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Abstract— This paper presents a distributed learning model
predictive control (DLMPC) scheme for distributed linear time
invariant systems with coupled dynamics and state constraints.
The proposed solution method is based on an online distributed
optimization scheme with nearest-neighbor communication. If
the control task is iterative and data from previous feasible iter-
ations are available, local data are exploited by the subsystems
in order to construct the local terminal set and terminal cost,
which guarantee recursive feasibility and asymptotic stability,
as well as performance improvement over iterations. In case
a first feasible trajectory is difficult to obtain, or the task is
non-iterative, we further propose an algorithm that efficiently
explores the state-space and generates the data required for the
construction of the terminal cost and terminal constraint in the
MPC problem in a safe and distributed way. In contrast to other
distributed MPC schemes which use structured positive invari-
ant sets, the proposed approach involves a control invariant set
as the terminal set, on which we do not impose any distributed
structure. The proposed iterative scheme converges to the global
optimal solution of the underlying infinite horizon optimal
control problem under mild conditions. Numerical experiments
demonstrate the effectiveness of the proposed DLMPC scheme.

I. INTRODUCTION

Complex systems composed of multiple subsystems are
present in many control applications. The large scale and
spatial distribution of these systems often make the control
by a centralized unit intractable due to limitations in compu-
tation and communication. Research has therefore focused
on proposing design schemes for local controllers which
compute control actions for the individual subsystems based
on only local information in decentralized schemes, and on
communicated information from neighboring subsystems in
distributed control schemes. One line of research has focused
on exploiting the interconnection structure of the system
in order to design interconnected controllers based on a
convex reformulation involving linear matrix inequalities in
a scalable way [1]. If constraints need to be accounted for,
distributed model predictive control (DMPC) techniques can
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be employed. They can mainly be categorized into non-
cooperative, such as tube-based [2], and cooperative schemes
[3], [4], [5], [6], [7]. The latter often involve distributed opti-
mization techniques [8] where the subsystems communicate
local information and agree on a solution, thus solving the
optimization problem cooperatively.

The main challenge in DMPC schemes is to enable
distributed computation by decomposing the optimization
problem into subproblems for the individual subsystems.
Most of the DMPC approaches in the literature therefore
impose the distributed structure of the system on the terminal
set and cost function of the MPC problem [2], [4], [5], [9],
[10], [11]. In particular, they first design a structured terminal
controller and cost based on Lyapunov stability and then
design structured positive invariant sets under this terminal
controller, satisfying the constraints. Two aspects in these
schemes can lead to conservatism: (1) Imposing structure on
the terminal controllers and terminal sets, and (2) computing
positive invariant sets for one specific choice of terminal
controller which is fixed in the design phase, lead to a
possibly small inner approximation of the maximal control
invariant set. In order to mitigate the conservatism introduced
by the imposed structure, some works have proposed to
adapt the terminal sets based on the states of the subsystems
in operation [10], [11], [5]. In [6], [7], terminal sets also
computed online within the MPC problem.

Recent research has focused on learning-based and data-
driven DMPC schemes, [12], [13], [14], [15], [16]. In [17],
a data-driven MPC scheme, Learning MPC (LMPC), was
introduced, where previously seen data are exploited in order
to construct the terminal components of the MPC problem.
In [18] this framework was extended to uncertain systems,
and it was shown how the LMPC scheme can be used to
iteratively enlarge the domain of the policy.

In this paper, we propose a distributed LMPC (DLMPC)
scheme. The contributions of the paper are the following:
• We present a novel DLMPC scheme for linear sys-

tems able to handle coupled dynamics, coupled state
constraints and coupled cost functions. The main im-
provement w.r.t. existing DMPC approaches is fully
distributed computations without imposing any structure
on the terminal cost function or constraint set. This
is achieved by exploiting previously seen local data
by the individual subsystems in order to build local
data driven terminal sets and terminal cost functions. A
consensus on specific parameters in the construction of
the local costs and constraints is achieved by distributed
optimization which guarantees that the local terminal
sets are a control invariant set and the sum of the
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local terminal cost functions is a Lyapunov function
for the global system. This can considerably reduce
conservatism w.r.t. DMPC schemes that rely on finding
a positive invariant terminal set under a fixed structured
stabilizing terminal controller.

• For iterative control tasks, given a first feasible trajec-
tory, the proposed scheme provides recursive feasibility
and asymptotic stability. Furthermore, we prove that
the proposed DLMPC has a non-increasing control
performance over iterations and, under mild conditions,
converges to the global centralized optimal solution.

