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ABSTRACT

Disaster recovery is considered one of the less understood phases of the disaster cycle. In
particular, the literature around lifeline infrastructure restoration modeling frequently mentions
the lack of available data. Despite limitations, there is a growing body of research on modeling
lifeline infrastructure restoration using empirical quantitative data. This study reviews this body of
literature and identifies the data collection and usage patterns present across modeling approaches
to inform future efforts. We classify the modeling approaches into simulation, optimization,
and statistical modeling. The number of publications in this domain has increased over time
with the most rapid growth of statistical modeling. Electricity infrastructure restoration is most
frequently modeled, followed by the restoration of multiple infrastructures whose interdependency
is increasingly considered in recent literature. Researchers gather the data from various sources,
including collaborations with utility companies, national databases, and post-event damage and
restoration reports. This article provides discussion and recommendations around data usage
practices to facilitate a community of practice around restoration modeling and provide greater

opportunities for future data sharing.
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INTRODUCTION

Recovery from disasters is considered one of the less understood phases of the disaster cycle
(Smith and Wenger 2007; Miles et al. 2019). Disaster recovery is a broad term with many facets,
including social, economic, built, and natural environments. It is largely accepted to imply bringing
each of these facets back to or better than pre-disaster levels (Kates and Pijawka 1977; Chang 2010;
Lindell 2013). We follow most closely the definition of Lindell (2013). Disaster recovery is a phase
of the emergency management cycle that usually overlaps with emergency response. A subsection
of disaster recovery research is lifeline restoration modeling. Restoration refers to the short-term
patching up of essential services to help facilitate longer-term recovery (Kates and Pijawka 1977,
Lindell 2013; Loggins et al. 2019). Lifelines are a subset of critical infrastructures vital for com-
munities to operate (The White House 2013), namely, electricity, natural gas, telecommunication,
transportation, water, wastewater, and liquid fuel (Applied Technology Council 2016). Understand-
ing how these systems are restored allows for more informed community resilience planning efforts
(O’Rourke and Briggs 2007; National Institute of Standards and Technology (NIST) 2015). We
can better understand lifeline restoration processes through modeling.

The lack of, or perceived lack of, empirical data is one of the primary challenges for the
growth of the lifeline restoration modeling field (Miles and Chang 2006; Chang 2010). Ouyang
(2014) identifies difficult to access data and lack of precise data as key problems for modeling
lifeline systems. Lifeline modeling requires many data, frequently including system topologies,
component geographical locations, and emergency procedures used by the lifeline system’s owners.
Data access is difficult for reasons such as security, liability, competition laws, confidentiality, and
privacy. Rinaldi et al. (Rinaldi et al. 2001) also identify the volume of data required to model
lifeline systems as a major challenge in the field. Ouyang (Ouyang 2014) calls for a standardized
data collection method to remedy data issues, while Miles et al. (Miles et al. 2019) calls for a
community of practice to develop around the broader field of disaster recovery modeling, including
development of shared data sets. Consistent data collection and management strategies would allow

for many more data reuse opportunities and greater access into the field for new researchers.
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The need for a consistent approach to handling data in lifeline restoration modeling is apparent.
It is necessary to understand the history of data usage in the field. The purpose of this study
is to review the usage of empirical quantitative data to model lifeline infrastructure restoration
and provide recommendations for future directions of the field. Section 2 discusses high-level
trends seen in the literature and the literature search methods used. Section 3 breaks down the
literature by modeling approach for an in-depth look at how various approaches utilize empirical
quantitative data. Section 4 discusses topics related to lifeline restoration modeling, such as model
validation and testing methods, modeling interdependent systems, benchmarking testbeds and data
management best practices.

This review shows relationships between modeling approach, hazard type, lifeline system, and
data set features. Additionally, it identifies trends in the field related to modeling interdependencies
in the restoration process and alternative data sources, including benchmarking testbeds. The most
significant contribution of this review, which separates it from existing reviews such as Ouyang et
al. (2014) or Miles et al. (2019), is its focus on data and data management. There is no other
review to our knowledge with this focus in the literature. Our review shows the breadth of data
features and data sources used in the literature. It can guide researchers as to the many kinds of
data that could be used to model lifeline infrastructure restoration. This focus on data emphasizes
the importance of data collection and sharing to scholars and practitioners and hopefully encourage

more of them to collect and share data.

METHODS

This section details our methods for identifying publications to include in the review, what
data items we collected from each publication, and some high-level trends from the literature as
a whole. We identified initial publications to include in the review by searching Web of Science.
Web of Science was chosen for the search as it includes the curated reputable journals in relevant
disciplines, indexed such as in Science Citation Index Expanded and Social Sciences Citation
Index. This allowed us to focus on the peer-reviewed studies that meet a certain scholarly standard

amid the recent increase of spurious journals. Keywords used across our searches included terms
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related to the phases of recovery, different hazard types, and different lifeline systems. The full list
of search terms is lifeline, infrastructure, water, wastewater, electricity, power, gas, transportation,
telecommunications, outage, restoration, reconstruction, recovery, disaster, hurricane, ice storm,
tornado, earthquake, and data.

From these searches, publications were included only if they included a quantitative restoration
model, that model was for one or more lifeline systems, and the model was grounded in empirical
quantitative data in some way. Any publications published in 2019 or earlier were eligible for in-
clusion. Using the initial qualifying publications from Web of Science, we found older publications
that fit the inclusion criteria using backward snowballing. Backward snowballing is a technique for
searching the literature by proceeding backward in time through references of known publications
to find older sources on a topic (Eassom et al. 2014). In total, we identified 54 publications that met
the inclusion criteria for this study. Publications were identified and reviewed by the first author to
determine suitability for inclusion.

As there are inconsistencies in the literature regarding the usage of key terminologies such
as restoration, recovery, and response (Miles et al. 2019), and we only reviewed publications in
English, this list may not be exhaustive. However, the inclusion criteria create a representative set
of publications on the topic so the study’s findings and insights are grounded in major literature
trends. A list of all publications included in this review can be found in Table 1. The data items
collected from each publication included the modeling approach(es), the hazard(s) of interest, the
modeled lifeline system(s), whether the publication considered interdependencies in the restoration
process, and the country of origin of the data.

