spread, or changes in social norms. Building a better classification and understanding

of collective behavior and collective states is crucial not only to basic science, but to design-

ing a stable future.

A key challenge in the study of complex systems is to identify when collective behavior

emerges, and in what way it manifests [11, 12]. Statistical physicists first studied emergence in

complex systems in the 1800s where they began to derive the physical laws governing the mac-

roscopic behavior of systems with an extremely large number of degrees of freedom from the

interactions between the microscopic, atomistic components of the system. Remarkably, there

usually exist a small number of macroscopic variables or order parameters that accurately

describe macroscale dynamics for numerous systems, and a small number of relationships

between these variables characterize the different states or behavioral regimes of the system. In

many systems, the key macroscopic variables are well known from either first principles or

empirical study: consider for example the organized and disorganized states of the flocking

model in Fig 1. However, there are many social, ecological, and even physical systems which

elude simple description by macroscopic variables [13–16]. Furthermore, we continually

encounter novel systems for which we have no prior knowledge about multiscale dynamics, or

models that give rise to unknown group dynamics [17]. In these cases, it is a non-trivial task to

identify useful variables (at particular scales of organization) which define the possible emer-

gent behaviors.

Machine learning and other statistical methods have emerged as key tools for finding mac-

roscopic descriptions of complex systems with many degrees of freedom, in the physical, eco-

logical, and social sciences. The application of these tools has been driven by high resolution

observations of microscopic degrees of freedom (particularly in ecological and social systems),

increases in computing power, and the development of new algorithmic tools. Dimensionality

reduction, clustering algorithms, and other unsupervised learning algorithms have been par-

ticularly successful in discovering macroscopic variables and behavioral regimes from micro-

scopic data on complex systems [18]. The paramagnetic/ferromagnetic phase transition in the

classical, 2D Ising model has been discovered by algorithms ranging in complexity from prin-

cipal component analysis to variational autoencoders [18–20]. However, more complex types

of collective phenomenon, such as topological phases, have not been successfully identified

using algorithms like PCA, which assume that the data has a linear structure. In these more

difficult cases, algorithms which can detect nonlinear structures such as diffusion maps have

shown much greater promise. For example, diffusion maps have been used to find the
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Kosterlitz-Thouless phase transition in the XY-model from condensed matter physics [21].

The success of machine learning algorithms for physical problems suggests that machine learn-

ing could be of great practical use for the study of collective phenomena in social and ecologi-

cal systems, which are usually much less amenable to theoretical analysis, and for which there

often exists a significant quantity of data at the individual level [22].

Here we have developed an approach to analyzing collective behavior in biological sys-

tems based on dimensional reduction tools from manifold learning [23], specifically diffu-

sion maps [24]. Using diffusion maps to formulate multiple data-driven coordinate systems,

we compare their large-scale structures to find latent global relationships between different

variables observed at the level of individual agents. We call this the map alignment between

the two coordinate systems. When two variables serve to globally organize the data along

similar lines, their map alignment is high. One can easily calculate the expected alignment

between unrelated and independent variables, so this gives us a test that detects a system’s

emergent behaviors but requires no prior knowledge of them. Moreover, the ways in which

the coordinates are correlated leave a signature for the relationship between the macro-scale

structures, and one may use this to distinguish various system-wide behaviors. We apply this

tool to modeled data produced from simulations of birds flocking, and to empirical data on

the activity of fish in a school (see S1, S2 and S3 Movies for illustrations of these modeled

and empirical data). Using the micro-scale data to cast the agents’ network of interaction

into multiple geometries, each evolving over time, we both detect the emergence of macro-

scale organization as well as perform a meaningful classification of distinct modes of organi-

zation, identifying the macro-scale states of the system. Importantly, this analysis is based

purely on changes occurring at micro-scales, and makes no assumptions about which

macro-scale variables are important. This means that for any novel system of study, where

there is a paucity of knowledge regarding which macro-scale variable to measure and track,

one could use this approach to classify and observe the dynamics of the system at different

levels of organization.

Fig 1. Examples of an 800 agent flocking model on the torus, with and without long-range order, that is, in both incoherent (A) and coherent (B) macro-states.

https://doi.org/10.1371/journal.pcbi.1007811.g001
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Materials and methods

Diffusion maps

We begin with the basic definitions required to construct a diffusion map (Table 1 below sum-

marizes our notation). This requires a set of data points, X, and a metric on those points, d.

The data may be composed of many observables, making each xk 2 X a vector in a space of

potentially very high dimension. Essentially we employ the algorithm in [25], with α = 1 and

� = 1. This involves

(i). constructing a similarity measure, K(xi, xj), between pairs of data points,

(ii). normalizing K to create a Laplacian operator Â on the data,

(iii). computing eigenvector-eigenvalue pairs {(ϕk, λk)} for the Laplacian, and

(iv). constructing the diffusion map Fðt; xÞ ≔ ðl
t
k�kðxÞÞ

n
k¼1

.

The choice of similarity measure in (i) is highly system-dependent, for agent-wise interac-

tions may manifest themselves in many different ways and so require different metrics. In (ii),

the choice of normalization in constructing Â is subtler, and based on a choice of Laplace

operator; this is not sensitive to the data under observation, but rather reflects an assumption

of Manifold Learning, that the data points of X are drawn from a manifold embedded in

euclidean space. For rigorous results on when such a manifold exists for a given dataset, see

[26].