• For non-iterative control tasks, or if an initial feasible
trajectory is difficult to obtain, we further present an
algorithm that by iteratively performing the proposed
DLMPC scheme with changing starting conditions leads
to an enlargement of the domain of the DLMPC policy.
This can be used to safely explore the state space and
to generate the required data in a sample efficient and
distributed way.

The paper is structured as follows. Section II introduces
the model of the distributed systems and the control task
considered. Section III provides a brief review of the LMPC
in [19]. A decomposed formulation of the LMPC according
to the distributed system structure is presented in Section IV.
The fully distributed solution is proposed in Section V. Sec-
tion VI provides numerical experiments before Section VII
concludes the paper.

Notation: Let R denote the set of real numbers. N and N+

denote the set of non-negative and positive natural numbers.
We denote the transpose of a vector v ∈ Rn as v>, and its
Euclidean norm as ‖v‖. The matrix M = diag(M1, ...,Mm)
is the block-diagonal matrix with submatrices Mi on its
diagonal. The symbol < is used to indicate elementwise
inequality. The identitiy matrix of dimension n is denoted
as In and the vector of all ones is denoted as 1.

II. PROBLEM FORMULATION

In this section, we present the model of the distributed
systems considered in this paper, and then state the control
problem formulation.

A. Dynamically Coupled Constrained Linear Systems

We consider the discrete-time linear time-invariant system
with dynamics given by

xt+1 = Axt +But, (1)

where xt ∈ Rn and ut ∈ Rm are the system state and input
at time t ∈ N. The system matrices A and B are assumed to
be known. The system states and inputs are subject to linear
constraints

xt ∈ X , ut ∈ U , (2)

which are formulated as

Gxt ≤ g, Lut ≤ l, (3)

with G, L, g, and l given matrices and vectors, respectively.

We consider systems in (1) which have a structure that
admits a decomposition into subsystems N = {1, ...,M}
which may be coupled in their state dynamics. The state of
the ith subsystem is xi,t ∈ Rni , and we assume that the ith
input ui,t ∈ Rmi affects only the i-th state. Thus, the system
states and inputs are partitioned as

xt =
[
x>1,t . . . x

>
M,t

]>
, ut =

[
u>1,t . . . u

>
M,t

]>
. (4)

For each subsystem i ∈ N , we define the set of neigh-
boring subsystems Ni ⊆ N which contains all those subsys-
tems that are coupled to subsystem i over the dynamics,
constraints or cost. We define the state vector xNi,t ∈
RnNi containing the local states of subsystem i and its
neighboring subsystems in Ni, which can be expressed as
xNi,t = XNixt, with XNi being a projection matrix, i.e., a
binary matrix XNi

∈ {0, 1}nNi
×n. Similarly, the projection

matrices Xi ∈ {0, 1}ni×n and Ui ∈ {0, 1}mi×m, are defined
such that xi,t = Xixt and ui,t = Uiut. The dynamics of
subsystem i is then reformulated as

xi,t+1 = ANi
xNi,t +Biui,t, ∀i ∈ N , (5)

with
ANi

= XiAX
>
Ni
, Bi = XiBU

>
i . (6)

The local state and input constraints are defined as

xNi,t ∈ XNi
= {xNi,t ∈ RnNi : GNi

xNi
≤ gNi

},
ui,t ∈ Ui = {ui,t ∈ Rmi : Liui ≤ li},

(7)

with Li = UiLU
>
i and li = Uil, and GNi

= XNi
GX>Ni

and
gNi = XNig.

B. Control Problem Formulation

Let us consider system (1). We are given an iterative
task, where the trajectories of the subsystems start at the
same initial states at each iteration. We will discuss the case
of non-iterative tasks in Section V-C. In the following, we
denote the iteration by a superscript q and the initial state at
iteration q by

xqi,0 = xi,S , ∀i ∈ N , (8)

where the overall initial state xq0 = xS is defined as a stacked
vector similar to (4).

The goal is to solve the following infinite horizon optimal
control problem (IHOCP) at each iteration

J∗0→∞(xS) = min
u0,u1,...

∞∑
t=0

h(xt, ut)

s.t. xt+1 = Axt +But, ∀t ≥ 0

xt ∈ X , ∀t ≥ 0

ut ∈ U , ∀t ≥ 0

x0 = xS .

(9)

In the following, we consider problems that involve de-
composable stage costs in (9), i.e., where h(xt, ut) is given
as a sum of local stage costs hi(xNi,t, ui,t) as

h(xt, ut) =
M∑
i=1

hi(xNi,t, ui,t). (10)
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We assume that the local stage costs hi(·, ·) are continuous,
jointly convex and satisfy

hi(xNi,F , 0) = 0,

hi(x
q
Ni,t

, uqi,t) ≥ 0, ∀ xqNi,t
∈ RnNi\{xNi,F },

∀ uqi,t ∈ Rmi\{0},
(11)

where the final state xF is a feasible equilibrium for system
(1) under no input, i.e., AxF = xF .

