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ABSTRACT1

Disaster recovery is considered one of the less understood phases of the disaster cycle. In2

particular, the literature around lifeline infrastructure restoration modeling frequently mentions3

the lack of available data. Despite limitations, there is a growing body of research on modeling4

lifeline infrastructure restoration using empirical quantitative data. This study reviews this body of5

literature and identifies the data collection and usage patterns present across modeling approaches6

to inform future efforts. We classify the modeling approaches into simulation, optimization,7

and statistical modeling. The number of publications in this domain has increased over time8

with the most rapid growth of statistical modeling. Electricity infrastructure restoration is most9

frequently modeled, followed by the restoration of multiple infrastructures whose interdependency10

is increasingly considered in recent literature. Researchers gather the data from various sources,11

including collaborations with utility companies, national databases, and post-event damage and12

restoration reports. This article provides discussion and recommendations around data usage13

practices to facilitate a community of practice around restoration modeling and provide greater14

opportunities for future data sharing.15

1



INTRODUCTION16

Recovery from disasters is considered one of the less understood phases of the disaster cycle17

(Smith and Wenger 2007; Miles et al. 2019). Disaster recovery is a broad term with many facets,18

including social, economic, built, and natural environments. It is largely accepted to imply bringing19

each of these facets back to or better than pre-disaster levels (Kates and Pĳawka 1977; Chang 2010;20

Lindell 2013). We followmost closely the definition of Lindell (2013). Disaster recovery is a phase21

of the emergency management cycle that usually overlaps with emergency response. A subsection22

of disaster recovery research is lifeline restoration modeling. Restoration refers to the short-term23

patching up of essential services to help facilitate longer-term recovery (Kates and Pĳawka 1977;24

Lindell 2013; Loggins et al. 2019). Lifelines are a subset of critical infrastructures vital for com-25

munities to operate (The White House 2013), namely, electricity, natural gas, telecommunication,26

transportation, water, wastewater, and liquid fuel (Applied Technology Council 2016). Understand-27

ing how these systems are restored allows for more informed community resilience planning efforts28

(O’Rourke and Briggs 2007; National Institute of Standards and Technology (NIST) 2015). We29

can better understand lifeline restoration processes through modeling.30

The lack of, or perceived lack of, empirical data is one of the primary challenges for the31

growth of the lifeline restoration modeling field (Miles and Chang 2006; Chang 2010). Ouyang32

(2014) identifies difficult to access data and lack of precise data as key problems for modeling33

lifeline systems. Lifeline modeling requires many data, frequently including system topologies,34

component geographical locations, and emergency procedures used by the lifeline system’s owners.35

Data access is difficult for reasons such as security, liability, competition laws, confidentiality, and36

privacy. Rinaldi et al. (Rinaldi et al. 2001) also identify the volume of data required to model37

lifeline systems as a major challenge in the field. Ouyang (Ouyang 2014) calls for a standardized38

data collection method to remedy data issues, while Miles et al. (Miles et al. 2019) calls for a39

community of practice to develop around the broader field of disaster recovery modeling, including40

development of shared data sets. Consistent data collection andmanagement strategies would allow41

for many more data reuse opportunities and greater access into the field for new researchers.42
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The need for a consistent approach to handling data in lifeline restoration modeling is apparent.43

It is necessary to understand the history of data usage in the field. The purpose of this study44

is to review the usage of empirical quantitative data to model lifeline infrastructure restoration45

and provide recommendations for future directions of the field. Section 2 discusses high-level46

trends seen in the literature and the literature search methods used. Section 3 breaks down the47

literature by modeling approach for an in-depth look at how various approaches utilize empirical48

quantitative data. Section 4 discusses topics related to lifeline restoration modeling, such as model49

validation and testing methods, modeling interdependent systems, benchmarking testbeds and data50

management best practices.51

This review shows relationships between modeling approach, hazard type, lifeline system, and52

data set features. Additionally, it identifies trends in the field related to modeling interdependencies53

in the restoration process and alternative data sources, including benchmarking testbeds. The most54

significant contribution of this review, which separates it from existing reviews such as Ouyang et55

al. (2014) or Miles et al. (2019), is its focus on data and data management. There is no other56

review to our knowledge with this focus in the literature. Our review shows the breadth of data57

features and data sources used in the literature. It can guide researchers as to the many kinds of58

data that could be used to model lifeline infrastructure restoration. This focus on data emphasizes59

the importance of data collection and sharing to scholars and practitioners and hopefully encourage60

more of them to collect and share data.61

METHODS62

This section details our methods for identifying publications to include in the review, what63

data items we collected from each publication, and some high-level trends from the literature as64

a whole. We identified initial publications to include in the review by searching Web of Science.65

Web of Science was chosen for the search as it includes the curated reputable journals in relevant66

disciplines, indexed such as in Science Citation Index Expanded and Social Sciences Citation67

Index. This allowed us to focus on the peer-reviewed studies that meet a certain scholarly standard68

amid the recent increase of spurious journals. Keywords used across our searches included terms69
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related to the phases of recovery, different hazard types, and different lifeline systems. The full list70

of search terms is lifeline, infrastructure, water, wastewater, electricity, power, gas, transportation,71

telecommunications, outage, restoration, reconstruction, recovery, disaster, hurricane, ice storm,72

tornado, earthquake, and data.73

From these searches, publications were included only if they included a quantitative restoration74

model, that model was for one or more lifeline systems, and the model was grounded in empirical75

quantitative data in some way. Any publications published in 2019 or earlier were eligible for in-76

clusion. Using the initial qualifying publications fromWeb of Science, we found older publications77

that fit the inclusion criteria using backward snowballing. Backward snowballing is a technique for78

searching the literature by proceeding backward in time through references of known publications79

to find older sources on a topic (Eassom et al. 2014). In total, we identified 54 publications that met80

the inclusion criteria for this study. Publications were identified and reviewed by the first author to81

determine suitability for inclusion.82

As there are inconsistencies in the literature regarding the usage of key terminologies such83

as restoration, recovery, and response (Miles et al. 2019), and we only reviewed publications in84

English, this list may not be exhaustive. However, the inclusion criteria create a representative set85

of publications on the topic so the study’s findings and insights are grounded in major literature86

trends. A list of all publications included in this review can be found in Table 1. The data items87

collected from each publication included the modeling approach(es), the hazard(s) of interest, the88

modeled lifeline system(s), whether the publication considered interdependencies in the restoration89

process, and the country of origin of the data.90

The literature analyzed for this study is a subset of disaster recovery and modeling literature. It91

is useful to identify some excluded publications to illustrate the boundary of the reviewed literature.92