Given n points X = {x1, . . ., xn}, we construct an n × n matrix of pairwise distances, D =

(Di,j)≔ (d(xi, xj)), associated to a metric d. Writing k(x) for the kth nearest neighbor (kNN) of

x 2 X, let K(x, y) be the gaussian kNN (GkNN) kernel defined by

Kðx; yÞ ¼ exp �
dðx; yÞ

2

dðx; kðxÞÞdðy; kðyÞÞ

� �

: ð1Þ

This kernel could be replaced with any other, as another function may better reflect the

user’s impression of the similarity between two agents a distance d(x, y) apart. This particular

choice is studied in [27], and serves to allow pairwise distances to scale according to their local

Table 1. List of symbols used.

Symbol Reference

X ¼ fxkg
n
k¼1

data set

n number of data points

[k] the set of integers 1, 2, . . ., k
f : X ! Rm

micro-scale observable

d(�, �) metric on X
D pairwise distance matrix

A affinity matrix

Â heat operator

Dtð�; �Þ diffusion distance on X
{ϕk} eigenvectors of Â
{λk} eigenvalues of Â
F(t, �) diffusion map at scale t
{ψk(t, �)} diffusion coordinates of F(t, �)

ξi,j inner product of c
ð1Þ

i and c
ð2Þ

j

https://doi.org/10.1371/journal.pcbi.1007811.t001
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geometries. One could consider this the standard gaussian kernel applied to the modified dis-

tance function dðx; yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðx; kðxÞÞdðy; kðyÞÞ

p
. The more sparse the point cloud (X, d) is near x

or y, the smaller this distance becomes. This kernel also has the desirable property that it is

scale-free, in that multiplying all distances by a fixed constant does not change the kernel K.

Let σ denote a row sum operator: if A is an m × n matrix, let σ(A) be the m-vector whose ith

component is sðAÞi ≔ Sn
j¼1
Ai;j. We next calculate an affinity matrix A = (Ai,j)≔ (K(xi, xj)), its

row sums σ(A), and construct the matrix operator A0 via

A0
i;j ¼ ðsðAÞ

�1

i Ai;j sðAÞ
�1

j Þ:

Normalizing by the row sums in this fashion is a particular choice of Laplace operator on the

graph whose vertices represent the n agents and whose weighted edges are given by the entries

of A0
i;j (see panel A of Fig 2). This operator converges pointwise to the Laplace-Beltrami opera-

tor in the case that the points X are drawn from a probability distribution on a manifold (see

[25]). We then define the Markov operator Â ¼ ðÂi;jÞ by setting the row sums of A0 to one:

Âi;j ≔ sðA0Þ
�1

i A0
i;j: ð2Þ

Fig 2. Conceptual illustration of diffusion maps applied to data on fish schooling. A) For the same time period, different affinity operators can be calculated. These

affinities could be correlations in simply spatial proximity (Ai) or correlations in velocities (Aii) for example. The operator is used to describe a network of agents. B)

Once calculated, the heat diffusion operator allows us to quantify the geometry of the network and with this in hand C) diffusion map coordinates may be used to

efficiently embed the fish in a low-dimensional space. Doing this for different metrics / affinities allows us to quantify the alignment between various diffusion map

coordinate systems, which reveals changes in macro-scale behavior.

https://doi.org/10.1371/journal.pcbi.1007811.g002
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This is the operator of primary interest to us, representing the evolution of a random walk on

the graph, where the probability of transitioning from point xi to xj is given by Âi;j. This is visu-

alized in panel B of Fig 2 as heat propagating through the network. From the spectral structure

of Â, written fð�k; lkÞg
n
k¼1

with �k : X ! R the unit eigenvectors and lk 2 R the eigenvalues,

we construct the diffusion map,

Fðt; xÞ ¼ ðl
t
1
�1ðxÞ; . . . ; l

t
n�nðxÞÞ; t � 0: ð3Þ

The usefulness of this decomposition of the data (X, d) is that it gives an embedding of the data

which reflects the diffusion distance,Dt, defined as the L2 difference between the random

walk’s distributions when initiated from site x and site y after t time has passed:

Dtðx; yÞ
2 ≔

X

z2X

ðÂt
x;z � Ât

y;zÞ
2

¼ kFðt; xÞ � Fðt; yÞk
2

2
:

In essence,Dt captures the geometric structure of the data by measuring the (dis)similarities of

trajectories of random walks evolving on the data points from different starting points. The

diffusion map is an isometry of ðX;DtÞ intoRn
, with the remarkable benefit that truncating

F(t, �) to its first k coordinates gives the optimal k-dimensional embedding of X intoRk
(envi-

sioned in panel C of Fig 2). These truncated maps Fkðt; �Þ ≔ ðl
t
1
�1; . . . ; l

t
k�kÞ are utilized

below for detecting macro-scale relationships among variables.

We remark that though increasing t decreases the resolution of small scale features in the

embedding, in practice we take t = 1 throughout and define ψk(x) = λk ϕk, so that

FkðxÞ ≔ Fkð1; xÞ ¼ ðc1ðxÞ; . . . ; ckðxÞÞ; k 2 f1; . . . ; ng;

andD≔ D1.

Map alignment

In this section we formulate a statistic to measure the degree to which the macro-scale organi-

zation of two observables measured on the micro-scale level are related. Let X = {x1, . . ., xn} be

the collection of data for the n interacting agents making up the system, and let f1 and f2 be two

vector-valued observables, such as position or velocity, defined on each agent,

fi : X ! Rmi ; mi 2 N:

Suppose we are given metrics di : X � X ! R between agents depending only on the observed

variable fi, such as

diðxj; xkÞ ≔ kfiðxjÞ � fiðxkÞk2: ð4Þ

In practice these are defined by the user, and a cogent choice will depend upon their

knowledge of the agent-level interactions of the system. Using the methods of the previous

subsection, we devise a pair of Markov operators, ÂðiÞ (taking i = 1, 2), their associated eigen-

structures, fð�
ðiÞ
j ; l

ðiÞ
j Þg

n

j¼1
, and the corresponding diffusion maps, FðiÞ ¼ ðcjÞ

n
j¼1

.