Remark 1: While the local stage costs hi(xNi,t, ui,t) can
account for coupling between the subsystems, this formula-
tion includes the special case of completely separable cost
functions with local stage costs given as hi(xi,t, ui,t).

Remark 2: A specific choice of the stage cost h(xt, ut)
can be the quadratic function

h(xt, ut) = x>t Qxt + u>t Rut,

with positive semi-definite and positive definite weighting
matrices Q ∈ Rn×n and R ∈ Rm×m, respectively. In this
case, the local stage costs are given by

hi(xNi,t, ui,t) = x>Ni,tQNi
xNi,t + u>i,tRiui,t,

with QNi and Ri such that the global weighting matrices
Q and R are given by Q =

∑
i∈N X

>
Ni
QNiXNi and R =∑

i∈N U
>
i RiUi. A completely separable quadratic stage cost

is then defined as

hi(xi,t, ui,t) = x>i,tQixi,t + u>i,tRiui,t, (12)

with Qi such that Q =
∑
i∈N X

>
i QiXi and Ri as before.

III. BACKGROUND ON LMPC

We review the LMPC problem formulation for the global
system in (1) from [19]. For this, we define the vectors that
collect all inputs applied to system (1) and its resulting states
for all time steps t of iteration q as

uq = [uq>0 , uq>1 , ..., uq>t , ...]>,

xq = [xq>0 , xq>1 , ..., xq>t , ...]>.
(13)

A. Convex Safe Set

In order to guarantee stability of MPC laws, an N -step
controllable set to a control invariant set can be used. Com-
puting such a set is usually numerically challenging or even
intractable for nonlinear systems or large scale distributed
systems. To alleviate this problem, we will as [17] exploit
previously seen trajectories that successfully completed the
iterative task. Since they represent a subset of the maximal
stabilizable set, the sampled safe set SSq is defined over the
realized trajectories of the system from previous iterations

SSq =

{ ⋃
l∈T q

∞⋃
t=0

xlt,

}
, (14)

where T q collects all iteration indices from previous suc-
cessful iterations, i.e., which were feasible and converged to
xF , defined as

T q =
{
l ∈ [0, q] : lim

t→∞
xlt = xF

}
. (15)

Because of the convexity of the constraints X and U , any
convex combination of the elements in the safe set SSq is
again a control invariant set for system (1), i.e., for any
element in the convex safe set

CSq = conv(SSq)

=

{∑
l∈T q

∞∑
t=0

αltx
l
t : α

l
t ≥ 0,

∑
l∈T q

∞∑
t=0

αlt = 1, xlt ∈ SS
q

}
,

(16)
there exists a sequence of control inputs that steers the system
(1) to xF [20]. If all previous successful trajectories are taken
into account, then it holds that the sets are growing over the
iterations, i.e., T q−1 ⊆ T q and therefore

CSq−1 ⊆ CSq. (17)

B. Terminal Cost

For the qth realized trajectory xq and associated input
sequence uq in (13), the cost-to-go from time t onwards is
given by

Jqt→∞(xqt ) =
∞∑
k=t

h(xqk, u
q
k). (18)

The performance of the qth trajectory is defined as the cost
from time t = 0, i.e.,

Jq0→∞(xq0) =

∞∑
t=0

h(xqt , u
q
t ). (19)

The barycentric function [21] is used as the terminal cost
in the LMPC for linear systems in [17]. It is defined as

V q,∗(x) = min
αq

q∑
l=0

∞∑
t=0

αltJ
l
t→∞(xlt)

s. t.

q∑
l=0

∞∑
t=0

αlt = 1

q∑
l=0

∞∑
t=0

αltx
l
t = x,

αlt ≥ 0, ∀t ∈ N,

(20)

with xlt being the realized state at time t of the lth iteration,
and where αq comprises all αlt, ∀l ∈ {0, ..., q}, ∀t ∈ N. The
function V q,∗ thus assigns to every point in the convex safe
set the corresponding convex combination of minimum costs-
to-go along the previous trajectories in the safe set.

Remark 3: In practical applications, the iterations will
have a finite time duration. For simplicity, we adopt the
infinite time formulation in this paper.