Nejat and Ghosh (2016) use empirical data to model housing recovery, but their work is excluded93

from this review since housing is not considered a lifeline. Similarly, publications that model94

greater community recovery, or other non-lifeline sectors, are not included in this study (Barker95

and Haimes 2009; Miles and Chang 2011). Works that collect restoration data without building96
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a restoration model such as Nojima and Maruyama (2016) are also not included. Additionally,97

publications that work with qualitative data only, such as expert judgments (Chang et al. 2014),98

are not included. While qualitative data are useful for building quantitative models, the methods99

for collecting/generating qualitative data are substantially different from those for quantitative data100

and would be best served with their own review. A large body of literature omitted from this study101

concerns the power service restoration problem defined by the Institute of Electrical and Electronics102

Engineers (IEEE), as they use a specific technical definition. The problem is also known as the103

Fault Isolation and Service Restoration problem. Solutions to this problem try to find the fastest104

way to isolate a fault in the power distribution network while minimizing the number of healthy105

out-of-service areas (Marques et al. 2018). There are reviews of the literature in this area including106

Ćurčić et al. (1995) and Liu et al. (2016), so we refer readers to these articles for more information107

on this problem. Many publications in this domain use electricity infrastructure data, so they are a108

potentially valuable data source. Making exclusions of the above types allows us to keep our scope109

narrow while still having a significant body of research to review.110

FINDINGS111

An initial finding from this review is that lifeline restoration modeling is a growing field.112

Figure 1 shows the marked increase in publications over time. The sharp increase in publications113

over the last ten years (2010-2019) coincides with the proliferation of statistical models of lifeline114

restoration. Figure 1b shows the change in modeling approaches over time. Statistical modeling115

has grown markedly in the last ten years compared to other modeling approaches. This trend may116

be related to changes in the amount of available data and what data is being used. The availability of117

outage/restoration data has likely increasedwith the increasing number of weather-induced disasters118

(Kenward and Raja 2014). This increase contrasts with the availability of lifeline-specific data119

(e.g., topology of a networked system) typically used by simulation and optimization approaches.120

This type of data has not experienced the same trend in accessibility as outage/restoration data121

since it requires collaboration with utility companies. While statistical models can use publicly122

available community attributes, such as demographic information or economic data as predictors123
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for outage duration, optimization or simulation approaches require lifeline-specific data to model124

the restoration process. Thus, the growth in statistical models is only natural. The data usage125

patterns of each modeling approach are discussed in more detail in Section 3.126

Data availability is not the only factor that affects modeling decisions. Earthquake hazard re-127

search is a historicallymore organized andwell-funded research domain than other hazards research.128

This is exemplified by major earthquake engineering research centers such as the Mid-America129

Earthquake Center, Pacific Earthquake Engineering Research Center, and the Multidisciplinary130

Center for Earthquake Engineering Research (MCEER). MCEER, formerly known as the National131

Center for Earthquake Engineering Research, alone produced hundreds of publications, some of132

which involve lifeline restoration modeling (Multidisciplinary Center for Earthquake Engineering133

Research 1986). Two of the most extensive past restoration modeling and data collection efforts are134

MCEER projects that involved collaborations with the Los Angeles Department ofWater and Power135

(LADWP) and Memphis Light, Gas and Water Division (MLGW). Both partnerships resulted in136

multiple publications, so earthquake-related models are heavily represented in the literature as seen137

in Figure 2a. Another insight from Figure 2a is that there is a significant body of literature that138

assumes an initial damaged state without specifying a hazard type, or considers multiple hazards,139

to make those models more generalizable.140

We separate lifeline restoration modeling into three categories for our analysis: optimization,141

simulation and statistical modeling. While these categories are broad, there are still enough142

differences in data usage between them. To facilitate our discussion of data management practices,143

this section discusses each modeling approach and the common data-usage practices within them.144

Each modeling approach subsection has three parts. Part one is focused on data set features (i.e.,145

what types of data are being used), part two is focused on notable data sets (defined as any data set146

that was used in more than one publication), and part three is focused on data sources (i.e., where147

the data was obtained from). Statistical modeling approaches are the most common, followed by148

simulation, and then optimization (see Figure 2b).149

There are clear connections between the modeling approaches and the types of data used.150
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Optimizationmodelsmost often considermultiple lifeline systems and hazard types, while statistical151

models are typically linked to electricity restoration and simulation models to earthquakes (see152

Figures 3a and 3b). Optimization models are procedural and emphasize generalizability, so they153

tend to use data sets representing multiple systems and hazards. Statistical approaches to modeling154

electricity restoration are common because power outage data are more common than outage data155

for other lifelines. Electricity restoration models are often constructed using outage data and any156

data used as a predictor (e.g., electricity system features, hazard characteristics, or socioeconomic157

data about the surrounding community). Simulation modeling of post-earthquake restoration is158

common because of the MCEER research program. The long-term MCEER partnership with the159

Los Angeles Department of Water and Power (LADWP) yielded high-resolution simulation models160

of post-earthquake restoration, resulting in multiple publications.161

Simulation162

Overview163

Simulation models have the longest history of any method in the lifeline restoration modeling164

domain, dating back to the 1980s (Isoyama and Katayama 1981; Isumi et al. 1985). Simulation165

modeling is the secondmost commonmodeling approach in the literature reviewed. In terms of data166

usage, simulation models are typically based on lifeline-specific data such as a connected graph167

representation of the system, individual component repair times, and available repair resources168

(e.g., maintenance crews). High fidelity simulation models require detailed data about all parts of169

the restoration process, so some of the largest data sets in terms of the number of features are found170

in this section.171

Data Set Features172

Data for simulation models come from many different sources. In spite of this, there is a173

high level of overlap in the features of the data sets. Every simulation-based publication reviewed174

used lifeline infrastructure data in some capacity. Lifeline systems are commonly represented as175

connected graphs (Isoyama and Katayama 1981; Çağnan et al. 2006; Ramachandran et al. 2015;176

Choi et al. 2018). Component failure rates are frequently obtained from other works (Isoyama and177
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Katayama 1981; Brown et al. 1997; Brink et al. 2009; Sun et al. 2015). Another common data178

set feature is repair crew information such as repair rate/efficiency and number of crews (Çağnan179

et al. 2006; Çağnan and Davidson 2007; Xu et al. 2007; Brink et al. 2009; Tabucchi et al. 2010;180

