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Abstract— We present a decentralized minimum-time trajec-
tory optimization scheme based on learning model predictive
control for multi-agent systems with nonlinear decoupled dy-
namics and coupled state constraints. By performing the same
task iteratively, data from previous task executions is used
to construct and improve local time-varying safe sets and an
approximate value function. These are used in a decoupled
MPC problem as terminal sets and terminal cost functions.
Our framework results in a decentralized controller, which
requires no communication between agents over each iteration
of task execution, and guarantees persistent feasibility, finite-
time closed-loop convergence, and non-decreasing performance
of the global system over task iterations. Numerical experiments
of a multi-vehicle collision avoidance scenario demonstrate the
effectiveness of the proposed scheme.

I. INTRODUCTION

In this paper, we study the problem of decentralized Model
Predictive Control (MPC) for dynamically decoupled multi-
agent systems under the minimum-time cost and coupled
state constraints. Multi-agent systems typically exhibit inter-
agent coupling, which can be expressed as constraints on
the global system. MPC is a well-studied approach to the
control of such constrained systems and can be applied in a
global manner for centralized control of multi-agent systems
with a small number of agents. However, as the number of
agents increases, centralized approaches typically become
intractable in practice due to limitations in computational
power and communication capacities [1]. This gives rise to
decentralized and distributed MPC schemes, which leverage
the inherent parallelizable structure of multi-agent systems
to reduce the required computational effort. Feasibility and
stability of MPC are typically obtained using a terminal cost
function and terminal constraints in the MPC design [2],
which we refer to as terminal components. However, synthe-
sis of these terminal components for the control of nonlinear
multi-agent systems is in general challenging. There is exten-
sive literature on distributed [3]–[7] and decentralized MPC
methods [8]–[11], as well as iterative approaches to multi-
agent trajectory optimization [12], [13]. However a detailed
survey goes beyond the scope of this paper.

In this paper, we propose a decentralized approach to
trajectory optimization for nonlinear multi-agent systems. By
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performing the same task over multiple iterations, we collect
data on the agents’ closed-loop behavior to successively
improve the construction of terminal components for the
local controllers. In particular, as we improve an estimate of
the terminal cost (an approximate value function) and expand
the terminal constraint set (the domain of this function), we
iteratively improve closed-loop performance of the multi-
agent system, while maintaining feasibility and finite-time
convergence guarantees.

The contribution of this work is twofold. We extend
the method of Learning Model Predictive Control (LMPC)
from [14] to the multi-agent case for dynamically decoupled
agents under the minimum-time cost and coupled state
constraints. In particular, we first propose a procedure for
synthesizing the MPC terminal components using data from
previous iterations of task execution. We then show that the
resulting decentralized LMPC has the properties of persistent
feasibility, finite-time closed-loop convergence to the goal
state, and non-decreasing performance over iterations. We
demonstrate the effectiveness of the decentralized method
with a numerical example in the context of multi-vehicle
collision avoidance, where we observe a significant reduction
of computational effort compared to a centralized approach.

II. PRELIMINARIES

A. System Description

For a system of M agents, the set of indices {1, . . . ,M}
is denoted as M. ‘�’ denotes an element-wise inequality.
Consider the global nonlinear time-invariant discrete-time
system composed of M agents

xt+1 = f(xt, ut), (1)

where the global state and input vectors at sampling time
t ≥ 0 are formed by stacking those from each agent into a
single column, i.e. xt = coli∈M(xi,t) = [x>1,t, . . . , x

>
M,t]

> ∈
Rn and ut = coli∈M(ui,t) ∈ Rm, where xi,t ∈ Rni and
ui,t ∈ Rmi . Each agent in the global system is subject to
local state and input constraints,

xi,t ∈ Xi ⊆ Rni , ui,t ∈ Ui ⊆ Rmi , ∀t ≥ 0. (2)

These local constraint sets are assumed to be closed, com-
pact, and include the goal states xi,F in their relative inte-
riors. The global system is additionally subject to coupling
constraints on the system state,

g(xt) � 0, ∀t ≥ 0. (3)

We assume that the agents are dynamically decoupled with
continuous dynamics and locally stabilizable, which means
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that we can write (interchangeably with (1)), for all agents
i ∈M, the local dynamics as

xi,t+1 = fi(xi,t, ui,t). (4)