An LMPC [17] for a centralized linear system then solves
at each time step t the following finite horizon optimal
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control problem (FHOCP),

JLMPC,q
t→t+N (xqt ) =

min
xt,N ,ut,N−1,αq−1

[
t+N−1∑
k=t

h(xk|t, uk|t) + V q−1,∗(xk+N |t)

]
s.t. xk+1|t = Axk|t +Buk|t,

xk|t ∈ X ,
uk|t ∈ U , k = t, ..., t+N−1 (21)
xt|t = xqt ,

xt+N |t ∈ CSq−1,

with
xt,N = [x>t|t, ..., x

>
t+N |t]

>,

ut,N−1 = [u>t|t, ..., u
>
t+N−1|t]

>.
(22)

Let us denote the optimal solution to (21) by

x∗t,N = [x∗>t|t , ..., x
∗>
t+N |t]

>,

u∗t,N−1 = [u∗>t|t , ..., u
∗>
t+N−1|t]

>.
(23)

At time t, the first input is applied to the system, i.e., uqt =
u∗qt|t, and the problem (21) is solved again for the next time
step in a receding horizon fashion.

Under the assumption that at iteration q = 1 the convex
safe set is non-empty, i.e., CSq−1 = CS0 6= ∅, recursive and
iterative feasibility, asymptotic stability and non-decreasing
performance over the iterations are proved in [19].

IV. DLMPC

In the following, we present the problem formulation of
DLMPC, which extends the LMPC approach to distributed
systems. Let us consider the coupled constrained linear
distributed system from (1). We define the vectors that collect
all inputs applied to subsystem i in (5) and its resulting states
for all time steps t of iteration q as

uqi = [uq>i,0 , u
q>
i,1 , ..., u

q>
i,t , ...]

>,

xqi = [xq>i,0 , x
q>
i,1 , ..., x

q>
i,t , ...]

>.
(24)

We further define the local sampled safe sets for subsystems
i ∈ N over the realized trajectories of the subsystem from
all successful previous iterations up to q as

SSqi =

{ ⋃
l∈T q

∞⋃
t=0

xli,t,

}
, (25)

with T q as defined before for (14). Moreover, we note that
we can decompose the safe set from (16) into the following
local convex safe sets

CSqi =

{∑
l∈T q

∞∑
t=0

αli,tx
l
i,t :

αli,t ≥ 0,
∑
l∈T q

∞∑
t=0

αli,t = 1, xli,t ∈ SS
q
i

}
,

(26)

where the coefficients αli,t, ∀l ∈ {0, ..., q − 1}, ∀t ≥ 0 will
be optimized over in problems (28) and (30).

We note the following relation of the convex safe set CSq
in (16) and the local convex safe sets CSqi in (26), which
will be important for the decomposition of the problem in
(21):

x = [x>1 , ..., x
>
M ]> ∈ CSq ⇐⇒

xi ∈ CSqi , αqi = αqj , ∀i 6= j, i, j ∈ N ,
(27)

with αqi comprising αli,t, ∀l ∈ {0, ..., q − 1}, ∀t ≥ 0 in (26).
Based on the assumption before that the global system is

decomposable into M coupled subsystems, the global LMPC
problem in (21) can equivalently be decomposed into the
following subproblems

JLMPC,q
i,t→t+N (xqi,t) =

min
xNi,t,N

,
ui,t,N−1,

αq−1
i

[
t+N−1∑
k=t

hi(xNi,k|t, ui,k|t) + V q−1,∗i (xi,t+N |t)

]

s.t. xi,k+1|t = ANi
xNi,k|t +Biui,k|t,

xNi,k|t ∈ XNi
,

ui,k|t ∈ Ui, k = t, ..., t+N−1 (28)
xNi,t|t = xNi,t,

xi,t+N |t ∈ CSqi ,

with
xNi,t,N = [x>Ni,t|t, ..., x

>
Ni,t+N−1|t]

>,

ui,t,N−1 = [u>i,t|t, ..., u
>
i,t+N−1|t]

>,
(29)

with αq−1i comprising αli,t, ∀l ∈ {0, ..., q − 1}, ∀t ∈ N, and
with V q−1,∗i (xi,k+N |t) being defined as in (20), but with
J lt→∞(xlt) replaced by

J li,t→∞(xli,t) =

∞∑
k=t

hi(x
l
Ni,k, u

l
i,k).

In order to guarantee that the decomposed problem in (28)
is an exact reformulation of the global problem in (21), i.e.,
to guarantee that they have the same solutions, the following
consensus constraints need to be introduced

αq−1i = αq−1j , ∀i, j ∈ N , i 6= j,

xNi,t,N = XNi
xt,N , ∀i ∈ N , t ≥ 0,

(30)

with xt,N the planned state trajectory of the global system as
defined in (22). The consensus constraint in the first line of
(30) ensures the condition in (27), and the one in the second
line ensures that overlapping parts of state variables from
neighboring subsystems in xNi,t,N , i.e., variables of different
subsystems that have the same physical meaning, are the
same. The local FHOCPs in (28) are solved in a receding
horizon fashion, i.e., the first local inputs uqi,t = u∗qi,t|t are
applied to the subsystems at time t. The next section presents
a distributed solution method to solve the subproblems (28).