Luna et al. 2011; Brink et al. 2012). Lastly, information about restoration from an outage event is181

primarily used for model validation and testing. Validation and testing methods are discussed more182

in Section 4.183

Notable Data Sets184

Two data sets with a large number of features used for simulation modeling are those used to185

model the restoration of the LADWP systems (Çağnan et al. 2006; Çağnan and Davidson 2007;186

Xu et al. 2007; Tabucchi and Davidson 2008; Brink et al. 2009; Tabucchi et al. 2010; Brink et al.187

2012). The data sets for these publications are the result of extensive collaboration with LADWP.188

The publications are from two separate projects, one for water restoration (Tabucchi and Davidson189

2008; Brink et al. 2009; Tabucchi et al. 2010; Brink et al. 2012) and one for power restoration190

(Çağnan et al. 2006; Çağnan and Davidson 2007; Xu et al. 2007). The data sets include detailed191

network representations of the respective lifelines, locations of the various resources necessary for192

repair work, expected behavior of repair crews, and each repair resource’s availability. Additionally,193

restoration and initial damage data from the 1994Northridge earthquake serve as the basis for model194

validation.195

Luna et al. (2011) study water supply system restoration from earthquakes using discrete event196

simulation and a colored Petri nets approach. They use the data set of Isoyama andKatayama (1981).197

The data set includes the network representation of Tokyo’s trunk water supply system, damage198

probabilities for system components, repair crews, trucks, replacement pipes, and excavators. The199

authors compare their model against Isoyama and Katayama (1981); however, they do not use200

baseline restoration data to test the model.201

Data Sources202

Many data sources are used in simulation modeling studies, although some publications do not203

identify an original source for their data sets. Sun et al. (2015) use an IEEE Bus Test Case for their204
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network data as well as data from HAZUS and previous works for component fragility functions.205

Several studies in this area (Çağnan et al. 2006; Çağnan and Davidson 2007; Xu et al. 2007;206

Tabucchi and Davidson 2008; Brink et al. 2009; Tabucchi et al. 2010; Brink et al. 2012) collaborate207

directly with LADWP and collect extensive data sets through interviews and reviewing emergency208

response plans. Other data sources include HAZUS, S&P Global Platts (a provider of information209

for commodities markets), public utility data, and government disaster reports. Easily the most210

common data source in the simulation literature is previous publications (Brown et al. 1997; Chang211

et al. 2002; Luna et al. 2011; Ouyang et al. 2012; Ouyang and Dueñas Osorio 2014; Ouyang and212

Wang 2015). Isumi et al. (1985) use damage and restoration reports from local government and213

utility companies. Lastly, Google Earth is an infrequent but inventive data source for identifying214

lifeline facility network structure (Ramachandran et al. 2015; He and Cha 2018).215

Optimization216

Overview217

The purpose and data usage of optimizationmodeling studies differ from the other twomodeling218

approaches. The purpose of an optimization model is typically to identify an efficient restoration219

sequence. In contrast, the purpose of simulation modeling is often to understand a restoration220

process in greater detail, while the purpose of statistical modeling is often to predict outage dura-221

tion. Optimization models also distinguish themselves from other approaches by more frequently222

modeling interdependencies between lifelines through model constraints.223

From a data usage perspective, optimization models do not put as strong of an emphasis on224

using empirical data. Compared to other modeling approaches, optimization models are typically225

focused on proving a theoretical result, which explains the lack of emphasis on data. Real-world226

data are not strictly necessary to prove a theoretical result, such as optimality, or show computation227

times. This is how data sets, such as the one used by Lee et al. (2007) arise, where a realistic228

representation of several lifelines is generated using empirical quantitative and qualitative data229

together.230
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Data Set Features231

Optimization models are similar to simulation models in that they focus their modeling efforts232

on the lifeline systems and restoration processes themselves. This focus leads to data sets that take233

the form of connected graph representations of lifelines. These representations include location234

and capacity of supply nodes, node-arc lifeline interdependencies, flow capacities, flow costs, and235

repair costs.236

Notable Data Sets237

Lee et al. (2007) is one of the more frequently cited optimization restoration modeling studies,238

and the data set they created is reused in multiple other publications (Nurre et al. 2012; Nurre and239

Sharkey 2014; Çavdaroğlu et al. 2013). The authors use data from the U.S. Census, New York City240

Metropolitan Transit Authority, a local electric company, and Verizon to represent the lifelines in241

lower Manhattan. This representation includes physical layout, supplies, demands, capacities, in-242

terdependencies, and origin-destination information for the transportation and telecommunications243

networks.244

Nurre et al. (2012) use the same data set for lower Manhattan as Lee et al. (2007), in245

addition to collecting data about New Hanover County, NC. The New Hanover County data set246

includes representations of electricity systems, wastewater systems, and emergency supply chain247

infrastructures. This data set was created with the infrastructure systems’ managers and a county248

emergency manager. All systems are represented as connected graphs; restoration strategies are249

implemented using the input of emergency and utility managers. Sharkey et al. (2015) also use250

this New Hanover County data set. Iloglu and Albert (2018) use a different data set from New251

Hanover County, representing the road network, locations of fire and rescue stations, and locations252

of demand for emergency services.253

In their studies, González et al. test their models on a data set representing Shelby County,254

Tennessee (González et al. 2016; González et al. 2017). It contains network representations of the255

power, water and gas systems of the county. This data set stems from an extensive partnership256

with a utility company, in this case, MLGW. This partnership yielded a feature-rich data set used257
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in many subsequent studies. It dates back to an MCEER project with many contributors. This data258

set is discussed in more detail in Section 3.259

Data Sources260

The data sources for optimization models are similar to those of simulation models but less261

varied. Collaboration with lifeline management organizations to get data is a common method (Lee262

et al. 2007; Yan and Shih 2009; Nurre et al. 2012; Tuzun Aksu and Ozdamar 2014). Authors also263

consistently make use of data sets collected from prior studies (Nurre et al. 2012; Çavdaroğlu et al.264

2013; Nurre and Sharkey 2014; Sharkey et al. 2015; González et al. 2016; González et al. 2017),265

frequently other lifeline restoration modeling efforts. There is less emphasis on data collection266

and usage than for other modeling approaches, as optimization models are frequently theoretical.267

Overall, optimization approaches use a similar, but smaller, set of data sources than simulation268

approaches.269

Statistical Models270

Statisticalmodels are themost frequently used andmost varied of the threemodeling approaches.271