B. Control Objective

The objective is to design a controller which drives the
system state to a goal state xF by solving the following
optimal control problem for the global system

min
uT

T∑
t=0

h(xt, ut) s.t.


xt+1 = f(xt, ut), ∀t ∈ {0, . . . , T − 1}
x0 = xS , xT = xF
xt ∈ X , ut ∈ U , ∀t ∈ {0, . . . , T}
g(xt) � 0, ∀t ∈ {0, . . . , T}

(5)

where the goal state xF = coli∈M(xi,F ) is assumed to be
a feasible equilibrium state of (1). xS = coli∈M(xi,S) is
the initial condition of the system, and the state and input
constraint sets in (5) are the Cartesian products of the local
constraint sets in (2). In this work, we use the minimum-time
cost, which is defined as follows:

h(xt, ut) = 1(x;xF ) =

{
0 if x = xF
1 otherwise.

C. Learning Model Predictive Control (LMPC)

In this section, we briefly introduce and review the key
concepts of LMPC [14], [15], which are extended upon in
this work. LMPC was proposed as an iterative trajectory
optimization method for single-agent nonlinear dynamical
systems performing iterative tasks. In particular, the method
provides a data-driven approach to terminal set and cost
synthesis given that an initial feasible input sequence u0 =
{u00, u01, . . . , u0T 0−1} and closed-loop state trajectory x0 =
{x00, x01, . . . , x0T 0} exists for (1) and is available at iteration 0.
T q denotes the time at which the closed-loop system reaches
the terminal state at iteration q, i.e. xqT q = xF . We note
that for iterative tasks, the initial condition of the system is
assumed to be the same over iterations, i.e. xq0 = xS , ∀q ≥ 0.

LMPC solves the following finite horizon optimal control
problem (FHOCP), which approximates (5), in a receding
horizon fashion.

min
uq

t,N

N−1∑
k=0

1(xqk|t;xF ) + V q−1(xqN |t) (6a)

s.t. xqk+1|t = f(xqk|t, u
q
k|t), ∀k ∈ {0, . . . , N − 1} (6b)

xq0|t = x (6c)

xqk|t ∈ X , u
q
k|t ∈ U , ∀k ∈ {0, . . . , N − 1} (6d)

g(xqk|t) � 0, ∀k ∈ {0, . . . , N − 1} (6e)

xqN |t ∈ SS
q−1, (6f)

where xqk|t and uqk|t denote the decision variables of the pre-
dicted state and input at the sampling time t+ k of iteration
q. The first input uq0|t is then applied to the system (1).

The terminal set at iteration q−1 in (6f), called a sampled
safe set, is defined as

SSq−1 =

 ⋃
p∈Qq−1

Tp⋃
t=0

xpt

 , (7)

where Qq−1 = {p ∈ {0, . . . , q − 1} : xpTp = xF } is the
set of iteration indices where the goal state xF was success-
fully reached. The sampled safe set collects the closed-loop
state trajectories from previous successful iterations, which
implies that at iteration q, ∀x ∈ SSq , there exists a known
and feasible sequence of inputs, with x0 = x, such that
f(xt, ut) ∈ SSq, ∀t ≥ 0. We note that by construction,
SSq is a control invariant set.

For the terminal cost function in (6a), an approximate
value function is constructed which returns the minimum
cost-to-go (over iterations 0 to q− 1) from each state in the
safe set. The cost-to-go from the state at time t along the
closed-loop trajectory xq with corresponding input sequence
uq is defined as Jq

T q (xqt , t) =
∑T q

k=t 1(xqk;xF ).
The approximate value function at iteration q − 1 is then

V q−1(x) =

{
min(p,t)∈Fq−1(x) J

p
Tq (x, t) if x ∈ SSq−1

+∞ otherwise,
(8)

where Fq−1(x) = {(p, t) : xpt = x and xpt ∈ SSq−1} returns
the set of iteration and time index pairs for the states in
previous trajectories which are equal to x.

Using the properties of the constructed terminal compo-
nents, the resulting scheme guarantees persistent feasibility
of the FHOCP and finite-time closed-loop convergence of the
closed-loop system. Non-decreasing performance can also be
shown over iterations of task execution.