V. DISTRIBUTED SYNTHESIS FOR DLMPC

In this section, we present a distributed solution method
for the local decomposed subproblems in (28) coupled over
the consensus constraints in (30). Various distributed opti-
mization algorithms can be employed [8]. We propose a
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distributed solution scheme based on the alternating direction
method of multipliers (ADMM) because of its fast conver-
gence in practice [9], [22]. A consensus algorithm involving
a central coordinator [22] could be implemented, which
requires communication to every subsystem and therefore
might not be tractable in practice. We propose a scheme,
where only nearest-neighbor communication and no global
coordination is required. A similar scheme has been pre-
sented before for distributed controller synthesis of large-
scale systems in [23].

A. Distributed Synthesis for DLMPC

Let us define the local variable vector of subsystem i as

si = [x>Ni,t,N , α
q−1>
i , u>i,t,N−1]

>, (31)

and the projection matrices Eij , which project si onto those
variables over which a consensus needs to be achieved
between subsystem i and its neighboring subsystems j ∈ Ni,
i.e., Eijsi = Ejisj is the consensus constraint from (30) for
subsystem i with j. The decomposed problem in (28) and
(30) can now be formulated as the following M subproblems
for all i ∈ N

min
si

Jqi,t→t+N (si) + gi(si)

s.t. Eijsi = Ejisj , ∀j ∈ Ni.
(32)

with Jqi,t→t+N (si) being the cost function in (28), and gi(si)
being the indicator function for the constraints in (28), i.e.,

gi(si) =

{
0 if si satisfies the constraints in (28),
+∞ otherwise.

In order to derive the ADMM steps, we formulate the
augmented Lagrangian, which allows a decomposition into
the following sum of local terms

Lρ =
∑
i∈N
Lρ,i, (33)

with

Lρ,i = Jqi,t→t+N (si) + gi(si)

+
∑
j∈Ni

(
λ>ij (Eijsi − Ejisj) +

ρ

2
‖Eijsi − Ejisj‖22

)
.

(34)
The modified ADMM update steps are summarized in Al-
gorithm 1. The derivation can be found in [23]. The up-
date steps require communication only between neighboring
subsystems, i.e., subsystems that are coupled through their
dynamics, constraints, or costs.

The DLMPC for iterative tasks, with distributed solution
of the subproblems by Algorithm 1, is given in Algorithm 2.

B. Properties of the DLMPC

Next, we present our main result on the properties of
Algorithm 2. We make the following assumptions.

Assumption 1: We have access to feasible trajectories xqi
at iteration q = 0 converging to xi,F for all subsystems

Algorithm 1: Distributed computation of local input
uqi,t = u∗qi,t|t for subsystem i at time t of iteration q

Input: Iteration q, time t, ρ > 0, set of neighboring
subsystems Ni, current subsystems states xqi,t,
initial values s(0)i , ∀i ∈ N

1 for i ∈ N do
2 Initialization: Set κ← 0, λ(0)i ← 0;
3 while not converged do
4 Communicate Eij s

(κ)
i to neighboring nodes

j ∈ Ni;
5 λ

(κ+1)
i ← λ

(κ)
i +ρ

∑
j∈Ni

(Tij s
(κ)
i −Tji s

(κ)
j );

6

s
(κ+1)
i ←argmin

si

{
Jqi,t→t+N (si)+gi(si)+s

>
i λ

(κ+1)
i

+ρ
∑
j∈Ni

‖Tij si −
Tij s

(κ)
i + Tji s

(κ)
j

2
‖2
}
;

7 end
8 κ← κ+ 1;
9 Set s∗i = sκi ;

10 Return u∗qi,t|t from s∗i ;
11 end

Output: local inputs uqi,t, ∀i ∈ N

Algorithm 2: DLMPC
Input: Initial states xi,S , target states xi,F , sets of

neighboring subsystems Ni, initial successful
feasible trajectories x0

i,t, u0
i,t with CS0i and

J0
i,t→∞(xi,t), ∀xi,t ∈ x0

i,t, ∀i ∈ N , qmax

1 for iteration q = 1 to qmax do
2 for i ∈ N do
3 while xi,t 6= xi,F do
4 Solve local problem (32) via Algorithm 1;
5 Apply local input uqi,t = u∗qi,t|t;
6 Obtain local state xqi,t;
7 end
8 Update CSqi by adding x∗i,t;
9 Compute and save Jqi,t→∞(xqi,t), ∀x

q
i,t ∈ x∗i,t;

10 end
11 q = q + 1;
12 end

Output: Closed-loop trajectories x∗i,t, u
∗
i,t, ∀i ∈ N

i ∈ N , and therefore the convex safe sets at iteration q = 1,
CSq−1i = CS0i , are non-empty.