The goal of such a model is usually to generate a restoration time estimate (e.g., it will take four days272

for the lifeline to be 90% functional), or a restoration probability (e.g., there is an 80% probability273

the lifeline has 90% functionality in three days). The statistical modeling approaches include curve274

fitting (Park et al. 2006), survival analysis (Bessani et al. 2016; Davidson et al. 2017; Mojtahedi275

et al. 2017), various machine learning techniques (Nateghi et al. 2011; Mukherjee et al. 2018b) and276

econometric models (MacKenzie and Barker 2013), among others.277

With the widest variety of approaches, statistical models also encompass the widest variety of278

data set features and sources. A commonality amongst the statistical models is lifeline restoration279

data used for model fitting and model validation and testing. Some larger data sets, in terms of280

features and the number of disaster events, include power restoration after several hurricanes in the281

U.S. Gulf Coast region (Nateghi et al. 2011; Nateghi et al. 2014) and a data set for power restoration282

after hurricanes and ice storms for three power companies covering North Carolina, South Carolina,283

and Virginia in the U.S. (Liu et al. 2007; Reed 2008; Davidson et al. 2017).284

11



Data Set Features285

A common feature of statistical modeling data sets is the use of restoration data from historical286

disaster events. Sometimes this takes the form of time series restoration data and other times a287

single data point representing X% restoration for a particular geographic area. Lifeline data sets288

are also used in many studies. Common features for power system data sets include the number289

of poles, transformers, switches and lines in each grid cell of a spatial data layer (Liu et al. 2007;290

Nateghi et al. 2011; Nateghi et al. 2014). Other common data set features include hazard data such291

as wind speed, rainfall, and ice accretion and geographic data such as land cover and soil depth292

(Guikema et al. 2010; Davidson et al. 2017). Several studies use socioeconomic data (Liu et al.293

2007; Mitsova et al. 2018), including demographics, population density and poverty rates. Other294

data set features include commodity trade data and climate data, such as mean annual precipitation295

(Guikema et al. 2010; MacKenzie and Barker 2013; Mukherjee et al. 2018b).296

Notable Data Sets297

In two studies, Nateghi et al. (2011, 2014) use a data set representing the Gulf Coast region298

of the U.S. The data set includes estimates of wind gust speed, duration of wind speed exceeding299

20 m/s, land cover, soil moisture, antecedent precipitation and mean annual precipitation. Power300

system-related features include numbers of poles, transformers, and switches; length of overhead301

and underground lines; and number of impacted customers. These features are mapped to 3.66302

km by 2.4 km grid cells. Restoration information is available for three hurricane events. This303

multi-event nature combined with the number of features makes this data set one of the largest in304

the power restoration literature.305

One of the most commonly used data sets for modeling various aspects of disaster recovery306

is that used in Liu et al. (2007). This data set is used for many publications, some not directly307

modeling lifeline restoration (Liu et al. 2005), and others extending existing restoration modeling308

work (Reed 2008). The data set includes outage data from three utility companies in the North309

Carolina area for six hurricanes and eight ice storms. The data set is collected at the county level310

for land cover, number of customers affected, type of device affected, population density, outage311
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start time compared to start time of the first outage, estimated wind speed, seven-day rainfall and312

ice accretion. Reed (2008) uses a subset of this data set and data from the 1999 French winter313

storms for their model.314

The work of Yu and Baroud (2019) is another that utilizes a data set from Shelby County,315

Tennessee. Their data set comprises outage data from fifteen storms for MLGW between 2007 and316

2017. Shelby County and MLGW have provided data for research in the past that resulted in many317

extensive works, most notably an MCEER project in the ’90s (Chang et al. 1996; Shinozuka et al.318

1998). The data set presented in Chang et al. (1996) comprises layouts for water, electricity and319

natural gas systems, restoration data for the 1994 Northridge earthquake, utility usage data, census320

data, and economic data.321

There are several studies that aggregate data frommany events worldwide to build their models,322

and studies focusing on a specific geographic area for restoration data. Díaz-Delgado Bragado323

(2016) builds a database of restoration data for 31 earthquake events from around the world, 1923-324

2015, considering water, power, gas and telecommunications systems and uses it to fit gamma325

cumulative distribution functions. Monsalve and de La Llera (2019) also compile earthquake326

restoration data, encompassing six different earthquakes and various infrastructure systems. Kam-327

mouh et al. (2018) likewise bring together worldwide earthquake restoration data, including 32328

earthquakes in their study. Zorn and Shamseldin (2015) is another work that brings together329

restoration data from multiple events, 18 total, including earthquakes, hurricanes, and other types330

of disasters, for electricity, water, gas, and telecommunications systems. Finally, Duffey (2019) col-331

lects power restoration data for 13 disaster events between 2012 and 2018 through “power tracker"332

or “outage map" websites.333

Nojima et al. (Nojima and Sugito 2002; Nojima and Sugito 2005; Nojima and Kato 2012;334

Nojima and Kato 2014) collect data sets from Japan earthquake events as the basis for their335

models. These data sets include seismic intensity from the Japan Meteorological Agency, spatially336

distributed population data and network vulnerability data for water and gas systems. Restoration337

data sets for electricity, water, and gas systems are also used. The data sets are collected from the338
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1995 Hyogoken-Nambu earthquake and the 2011 Tōhoku earthquake.339

MacKenzie and Barker (2013) use publicly available U.S. outage data, collected by the U.S.340

Department of Energy through formOE-417, alongwith state population data. The data set includes341

duration, location (state), and cause of the outage between January 2002 to June 2009. Barker342

and Baroud (2014) and Barabadi and Ayele (2018) use the same data set, while Mukherjee et al.343

(2018b) utilize a larger data set of OE-417 submissions, containing information from January 2000344

to July 2016. They use state-level population data, climate data from the U.S. National Oceanic and345

Administrative Administration, electricity consumption patterns from the U.S. Energy Information346

Administration, Urban/Rural and Land/Water percentages from the U.S. Census Bureau, and state-347

level economic characteristics from the U.S. Bureau of Economic Analysis.348

Data Sources349

Direct collaboration with utility companies is again a common data source (Chang et al. 1996;350

Cooper et al. 1998; Park et al. 2006; Nateghi et al. 2011; Nateghi et al. 2014; Mitsova et al.351

2018). Nateghi et al. (Nateghi et al. 2011; Nateghi et al. 2014) supplement their utility-provided352

data with data collected from a commercial weather forecasting service and the National Land353

Cover database. Mitsova et al. (2018) collect additional data from the American Community354

Survey for their model. Several modelers got their data sets from public U.S. government data355

sources (MacKenzie and Barker 2013; Barker and Baroud 2014; Mukherjee et al. 2018b; Barabadi356

and Ayele 2018). The most common data source is data sets from previous studies, such as the357

worldwide restoration data sets in Zorn and Shamseldin (2015) and Kammouh et al. (2018). Using358

a novel approach, Duffey (2019) makes use of “outage tracker" websites to gather restoration data359

after multiple disasters. Sources outside the U.S. are used in several works (Bessani et al. 2016;360