III. PROBLEM FORMULATION

In this section, we extend the idea of LMPC to the multi-
agent case. Specifically, our formulation leverages data from
previous iterations of task execution to synthesize local con-
trollers for each agent via decoupled FHOCPs. This allows
for an entirely decentralized control scheme for the multi-
agent system at each iteration. In the following, we describe
the synthesis of the local terminal components, namely
the time-varying sampled safe sets and approximate value
function. We then present the resulting decoupled FHOCPs,
which are solved in a receding horizon manner. Combining
these elements, we arrive at a decentralized LMPC procedure
for trajectory optimization of multi-agent systems.

A. Time-Varying Sampled Safe Sets and Global Constraint
Decomposition

In this part, we address two challenges posed by a decen-
tralized receding horizon approach. Namely 1) how global
constraint satisfaction can be enforced through decentralized
local constraint satisfaction, and 2) how feasibility over the
entire task horizon can be maintained in a receding horizon
implementation of (5), particularly when time-varying con-
straints are introduced.

To address 1), we introduce the following assumption.
Notice that the original global time-invariant constraints are
transformed into local time-varying constraints.

Assumption 1. At iteration q, there exists a time-varying
local decomposition of the global constraints: gqi,t(·), ∀t ≥
0, i ∈ M, which can be constructed from feasible trajecto-
ries of the global system. At each time t, joint local constraint
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satisfaction is sufficient for global constraint satisfaction, i.e.
gqi,t(xi,t) � 0, ∀i ∈M =⇒ g(xt) � 0.

Remark 1. Given a feasible trajectory xq
i , we may al-

ways obtain the decomposition gqi,t(xi) = ‖xi − xqi,t‖ for
each trajectory point in xq

i , which satisfies the condition
in Assumption 1. In Sec. V, we present a technique for
constructing gqi,t(·) in a less conservative manner.

To address 2), constraint satisfaction of the FHOCPs over
the entire task horizon is typically obtained via control
invariant sets. This was done in [14] with (7), which, recall,
are control invariant sets by definition. However, in (5)
(and due to the constraint decomposition in Assumption 1),
we include time-varying constraints for which the classical
definition of set invariance does not apply. For this reason,
we do not collect all recorded states of the global system,
which converge to xF , into a single invariant set as in (7).
Instead, we interpret the states of agent i at time t of previous
successful iterations as a sampled subset of the (T̂ q−1 − t)-
step reachable set to xi,F , where T̂ q = maxp∈{0,...,q} T

p
i .

As such, for each agent i ∈ M at iteration q, we propose
to construct time-varying sampled safe sets SSqi,t using data
from previous iterations of task execution, which are one-
step reachable to SSqi,t+1 (and therefore K-step reachable
to xi,F for some K ∈ {1, . . . , T̂ q−1 − t}). Moreover, we
require that the global coupling constraints are satisfied for
all combinations of states in the constructed safe sets, i.e.
∀t ≥ 0 and x̄i ∈ SSqi,t, g(x̄) � 0, where x̄ = coli∈M(x̄i).
The following assumption allows us to start with non-empty
safe sets at the first iteration.

Assumption 2. At iteration q = 0, an initial feasible input
and state sequence, which converges to the goal state in T 0

i

steps, exists for each agent (4). Denote this input sequence
and state trajectory for agent i ∈M as u0

i and x0
i .

Remark 2. This assumption is reasonable as one may pro-
vide initial feasible trajectories through demonstration or by
employing a conservative controller.

Let (Dx,Du) be the dataset which collects the state
trajectories x0

i . . . ,x
q
i and input sequences u0

i , . . . ,u
q
i , and

let gqi,t(·) be a constraint decomposition which satisfies
Assumption 1. Then, initializing the recursive relationship
with SSq

i,T̂ q−1
= {xi,F }, we construct the time-varying

sampled safe sets for agent i at time t of iteration q as

SSqi,t =
{
xpi,k ∈ Dx : gqi,t(x

p
i,k) � 0 and

fi(x
p
i,k, u

p
i,k) ∈ SSqi,t+1

}
. (9)

The time-varying sampled safe sets SSqi,t collect the
state trajectory points from previous successful iterations for
which there exists a trajectory to the goal state that satisfies
the global constraints. We show in Sec. IV that the sampled
safe sets are a non-empty family of reachable sets to xi,F .