The literature analyzed for this study is a subset of disaster recovery and modeling literature. It
is useful to identify some excluded publications to illustrate the boundary of the reviewed literature.
Nejat and Ghosh (2016) use empirical data to model housing recovery, but their work is excluded
from this review since housing is not considered a lifeline. Similarly, publications that model
greater community recovery, or other non-lifeline sectors, are not included in this study (Barker

and Haimes 2009; Miles and Chang 2011). Works that collect restoration data without building
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a restoration model such as Nojima and Maruyama (2016) are also not included. Additionally,
publications that work with qualitative data only, such as expert judgments (Chang et al. 2014),
are not included. While qualitative data are useful for building quantitative models, the methods
for collecting/generating qualitative data are substantially different from those for quantitative data
and would be best served with their own review. A large body of literature omitted from this study
concerns the power service restoration problem defined by the Institute of Electrical and Electronics
Engineers (IEEE), as they use a specific technical definition. The problem is also known as the
Fault Isolation and Service Restoration problem. Solutions to this problem try to find the fastest
way to isolate a fault in the power distribution network while minimizing the number of healthy
out-of-service areas (Marques et al. 2018). There are reviews of the literature in this area including
Curgié et al. (1995) and Liu et al. (2016), so we refer readers to these articles for more information
on this problem. Many publications in this domain use electricity infrastructure data, so they are a
potentially valuable data source. Making exclusions of the above types allows us to keep our scope

narrow while still having a significant body of research to review.

FINDINGS

An initial finding from this review is that lifeline restoration modeling is a growing field.
Figure 1 shows the marked increase in publications over time. The sharp increase in publications
over the last ten years (2010-2019) coincides with the proliferation of statistical models of lifeline
restoration. Figure 1b shows the change in modeling approaches over time. Statistical modeling
has grown markedly in the last ten years compared to other modeling approaches. This trend may
be related to changes in the amount of available data and what data is being used. The availability of
outage/restoration data has likely increased with the increasing number of weather-induced disasters
(Kenward and Raja 2014). This increase contrasts with the availability of lifeline-specific data
(e.g., topology of a networked system) typically used by simulation and optimization approaches.
This type of data has not experienced the same trend in accessibility as outage/restoration data
since it requires collaboration with utility companies. While statistical models can use publicly

available community attributes, such as demographic information or economic data as predictors
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for outage duration, optimization or simulation approaches require lifeline-specific data to model
the restoration process. Thus, the growth in statistical models is only natural. The data usage
patterns of each modeling approach are discussed in more detail in Section 3.

Data availability is not the only factor that affects modeling decisions. Earthquake hazard re-
search is a historically more organized and well-funded research domain than other hazards research.
This is exemplified by major earthquake engineering research centers such as the Mid-America
Earthquake Center, Pacific Earthquake Engineering Research Center, and the Multidisciplinary
Center for Earthquake Engineering Research (MCEER). MCEER, formerly known as the National
Center for Earthquake Engineering Research, alone produced hundreds of publications, some of
which involve lifeline restoration modeling (Multidisciplinary Center for Earthquake Engineering
Research 1986). Two of the most extensive past restoration modeling and data collection efforts are
MCEER projects that involved collaborations with the Los Angeles Department of Water and Power
(LADWP) and Memphis Light, Gas and Water Division (MLGW). Both partnerships resulted in
multiple publications, so earthquake-related models are heavily represented in the literature as seen
in Figure 2a. Another insight from Figure 2a is that there is a significant body of literature that
assumes an initial damaged state without specifying a hazard type, or considers multiple hazards,
to make those models more generalizable.

We separate lifeline restoration modeling into three categories for our analysis: optimization,
simulation and statistical modeling. While these categories are broad, there are still enough
differences in data usage between them. To facilitate our discussion of data management practices,
this section discusses each modeling approach and the common data-usage practices within them.
Each modeling approach subsection has three parts. Part one is focused on data set features (i.e.,
what types of data are being used), part two is focused on notable data sets (defined as any data set
that was used in more than one publication), and part three is focused on data sources (i.e., where
the data was obtained from). Statistical modeling approaches are the most common, followed by
simulation, and then optimization (see Figure 2b).

There are clear connections between the modeling approaches and the types of data used.
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Optimization models most often consider multiple lifeline systems and hazard types, while statistical
models are typically linked to electricity restoration and simulation models to earthquakes (see
Figures 3a and 3b). Optimization models are procedural and emphasize generalizability, so they
tend to use data sets representing multiple systems and hazards. Statistical approaches to modeling
electricity restoration are common because power outage data are more common than outage data
for other lifelines. Electricity restoration models are often constructed using outage data and any
data used as a predictor (e.g., electricity system features, hazard characteristics, or socioeconomic
data about the surrounding community). Simulation modeling of post-earthquake restoration is
common because of the MCEER research program. The long-term MCEER partnership with the
Los Angeles Department of Water and Power (LADWP) yielded high-resolution simulation models

of post-earthquake restoration, resulting in multiple publications.

Simulation
Overview

Simulation models have the longest history of any method in the lifeline restoration modeling
domain, dating back to the 1980s (Isoyama and Katayama 1981; Isumi et al. 1985). Simulation
modeling is the second most common modeling approach in the literature reviewed. In terms of data
usage, simulation models are typically based on lifeline-specific data such as a connected graph
representation of the system, individual component repair times, and available repair resources
(e.g., maintenance crews). High fidelity simulation models require detailed data about all parts of
the restoration process, so some of the largest data sets in terms of the number of features are found

in this section.

Data Set Features

Data for simulation models come from many different sources. In spite of this, there is a
high level of overlap in the features of the data sets. Every simulation-based publication reviewed
used lifeline infrastructure data in some capacity. Lifeline systems are commonly represented as
connected graphs (Isoyama and Katayama 1981; Cagnan et al. 2006; Ramachandran et al. 2015;

Choi et al. 2018). Component failure rates are frequently obtained from other works (Isoyama and
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Katayama 1981; Brown et al. 1997; Brink et al. 2009; Sun et al. 2015). Another common data
set feature is repair crew information such as repair rate/efficiency and number of crews (Cagnan
et al. 2006; Cagnan and Davidson 2007; Xu et al. 2007; Brink et al. 2009; Tabucchi et al. 2010;
Luna et al. 2011; Brink et al. 2012). Lastly, information about restoration from an outage event is
primarily used for model validation and testing. Validation and testing methods are discussed more

in Section 4.