Mojtahedi et al. 2017; Barabadi and Ayele 2018). Finally, public outage reports are used in Duffey361

and Ha (2013).362

FUTURE DIRECTIONS FOR RESEARCH363

We identified several important topics for discussion from this literature review. These topics364

can be broken into thematic and methodological directions. The two thematic directions we365
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identified were modeling interdependent systems and engagement through benchmarking testbeds.366

The methodological directions are alternative data sources, model validation and testing, and data367

management best practices. These topics have relevance to the future directions of the lifeline368

restoration modeling literature.369

Thematic Directions370

Modeling Interdependent Systems371

Interdependency is increasingly recognized as an important factor to consider while modeling372

lifeline restoration, as seen in Figure 4a. Lifeline systems are interdependent by nature. For373

example, power generators require water for cooling and electricity is needed for water pumps to374

function. Quantifying these interdependencies regarding restoration is an ongoing challenge for375

modelers, but one that is actively being worked on by researchers.376

There was an increase in studies of cascading failures (Hernandez-Fajardo and Dueñas Osorio377

2013; Veremyev et al. 2014; Wu et al. 2016) in recent years, and there is a broad recognition that378

lifelines are restored in an interdependent fashion (Rinaldi et al. 2001; Sharkey et al. 2016). In379

contrast, our review shows that only about 25%of the reviewed literature consider interdependencies380

directly. Optimization models have the longest history incorporating interdependencies in their381

models, as seen in Figure 4b. The rest of this section discusses a few of the methods used to382

model interdependent restoration in the reviewed literature and promising approaches that, to our383

knowledge, have yet to be applied in a restoration modeling context.384

Lee et al. (2007) is the oldest instance of modeling interdependent infrastructure restoration in385

the reviewed literature. They consider power, telecommunications, and transportation systems in386

modeling five types of interdependency: input dependence, mutual dependence, shared dependence,387

exclusive-or dependence and co-located dependence. The authors include interdependencies as388

constraints in their problem formulation. Çavdaroğlu et al. (2013) utilize the same data set but389

take the added step of determining an optimal restoration sequence for the lifeline systems. Their390

objective is to maximize the functionality of the lifeline services over the restoration period by391

balancing unmet demand costs and operating costs. They also model restoration interdependencies392
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through their model constraints.393

Yan and Shih (2009)model transportation restoration and emergency relief distribution together.394

While not a model of interdependent lifeline restoration, this work shows a way to model restoration395

of interdependent systems. They use a multi-objective optimization model to minimize the length396

of time for restoration and subsequent relief distribution. The authors note the connection between397

the transportation system and the ability to distribute relief.398

MacKenzie and Barker (2013) utilize the dynamic inoperability input-output model (DIIOM) to399

include interdependency in their restoration model. Interdependencies in the DIIOM are quantified400

using commodity flow data from the U.S. Bureau of Economic Analysis. They apply the model401

to estimate restoration from power outages. Theirs is the earliest non-optimization approach to402

modeling restoration interdependency in the reviewed literature. He and Cha (2018) extend the403

DIIOM to calculate facility-level interdependencies as opposed to system-level interdependencies404

in the traditional DIIOM. This facility-level approach captures interdependencies not only across,405

but also within systems.406

Other more recent models have a variety of approaches for modeling interdependent restoration407

(Ramachandran et al. 2015; González et al. 2016; González et al. 2017; Monsalve and de La Llera408

2019). Monsalve and de La Llera (2019) calculate a daily restoration rate for each lifeline in409

their model based on the lifeline type, its interdependencies, and an additive Gaussian error term.410

The authors utilize a least-squares criterion that minimizes the difference between the expected411

value of the model and the data to estimate model parameters, including lifeline interdependencies.412

Their model assumes that the restoration rate of a given lifeline depends on the functionality of413

other lifeline systems but not on their restoration rates. González et al. (2016, 2017) define414

four types of interdependencies: logical, physical, cyber, and geographic. They account for these415

interdependencies through the constraints of their optimization model. Ramachandran et al. (2015)416

include interdependency in their simulation model by including constraints that some tasks cannot417

start until others finish (e.g., power lines cannot be repaired until the road to access those lines is418

free of debris).419
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There is a series of studies that utilize time-series restoration data and cross-correlation func-420

tions to quantify the interdependency between two lifelines (Dueñas-Osorio and Kwasinski 2012;421

Cimellaro et al. 2014; Krishnamurthy et al. 2016). This method of quantifying interdependencies422

has not been incorporated into a restoration model, but the potential is there. We believe that it423

could be applied in an approach similar to that of Monsalve and de La Llera (described above)424

(2019).425

Engagement through Benchmarking Testbeds426

Over the last few years, there has been significant progress creating benchmarking testbeds427

for recovery modeling. Two examples are Customizable Artificial Community (CLARC) County,428

created by Loggins et al. (2019), and Centerville, created by the Center for Risk-Based Commu-429

nity Resilience Planning at Colorado State University (2018). CLARC County is a GIS data set430

representing an artificial hurricane-prone community of 500,000. The data set contains demo-431

graphic and geographic data typically reported for U.S. census tracts and physical locations and432

characteristics of components of civil and social infrastructure systems along with their interdepen-433

dencies. The data set exists to support infrastructure and emergency management research without434

compromising potentially sensitive information. The Centerville community resilience testbed is435

a virtual city, representing a typical middle-class city in the Midwestern U.S. that is susceptible to436

tornadoes and earthquakes. Buildings, transportation systems, electric power, and water systems437

are represented in the data set, and socioeconomic features based on American Community Survey438

data for Galveston, Texas, and income data from Fort Collins, Colorado.439

These testbeds are conducive to recovery research, as they allow for complete, albeit synthetic,440

data sets to be used to test and compare recovery models. The two examples provided here also441

show that testbeds can be constructed in various ways, ranging from being completely synthetic442

to being based on empirical data from a single source or an amalgamation of sources. The areas443

represented by the example testbeds are different, one being an individual city, while the other a444

U.S. county. No matter the construction, these testbeds can provide value as boundary objects for445

comparison if nothing else. Given how recent these efforts are, it is unclear if the development of446
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testbeds affects the use and collection of empirical data.447