Assumption 2: We assume that the local cost functions
Jqi,t→t+N (·)+gi(·) in (32) are closed, proper and convex for
all subsystems i ∈ N , and that the unaugmented Lagrangian

Li = Jqi,t→t+N (si) + gi(si) +
∑
j∈Ni

λ>ij (Eijsi − Ejisj)

has a saddle point, and that the ADMM update steps in
Algortihm 1 are feasible.
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In addition to the classical MPC properties, namely, per-
sistent feasibility in each iteration, and asymptotic stability
of the equilibria xi,F , the following properties hold for the
DLMPC in Algorithm 2.

Theorem 1: Consider system (1), with distributed struc-
ture (5) and (7). Let Assumptions 1 and 2 hold. Then, the
DLMPC in Algorithm 2 has the following properties:

1) The DLMPC is feasible for all t ≥ 0 and at every
iteration q ≥ 1. The equilibrium points xi,F are asymp-
totically stable for the closed-loop coupled subsystems
under the DLMPC law.

2) The iteration cost Jq0→∞(xS) of the closed-loop sys-
tem does not increase with the iteration index q, i.e.,
Jq+1
0→∞ ≤ J

q
0→∞.

3) If the closed-loop system under the DLMPC converges
to the steady-state inputs u∞i = lim

q→∞
uqi and the related

steady-state trajectories x∞i = lim
q→∞

xqi , for all subsys-

tems i ∈ N , and the conditions from [17, Theorem 3]
are satisfied, then, u∞i and x∞i are global optimal
solutions for the IHOCP (9).
Proof: The properties of Theorem 1 have been proven

in [17] and [19] for a single system. It therefore suffices
to show that the proposed decomposed problem solved in
Algorithm 2 is an exact reformulation of the global cen-
tralized problem and that the distributed solution method in
Algorithm 1 converges to the global optimal solution.

It can easily be seen that the local subproblems in (28)
together with the consensus constraints in (30), and their
reformulation into the subproblems in (32) are exact reformu-
lations of the global problem in (21). This follows from the
decomposability of the cost function in (10) and the structure
of the system in (5) and (7), together with the definitions of
CSqi and V q,∗i in (26) and (28) with the consensus constraints
in (30). For linear system dynamics and convex constraints,
the problems (both the global and the local ones) are convex
and therefore admit a global optimal solution.

The proposed distributed solution method in Algorithm 1
is equivalent to the update steps of consensus ADMM in
[22]. This equivalence has been shown in the derivation
of the steps of Algorithm A.1 in [24]. Under Assump-
tion 2, the residuals Eijsi − Ejisj , ∀j ∈ Ni, ∀i ∈ N
in Algorithm 1 asymptotically converge to zero and the
cost

∑
i∈N (J

q
i,t→t+N (·) + gi(·)) from (32) asymptotically

converges to the global optimal solution. This is true in each
time step and therefore Jq0→∞(xS) =

∑
i∈N J

q
i,0→∞(xi,S)

converges to the global optimal solution. With the previous
results, this is equivalent to the global optimal solution of
the global centralized problem (21).

Therefore, the proofs in [17] and [19] for a single system
can be applied to the global centralized problem and thus
the properties in Theorem 1 hold.

Note that the properties in Theorem 1 hold for the
global system in (1), i.e., for the ensemble of all coupled
subsystems. In particular, property 2) guarantees a decrease
in the iteration cost Jq0→∞(xS) =

∑
i∈N J

q
i,0→∞(xi,S) of

the sum of costs of all subsystems over iterations, rather

than a decrease in the iteration costs Jqi,0→∞(xi,S) of the
individual subsystems. Similarly, the optimal cost function
JLMPC
t→t+N (·) =

∑
i∈N J

LMPC
i,t→t+N (·), is a Lyapunov function

for the equilibrium point xF of the closed loop system
(1) rather than the individual cost functions JLMPC

i,t→t+N (·)
for the individual subsystems. Furthermore, Algorithm 1
enables a distributed implementation of the global terminal
constraint set CSq−1 on which no distributed structure is
imposed. The approach presented in this paper therefore
captures the couplings between the subsystems and thus
reduces conservatism w.r.t. other approaches of distributed
MPC in the literature which impose structure on the terminal
cost or terminal constraint sets.