Remark 3. For successful iterations, i.e. where xq
i,T q

i
=

xi,F , it is straightforward to accommodate task iterations
of different lengths when constructing SSqi,t for t ∈

{0, . . . ,maxp∈I(T p
i )}. Since xi,F is an equilibrium of sys-

tem i, we may trivially apply the zero input to obtain
SSqi,t = {xi,F } for all t > T q

i .

Remark 4. How the constraint decomposition is constructed
depends on the specific problem at hand. In the multi-vehicle
collision avoidance example shown in Sec. V, we propose
a procedure to construct hyperplanes which separate the
position states of the sampled safe sets for pairs of agents.

B. Value Function Approximation

For an input sequence uq
i and closed-loop state trajectory

xq
i with length T q

i , we define the cost-to-go from the state
xqi,t at time t along the closed-loop trajectory to be

Jq
i,T q

i
(xqi,t, t) =

T q
i∑

k=t

1(xqi,k, xi,F ) = T q
i − t. (10)

The iteration cost for agent i at iteration q can then be written
as Jq

i,T q
i

(xi,S , 0), recalling that the system is initialized at the
same state xS at each iteration. This leads to the definition
of the approximate value function V q

i (·, t) at time t over the
sampled safe set SSqi,t as

V q
i (xi, t) =

{
min

(p,k)∈Fq
i,t(xi)

Jp

i,T
p
i
(xi, k), if xi ∈ SSq

i,t

+∞, otherwise,
(11)

where Fq
i,t(xi) is defined in the same way as in (8). Thus,

for a state xi whose value is equal to some state in SSqi,t,
V q
i (xi, t) returns the minimum cost-to-go over trajectories

which pass through xi in SSqi,k for k ≥ t.

C. The Finite Horizon Optimal Control Problem

Synthesis of the terminal components is achieved using
the function synthesizeFHOCP in Alg. 1, which acts as
a global coordinator between iterations of task execution in
our decentralized framework. In this algorithm, we introduce
the design parameters t̄, t ≥ 0 and q ∈ {0, . . . , q} to reduce
the computational burden of safe set construction and a
procedure which guarantees satisfaction of one-step reach-
ability from SSqi,t to SSqi,t+1. In particular, we construct
the set I which contains the iteration indices of the q most
recent successful iterations and the sliding time range Tt =
{max(t−t, 0), . . . , t, . . . , t+t̄} and obtain the candidate safe
sets for time t (line 6). After a constraint decomposition is
constructed (line 8, see Rem. 4 and Sec. V), the candidate
safe sets are checked for constraint satisfaction (line 10).
In the case where any constraint is violated, the design
parameters are updated (lines 11-15) and new candidate safe
sets are constructed (line 16). This procedure is repeated
until safe sets satisfying (9) are found. We will show in
Sec. IV that the procedure described in Alg. 1 results in
non-empty safe sets, which satisfy the coupled constraints
and are reachable to xi,F . As such, after performing the task
at iteration q−1, we obtain for agent i the decomposition of
the global constraint gq−1i,t (·), the sampled safe sets SSq−1i,t ,
and the approximate value function V q−1

i (·, t), which are
constructed using data from iterations 0 to q − 1.
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Algorithm 1: synthesizeFHOCP
Input: Dx, Du, t, θ = {q, t, t̄}

1 q̌ ← q;
2 I ← {max(q − q), . . . , q};
3 for t ∈ {0, . . . ,maxp∈I(T p

i )} do
4 for i ∈M do
5 Tt ← {max(t− t, 0), . . . , t, . . . , t+ t̄};
6 SSqi,t ←

⋃
p∈I

{
xpi,k ∈ Dx : k ∈ Tt

}
;

7 end
8 {gqi,t(·)}i∈M ← obtain decomposition

(Assumption 1);
9 end

10 while any constraint in gqi,t(x) is violated for any
x ∈ SSqi,t, i ∈M, t ∈ {0, . . . ,maxp∈I(T p

i )} do
11 q ← q − 1;
12 if q = 0 then
13 t̄← max(t̄− 1, 0), t← max(t− 1, 0);
14 q ← q̌;
15 end
16 Repeat lines 2-9 with updated t, t̄ and q;
17 end
18 V q

i (·, t)← compute as in (10) and (11) ∀xqi ∈ SS
q
i,t;

Output: {SSqi,t, V
q
i (·, t), gqi,t(·)}

To obtain the control action for agent i at sampling time
t of iteration q, we solve the following decoupled FHOCP
with horizon length N and initial condition xi.