The difficulty of collecting extensive data sets for lifeline restoration modeling is well doc-448

umented in the reviewed literature. Loggins et al. (2019) mention an extensive data collection449

process they attempted for New Hanover County, NC, and how the difficulties they experienced450

led them to create CLARC county. The likelihood of developing complete data sets on all lifelines451

in a community and lifeline restoration data from a disaster event in that community is low. Even452

if such a data set were to be developed, security concerns might prevent it from ever entering the453

public domain. This makes testbeds the logical next step for the developing large-scale, highly454

detailed optimization and simulation models of interdependent recovery. However, this does not455

eliminate the need for the collection of empirical data.456

The data collection of Loggins et al. for New Hanover County informed the creation of CLARC457

county (Loggins et al. 2019), and Centerville (Colorado State University 2018) was created from458

an amalgamation of several empirical sources. Data availability can and sometimes should inform459

modeling approaches depending on modelers’ objectives, although models built with no empirical460

data can still provide useful insights and create new knowledge (e.g., what-if analysis, facilitation of461

discussion, and education). Examples of data availability informing model choice include the work462

done with LADWP. The authors had access to a feature-rich lifeline-specific data set, which made463

a detailed simulation model feasible. Another example of data availability informing modeling464

efforts/direction is the work of Mukherjee et al. (2018b). The authors had access to publicly465

available data at the state level, making a broader statistical model possible. Having the data set466

publicly available means others can duplicate and extend this work. There are also many examples467

of “benchmarking" in the literature where authors extend the modeling efforts of previous work468

using the same data set and compare results.469

Methodological Directions470

Alternative Data Sources471

Some studies that fall outside of this review’s inclusion criteria still deserve mention for their472

usage of data sources not seen in the reviewed literature. McDaniels and Chang characterize473
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lifeline failure interdependencies usingmanual content analysis of newspapers and technical reports474

(Mcdaniels et al. 2007; Chang et al. 2007). In contrast, Lin et al. (2018)make use of natural language475

processing to analyze newspaper stories fromNewZealand after theCanterbury earthquakes to track476

long-term recovery. Doubleday et al. (2019) use daily bicycle and pedestrian activity as an indicator477

of disaster recovery. Brown and Pinkerton (2019) use synthetic data for power system elements.478

Chang et al. (2014) use expert elicitation to characterize lifeline resilience. Expert elicitation plays479

an important role in statewide resilience initiatives (Washington State Seismic Safety Committee480

(WASSC) 2012; Oregon Seismic Safety Policy Advisory Commission (OSSPAC) 2013), and in the481

development of the Federal Emergency Management Agency’s HAZUS (FEMA 2011).482

All of the above approaches do not rely on empirical data directly related to lifelines or lifeline483

restoration. In particular, approaches such as those seen in Doubleday et al. (2019) are promising484

because they make use of empirical quantitative data that has not been used in the restoration485

modeling space. If data sets of this nature can be linked to lifeline restoration data, the total amount486

of restoration data sets available would increase. Partially synthetic power system data sets such as487

those used by Brown and Pinkerton (2019) also show how new data can be generated to meet an488

existing need. There is already a significant body of literature related to generating synthetic power489

system data sets (Gegner et al. 2016; Birchfield et al. 2017a; Birchfield et al. 2017b).490

The approach of Lin et al. (Lin et al. 2018), using natural language processing to generate491

recovery data, has the potential to create many new data sets that could be used for restoration492

modeling. While their analysis is focused on long-term recovery, a similar approach could be used493

for modeling shorter-term restoration, perhaps using a different source such as Twitter data (Miles494

et al. 2014; Ragini et al. 2018; Zou et al. 2018). Expert elicitation is another method that can be495

used to develop restoration models. Models based on expert judgment can apply techniques such496

as Cooke’s method (Cooke 1991) to create a systematic approach for eliciting expert knowledge497

when empirical data sets are unavailable or inaccessible.498
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Validation and Testing Methods499

As a precursor to this section, we want to acknowledge that model validation is a contested500

concept with many definitions, recommendations, and best practices across disciplines (Weinstein501

et al. 2003; Rose et al. 2015). There is a tendency to think that everymodel was developed to predict,502

and thus every model should be validated using out-of-sample testing. However, there are many503

reasons formodeling outside of prediction (Epstein 2008). Given that this review aims to discuss the504

use of empirical quantitative data, reviewed publications use data for model calibration, validation,505

or application through a case study. Acknowledging that out-of-sample testing is not applicable506

or feasible for every modeling study, this subsection discusses what out-of-sample validation and507

testing techniques have been used in the field so far.508

Statistical models have the widest variety of out-of-sample validation and testing approaches.509

Cross-validation is used in a few models for parameter fitting or model comparison (Guikema et al.510

2010; MacKenzie and Barker 2013; Nateghi et al. 2014; Yu and Baroud 2019). Some modelers511

split their data sets into training and test sets by withholding information from some disaster events512

(Liu et al. 2007; Nateghi et al. 2011; Davidson et al. 2017). Park et al. (2006) fit a curve to513

restoration data from one event and compared the fitted parameters to that of another event.514

There are several out-of-sample validation methods used by simulation models as well. For515

the projects that partnered with LADWP (Çağnan et al. 2006; Çağnan and Davidson 2007; Xu516

et al. 2007; Tabucchi and Davidson 2008; Brink et al. 2009; Tabucchi et al. 2010; Brink et al.517

2012), this was to use restoration data from the 1994 Northridge earthquake. The authors perform518

the validation by setting model input parameters (e.g. number of repair crews) equivalent to the519

Northridge conditions and comparing the simulated restoration time to the actual restoration time520

from the Northridge event. Other studies that compare their model output to restoration data521

included Isumi et al. (1985) and He and Cha (2018). A comparison between model output for a522

theoretical disaster event and restoration data from a similar disaster event in a different location523

(Ramachandran et al. 2015) is one of the more inventive validation methods seen in the literature.524

There are no optimization models in the reviewed literature that were tested out of sample.525
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However, given the nature of an optimization model, this should not come as a surprise. The526

goal of optimization is usually to perform better than the status quo. Thus the restoration time527

estimates from an optimization model would nearly always be below real-world restoration times.528

The contribution of an optimization model is typically a new model formulation (Nurre et al. 2012;529

Yan and Shih 2009) or solution approach (González et al. 2016).530

Overall, the reviewed literature encompassed awide variety of validation and testing approaches.531

While the authors encourage the use of out-of-sample model evaluation, we understand that this is532

not always possible, nor does it always make sense. However, as models continue to become more533

generalizable and data more available, we hope to see more out-of-sample evaluations take place534

in this field.535

A Data Management Methodology for Reproducibility in Disaster Recovery Modeling536