Notable Data Sets

Two data sets with a large number of features used for simulation modeling are those used to
model the restoration of the LADWP systems (Cagnan et al. 2006; Cagnan and Davidson 2007;
Xu et al. 2007; Tabucchi and Davidson 2008; Brink et al. 2009; Tabucchi et al. 2010; Brink et al.
2012). The data sets for these publications are the result of extensive collaboration with LADWP.
The publications are from two separate projects, one for water restoration (Tabucchi and Davidson
2008; Brink et al. 2009; Tabucchi et al. 2010; Brink et al. 2012) and one for power restoration
(Cagnan et al. 2006; Cagnan and Davidson 2007; Xu et al. 2007). The data sets include detailed
network representations of the respective lifelines, locations of the various resources necessary for
repair work, expected behavior of repair crews, and each repair resource’s availability. Additionally,
restoration and initial damage data from the 1994 Northridge earthquake serve as the basis for model
validation.

Luna et al. (2011) study water supply system restoration from earthquakes using discrete event
simulation and a colored Petri nets approach. They use the data set of [Isoyama and Katayama (1981).
The data set includes the network representation of Tokyo’s trunk water supply system, damage
probabilities for system components, repair crews, trucks, replacement pipes, and excavators. The
authors compare their model against Isoyama and Katayama (1981); however, they do not use

baseline restoration data to test the model.

Data Sources
Many data sources are used in simulation modeling studies, although some publications do not

identify an original source for their data sets. Sun et al. (2015) use an IEEE Bus Test Case for their
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network data as well as data from HAZUS and previous works for component fragility functions.
Several studies in this area (Cagnan et al. 2006; Cagnan and Davidson 2007; Xu et al. 2007;
Tabucchi and Davidson 2008; Brink et al. 2009; Tabucchi et al. 2010; Brink et al. 2012) collaborate
directly with LADWP and collect extensive data sets through interviews and reviewing emergency
response plans. Other data sources include HAZUS, S&P Global Platts (a provider of information
for commodities markets), public utility data, and government disaster reports. Easily the most
common data source in the simulation literature is previous publications (Brown et al. 1997; Chang
et al. 2002; Luna et al. 2011; Ouyang et al. 2012; Ouyang and Duefias Osorio 2014; Ouyang and
Wang 2015). Isumi et al. (1985) use damage and restoration reports from local government and
utility companies. Lastly, Google Earth is an infrequent but inventive data source for identifying

lifeline facility network structure (Ramachandran et al. 2015; He and Cha 2018).

Optimization
Overview

The purpose and data usage of optimization modeling studies differ from the other two modeling
approaches. The purpose of an optimization model is typically to identify an efficient restoration
sequence. In contrast, the purpose of simulation modeling is often to understand a restoration
process in greater detail, while the purpose of statistical modeling is often to predict outage dura-
tion. Optimization models also distinguish themselves from other approaches by more frequently
modeling interdependencies between lifelines through model constraints.

From a data usage perspective, optimization models do not put as strong of an emphasis on
using empirical data. Compared to other modeling approaches, optimization models are typically
focused on proving a theoretical result, which explains the lack of emphasis on data. Real-world
data are not strictly necessary to prove a theoretical result, such as optimality, or show computation
times. This is how data sets, such as the one used by Lee et al. (2007) arise, where a realistic
representation of several lifelines is generated using empirical quantitative and qualitative data

together.
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Data Set Features

Optimization models are similar to simulation models in that they focus their modeling efforts
on the lifeline systems and restoration processes themselves. This focus leads to data sets that take
the form of connected graph representations of lifelines. These representations include location
and capacity of supply nodes, node-arc lifeline interdependencies, flow capacities, flow costs, and

repair costs.

Notable Data Sets

Lee et al. (2007) is one of the more frequently cited optimization restoration modeling studies,
and the data set they created is reused in multiple other publications (Nurre et al. 2012; Nurre and
Sharkey 2014; Cavdaroglu et al. 2013). The authors use data from the U.S. Census, New York City
Metropolitan Transit Authority, a local electric company, and Verizon to represent the lifelines in
lower Manhattan. This representation includes physical layout, supplies, demands, capacities, in-
terdependencies, and origin-destination information for the transportation and telecommunications
networks.

Nurre et al. (2012) use the same data set for lower Manhattan as Lee et al. (2007), in
addition to collecting data about New Hanover County, NC. The New Hanover County data set
includes representations of electricity systems, wastewater systems, and emergency supply chain
infrastructures. This data set was created with the infrastructure systems’ managers and a county
emergency manager. All systems are represented as connected graphs; restoration strategies are
implemented using the input of emergency and utility managers. Sharkey et al. (2015) also use
this New Hanover County data set. Iloglu and Albert (2018) use a different data set from New
Hanover County, representing the road network, locations of fire and rescue stations, and locations
of demand for emergency services.

In their studies, Gonzélez et al. test their models on a data set representing Shelby County,
Tennessee (Gonzdlez et al. 2016; Gonzalez et al. 2017). It contains network representations of the
power, water and gas systems of the county. This data set stems from an extensive partnership

with a utility company, in this case, MLGW. This partnership yielded a feature-rich data set used
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in many subsequent studies. It dates back to an MCEER project with many contributors. This data

set is discussed in more detail in Section 3.

Data Sources

The data sources for optimization models are similar to those of simulation models but less
varied. Collaboration with lifeline management organizations to get data is a common method (Lee
et al. 2007; Yan and Shih 2009; Nurre et al. 2012; Tuzun Aksu and Ozdamar 2014). Authors also
consistently make use of data sets collected from prior studies (Nurre et al. 2012; Cavdaroglu et al.
2013; Nurre and Sharkey 2014; Sharkey et al. 2015; Gonzélez et al. 2016; Gonzdlez et al. 2017),
frequently other lifeline restoration modeling efforts. There is less emphasis on data collection
and usage than for other modeling approaches, as optimization models are frequently theoretical.
Overall, optimization approaches use a similar, but smaller, set of data sources than simulation

approaches.

Statistical Models

Statistical models are the most frequently used and most varied of the three modeling approaches.
The goal of such a model is usually to generate a restoration time estimate (e.g., it will take four days
for the lifeline to be 90% functional), or a restoration probability (e.g., there is an 80% probability
the lifeline has 90% functionality in three days). The statistical modeling approaches include curve
fitting (Park et al. 2006), survival analysis (Bessani et al. 2016; Davidson et al. 2017; Mojtahedi
etal. 2017), various machine learning techniques (Nateghi et al. 2011; Mukherjee et al. 2018b) and
econometric models (MacKenzie and Barker 2013), among others.