For each i = 1, 2 the diffusion coordinates fc
ðiÞ
j g are ordered by decreasing contribution to

the global organization of the network X under the heat operator ÂðiÞ. Therefore if there is a

coherent large-scale organization on X manifest in the observables fi, then the leading diffusion

coordinates of F(1) should be determined in some manner by the leading coordinates of F(2).

To confirm this, we expand the unit vectors �
ð1Þ

j in the subspace generated by the top k
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diffusion coordinates of Âð2Þ, i.e. we project the eigenvectors into the subspace spanned by

f�
ð2Þ

1
; . . . ; �

ð2Þ

k g via the linear operator

P
ð2Þ

k ð�Þ ¼
Xk

j¼1

D
�; �

ð2Þ

j

E
�

ð2Þ

j : ð5Þ

Then kP
ð2Þ

k ð�
ð1Þ

j Þk is a measure of how well the coordinate �
ð1Þ

j associated to f1 is correlated

with the large-scale network structure induced on X by the variable f2. One attempts to choose

k in a manner that ensures that the subspace spanned by f�
ð2Þ

1
; . . . ; �

ð2Þ

k g encompasses the rele-

vant macro-scale coordinates induced by f2 on X, but without k becoming so large that we

begin to recover a significant portion of ϕ simply due to the large dimension of the image

space. For example, if we take k = n the projection Pð2Þ

n is the identity, simply expressing ϕ in

the basis f�
ð2Þ

j g. However, taking k � n we recover only the portion of the vector which can be

expressed as a linear combination of the top k diffusion coordinates of F(2). We return to this

issue below.

Now we derive the expected projection size under a null hypothesis that the two variables

f1 and f2 are entirely unrelated. Given the pair of diffusion bases, we fix � 2 f�
ð1Þ

j g � Rn

and calculate the distribution of the random variable kP
ð2Þ

k �k assuming that the k-dimen-

sional range, Spanð�
ð2Þ

1
; . . . ; �

ð2Þ

k Þ, is chosen uniformly at random from the set of all k-

dimensional subspaces. One can show, and with a little thought it is clear, that this is equiva-

lent to asking for the magnitude of a random unit vector of Rn
projected onto its leading k

coordinates. When the vector is sampled uniformly at random from fc 2 Rn : kck
2

¼ 1g,

the quantity kP
ð2Þ

k �k
2

is a beta distributed random variable with parameters (n −k)/2

and k/2. Recognizing this, one can calculate the expectation and variance to be k/n and

2(n − k)k/(n3 + 2n2), respectively. Normalizing the projection size accordingly, we arrive at

the statistic

Pð2Þ

k ð�Þ ≔ kP
ð2Þ

k �k
2

�
k
n

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3 þ 2n2

2ðn � kÞk

s

;

which quantifies how well we can express the information of ϕ using only the random sub-

space generated by f�
ð2Þ

1
; . . . ; �

ð2Þ

k g.

Again, the leading diffusion coordinates of F(i) are data-driven macro-scale variables,

expressing the large-scale organization of the network as viewed through ÂðiÞ. If the data obeys

a (possibly nonlinear and multi-valued) relationship between f1 and f2 on the macro-scale,

then it should be evidenced by a relationship between the bases f�
ð1Þ

j g and f�
ð2Þ

j g. Note that

the observables fi are used only in providing a metric on X. One can perform an identical anal-

ysis on the data given only the metrics d1 and d2. In the context of this paper we will assume,

however, that the metrics come from some micro-scale variable defined on X, as this is the

approach most useful in analyzing a new complex system.

Let u ¼ ðl
ð1Þ

1
; . . . ; l

ð1Þ

k Þ be the vector of decreasing eigenvalues of Â1, and take û ≔ u=kuk2.

Then the entries of û give a normalized notion of the energy of each �
ð1Þ

j , and so gives a mea-

sure of how important each mode �
ð1Þ

j is to the macrostructure derived from f1. Finally, we

define the map alignment statistic to be the sum of the Pð2Þ

k ð�
ð1Þ

j Þ, weighted by the
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contribution of �
ð1Þ

j to the large-scale organization of f1:

Zkðf1; f2Þ ≔
Xk

j¼1

ûjP
ð2Þ

k ð�
ð1Þ

j Þ: ð6Þ

We remark that this statistic is not in general symmetric; Zk(f1, f2) 6¼ Zk(f2, f1). The MAS Zk(f1,
f2) is a measure of how much of the macrostructure of f1 is reflected in the f2-based diffusion

coordinates. For example, the spectrum of the ÂðiÞ may indicate that the top three diffusion

coordinates of Fð1Þ

t carry a greater proportion of the macro-scale information of Âð1Þ than

the top three coordinates of Fð2Þ

t do for Âð2Þ; in this case one would expect that Z3(f1, f2) >

Z3(f2, f1).

Informative choice of k
Here we briefly discuss how to choose k so that Zk gives an accurate measure of the degree to

which F(1) is determined by F
ð2Þ

k . Recall that the head of the spectrum of Â is sensitive to large-

scale changes, but the bulk of the spectrum is associated to high frequency eigenfunctions, cap-

turing small-scale organization often attributable to noise or local idiosyncrasies in the data.