The research community benefits from reproducibility, which is fostered by detailed metadata537

and data publication. Within the analyzed publications, data descriptions are frequently lacking,538

and data sets are rarely published. Although it is not always possible to publish data sets for a wide539

variety of reasons (e.g., security and privacy), this reduces the reproducibility of any research using540

those data sets. As data becomes increasingly prevalent across research domains, there are more541

advocates for increased accessibility of data sets. Gentleman and Lang (2007) go so far as to call for542

the publication of “reproducible research compendiums" which include the final paper, as well as543

the data set, software, and any other items necessary to reproduce the research. They acknowledge544

that this is not feasible for all research but maintain that publishing as much information as possible545

is worthwhile.546

More recently, the FAIR guiding principles for scientific data management and stewardship547

(Wilkinson et al. 2016) represent aminimal set of domain-independent datamanagement principles.548

Specifically, these principles state that research objects (Bechhofer et al. 2010) should be findable,549

accessible, interoperable, and reusable, both for human-driven andmachine-driven activities. These550

principles are purposefully kept minimal to make the barrier to entry as low as possible to allow for551

easy implementation, even in cases where data sets cannot be published in their entirety or at all.552
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With these principles in mind, the remainder of this section is devoted to proposing a methodology553

for writing the data description section of a research paper in the disaster recovery modeling domain554

and best practices for data publication.555

González-Barahona and Robles (2012) discuss reproducibility of empirical software engineer-556

ing studies and identify elements of said studies with an impact on reproducibility. We adapt their557

ideas to fit the disaster recovery modeling domain. We recommend all disaster recovery modeling558

publications using empirical data include a data description section, with at least the following559

components:560

1. Data source(s). Where did the data set come from? This should be as specific as possible.561

Even if the only thing an author can share is “an unnamed utility company from the U.S.562

Southeast", that is still worthwhile for a reader to know. Where possible, links or citations563

to the original data source(s) should be included.564

2. Retrieval method. How was the data set collected from the source? Examples include565

downloading a CSV or GIS file from a government website, receiving data via email, and566

using a web scraper.567

3. Raw data set and metadata. Can the data set be shared or is it publicly available? If yes,568

we recommend linking to an online repository that includes a description of the format and569

features of the data set. If not, we recommend to provide the metadata of the data set and570

the proper procedure to gain access to the data set if there is one. We recommend following571

the Dublin Core (Dublin Core Metadata Initiative 2008) standards for metadata. These572

standards include a cross-disciplinary list of properties for use in resource descriptions573

designed to be machine-processable that suit modern metadata needs.574

4. Data processing methods. For example, what transformations were performed on the data575

set to get it into a usable form? Were features standardized? How were missing entries576

handled?577

5. Processed data set and metadata. What are the form and features of the processed data?578

Processed data sets should be stored separately from the raw data set in an online repository579
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with a link for others to access. Obtaining a Digital Object Identifier (DOI) for the data set580

is a best practice after publishing it on an online repository or in a peer-reviewed journal581

(e.g., (Mukherjee et al. 2018a)). Version-controlled documentation can track problems in582

the data sets as they are found and corrected. As with the raw data set, if the processed data583

set cannot be published, we recommend to at least provide the metadata.584

6. Processed data set’s summary statistics. If the data set is numerical, statistics can be585

presented in a table. If the data set is only a network representation of an infrastructure586

system, a graphical representation may be sufficient. If this information cannot be shared,587

it can be clearly stated with a reason (e.g., national security).588

A visual depiction of this methodology can be seen in Figure 5. One example of a brief,589

comprehensive data description in an academic publication is from Yan and Shih (2009):590

The roadway-network information includes the roadway segments and intersections in591

Nantou County, the location of repair points and work stations, and the location of592

supply and demand points. The emergency repair resources include the work teams593

for each station and the average time required for a work team to repair each repair594

point. Note that, in practice, when scheduling the roadway repairs, information on the595

time needed to repair every repair point is given by the engineers. Several engineers596

estimate the repair time in advance based on experience and the level of damage.597

Decision-makers then use the average time (as was done in this research) to set the598

repair time. ... There are 46 intersections, 24 repair points, 8 demand points, 9 work599

stations, 24 work teams, 5 distribution centers, and 196 time unit lengths (3 days is the600

time length, with a time unit of 15 min), in the tests.601

This description does not contain all the elements in our proposed data management methodology,602

but it shows what can be done with a small amount of space in a research publication. The authors603

do mention a specific data source in their acknowledgments section.604

When it comes to publishing data sets, following the FAIR principles (Wilkinson et al. 2016)605

23



should be the minimum standard we strive to achieve. An emphasis on these principles is enhancing606

the ability of machines to find and access data sets automatically. We also would like to emphasize607

this point and recommend that researchers in the disaster recovery modeling domain publish their608

data sets on digital platforms that are easily machine-accessible. One domain-specific example609

of this is the National Science Foundation’s Natural Hazards Engineering Research Infrastructure,610

DesignSafe-CI (Rathje et al. 2017). DesignSafe-CI is a cyberinfrastructure environment for re-611

search in natural hazards engineering. The features of this cyberinfrastructure include data sharing612

and publication, integrated data analysis tools, high-performance computing access, and collabo-613

ration tools. DesignSafe-CI has detailed data publication guidelines and guidance for writing data614

management plans available.615

We recognize that it is not always possible to share all the information in our proposed method-616

ology due to privacy or security concerns. Even under this constraint, it is still important to617

make clear data management practices for research. If the data set is private, one can still provide618

relevant metadatawithin the limitations of the data set provider. This creates an opportunity for619

future research to collect a different data set with the same features and apply the method used620

in the original study. Overall, there are many opportunities for increased data sharing and higher621

standards for reproducibility in the field of disaster recovery modeling. The proposed methodology622

further supports a community of practice around data management in disaster recovery modeling.623

Using resources like DesignSafe-CI is one way to make the disaster recovery modeling community624

of practice a reality.625

CONCLUSION626

The data sources and data features used by lifeline restoration modelers vary across modeling627

approaches and there is no standardizedmethodology for utilizing data in this research domain. This628

review highlights various data sets that have been used in the past tomodel lifeline restoration to help629

build a community of practice within the broader field of disaster recovery modeling. We propose630

a set of best practices for managing and writing about data sets used for disaster recovery modeling.631

These best practices rely on data access and availability. Practitioners in emergency management or632
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infrastructure operation can significantly aid disaster recovery researchers by collecting and sharing633

any recovery-related data with them. A stronger partnership between the research and practicing634

communities is necessary for the field to move forward.635

Our review shows that direct collaboration with utilities and publicly available data, usually636

from the government, were two of the most common data sources in the literature. Data sets are637

frequently reused over time to provide additional insights with new/updated modeling approaches.638