With the widest variety of approaches, statistical models also encompass the widest variety of
data set features and sources. A commonality amongst the statistical models is lifeline restoration
data used for model fitting and model validation and testing. Some larger data sets, in terms of
features and the number of disaster events, include power restoration after several hurricanes in the
U.S. Gulf Coast region (Nateghi et al. 2011; Nateghi et al. 2014) and a data set for power restoration
after hurricanes and ice storms for three power companies covering North Carolina, South Carolina,

and Virginia in the U.S. (Liu et al. 2007; Reed 2008; Davidson et al. 2017).

11
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Data Set Features

A common feature of statistical modeling data sets is the use of restoration data from historical
disaster events. Sometimes this takes the form of time series restoration data and other times a
single data point representing X% restoration for a particular geographic area. Lifeline data sets
are also used in many studies. Common features for power system data sets include the number
of poles, transformers, switches and lines in each grid cell of a spatial data layer (Liu et al. 2007;
Nateghi et al. 2011; Nateghi et al. 2014). Other common data set features include hazard data such
as wind speed, rainfall, and ice accretion and geographic data such as land cover and soil depth
(Guikema et al. 2010; Davidson et al. 2017). Several studies use socioeconomic data (Liu et al.
2007; Mitsova et al. 2018), including demographics, population density and poverty rates. Other
data set features include commodity trade data and climate data, such as mean annual precipitation

(Guikema et al. 2010; MacKenzie and Barker 2013; Mukherjee et al. 2018b).

Notable Data Sets

In two studies, Nateghi et al. (2011, 2014) use a data set representing the Gulf Coast region
of the U.S. The data set includes estimates of wind gust speed, duration of wind speed exceeding
20 m/s, land cover, soil moisture, antecedent precipitation and mean annual precipitation. Power
system-related features include numbers of poles, transformers, and switches; length of overhead
and underground lines; and number of impacted customers. These features are mapped to 3.66
km by 2.4 km grid cells. Restoration information is available for three hurricane events. This
multi-event nature combined with the number of features makes this data set one of the largest in
the power restoration literature.

One of the most commonly used data sets for modeling various aspects of disaster recovery
is that used in Liu et al. (2007). This data set is used for many publications, some not directly
modeling lifeline restoration (Liu et al. 2005), and others extending existing restoration modeling
work (Reed 2008). The data set includes outage data from three utility companies in the North
Carolina area for six hurricanes and eight ice storms. The data set is collected at the county level

for land cover, number of customers affected, type of device affected, population density, outage
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start time compared to start time of the first outage, estimated wind speed, seven-day rainfall and
ice accretion. Reed (2008) uses a subset of this data set and data from the 1999 French winter
storms for their model.

The work of Yu and Baroud (2019) is another that utilizes a data set from Shelby County,
Tennessee. Their data set comprises outage data from fifteen storms for MLGW between 2007 and
2017. Shelby County and MLGW have provided data for research in the past that resulted in many
extensive works, most notably an MCEER project in the *90s (Chang et al. 1996; Shinozuka et al.
1998). The data set presented in Chang et al. (1996) comprises layouts for water, electricity and
natural gas systems, restoration data for the 1994 Northridge earthquake, utility usage data, census
data, and economic data.

There are several studies that aggregate data from many events worldwide to build their models,
and studies focusing on a specific geographic area for restoration data. Diaz-Delgado Bragado
(2016) builds a database of restoration data for 31 earthquake events from around the world, 1923-
2015, considering water, power, gas and telecommunications systems and uses it to fit gamma
cumulative distribution functions. Monsalve and de La Llera (2019) also compile earthquake
restoration data, encompassing six different earthquakes and various infrastructure systems. Kam-
mouh et al. (2018) likewise bring together worldwide earthquake restoration data, including 32
earthquakes in their study. Zorn and Shamseldin (2015) is another work that brings together
restoration data from multiple events, 18 total, including earthquakes, hurricanes, and other types
of disasters, for electricity, water, gas, and telecommunications systems. Finally, Duffey (2019) col-
lects power restoration data for 13 disaster events between 2012 and 2018 through “power tracker"
or “outage map" websites.

Nojima et al. (Nojima and Sugito 2002; Nojima and Sugito 2005; Nojima and Kato 2012;
Nojima and Kato 2014) collect data sets from Japan earthquake events as the basis for their
models. These data sets include seismic intensity from the Japan Meteorological Agency, spatially
distributed population data and network vulnerability data for water and gas systems. Restoration

data sets for electricity, water, and gas systems are also used. The data sets are collected from the
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1995 Hyogoken-Nambu earthquake and the 2011 Tohoku earthquake.

MacKenzie and Barker (2013) use publicly available U.S. outage data, collected by the U.S.
Department of Energy through form OE-417, along with state population data. The data set includes
duration, location (state), and cause of the outage between January 2002 to June 2009. Barker
and Baroud (2014) and Barabadi and Ayele (2018) use the same data set, while Mukherjee et al.
(2018Db) utilize a larger data set of OE-417 submissions, containing information from January 2000
to July 2016. They use state-level population data, climate data from the U.S. National Oceanic and
Administrative Administration, electricity consumption patterns from the U.S. Energy Information
Administration, Urban/Rural and Land/Water percentages from the U.S. Census Bureau, and state-

level economic characteristics from the U.S. Bureau of Economic Analysis.

Data Sources

Direct collaboration with utility companies is again a common data source (Chang et al. 1996;
Cooper et al. 1998; Park et al. 2006; Nateghi et al. 2011; Nateghi et al. 2014; Mitsova et al.
2018). Nateghi et al. (Nateghi et al. 2011; Nateghi et al. 2014) supplement their utility-provided
data with data collected from a commercial weather forecasting service and the National Land
Cover database. Mitsova et al. (2018) collect additional data from the American Community
Survey for their model. Several modelers got their data sets from public U.S. government data
sources (MacKenzie and Barker 2013; Barker and Baroud 2014; Mukherjee et al. 2018b; Barabadi
and Ayele 2018). The most common data source is data sets from previous studies, such as the
worldwide restoration data sets in Zorn and Shamseldin (2015) and Kammouh et al. (2018). Using
a novel approach, Duffey (2019) makes use of “outage tracker" websites to gather restoration data
after multiple disasters. Sources outside the U.S. are used in several works (Bessani et al. 2016;
Mojtahedi et al. 2017; Barabadi and Ayele 2018). Finally, public outage reports are used in Duffey
and Ha (2013).