As a result, given training data or simulated data one may simply estimate a value of k after

which the variance explained by the jth eigenspace, lj=
Pn

i¼1
li, is approximately independent

of the macrostate of the system. That is, choose k so that for j > k, the value λj makes up a fixed

fraction of the sum of the eigenvalues.

Alternatively, in using empirical data we found the bulk of the spectrum often follows an

approximate power-law decay. As a result, one may take k to be the smallest integer such that

for j > k, λj � Cj−β for positive constants C, β.

These are necessarily rough guidelines, and in practice one often finds a range of plausible

choices for k. However, when increasing k the additional summands of P
ð2Þ

k must eventually

become essentially independent (h�
ð1Þ

i ; �
ð2Þ

k i � 0) of the leading elements of f�
ð1Þ

i g. It follows

that after a point, a larger value of k has little influence on the computed MAS, Zk(f1, f2). There-

fore an overestimate of k has very little effect on the results, so it is advised that in practice one

err on the side of larger choices of k.

Unsupervised macrostate classification

If the system under study exhibits multiple emergent behaviors relating the two variables f1
and f2, then coherence alone is not enough to identify system behavior. In passing to the norm

of the vector P
ð2Þ

k �
ð1Þ

j , we clearly give up a significant amount of information. In order to dis-

tinguish multiple coherent states, we inspect the individual dot products fh�
ð1Þ

i ; �
ð2Þ

j ig that

comprise the map alignment statistic.

However, to remove the effects of the trailing diffusion coordinates, which correspond to

smaller scale variations in the geometry of ðX;DðiÞ
Þ, we consider the sequence of inner prod-

ucts given by

xi;j ≔ hc
ð1Þ

i ; c
ð2Þ

j i

¼ l
ð1Þ

i l
ð2Þ

j h�
ð1Þ

i ; �
ð2Þ

j i

with 1 � i, j, �k � n. That is, we collect the covariances between coordinates of the truncated

diffusion maps F
ð1Þ

k and F
ð2Þ

k . Given time series of micro-scale observations, this allows us to
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characterize each frame by the sequence (ξi,j)1�i,j�k. We will add an argument to indicate the

timestep t, as ξi,j(t), when necessary.

While the diffusion coordinates provide a natural organization of the data, the individual

components of the map are eigenvectors, and so are computed via an iterated maximization

problem: given the linear operator A, the ith eigenvector is given by

�i ¼ max
v2U?

i�1

hv;Avi;

whereU?
j ≔ fu 2 Spanf�1; . . . ; �jg

?
: kuk ¼ 1g. Such maximization problems are prone to

discontinuities, in the sense that there exist, for any threshold ε> 0, linear operators A and B
on Rn

with ith eigenvectors ϕi and ηi, respectively, such that kA − Bk < ε, while kϕi − ηik > 1/2

for all 1 � i � n. This means that the individual indices of the ξi,j may not correspond to a per-

sistent structure in the data.

Therefore, for each collection {ξi,j: 1 � i, j � k} we define the map σ: [k] × [k] ! [k2] so that

the components of (|ξσ(i, j)|) are ordered by decreasing magnitude. (Here [k] denotes the first k
positive integers). This removes the ambiguity in both index and sign for these products. We

call the resulting vector the f1 f2-covariance vector (at time t), abbreviated as ξ (resp. ξ(t)). One

may then use these vectors as a fingerprint for the macro-scale relationship exhibited between

f1 and f2 at a given time.

Fig 3, panel A, gives an example of a toy flocking system comprised of 50 agents, exhibiting

a circling behavior at time t1 and a (mostly) aligned state at time t2; its top four diffusion

Fig 3. A toy system of 50 agents; the left and right sides of the figure represent observations of the system at two different times when the system is in two

different organized states. (A) Agents in each subpanel are colored by the indicated diffusion coordinate, (B) A color plot of the matrix (ξi,j) with yellow indicating

larger values, blue indicating smaller values, (C) The values of the above inner product matrix, ordered by absolute magnitude; these are the vectors used to classify the

system’s regimes.

https://doi.org/10.1371/journal.pcbi.1007811.g003
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coordinates associated to both F(1) and F(2) are displayed for each time. (The choice of affini-

ties Âð1Þ and Âð2Þ here are the same as in the flocking model below, being based on spatial prox-

imity and velocity, respectively). In panel B we see the absolute values of the inner products of

the diffusion coordinates, where the matrix (represented by a color plot) has its (i, j)-entry

given by hc
ð1Þ

i ; c
ð2Þ

j i. Finally, in panel C we see the covariance vectors at times t1 and t2.

Covariance vectors allow us to embed the activity of the agents in a shared space, Rk2

, and

perform clustering analyses to group similar macro-scale relationships between f1 and f2 over

time. In the next section we will perform a boilerplate clustering analysis to distinguish

between distinct coherent group structures found in a data set of golden shiner schooling

behavior, a task for which the map alignment statistic is insufficient on its own.

Results

Analysis of bird flocking simulations

As a first test of our method we explored a well studied agent-based model of flocking behavior

[28] (see S2 and S3 Movies for a visual reference). The model consists of a set of N agents, {xj},
moving on the torus T1 = S1 × S1, each with position pi and velocity determined by the angle θi
and the magnitude vi. In this model each agent moves with a fixed speed, vi = vj for all i and j,
so we simply write v for this speed.