Pq
i,N (xi, t) = min

uq
i,t

N−1∑
k=0

1(xqi,k|t;xi,F )+V q−1
i (xqi,N |t, t+N)

s.t. xqi,k+1|t = fi(x
q
i,k|t, u

q
i,k|t), (12a)

xqi,0|t = xi (12b)

xqi,k|t ∈ Xi, u
q
i,k|t ∈ Ui, (12c)

gq−1i,t+k(xqi,k|t) � 0, (12d)

xqi,N |t ∈ SS
q−1
i,t+N (12e)

∀k ∈ {0, . . . , N − 1}

where (12a) and (12b) represent the dynamics and initial
condition, respectively. The local state and input constraints
are given in (12c). (12d) enforces satisfaction of the decom-
posed constraint for each agent, which is sufficient for global
constraint satisfaction. Finally, (12e) ensures that the terminal
state is an element of the time-varying sampled safe set
SSq−1i,t+N . We denote the locally optimal value of the FHOCP
cost in (12) as J∗,qi,N (xi, t).

Let u∗,qi,t (xi) = {u∗,qi,0|t(xi), . . . , u
∗,q
i,N−1|t(xi)} denote the

input sequence which minimizes (12) for initial state xi
at sampling time t, and x∗,qi,t = {x∗,qi,0|t, . . . , x

∗,q
i,N |t} be the

corresponding state trajectory beginning at x∗,qi,0|t = xi. In
typical receding horizon fashion, for each agent i ∈ M,
the first element of u∗,qi,t (xi) is applied to system (4), which
defines the state feedback policy

uqi,t = κqi (xi, t)
.
= u∗,qi,0|t(xi), (13)

Algorithm 2: Decentralized Learning Model Predic-
tive Control
Input: Z, x0, u0, {T 0

i }i∈M, θ
1 Dx ← {x0}, Du ← {u0}, t← {T 0

i }i∈M;
2 {SS0i,t, V 0

i (·, t), g0i,t(·)} ←
synthesizeFHOCP(Dx,Du, t, θ);

3 for q ∈ {1, . . . , Z} do
4 for i ∈M in parallel do
5 t← 0, xqi,0 ← xi,S , xq

i ← {xi,S}, u
q
i ← ∅;

6 while xqi,t 6= xi,F do
7 κqi (·, t)← solve Pq

i,N (xqi,t, t);
8 xqi,t+1 ← apply uqi,t = κqi (xqi,t, t) and

measure state;
9 xq

i ← xq
i ∪ {x

q
i,t+1}, u

q
i ← uq

i ∪ {u
q
i,t};

10 t← t+ 1;
11 end
12 Dx ← Dx ∪ {xq

i }, Du ← D∪{uq
i };

13 T q
i ← t

14 end
15 t← t ∪ {T q

i }i∈M;
16 {SSqi,t, V

q
i (·, t), gqi,t(·)} ←

synthesizeFHOCP(Dx,Du, t, θ);
17 end

with xi = xqi,t. This results in the closed-loop state tra-
jectory xq

i = {xqi,0, x
q
i,1, . . . , x

q
i,t, . . . } and input sequence

uq
i = {uqi,0, u

q
i,1, . . . , u

q
i,t, . . . } for agent i at iteration q. We

will show that the closed-loop state trajectory under (13)
converges to the goal state xi,F in finite-time.

D. Decentralized Learning Model Predictive Control

The resulting iterative LMPC scheme for the multi-agent
system is described in Alg. 2, where the for loop beginning
at line 3 corresponds to the iterations of the decentralized
LMPC, the for loop over agents from lines 4 to 14 may
be executed in an entirely decentralized manner with no
communication between agents, and the while loop from
lines 6 to 11 iterates over time steps. Note that we assume
that there is no mismatch between the model used in (12a)
and the system on which the policy is applied (line 8). The
inputs to Alg. 2 are Z ≥ 1: the number of LMPC iterations,
x0 and u0: the initial feasible state and input sequences,
{T 0

i }i∈M: the lengths of the initial trajectories, and θ which
contains the design parameters for synthesizeFHOCP. It
is implicitly assumed that each iteration is successful. We
will show that this is true in Sec. IV.