FUTURE DIRECTIONS FOR RESEARCH
We identified several important topics for discussion from this literature review. These topics

can be broken into thematic and methodological directions. The two thematic directions we
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identified were modeling interdependent systems and engagement through benchmarking testbeds.
The methodological directions are alternative data sources, model validation and testing, and data
management best practices. These topics have relevance to the future directions of the lifeline

restoration modeling literature.

Thematic Directions
Modeling Interdependent Systems

Interdependency is increasingly recognized as an important factor to consider while modeling
lifeline restoration, as seen in Figure 4a. Lifeline systems are interdependent by nature. For
example, power generators require water for cooling and electricity is needed for water pumps to
function. Quantifying these interdependencies regarding restoration is an ongoing challenge for
modelers, but one that is actively being worked on by researchers.

There was an increase in studies of cascading failures (Hernandez-Fajardo and Duefias Osorio
2013; Veremyev et al. 2014; Wu et al. 2016) in recent years, and there is a broad recognition that
lifelines are restored in an interdependent fashion (Rinaldi et al. 2001; Sharkey et al. 2016). In
contrast, our review shows that only about 25% of the reviewed literature consider interdependencies
directly. Optimization models have the longest history incorporating interdependencies in their
models, as seen in Figure 4b. The rest of this section discusses a few of the methods used to
model interdependent restoration in the reviewed literature and promising approaches that, to our
knowledge, have yet to be applied in a restoration modeling context.

Lee et al. (2007) is the oldest instance of modeling interdependent infrastructure restoration in
the reviewed literature. They consider power, telecommunications, and transportation systems in
modeling five types of interdependency: input dependence, mutual dependence, shared dependence,
exclusive-or dependence and co-located dependence. The authors include interdependencies as
constraints in their problem formulation. Cavdaroglu et al. (2013) utilize the same data set but
take the added step of determining an optimal restoration sequence for the lifeline systems. Their
objective is to maximize the functionality of the lifeline services over the restoration period by

balancing unmet demand costs and operating costs. They also model restoration interdependencies
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through their model constraints.

Yan and Shih (2009) model transportation restoration and emergency relief distribution together.
While not a model of interdependent [lifeline restoration, this work shows a way to model restoration
of interdependent systems. They use a multi-objective optimization model to minimize the length
of time for restoration and subsequent relief distribution. The authors note the connection between
the transportation system and the ability to distribute relief.

MacKenzie and Barker (2013) utilize the dynamic inoperability input-output model (DIIOM) to
include interdependency in their restoration model. Interdependencies in the DIIOM are quantified
using commodity flow data from the U.S. Bureau of Economic Analysis. They apply the model
to estimate restoration from power outages. Theirs is the earliest non-optimization approach to
modeling restoration interdependency in the reviewed literature. He and Cha (2018) extend the
DIIOM to calculate facility-level interdependencies as opposed to system-level interdependencies
in the traditional DIIOM. This facility-level approach captures interdependencies not only across,
but also within systems.

Other more recent models have a variety of approaches for modeling interdependent restoration
(Ramachandran et al. 2015; Gonzalez et al. 2016; Gonzalez et al. 2017; Monsalve and de La Llera
2019). Monsalve and de La Llera (2019) calculate a daily restoration rate for each lifeline in
their model based on the lifeline type, its interdependencies, and an additive Gaussian error term.
The authors utilize a least-squares criterion that minimizes the difference between the expected
value of the model and the data to estimate model parameters, including lifeline interdependencies.
Their model assumes that the restoration rate of a given lifeline depends on the functionality of
other lifeline systems but not on their restoration rates. Gonzélez et al. (2016, 2017) define
four types of interdependencies: logical, physical, cyber, and geographic. They account for these
interdependencies through the constraints of their optimization model. Ramachandran et al. (2015)
include interdependency in their simulation model by including constraints that some tasks cannot
start until others finish (e.g., power lines cannot be repaired until the road to access those lines is

free of debris).
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There is a series of studies that utilize time-series restoration data and cross-correlation func-
tions to quantify the interdependency between two lifelines (Duefias-Osorio and Kwasinski 2012;
Cimellaro et al. 2014; Krishnamurthy et al. 2016). This method of quantifying interdependencies
has not been incorporated into a restoration model, but the potential is there. We believe that it
could be applied in an approach similar to that of Monsalve and de La Llera (described above)

(2019).

Engagement through Benchmarking Testbeds

Over the last few years, there has been significant progress creating benchmarking testbeds
for recovery modeling. Two examples are Customizable Artificial Community (CLARC) County,
created by Loggins et al. (2019), and Centerville, created by the Center for Risk-Based Commu-
nity Resilience Planning at Colorado State University (2018). CLARC County is a GIS data set
representing an artificial hurricane-prone community of 500,000. The data set contains demo-
graphic and geographic data typically reported for U.S. census tracts and physical locations and
characteristics of components of civil and social infrastructure systems along with their interdepen-
dencies. The data set exists to support infrastructure and emergency management research without
compromising potentially sensitive information. The Centerville community resilience testbed is
a virtual city, representing a typical middle-class city in the Midwestern U.S. that is susceptible to
tornadoes and earthquakes. Buildings, transportation systems, electric power, and water systems
are represented in the data set, and socioeconomic features based on American Community Survey
data for Galveston, Texas, and income data from Fort Collins, Colorado.

These testbeds are conducive to recovery research, as they allow for complete, albeit synthetic,
data sets to be used to test and compare recovery models. The two examples provided here also
show that testbeds can be constructed in various ways, ranging from being completely synthetic
to being based on empirical data from a single source or an amalgamation of sources. The areas
represented by the example testbeds are different, one being an individual city, while the other a
U.S. county. No matter the construction, these testbeds can provide value as boundary objects for

comparison if nothing else. Given how recent these efforts are, it is unclear if the development of
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testbeds affects the use and collection of empirical data.