Each agent’s direction is updated at each time step by the average local direction plus a

noise term, a normal random variable distributed as N(0, �2). Here local refers to the agents

within a certain distance r of the focal agent. With all other parameters of the model fixed, the

coupling parameter r governs the degree to which the system self-organizes. In the hydrody-

namic limit, long-range order emerges for r above some critical value rc(v, �) > 0, meaning

that the mean velocity of the flock is nonzero: lim
N!1

�
�
�
�

1

N

XN

i¼1

cos yi; sin yið Þ

�
�
�
� 6¼ 0. The direction

of group travel is chosen randomly, and breaks the symmetry of the system. See S1 Text for

model details.

In the discrete time, finite-agent setting we observe the mean velocity of the flock, hvji = (v
coshθji, v sinhθji), taking this as our ‘ground truth’ measurement of the level of emergent,

coherent behavior in the system. As r increases past rc(v, �), the mean velocity (in the large N
limit) transitions from zero to a nonzero value. However, this shift occurs continuously; as r
grows we find the steady-state mean velocity of the flock increases towards its maximum

value. Even with r = 0 the global mean velocity will have magnitude Oð1=
ffiffiffiffi
N

p
Þ and suffer fluc-

tuations, so determining whether a preferred flock-wide direction of motion has been chosen

in the finite case makes little sense. Instead, below we compare the value of Zk(p, v) to hvji to

determine how well the MAS detects large-scale organization.

We chose two metrics to define a pair of time-evolving graphs as follows: Since we are inter-

ested in flocking behavior, we let d(1)(xi, xj; t) be the euclidean distance between the ith and jth

agents at time t, while d(2)(xi, xj; t) denotes the kernel-smoothed L2 norm of the two agents’ rel-

ative speed profiles. (See (S3), (S4) and (S5) for the explicit definitions of the metrics used). In

particular, d(1) captures the spatial information in the flock, while d(2) measures the degree that

agents are moving in concert over a short (on the order of 10 time steps) recent period.

We then applied diffusion maps to the resulting sequence of graphs and calculated the map

alignment between the two variables, p and v. The choice of subspace size to use, k = 10, was

empirical. We observe that at various levels of organization the variance explained by the first

five modes (i.e. the sum of the magnitudes of the first four components of û) is highly variable,

while the variance explained by the higher modes (�
ðiÞ
6

; �
ðiÞ
7

; . . . ; �
ðiÞ
500

) shows little dependence
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on system organization, though we decided to increase k to 10 to be conservative. This suggests

that the macro-scale information is well captured by FðiÞ
10

, while components 11 through 500

are largely accounting for noise and small-scale features of ÂðiÞ. Note, however, that one may

take k larger than 50 without any qualitative change in the analysis.

In Fig 4 below we plot the map alignment statistic Z10(p, v) (blue) calculated from two sets

of 100 independent simulations of the flocking model with 500 agents and fixed parameters

(� = π/5, v = 1/320, see SI). In the left panels the coupling parameter r is held at a low value (r =

r0 = 0.0065) for 800 time steps before increasing linearly to a high value over 400 steps and

remaining at that value (r = r1 = 0.06) for the rest of the trial; see the lower panel of Fig 4A. The

mean velocity hvji of the flock, averaged over the 100 trials, is plotted in orange in the upper

panel.

Fig 4. Top: Map alignment statistic Z10(p, v) averaged over 100 flocking simulations of 2000 time steps (blue). The grey region denotes the

90% empirical confidence interval of Z10(p, v). The mean velocity hvji of the flock is averaged over the 100 trials and plotted in orange.

Bottom: The model’s coupling constant r plotted over time. Notice that in (B) the MAS does not suffer the same hysteresis that the flock’s

speed does.

https://doi.org/10.1371/journal.pcbi.1007811.g004
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One can see that the statistic Z10(p, v), measuring the dependence of position diffusion

coordinates on the velocity diffusion coordinate system, has a strong correspondence with the

velocity correlation statistic. That is, large-scale organization was clearly detected and quanti-

fied using only the two micro-scale inter-agent distance time series.

In a second trial we explored how quickly map alignment and long-range correlations vary

in response to change in the micro-scale dynamics of the agents. This is done by allowing r to

vary sinusoidally between r0 and r1, with increasing frequency. The black line plotted in the

lower panel of Fig 4B shows the coupling parameter as a function of time; in the upper panel

the orange line shows the magnitude of the mean velocity of the flock, and the blue plot gives

the mean value of Z10 across trials, with the filled area indicating the 90% confidence interval

for Z10.

Clearly Z10(p, v) indicates strongly the presence or absence of correlation. The map align-

ment statistic shows both a faster response to changing r and suffers from less attenuation as

the speed of parameter change increases. Times t = 800 to 1000 especially highlight how the

drop in Z10 is a precursor to the value of the macrovariable hvji falling. In this case and the pre-

vious case, we find we are able to track the transition from unorganized motion to flocking by

the alignment between the velocity diffusion coordinates, Fð1Þ

10
, and the position diffusion coor-

dinates, Fð2Þ

10
.

Analysis of empirical fish schooling data

As an empirical application we use position and velocity data for a school of golden shiners

(notemigonus crysoleucas); details of how the data were collected can be found in S1 Text (see

also S1 Movie for a visual reference to these data). These fish were studied in [29, 30]. In [30]

the authors found that the school, constrained to an essentially two dimensional environment,

would generally be found in one of three macro-states defined according to the school’s collec-

tive polarization, Op, and rotation, Or: milling (circling), swarming (disordered, stationary), or

polarized (translational). See S1 Fig for example frames of these behaviors. Writing v(xi) for

the velocity of fish i and p(xi) for its position, the chosen macrovariables are defined as