We discuss the usage of benchmarking testbeds as an alternative way to develop and test recovery639

models where relevant data sets are unavailable. Expert elicitation and large-scale text data sets are640

identified as additional alternative data sources. Overall, this review demonstrates the wide variety641

of data sources available to modelers. Some limitations of our review include that the review may642

not have identified every publication in this domain. This exclusion could happen due to using only643

one database (i.e., Web of Science) for identifying publications and the inconsistencies regarding644

the usage of terms such as restoration, recovery, and response. Additionally, nearly two thirds of645

the publications in the review used data from the U.S. Two potential causes for this include the646

availability of data in other countries and our inclusion of articles published in English only.647

Our intent for the proposed data management practices is to cause more data sets to become648

publicly available. These data practices can guide modelers without much experience in disaster649

and hazard research to enter the research domain and open doors for disaster and hazard researchers650

to build models with more data than they previously had access to. With more and more data651

available, the goal of a generalizable model of interdependent restoration could come into view,652

with communities around the world as the beneficiaries.653
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TABLE 1. List of every publication included in review, in order of publication year. E - electricity,
W - Water, G - Gas, Tel - Telecommunications, Tr - Transportation, WW - Waste Water, ESC -
Emergency Supply Chain, F - Fuel, M/U - Multiple/Unspecified, OW - Other Wind.

Reference Approach Lifeline Hazard Type Country

(Isoyama and Katayama 1981) Simulation W Earthquake Japan

(Isumi et al. 1985) Simulation E, W, G Earthquake Japan

(Chang et al. 1996) Statistical E, W, G Earthquake U.S.

(Brown et al. 1997) Simulation E OW U.S.

(Cooper et al. 1998) Statistical E M/U U.S.

(Chang et al. 2002) Simulation W Earthquake U.S.

(Nojima and Sugito 2002) Statistical E, W, G Earthquake Japan

(Nojima and Sugito 2005) Statistical E, W, G Earthquake Japan

(Park et al. 2006) Statistical E Earthquake U.S.

(Çağnan et al. 2006) Simulation E Earthquake U.S.

(Liu et al. 2007) Statistical E OW U.S.

(Lee et al. 2007) Optimization E, Tel, Tr M/U U.S.

(Xu et al. 2007) Simulation E Earthquake U.S.

(Çağnan and Davidson 2007) Simulation E Earthquake U.S.

(Reed 2008) Statistical E OW U.S.

(Tabucchi and Davidson 2008) Simulation W Earthquake U.S.

(Yan and Shih 2009) Optimization Tr, ESC Earthquake Taiwan

(Brink et al. 2009) Simulation W Earthquake U.S.

(Tabucchi et al. 2010) Simulation W Earthquake U.S.

(Nateghi et al. 2011) Statistical E Hurricane U.S.

(Luna et al. 2011) Simulation W Earthquake Japan

(Ouyang et al. 2012) Simulation E Hurricane U.S.
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TABLE 1 – Continued from previous page

Reference Approach Lifeline Hazard Type Country

(Brink et al. 2012) Simulation W Earthquake U.S.

(Nurre et al. 2012) Optimization E, WW, ESC M/U U.S.

(Nojima and Kato 2012) Statistical E,W,G Earthquake Japan

(MacKenzie and Barker 2013) Statistical E M/U U.S.

(Çavdaroğlu et al. 2013) Optimization E, Tel M/U U.S.

(Duffey and Ha 2013) Statistical E M/U U.S., Sweden

Belgium, France

(Nateghi et al. 2014) Statistical E Hurricane U.S.

(Barker and Baroud 2014) Statistical E M/U U.S.

(Tuzun Aksu and Ozdamar 2014) Optimization Tr M/U Turkey

(Nojima and Kato 2014) Statistical E, W, G Earthquake Japan

(Nurre and Sharkey 2014) Optimization E, Tel M/U U.S.

(Sun et al. 2015) Simulation E Earthquake U.S.

(Zorn and Shamseldin 2015) Statistical E, W, G, Tel M/U New Zealand

Worldwide

(Ramachandran et al. 2015) Simulation E, W, Tel, F OW U.S.

(Sharkey et al. 2015) Optimization E, W, WW, Tel Hurricane U.S.

(Ouyang and Wang 2015) Simulation E, G Hurricane U.S.

(Bessani et al. 2016) Statistical E M/U Brazil

(González et al. 2016) Optimization E, W, G Earthquake U.S.

(Díaz-Delgado Bragado 2016) Statistical E, W, G, Tel Earthquake Worldwide

(Mojtahedi et al. 2017) Statistical Tr M/U Australia

(Davidson et al. 2017) Statistical E OW U.S.

(González et al. 2017) Optimization E, W, G Earthquake U.S.
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TABLE 1 – Continued from previous page

Reference Approach Lifeline Hazard Type Country

(Mitsova et al. 2018) Statistical E Hurricane U.S.

(Choi et al. 2018) Simulation W Earthquake South Korea

(Mukherjee et al. 2018b) Statistical E M/U U.S.

(Barabadi and Ayele 2018) Statistical E, Tr M/U Iran, U.S.

(Kammouh et al. 2018) Statistical E, W, G, Tel Earthquake Worldwide

(Iloglu and Albert 2018) Optimization Tr, ESC M/U U.S.

(He and Cha 2018) Simulation E, W, Tel Hurricane U.S.

(Monsalve and de La Llera 2019) Statistical E, W, G, Tel Earthquake New Zealand

Japan, Chile

(Yu and Baroud 2019) Statistical E OW U.S

(Duffey 2019) Statistical E M/U Ireland, U.S.

New Zealand
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(a) Number of publications over time on modeling lifeline restoration using empirical quantitative data.

(b) Number of publications over time by modeling approach.

Fig. 1. Publication trends over time.
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(a) Breakdown by hazard type. ‘Other Wind’ includes ice storms and tornadoes.

(b) Breakdown by modeling approach.

Fig. 2. Breakdown of the reviewed literature.
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(a) Breakdown of the reviewed literature by modeling approach and lifeline system.

(b) Breakdown of the reviewed literature by modeling approach and hazard type.

Fig. 3. Relating modeling approach to lifeline system and hazard type.
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(a) Number of publications over time that model interdependent restoration.

(b) Breakdown of publications by modeling approach on interdependent restoration.

Fig. 4. Interdependency in the reviewed literature.
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Fig. 5. Graphical representation of the proposed data management methodology.
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