The difficulty of collecting extensive data sets for lifeline restoration modeling is well doc-
umented in the reviewed literature. Loggins et al. (2019) mention an extensive data collection
process they attempted for New Hanover County, NC, and how the difficulties they experienced
led them to create CLARC county. The likelihood of developing complete data sets on all lifelines
in a community and lifeline restoration data from a disaster event in that community is low. Even
if such a data set were to be developed, security concerns might prevent it from ever entering the
public domain. This makes testbeds the logical next step for the developing large-scale, highly
detailed optimization and simulation models of interdependent recovery. However, this does not
eliminate the need for the collection of empirical data.

The data collection of Loggins et al. for New Hanover County informed the creation of CLARC
county (Loggins et al. 2019), and Centerville (Colorado State University 2018) was created from
an amalgamation of several empirical sources. Data availability can and sometimes should inform
modeling approaches depending on modelers’ objectives, although models built with no empirical
data can still provide useful insights and create new knowledge (e.g., what-if analysis, facilitation of
discussion, and education). Examples of data availability informing model choice include the work
done with LADWP. The authors had access to a feature-rich lifeline-specific data set, which made
a detailed simulation model feasible. Another example of data availability informing modeling
efforts/direction is the work of Mukherjee et al. (2018b). The authors had access to publicly
available data at the state level, making a broader statistical model possible. Having the data set
publicly available means others can duplicate and extend this work. There are also many examples
of “benchmarking" in the literature where authors extend the modeling efforts of previous work

using the same data set and compare results.

Methodological Directions
Alternative Data Sources
Some studies that fall outside of this review’s inclusion criteria still deserve mention for their

usage of data sources not seen in the reviewed literature. McDaniels and Chang characterize
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lifeline failure interdependencies using manual content analysis of newspapers and technical reports
(Mcdaniels etal. 2007; Chang etal. 2007). Incontrast, Linetal. (2018) make use of natural language
processing to analyze newspaper stories from New Zealand after the Canterbury earthquakes to track
long-term recovery. Doubleday et al. (2019) use daily bicycle and pedestrian activity as an indicator
of disaster recovery. Brown and Pinkerton (2019) use synthetic data for power system elements.
Chang et al. (2014) use expert elicitation to characterize lifeline resilience. Expert elicitation plays
an important role in statewide resilience initiatives (Washington State Seismic Safety Committee
(WASSC) 2012; Oregon Seismic Safety Policy Advisory Commission (OSSPAC) 2013), and in the
development of the Federal Emergency Management Agency’s HAZUS (FEMA 2011).

All of the above approaches do not rely on empirical data directly related to lifelines or lifeline
restoration. In particular, approaches such as those seen in Doubleday et al. (2019) are promising
because they make use of empirical quantitative data that has not been used in the restoration
modeling space. If data sets of this nature can be linked to lifeline restoration data, the total amount
of restoration data sets available would increase. Partially synthetic power system data sets such as
those used by Brown and Pinkerton (2019) also show how new data can be generated to meet an
existing need. There is already a significant body of literature related to generating synthetic power
system data sets (Gegner et al. 2016; Birchfield et al. 2017a; Birchfield et al. 2017b).

The approach of Lin et al. (Lin et al. 2018), using natural language processing to generate
recovery data, has the potential to create many new data sets that could be used for restoration
modeling. While their analysis is focused on long-term recovery, a similar approach could be used
for modeling shorter-term restoration, perhaps using a different source such as Twitter data (Miles
et al. 2014; Ragini et al. 2018; Zou et al. 2018). Expert elicitation is another method that can be
used to develop restoration models. Models based on expert judgment can apply techniques such
as Cooke’s method (Cooke 1991) to create a systematic approach for eliciting expert knowledge

when empirical data sets are unavailable or inaccessible.
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Validation and Testing Methods

As a precursor to this section, we want to acknowledge that model validation is a contested
concept with many definitions, recommendations, and best practices across disciplines (Weinstein
etal. 2003; Rose et al. 2015). There is a tendency to think that every model was developed to predict,
and thus every model should be validated using out-of-sample testing. However, there are many
reasons for modeling outside of prediction (Epstein 2008). Given that this review aims to discuss the
use of empirical quantitative data, reviewed publications use data for model calibration, validation,
or application through a case study. Acknowledging that out-of-sample testing is not applicable
or feasible for every modeling study, this subsection discusses what out-of-sample validation and
testing techniques have been used in the field so far.

Statistical models have the widest variety of out-of-sample validation and testing approaches.
Cross-validation is used in a few models for parameter fitting or model comparison (Guikema et al.
2010; MacKenzie and Barker 2013; Nateghi et al. 2014; Yu and Baroud 2019). Some modelers
split their data sets into training and test sets by withholding information from some disaster events
(Liu et al. 2007; Nateghi et al. 2011; Davidson et al. 2017). Park et al. (2006) fit a curve to
restoration data from one event and compared the fitted parameters to that of another event.

There are several out-of-sample validation methods used by simulation models as well. For
the projects that partnered with LADWP (Cagnan et al. 2006; Cagnan and Davidson 2007; Xu
et al. 2007; Tabucchi and Davidson 2008; Brink et al. 2009; Tabucchi et al. 2010; Brink et al.
2012), this was to use restoration data from the 1994 Northridge earthquake. The authors perform
the validation by setting model input parameters (e.g. number of repair crews) equivalent to the
Northridge conditions and comparing the simulated restoration time to the actual restoration time
from the Northridge event. Other studies that compare their model output to restoration data
included Isumi et al. (1985) and He and Cha (2018). A comparison between model output for a
theoretical disaster event and restoration data from a similar disaster event in a different location
(Ramachandran et al. 2015) is one of the more inventive validation methods seen in the literature.

There are no optimization models in the reviewed literature that were tested out of sample.
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However, given the nature of an optimization model, this should not come as a surprise. The
goal of optimization is usually to perform better than the status quo. Thus the restoration time
estimates from an optimization model would nearly always be below real-world restoration times.
The contribution of an optimization model is typically a new model formulation (Nurre et al. 2012;
Yan and Shih 2009) or solution approach (Gonzilez et al. 2016).

Overall, the reviewed literature encompassed a wide variety of validation and testing approaches.
While the authors encourage the use of out-of-sample model evaluation, we understand that this is
not always possible, nor does it always make sense. However, as models continue to become more
generalizable and data more available, we hope to see more out-of-sample evaluations take place

in this field.