Op ≔
1

N

�
�
�
�

XN

i¼1

v̂ðxiÞ
�
�
�
�; Or ¼

1

N

�
�
�
�

XN

i¼1

q̂ðxiÞ � v̂ðxiÞ
�
�
�
�;

where q(xi)≔ (p(xi) − c) is the vector from the school’s centroid, c ¼ 1

N

PN
i¼1

pðxiÞ, to the posi-

tion of fish i. Hats indicate unit vectors and × indicates the cross product. One can then

demarcate the behaviors as follows:

Milling if Op � 0:35 and Or � 0:65;

Swarming if Op � 0:35 and Or � 0:35;

Polarized if Op � 0:65 and Or � 0:35;

with all other (Op, Or) values considered to be transitional states. In the lower panel of Fig 5

the variable Op is plotted for the 5000 frames used in this study; the coloration of the plot indi-

cates the school’s state as defined here (red for milling, yellow for swarming, dark green for

polarized, and grey for transitional). The remainder of this section demonstrates that the unsu-

pervised tools developed above are capable of discerning data-driven macrostates correspond-

ing to, and even refining, those defined in [30].

For the study of fish schooling, as with the simulated data above, we built a pair of distance

matrices at each time step. The first was calculated from the euclidean distances between
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agents (individual fish), d(1), defined as before. The second, d(2), using the velocity data only.

In this case, our goal was to capture any interaction between agents, either instantaneous or at

a time lag due to one fish leading another. Therefore we define d(2)(xi, xj;t) as in the previous

section (a weighted L2 norm of the differences in the agents’ recent velocity profile), but now

allow one of the two agent’s velocity profiles to begin up to two seconds earlier. This amounts

to starting the trajectory at an earlier time step, t − ℓ, with 0 � ℓ � 60. We take d(2)(xi, xj; t) to

be the minimum of this collection of distances, as this choice of time translation gives the best

alignment of the two fishes’ trajectories.

As with the flocking model, the first diffusion map’s leading coordinates identify the large

groups of fish who form spatially proximate clusters; the leading diffusion coordinates associ-

ated to d(2) highlight groups whose velocity profiles are (up to a 2s, or 60 frame, translation in

time) quite similar. The map alignment between these two systems, Z15(p, v), is plotted in the

upper panel of Fig 5. When the fish are swarming (see S1 Fig, center column) we see that these

two coordinate systems are unrelated, and that Z15(p, v) is correspondingly low.

Here again, the choice of k = 15 is driven by observing that outside of the top fifteen entries

of û ¼ u=kuk for u ¼ ðl
ðiÞ
1

; . . . ; l
ðiÞ
n Þ, i 2 {1, 2}, the spectral decay appears to follow a power

law for most frames (though this observation does break down for some frames when the

eigenvalues become small enough). The results below prove to be robust to varying k from 10

to 25. Therefore the span of f�
ð1Þ

1
; . . . ; �

ð1Þ

15
g contains the majority of the structure within the

data, while k = 15 is not so large that the signal in Zk becomes diluted.

The two coherent behaviors we would like to separate are the polarized, or linear, motion

(right column in S1 Fig) and milling, or circling, motion (left column in S1 Fig). Both states

exhibit high levels of organization, and we must use a sharper tool to distinguish them.

To do this we employ the covariance vectors ξi,j, as defined in the Unsupervised Macrostate

Classification section above, over the course of 5000 frames of video. First, those states with

Z15(x, v) < 3 are considered to exhibit incoherent behavior and to have no macro-scale

dynamic, so we classify them as swarming frames and remove them from the set of frames to

be classified. (NB: the summands PðvÞ

15
ð�

ðxÞ

j Þ for 1 � j � 15 are centered, unit variance random

Fig 5. Statistics calculated from 5000 frames of the golden shiner dataset. A): Map alignment Z15(p, v) calculated over 5000 video frames. The plots are colored

according to our classification of macro-scale state; milling = red, swarming = yellow, α-polarized = blue, β-polarized = green. B): The group polarization macro-

variable Op calculated from the same 5000 frames. The coloring shows the states according to [29]; milling = red, swarming = yellow, polarized = teal, unclassified/

transitional = grey.

https://doi.org/10.1371/journal.pcbi.1007811.g005
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variables if we assume the two coordinate systems are unrelated. For this reason the threshold

of 3 can be considered a reasonably large deviation from the mean for Z15(x, v). However, the

choice is ad hoc, and users may modify this threshold in practice if it enables them to better

subdivide their system into different behavioral regimes). Then for each time t we compute the

covariance vector ξ(t) = (|ξσ(i,j)(t)|). We cluster the resulting vectors using the k-means algo-

rithm, with k = 3. This leaves us with three groups representing distinct coherent behaviors,

labelled G1, G2, and G3, as well as the incoherent group, which we label N. These groups

define the coloration of the top panel of Fig 5. Comparing these group memberships to those

given by calculating the group polarization and rotation, Op and Or, and classifying behavior

as in [29] we find that group G1 contains 85.86% of the milling frames, G2 and G3 together

comprise 87.47% of the polarized frames, while N holds 65.85% of the swarming frames

(another 32.01% are relegated to G2). The full results of the classification appear in Table 2.

That the polarized frames are divided into two separate clusters suggests that there are two

distinct modes of polarized behavior exhibited by the fish. Upon inspecting ξ(t) for the frames

from each cluster, we find that the two groups are essentially distinguished by their relative lev-

els of organization; for example, the mean value of Z15 for cluster G2 was 6.3186, while for G3

the mean map alignment statistic is 12.0878. Practically, the frames of cluster G2 typically con-

sist of polarized group motion with multiple subgroups of fish following distinct paths; we call

this β-polarized behavior. This creates a macro-scale division in the network structure of ÂðvÞ

that is not present in the network structure of ÂðxÞ, which leads to a lower alignment between

their top eigenvectors; here hξ1,1(t)i = 0.176. On the other hand, the frames of G3 feature a sin-

gle, unified group motion, leading to a high alignment (hξ1,1(t)i = 0.331) between the top diffu-

sion coordinates of each network. We refer to this as α-polarized schooling behavior. It is

possible that there is a correspondence between the empirically defined β-polarized activity

and the dynamic parallel group behavior described in the family of models of [31].