The size of the decomposed local FHOCPs in (28) are of
the size of the individual subsystems and are independent
of the number of subsystems. Since only nearest-neighbor
communication is required in Algorithm 1, also the solution
method scales well with the number of subsystems. The
number of data points for the construction of the convex
safe sets in (26) grows in each iteration with adding the
most recent closed loop trajectories to the safe sets in (25).
In order to reduce the required computational effort, the set
of data points can be truncated, i.e., not all previously seen
data points need to be included in the safe sets in (25).
For example only the most recent trajectories, or only the
previous trajectory can be chosen to be included.

C. Safe and Efficient Data Generation and Domain Enlarge-
ment of the DLMPC Policy

In order to use Algorithm 2 for a (possibly iterative) task,
data from at least one set of successful feasible trajectories of
the subsystems are required to construct the local terminal
sets and cost functions, which guarantee the properties in
Theorem 1. While successful feasible trajectories might be
easy to obtain for distributed systems in some applications,
such as by locally or manually controlling multiple loosely
coupled subsystems in a non-optimal way, in other applica-
tions, such as for tightly coupled subsystems with safety-
critical constraints, these data might be difficult to generate.
We therefore propose in the following a distributed algorithm
which allows the safe and efficient generation of the data
required for the computation of the terminal sets and costs
in Algorithm 2. We present this data generation method for a
control task from given initial states xdesi,0 to the target states
xi,F of the subsystems. Let us define the following FHOCP,
which is similar to the one in (28) except for a different cost
function, and with the initial states xi,0 being optimization
variables

min
xNi,t,N

,
ui,t,N−1,

αq−1
i

‖xqi,0 − x
des
i,0 ‖22

s.t. xi,k+1|t = ANi
xNi,k|t +Biui,k|t, k = 0, ..., N−1

xNi,k|t ∈ XNi
, k = t, ..., t+N−1

uik|t ∈ Ui, k = t, ..., t+N−1, (35)

xi,t+N |t ∈ CSq−1i ,
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Algorithm 3: Efficient and safe distributed data
generation for the DLMPC policy
Input: Terminal states xi,F , sets of neighboring

systems Ni, desired initial states xdesi,0 ,
∀i ∈ N , rmax

1 Initialize: Set CS0i = xi,F ;
2 Set iteration count r = 1;
3 for i ∈ N do
4 while ‖xri,0 − xdesi,0 ‖22 ≤ ε and r ≤ rmax do
5 Solve (35) to obtain xri,0;
6 Compute x∗i,t, u∗i,t via Algorithm 2 with

inputs: xi,S = xri,0, CS0i = CS
r−1
i ,

J0
i,t→∞ = Jri,t→∞, qmax = 1, until line 7 of

Algorithm 2, then break;
7 Update CSri by x∗i,t;
8 Compute and save Jri,t→∞(xi,t), ∀xi,t ∈ x∗i,t;
9 r = r + 1;

10 end
11 Set CSi = CSri ;
12 end

Output: CSi containing successful feasible
trajectories from xdesi,0 to xi,F , ∀i ∈ N

with xNi,t,N , ui,t,N−1, αq−1i as in (29), and where the
consensus constraints in (30) have to hold. Note that no initial
successful feasible trajectories x0

i,t need to be available.
Instead, we use only the target states xi,F as initial feasible
trajectories and therefore define CS0i = xi,F .

Iteratively solving (35) and computing the DLMPC closed-
loop trajectories by Algorithm 2 enlarges the domain of the
DLMPC policy and converges to feasible trajectories starting
at xi,0 = xdesi,0 and ending in xi,0 = xi,F , which can used as
the input to Algorithm 2. These steps are summarized in the
following Algorithm 3

Remark 4: Algorithm 3 can also be used to compute a
larger domain of the DLMPC policy. If no specific initial
states xdesi,0 are given, instead of the cost function ‖xqi,0 −
xdesi,0 ‖22 in (35), a different cost function can be used, for
example to compute the initial states xi,0 for all subsystems
i ∈ N as the points furthest in the direction of interest at
the borders of the convex safe sets CSqi .

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical examples to demon-
strate the methods of the DLMPC scheme in Algorithm 2
and the data generation in Algorithm 3.