IV. PROPERTIES OF THE DECENTRALIZED LMPC
In this section, we show that for each iteration q, the

sampled safe sets as constructed in (9) have the property
of reachability to xi,F , which is sufficient for persistent
feasibility of the decentralized LMPC over the entire task
horizon for all iterations q. Furthermore, we show that the
closed-loop system converges to the goal state in finite time,
and that task performance is non-decreasing over iterations.
Due to space limitations, we omit the proofs and refer the
reader to [16] for details.
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Proposition 1. Let Assumption 2 hold, then for agent i at
iteration q, the sampled safe sets as constructed in (9) using
Alg. 1 and the dataset (Dx,Du) are reachable to xi,F and
satisfy the decomposed constraints gqi,t(x) � 0, ∀x ∈ SSqi,t.

Proposition 2. Let Assumption 2 hold and assume that
Pq
i,N (xqi,t, t) defined in (12) is feasible for agent i at time t

and iteration q for some xqi,t ∈ Xi. If xi,F ∈ SSq−1i,t+N , then
the system (4) in closed-loop with (12) and (13) converges
in at most t + T̄ steps to xi,F , where T̄ = N + T p∗

i − k∗
and (k∗, p∗) = arg mink,p T

p
i subject to x∗,qi,N |t = xpi,k.

Theorem 1. Consider the system in (1) in closed loop with
the decentralized LMPC (12) and (13). Let Assumption 1 and
2 hold. Then at each iteration q for every agent i ∈ M: 1)
(12) is feasible for all time steps t ≥ 0. 2) The system (4) in
closed-loop with (12) and (13) converges to the equilibrium
point xi,F in finite time. 3) The sampled safe sets SSqi,t are
non-empty for all sample times t.

Corollary 1. Consider the system (1) in closed loop with the
decentralized LMPC (12) and (13). Let Assumption 2 hold.
Then for every agent i ∈ M, the task completion time does
not increase with the iteration index q, i.e. T q

i ≤ T
q−1
i .

V. MULTI-VEHICLE COLLISION AVOIDANCE

In this section, we present a numerical example of the
proposed method in the context of multi-vehicle collision
avoidance. The control objective is for M = 3 vehicles to
reach the goal equilibrium points from their respective initial
states in minimum time (the code is available online1,2). We
model the vehicles using the kinematic bicycle model with
state ζi,t and input ui,t, which is discretized using forward
Euler integration with a time step of 0.1s as in [17]. The vehi-
cles are coupled via collision avoidance constraints where we
define a circular collision buffer about the geometric center
of the vehicle with radius ri and require that for all sample
times,

‖ζi,t(1:2)− ζj,t(1:2)‖2 ≥ ri + rj , ∀i, j ∈M, i 6= j. (14)

A. Decoupled FHOCP Formulation

The decoupled FHOCP is formulated as in (12). Details on
the local state and input constraints can be found in [16]. In
(12d), we decompose the global constraints into time-varying
hyperplane constraints on the position states of each vehicle,
i.e. gq−1i,t+k(ζqi,k|t) = Hq−1

i,t+kζ
q
i,k|t + hq−1i,t+k, with Hq−1

i,t+k ∈
RM−1×4 and hq−1i,t+k ∈ RM−1 for all k ∈ {0, . . . , N}.
This implementation of line 8 of Alg. 1 is achieved by
solving a hard margin support vector machine (SVM) for
all agent pairs (i, j) ∈ M, i 6= j, where maximum margin
separating hyperplanes can be found for time t if the position
states in the candidate sampled safe sets SSq−1i,t and SSq−1j,t

are linearly separable. If all
(
M
2

)
pairwise SVM problems

are feasible for all time t and the distance between the
hyperplanes is no less than 2r in all cases, then we construct

1https://github.com/zhu-edward/multi-agent-LMPC
2A video of the results may be found at https://youtu.be/cB9zckRm5j8

the constraint decomposition for agent i at time t by stacking
the solution Hij and hi from all SVM problems involving
agent i into the matrix Hq−1

i,t and vector hq−1i,t respectively.
Otherwise, following Alg. 1, we update the sets Tt and I
and retry the SVM problem.