One may approach the problem of classifying the covariance vectors {ξ(t)} in numerous

ways; we chose the k-means algorithm for its simplicity. However, it requires the user to fix the

number of desired clusters beforehand. As the prior work of [29] only defined two separate

coherent behaviors, milling and polarized, one may wonder what results we would find if we

instead restricted the classification to two clusters. We did this and, labelling the groups G1�

and G2�, found that G1� successfully captures all the milling frames, and G2� is predominantly

composed of polarized frames (see S1 Table). However, roughly 1 in 4 polarized frames are rel-

egated to G1�. S2 Table shows how the two k-means clusterings apportion the frames. In par-

ticular, the α-polarized frames tend to be classified as milling. By increasing the number of

Table 2. Counts of classifications by our map alignment-based statistics (rows) and by the macro-scale variable classification (columns) for the 5000 frames of fish

movement data. The percentage of the frames of a given state (milling, polarized, etc.) which is found in each of our unsupervised groups (G1, G2, G3, N) are displayed

below the counts.

Milling Swarming Polarized Transitional

G1 1463 5 73 348

(85.9%) (1.5%) (5.1%) (22.5%)

G2 0 105 738 454

(0%) (32.0%) (51.9%) (29.4%)

G3 241 2 505 352

(14.1%) (0.6%) (35.5%) (22.8%)

N 0 216 105 391

(0%) (65.9%) (7.4%) (25.3%)

https://doi.org/10.1371/journal.pcbi.1007811.t002
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subgroups to k = 3, we allow the algorithm to perform a more sensitive clustering, which

improved the correlation between our groupings and those of [29], as well as distinguished

between two forms of polarized behavior that were grouped together in that work. (Note that

while one could increase the number of clusters k to four or five, one experiences diminishing

returns in the sense that the differences in schooling behavior will become increasingly subtle).

Discussion

To identify different states of collective behavior in complex systems, we have developed and

applied a new methodology based on measuring changes in the mutual geometry of a given

system as it is viewed through different lenses, using diffusion maps. The method is general

and objectively produces system-specific, macro-scale variables, Zk and ξ for tracking the onset

of and distinguishing between different regimes of collective behavior. To test the method, we

applied it to synthetic data produced from a well-known model of birds flocking, and to

empirical data on fish schooling. In both cases the macro-scale quantities constructed using

diffusion maps provided an accurate description of the system in terms of the degree and type

of collective behavior present.

The analysis, while data-driven, does suggest methods of controlling complex systems, or

nudging them towards a desired state, as in [32]. For example, the top panel of Fig 5 suggests

that swarming behavior is typically bookended by a β-polarized state. Then to bring the school

into a swarming state from an α-polarized state, one might attempt to force the fish to break

into multiple polarized subgroups (by instituting an obstruction, say). Achieving a misalign-

ment of the leading diffusion coordinates from the spatial- and velocity-based networks of the

school will clearly impede any group consensus, making the school more likely to lose its

coherence. This strategy is surely obvious in the case of schooling fish, but an analogous tactic

could be employed to inform control over state change in markets or social networks as well.

Furthermore, the diffusion coordinates provide a quantitative basis for choosing how to

align/misalign a system; one can use in silico experiments to identify changes to the network

structure which would move the system towards the desired macro-state. Given a target

covariance vector, the technique could perhaps be automated. One approach would be to per-

form spectral clustering of the network according to the present and target eigenfunctions.

Agents belonging to the same cluster in both cases could be expected to remain well-connected

during the transformation, simplifying the search for an appropriate perturbation to those that

only increase/decrease the connectivity of those clusters. Reducing the problem space in this

way would be a first step towards an online solution, advising system control in real time.

Flocking models and empirical data on fish schooling were studied here because the collec-

tive behavior from each system is well known. That is, the scales at which collective behavior

emerges and the macro-scale variables that do a good job of describing group behavior are

known. This allowed for a clear demonstration of the new methodology, though one can apply

this framework to a variety of dynamic or static data sets, from subfields outside animal group

dynamics, and areas other than biology. There are many non-biological systems, such as finan-

cial and housing markets, city-transit systems, and power-grid systems, which are known to

exhibit emergent patterns at a range of scales, but for which the relevant micro-scale variables

are less well known. In these cases one may compute map alignment in an uninformed fash-

ion, testing a variety of metrics and variables, to discover latent emergent relationships.

In practice, the decision of which micro-scale metric to use may not always be clear, but the

map alignment method offers a resilience to these particulars. In the two cases studied, famil-

iarity with animal collectives and their emergent properties made the choice to use position

and velocity data snippets and their respective metrics a straightforward decision. However,
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there are many other biological systems where the organizational variables to choose may not

be so obvious [33]. While the exact variables controlling information propagation in such sys-

tems may be unknown, as demonstrated in [34], the underlying structure may still be recov-

ered through measurements of different, related variables. That is, we take advantage of the

gauge-invariance of the diffusion map approach. As many previous publications have pointed

out [29, 35, 36], fish do not interact with one another based purely on their euclidean distance;

other factors including rank of nearness (closest neighbors), relative alignment, and density.