A Data Management Methodology for Reproducibility in Disaster Recovery Modeling

The research community benefits from reproducibility, which is fostered by detailed metadata
and data publication. Within the analyzed publications, data descriptions are frequently lacking,
and data sets are rarely published. Although it is not always possible to publish data sets for a wide
variety of reasons (e.g., security and privacy), this reduces the reproducibility of any research using
those data sets. As data becomes increasingly prevalent across research domains, there are more
advocates for increased accessibility of data sets. Gentleman and Lang (2007) go so far as to call for
the publication of “reproducible research compendiums" which include the final paper, as well as
the data set, software, and any other items necessary to reproduce the research. They acknowledge
that this is not feasible for all research but maintain that publishing as much information as possible
is worthwhile.

More recently, the FAIR guiding principles for scientific data management and stewardship
(Wilkinson et al. 2016) represent a minimal set of domain-independent data management principles.
Specifically, these principles state that research objects (Bechhofer et al. 2010) should be findable,
accessible, interoperable, and reusable, both for human-driven and machine-driven activities. These
principles are purposefully kept minimal to make the barrier to entry as low as possible to allow for

easy implementation, even in cases where data sets cannot be published in their entirety or at all.
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With these principles in mind, the remainder of this section is devoted to proposing a methodology
for writing the data description section of a research paper in the disaster recovery modeling domain
and best practices for data publication.

Gonzélez-Barahona and Robles (2012) discuss reproducibility of empirical software engineer-
ing studies and identify elements of said studies with an impact on reproducibility. We adapt their
ideas to fit the disaster recovery modeling domain. We recommend all disaster recovery modeling
publications using empirical data include a data description section, with at least the following

components:

1. Data source(s). Where did the data set come from? This should be as specific as possible.
Even if the only thing an author can share is “an unnamed utility company from the U.S.
Southeast", that is still worthwhile for a reader to know. Where possible, links or citations
to the original data source(s) should be included.

2. Retrieval method. How was the data set collected from the source? Examples include
downloading a CSV or GIS file from a government website, receiving data via email, and
using a web scraper.

3. Raw data set and metadata. Can the data set be shared or is it publicly available? If yes,
we recommend linking to an online repository that includes a description of the format and
features of the data set. If not, we recommend to provide the metadata of the data set and
the proper procedure to gain access to the data set if there is one. We recommend following
the Dublin Core (Dublin Core Metadata Initiative 2008) standards for metadata. These
standards include a cross-disciplinary list of properties for use in resource descriptions
designed to be machine-processable that suit modern metadata needs.

4. Data processing methods. For example, what transformations were performed on the data
set to get it into a usable form? Were features standardized? How were missing entries
handled?

5. Processed data set and metadata. What are the form and features of the processed data?

Processed data sets should be stored separately from the raw data set in an online repository
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580 with a link for others to access. Obtaining a Digital Object Identifier (DOI) for the data set

581 is a best practice after publishing it on an online repository or in a peer-reviewed journal
582 (e.g., (Mukherjee et al. 2018a)). Version-controlled documentation can track problems in
583 the data sets as they are found and corrected. As with the raw data set, if the processed data
584 set cannot be published, we recommend to at least provide the metadata.

585 6. Processed data set’s summary statistics. If the data set is numerical, statistics can be
586 presented in a table. If the data set is only a network representation of an infrastructure
587 system, a graphical representation may be sufficient. If this information cannot be shared,
588 it can be clearly stated with a reason (e.g., national security).

589 A visual depiction of this methodology can be seen in Figure 5. One example of a brief,

5

©

o comprehensive data description in an academic publication is from Yan and Shih (2009):

591 The roadway-network information includes the roadway segments and intersections in
592 Nantou County, the location of repair points and work stations, and the location of
593 supply and demand points. The emergency repair resources include the work teams
594 for each station and the average time required for a work team to repair each repair
595 point. Note that, in practice, when scheduling the roadway repairs, information on the
596 time needed to repair every repair point is given by the engineers. Several engineers
597 estimate the repair time in advance based on experience and the level of damage.
598 Decision-makers then use the average time (as was done in this research) to set the
599 repair time. ... There are 46 intersections, 24 repair points, 8 demand points, 9 work
600 stations, 24 work teams, 5 distribution centers, and 196 time unit lengths (3 days is the
601 time length, with a time unit of 15 min), in the tests.

s2 This description does not contain all the elements in our proposed data management methodology,

s  but it shows what can be done with a small amount of space in a research publication. The authors

=]

s« do mention a specific data source in their acknowledgments section.

605 When it comes to publishing data sets, following the FAIR principles (Wilkinson et al. 2016)
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should be the minimum standard we strive to achieve. An emphasis on these principles is enhancing
the ability of machines to find and access data sets automatically. We also would like to emphasize
this point and recommend that researchers in the disaster recovery modeling domain publish their
data sets on digital platforms that are easily machine-accessible. One domain-specific example
of this is the National Science Foundation’s Natural Hazards Engineering Research Infrastructure,
DesignSafe-CI (Rathje et al. 2017). DesignSafe-CI is a cyberinfrastructure environment for re-
search in natural hazards engineering. The features of this cyberinfrastructure include data sharing
and publication, integrated data analysis tools, high-performance computing access, and collabo-
ration tools. DesignSafe-CI has detailed data publication guidelines and guidance for writing data
management plans available.

We recognize that it is not always possible to share all the information in our proposed method-
ology due to privacy or security concerns. Even under this constraint, it is still important to
make clear data management practices for research. If the data set is private, one can still provide
relevant metadatawithin the limitations of the data set provider. This creates an opportunity for
future research to collect a different data set with the same features and apply the method used
in the original study. Overall, there are many opportunities for increased data sharing and higher
standards for reproducibility in the field of disaster recovery modeling. The proposed methodology
further supports a community of practice around data management in disaster recovery modeling.
Using resources like DesignSafe-CI is one way to make the disaster recovery modeling community

of practice a reality.

CONCLUSION

The data sources and data features used by lifeline restoration modelers vary across modeling
approaches and there is no standardized methodology for utilizing data in this research domain. This
review highlights various data sets that have been used in the past to model lifeline restoration to help
build a community of practice within the broader field of disaster recovery modeling. We propose
a set of best practices for managing and writing about data sets used for disaster recovery modeling.