We compute the initial feasible state and input sequence
(ζ0

i ,u
0
i ) using a linear time-varying MPC controller. At each

time step, the decoupled FHOCPs are solved using IPOPT
[18] by constructing a set of |SSq−1i,t+N | problems where (12e)
are formulated as equality constraints for each element in
the safe set. Corollary 1 is useful here as it allows us to
prune the safe sets using an upper bound on the iteration
cost, which can be computed for each point in the safe sets
without solving the FHOCP. Specifically, at each time t, we
have the cost-to-come for the current state xi,t, we know that
the sum of the stage costs over the optimization horizon is
upper bounded by the horizon length N , and the cost-to-go
from each point in the safe set is known. If for any safe
set point, the sum of these three quantities is greater than
T q−1
i , we may discard that point. This helps to manage the

computational burden induced by the discrete safe sets. The
parameters used for this experiment can be found in [16].

B. Results and Discussion

As seen in Table I, the decentralized LMPC converges to a
steady state solution where the optimal cost of each iteration
is non-increasing. We additionally implemented a centralized
LMPC, with the same parameters and solver, for the global
system subject to the original constraint (14). This approach
achieved a steady state cost of 48, which is only about a 4%
difference with respect to the decentralized case. We also
compare the computation time for solving a single FTOCP
in the two cases. This is summarized in Table II. For the
former, we record the maximum solve time over agents at
each sampling time. For the latter, we record the solve time
of the centralized LMPC at each sampling time. We obtain
that over all iterations, computation time of the decentralized
case is lower by a factor of 4.6x to 24x.

In Figures 2a) and 2b), we compare the initial feasible
trajectory to the steady state trajectory at convergence. In
the initial feasible trajectory, the agents’ movements are
intentionally staggered in time to guarantee safety. This can
be clearly seen in the velocity profile at iteration 0 in Figure 2
b). At convergence, all three agents begin moving simulta-
neously and steer to avoid collisions around the intersection
point at the origin. We notice that in the steady state input
sequence, the acceleration input either saturates or is close
to saturating the imposed constraint and resembles a bang-
bang controller [19] which switches between acceleration
and deceleration at the midpoint of the trajectory.

In Figure 1, we look closely at the steady state trajec-
tory about the intersection point and see that the collision
avoidance constraints are satisfied and are almost active for
agents 1 and 3 at 2.4s and agents 2 and 3 at 2.8s. This
is clearly reflected in Figure 2c) which plots the minimum
pairwise distance between the three agents over iterations of
decentralized LMPC.
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Fig. 1. Snapshots of the decentralized LMPC trajectory at convergence. Circles represent the collision buffers centered at the position of agent 1 (blue),
2 (orange), and 3 (red).

Fig. 2. a) Initial (light) vs. steady state (dark) position trajectory (top). The starting and goal states are denoted as the square and circle markers respectively.
b) Velocity profile and input sequence (bottom) for agent 1 (blue), 2 (orange), and 3 (red) at the first and last iterations. The black dashed lines correspond
to the input box constraints. c) Minimum distance between agents at each iteration.

TABLE I
OPTIMAL COST OF THE DECENTRALIZED LMPC AT EACH ITERATION

Iteration Iteration Cost Iteration Iteration Cost

q = 0 296 q = 5 51
q = 1 122 q = 6 50
q = 2 79 q = 7 50
q = 3 55 q = 8 50
q = 4 51

TABLE II
Max Time [s] Min Time [s] Avg. Time [s]

Decentralized 10.2 1.97 3.35
Centralized 48.3 15.8 20.5

VI. CONCLUSION

In this paper, we presented a decentralized LMPC frame-
work for dynamically decoupled multi-agent systems per-
forming iterative tasks. In particular, we proposed a pro-
cedure for decomposing global constraints and synthesizing
terminal sets and terminal cost functions for the decoupled
FHOCP using data from previous iterations of task execution.
We showed that the resulting scheme has the properties
of persistent feasibility, finite-time convergence to the goal
state, and non-decreasing performance over iterations.

In the multi-vehicle collision avoidance example, due to
the parallelization opportunities afforded by the decentralized
implementation, we observe a significant improvement in
computation time compared to a centralized approach with
only a 4% increase in cost. In fact, the steady state solu-
tion from the decentralized approach saw saturation of the
coupling collision avoidance constraint.
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