Therefore the metric d(1) used above is a gross simplification of the role spatial organization

plays. However, it captures enough of the true underlying organizational structure to allow us

to detect emergent behavior.

It is worth noting, however, that the approach that we have developed has its own chal-

lenges relating to the nature of the data used. Diffusion maps inherently require a large num-

ber of data points for the diffusion operator to exhibit the regularity of the limiting operator

on the manifold from which the data is, in theory, sampled. With the fish data though, the

intermittent nature of the observations meant that the system size n varied between roughly 70

and 280 agents, and still the method proved resilient to these fluctuations.

Also, if one employs the GkNN kernel as we do here (see (1)) the scale-free property simpli-

fies the task of resolving the macro-scale structure of the data; in particular, one does not need

to adjust the kernel if the distances involved globally grow or shrink. But this entails a loss of

information. As an example, if the system becomes highly organized when observed via the

metric d (e.g. d corresponds to the velocity-based metric d(2) above, and the fish all move as

one) the corresponding data cloud (X, d) collapses towards a point mass. However, the GkNN

kernel rescales distances in order to resolve their structure across scales, i.e. the rescaled dis-

tances only have meaning by virtue of their relative size. As a result the network’s features can

become a measurement of the lower-order stochastic fluctuations of individual agents’ trajec-

tories, rather than meaningful organization. This conflation of extremely organized and unor-

ganized states could be overcome by tracking the mean inter-agent distance, for example, and

may be important in application.

Measuring the map alignment between different networks induced by separate metrics on a

graph serves as an entry point for several other possible analyses. One could use a set of train-

ing data to perform a classification of the various emergent behaviors of the system, then mea-

sure the stability of the system (risk of state change) by the current distance from ξ(t) to

representative subgroups from the various states. For example, if the distance from ξ(t) to

Group 1 is growing, and the distance to Group 2 is shrinking, one might anticipate a shift in

macrostate. In this way one may estimate the risk of emergence, dissolution, or a large-scale

shift of collective behavior. The authors believe, based on preliminary analysis of the fish

schooling data, that such an approach could provide a new early warning metric for complex

systems whose relevant macrovariables may be unknown, inhibiting the application of other

early warning signals such as critical slowing down.

Conclusion

The method that we have developed is a new data-driven approach for detecting cross-scale

emergent behavior in complex systems. It quantifies the dependence present between various

micro-scale variables (those exhibited at the agent-level), and formulates a signature of the

macro-scale behavior exhibited by the collective. The method can also detect the onset or loss

of organization in an unsupervised fashion. With sensible choices of micro-scale variables,

which are now measured routinely as Big Data, any complex system can be studied in this way.
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Doing so presents new opportunities for studying complex systems through analyzing their

changing geometry.

Supporting information

S1 Text. Additional details on the flocking simulations, the empirical data, and technical

definitions of the metrics used in the analysis.

(PDF)

S1 Table. Counts of classifications by our map alignment-based statistics (rows) and by the

macro-scale variable classification (columns) for 5000 frames of fish movement data. The

percentage of the frames of a given state (milling, polarized, etc.) which is found in each of our

unsupervised groups (G1�, G2�, N) are displayed below the counts.

(PDF)

S2 Table. Comparison of the two k-means classifications for 5000 frames of fish movement

data. The 2-group clustering gave G1� and G2�, corresponding to frames of high and low

macro-scale organization, respectively. The 3-group clustering gave G1, G2, and G3, corre-

sponding to milling, α-polarized, and β-polarized behaviors, respectively. The percentages are

with respect to all the frames in the entry’s column.

(PDF)

S1 Fig. Plots of fish position (colored markers) and velocity (arrows) at three example

times, colored by diffusion map coordinates �
ðvÞ

1
[top row; i.e. produced from analyzing

correlations in velocities] and �
ðxÞ

1
[bottom row; i.e. produced from analyzing spatial

proximity]. The emergent behaviors from left to right are milling, swarming, and polarized

motion.

(TIF)

S1 Movie. This video displays a subset of the fish schooling data used, colored by various

diffusion coordinates. We restrict the frames displayed to keep the file size reasonable while

still showcasing the various modes of behavior described in the main text. The time step dis-

played in each frame corresponds with the time steps shown on the abscissa of Fig 5. The top

two subplots display the first and second coordinates from the d(1)-derived affinity matrix (see

equation (S3)), while the bottom subplots are colored by the diffusion coordinates from the

d(2)-based affinity matrix (see equation (S5)).

(MP4)

S2 Movie. A sample run of the flocking model (� = π/5, v = 1/320) where the interaction

radius r(t) is equal to r0 = 0.0065 until time t = 800, is equal to r1 = 0.06 for times after

t = 1200, and increases linearly from r0 to r1 over time steps 800 to 1200. Each subplot is col-

ored according to one of the top two diffusion coordinates, as labeled. The top two subplots

display the first and second coordinates from the d(1)-derived affinity matrix (see equation

(S3)), while the bottom subplots are colored by the diffusion coordinates from the d(2)-based

affinity matrix (see equation (S4)).

(MP4)

S3 Movie. A sample run of the flocking model (� = π/5, v = 1/320) where the interaction

radius r(t) varies sinusoidally between r0 = 0.0065 and r1 = 0.06, with the period of oscilla-

tion increasing linearly for the duration of the time series: r(t) = 0.0. Each subplot is colored

according to one of the top two diffusion coordinates, as labeled. The top two subplots display

the first and second coordinates from the d(1)-derived affinity matrix (see equation (S3)), while
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the bottom subplots are colored by the diffusion coordinates from the d(2)-based affinity

matrix (see equation (S4)).

(MP4)
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