These best practices rely on data access and availability. Practitioners in emergency management or
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infrastructure operation can significantly aid disaster recovery researchers by collecting and sharing
any recovery-related data with them. A stronger partnership between the research and practicing
communities is necessary for the field to move forward.

Our review shows that direct collaboration with utilities and publicly available data, usually
from the government, were two of the most common data sources in the literature. Data sets are
frequently reused over time to provide additional insights with new/updated modeling approaches.
We discuss the usage of benchmarking testbeds as an alternative way to develop and test recovery
models where relevant data sets are unavailable. Expert elicitation and large-scale text data sets are
identified as additional alternative data sources. Overall, this review demonstrates the wide variety
of data sources available to modelers. Some limitations of our review include that the review may
not have identified every publication in this domain. This exclusion could happen due to using only
one database (i.e., Web of Science) for identifying publications and the inconsistencies regarding
the usage of terms such as restoration, recovery, and response. Additionally, nearly two thirds of
the publications in the review used data from the U.S. Two potential causes for this include the
availability of data in other countries and our inclusion of articles published in English only.

Our intent for the proposed data management practices is to cause more data sets to become
publicly available. These data practices can guide modelers without much experience in disaster
and hazard research to enter the research domain and open doors for disaster and hazard researchers
to build models with more data than they previously had access to. With more and more data
available, the goal of a generalizable model of interdependent restoration could come into view,

with communities around the world as the beneficiaries.
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TABLE 1. List of every publication included in review, in order of publication year. E - electricity,
W - Water, G - Gas, Tel - Telecommunications, Tr - Transportation, WW - Waste Water, ESC -
Emergency Supply Chain, F - Fuel, M/U - Multiple/Unspecified, OW - Other Wind.

Reference Approach Lifeline Hazard Type Country
(Isoyama and Katayama 1981) Simulation W Earthquake Japan
(Isumi et al. 1985) Simulation E. WG Earthquake Japan
(Chang et al. 1996) Statistical E. WG Earthquake U.S.
(Brown et al. 1997) Simulation E 0)%% U.S.
(Cooper et al. 1998) Statistical E M/U u.S.
(Chang et al. 2002) Simulation w Earthquake U.S.
(Nojima and Sugito 2002) Statistical E, WG Earthquake Japan
(Nojima and Sugito 2005) Statistical E,W,G Earthquake Japan
(Park et al. 2006) Statistical E Earthquake U.S.
(Cagnan et al. 2006) Simulation E Earthquake U.S.
(Liu et al. 2007) Statistical E ow u.S.
(Lee et al. 2007) Optimization E, Tel, Tr M/U U.S.
(Xu et al. 2007) Simulation E Earthquake u.S.
(Cagnan and Davidson 2007) Simulation E Earthquake U.S.
(Reed 2008) Statistical E oW U.S.
(Tabucchi and Davidson 2008) Simulation \W% Earthquake U.S.
(Yan and Shih 2009) Optimization Tr, ESC Earthquake Taiwan
(Brink et al. 2009) Simulation \W% Earthquake u.S.
(Tabucchi et al. 2010) Simulation W Earthquake u.S.
(Nateghi et al. 2011) Statistical E Hurricane U.S.
(Luna et al. 2011) Simulation w Earthquake Japan
(Ouyang et al. 2012) Simulation E Hurricane U.S.
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TABLE 1 — Continued from previous page

Reference Approach Lifeline Hazard Type Country
(Brink et al. 2012) Simulation w Earthquake U.S.
(Nurre et al. 2012) Optimization E, WW, ESC M/U U.S.
(Nojima and Kato 2012) Statistical E,W.,G Earthquake Japan
(MacKenzie and Barker 2013) Statistical E M/U U.S.
(Cavdaroglu et al. 2013) Optimization E, Tel M/U U.S.
(Duffey and Ha 2013) Statistical E M/U U.S., Sweden
Belgium, France
(Nateghi et al. 2014) Statistical E Hurricane U.S.
(Barker and Baroud 2014) Statistical E M/U U.S.
(Tuzun Aksu and Ozdamar 2014) Optimization Tr M/U Turkey
(Nojima and Kato 2014) Statistical E,W,G Earthquake Japan
(Nurre and Sharkey 2014) Optimization E, Tel M/U U.S.
(Sun et al. 2015) Simulation E Earthquake U.S.
(Zorn and Shamseldin 2015) Statistical E, W, G, Tel M/U New Zealand
Worldwide
(Ramachandran et al. 2015) Simulation E, W, Tel, F ow U.S.
(Sharkey et al. 2015) Optimization E, W, WW, Tel Hurricane U.S.
(Ouyang and Wang 2015) Simulation E,G Hurricane U.S.
(Bessani et al. 2016) Statistical E M/U Brazil
(Gonzailez et al. 2016) Optimization E. WG Earthquake U.S.
(Diaz-Delgado Bragado 2016) Statistical E, W, G, Tel Earthquake Worldwide
(Mojtahedi et al. 2017) Statistical Tr M/U Australia
(Davidson et al. 2017) Statistical E ow u.S.
(Gonzaélez et al. 2017) Optimization E, WG Earthquake U.S.
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Reference Approach Lifeline Hazard Type Country
(Mitsova et al. 2018) Statistical E Hurricane U.S.
(Choi et al. 2018) Simulation W Earthquake South Korea
(Mukherjee et al. 2018b) Statistical E M/U u.S.
(Barabadi and Ayele 2018) Statistical E, Tr M/U Iran, U.S.
(Kammoubh et al. 2018) Statistical E, W, G, Tel Earthquake Worldwide
(Iloglu and Albert 2018) Optimization Tr, ESC M/U U.S.
(He and Cha 2018) Simulation E, W, Tel Hurricane U.S.
(Monsalve and de La Llera 2019) Statistical E, W, G, Tel Earthquake New Zealand
Japan, Chile
(Yu and Baroud 2019) Statistical E ow U.S
(Duffey 2019) Statistical E M/U Ireland, U.S.
New Zealand
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(b) Number of publications over time by modeling approach.

Fig. 1. Publication trends over time.
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(b) Breakdown of the reviewed literature by modeling approach and hazard type.

Fig. 3. Relating modeling approach to lifeline system and hazard type.
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(b) Breakdown of publications by modeling approach on interdependent restoration.

Fig. 4. Interdependency in the reviewed literature.
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Fig. 5. Graphical representation of the proposed data management methodology.
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