We consider a system of three dynamically coupled sub-
systems with coupled state constraints. The subsystems have
two states each, i.e., xi = [xi1, xi2]

>, ∀i ∈ N . The overall
system state is given by x = [x>1 , x

>
2 , x

>
3 ]
> ∈ R6, and

the input vector by u = [u1, u2, u3]
> ∈ R3. The system

matrices of the global system are given by

A =

[
A11 A12 0
0 A22 A23

A31 0 A33

]
, B = diag(B11, B22, B33) ,

(36)
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Fig. 1: Domain enlargement for desired initial states xdes,1i,0 ,
xdes,2i,0 : CSqi of subystems i = 1 (solid red —– ), i = 2
(dashed green - - - ), i = 3 (dotted blue ...... ) over iterations
q = 1, 2 ( ◦ ), q = 3, 4 ( ∗ ), starting with CS0i = [0, 0]>.

with

A11 =

[
1 0.5
0 1.1

]
, A22 =

[
1.05 0.6
0 1

]
, A33 =

[
1 0.55
0 1.05

]
,

A12=A23=A31=−
[
0.1 0.2
0 0.3

]
, B11=B22=B33=[0, 1]>,

(37)
−0.9 ≤ x11 − x21 ≤ 0.9,

−0.9 ≤ x21 − x31 ≤ 0.9,

−3 ≤ ui ≤ 3

−5 ≤ xik ≤ 5, ∀i ∈ N , k ∈ {1, 2}.

(38)

A. Data Generation

First, we generate the feasible trajectories required as
inputs to Algorithm 2, by making use of Algorithm 3. We
choose the following desired initial states

xdes,11,0 = [−5, 0]>, xdes,21,0 = [4, 0]>,

xdes,12,0 = [−4.5, 0]>, xdes,22,0 = [4.5, 0]>,

xdes,13,0 = [−4, 0]>, xdes,23,0 = [5, 0]>.

(39)

We iteratively compute the inital states xi,0 as those states
closest to xdes,1i,0 and xdes,2i,0 , in an alternating way, thus
enlarging the domain of the DLMPC policy in both the
negative and positive xi1 directions within the feasible region
of the state space.

Remark 5: Note that if no specific initial states xdes,1i,0 and
xdes,2i,0 are defined, a similar result of domain enlargement is
achieved by changing the cost function in (35) to xqi,0 and
−xqi,0, respectively.

Figure 1 shows the enlargement of the convex hulls of
the safe sets, CSqi , of the three subsystems over iterations
q = 0 to 4 of Algorithm 3. At iteration 4, the given initial
states xdes,1i,0 and xdes,2i,0 have been reached, i.e., closed-loop
trajectories from xdes,1i,0 to xi,F and from xdes,2i,0 to xi,F under
the DLMPC law have been generated.

B. Iterative Control Task

We consider now the control task to steer the coupled
subsystems in (36) from xdes,1i,0 as in (39) to xi,F = [0, 0]>.
The cost function is given as in (12) with Qi = Ini and
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Iteration 0 1 2 3 4
Sys. 295.63 216.96 216.41 216.31 216.28

Subsys. 1 112.47 87.97 88.07 88.22 88.31
Subsys. 2 113.05 76.52 76.10 75.90 75.78
Subsys. 3 70.11 52.47 52.23 52.19 52.19

5 6 7 8 9 10
216.26 216.26 216.25 216.25 216.25 216.25∗

88.36 88.38 88.40 88.41 88.42 88.42
75.72 75.68 75.66 75.64 75.63 75.63
52.19 52.19 52.19 52.20 52.20 52.20

TABLE I: Iteration costs ∗converged to global optimal solu-
tion (computed for the centralized system with N = 200).
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Fig. 2: Iterative regulation task for 3 dynamically coupled
subsystems. Trajectores of subystems i = 1 (solid red —– ),
i = 2 (dashed green - - - ), i = 3 (dotted blue ...... ) shown
for iterations q = 0 (� ), q = 1 ( ◦ ), q = 10 ( ∗ ).

Ri = Imi
. We generate the first feasible trajectory by

a distributed MPC with time horizon N = 15, without
terminal sets and constraints, and with Qi = 0.1Ini

and
Ri = Imi

. In real, possibly safety-critical, applications a
feasible trajectory could be obtained by manual control of
the subsystems, or with the data generation in Algorithm 3,
as illustrated in Section VI-A. Table I shows the performance
improvement over iterations of Algorithm 2 with a time
horizon of N = 4. Figure 2 shows the resulting closed-
loop trajectories. It is interesting to note that while the
iteration costs of subsystems 2 and 3 are decreasing over the
iterations, the one of subsystem 1 is increasing. As noted
before, Theorem 1 guarantees that the sum, i.e., the iteration
cost of the overall system is guaranteed to be non-increasing.

VII. CONCLUSION

A distributed learning model predictive control scheme
was presented, which exploits data in order to construct the
terminal cost and constraints of the DMPC problem without
imposing the distributed structure of the system. The required
computation is done online in a distributed way. It was shown
how the scheme can be used to safely explore the state-space
and generate the required data or exploit data from iterative
control tasks. In addition to recursive feasibility and asymp-
totic stability, performance improvement over iterations and
convergence to the global centralized optimal solution under
mild conditions are guaranteed.
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