
Splitting Gaussian Processes for Computationally-Efficient
Regression

Nick Terry1*, Youngjun Choe1,

1 Department of Industrial and Systems Engineering, University of Washington, Seattle,
WA, United States of America

* pnterry@uw.edu

Abstract
Gaussian processes offer a flexible kernel method for regression. While Gaussian
processes have many useful theoretical properties and have proven practically useful,
they suffer from poor scaling in the number of observations. In particular, the cubic
time complexity of updating standard Gaussian process models can be a limiting factor
in applications. We propose an algorithm for sequentially partitioning the input space
and fitting a localized Gaussian process to each disjoint region. The algorithm is shown
to have superior time and space complexity to existing methods, and its sequential
nature allows the model to be updated efficiently. The algorithm constructs a model for
which the time complexity of updating is tightly bounded above by a pre-specified
parameter. To the best of our knowledge, the model is the first local Gaussian process
regression model to achieve linear memory complexity. Theoretical continuity properties
of the model are proven. We demonstrate the efficacy of the resulting model on several
multi-dimensional regression tasks.

Introduction 1

Gaussian process (GP) regression is a flexible kernel method for approximating smooth 2

functions from data. Assuming there is a latent function which describes the 3

relationship between predictors and a response, from a Bayesian perspective a GP 4

defines a prior over latent functions. When conditioned on the observed data, the GP 5

then gives a posterior distribution of the latent function. In practice, GP models are fit 6

to training data by optimizing the marginal log likelihood with respect to 7

hyperparameters of the kernel function, k. 8

A notable shortcoming of GP regression is its poor scaling both in memory and 9

computational complexity. In what we will hereafter refer to as full GP regression, the 10

posterior mean and variance can be directly computed at any finite number of points 11

using linear algebra [1]. However, a computational bottleneck is caused by the necessary 12

matrix inversion of the kernel matrix K, which is well-known to have a time complexity 13

of O(n3), where n is the number of observations. The O(n2) memory complexity of 14

storing K may also pose issues for massive data sets. 15

GP regression may also struggle to well-approximate latent functions which are 16

non-stationary [2, 3]. Non-stationary latent function’s mean or covariance may vary over 17

its domain. Non-stationarity may be induced in more subtle ways as well, such as 18

heteroscedastic additive noise in the observed response. 19

Local GP regression is a class of models which address both of these problems, to 20

varying extents. The commonality of these models is the assignment of observations to 21

1/15

one of many local GPs during training, and the aggregation of the local models’ 22

individual predictions. As a result of observations being assigned to a single local model, 23

effectively only a block-diagonal approximation of the full kernel matrix K is 24

maintained [4, 5], easing the time and memory complexity. The price of this flexibility 25

and computational advantage is a potential decrease in predictive ability, relative to full 26

GP regression, on tasks for which a full GP is well-suited. 27

A successful method for assigning observations to local GPs is partitioning the input 28

space, the domain of the latent function, and creating a local GP model for each cell of 29

the partition [2–4,13]. Existing local GP models may encounter various difficulties 30

during the partitioning process and/or neglect a setting where only a sequential data 31

source is available and partitioning must be performed sequentially. This sequential 32

setting is important since it encompasses tasks with changing dynamics. For example, 33

in applications such as process quality monitoring [6, 7] and motion tracking [8], a 34

sequential approach allows for the model to adapt to regimes which are yet-unobserved. 35

The primary contribution of this paper is an algorithm which recursively partitions 36

the input space to construct local GPs using sequential observations. The resulting 37

model is dubbed the splitting GP. The algorithm is shown to have superior asymptotic 38

time and memory complexity relative to other state-of-the-art local GP methods which 39

can be used in this problem setting. By design of the algorithm, we also ensure an exact 40

upper bound on the time complexity of updating the splitting GP model. We also prove 41

theoretical properties of the model related to continuity of the predictions and 42

empirically demonstrate the efficacy of the model. Additionally, a software 43

implementation of the algorithm is provided, which leverages the computational 44

advantages of the GPyTorch library [9], to facilitate the use of the algorithm by others. 45

Related work 46

The first exploration of local GP regression is due to Rasmussen and Ghahramani [10], 47

as a special case of their mixture of GP experts model, where prediction at a point is 48

performed by one designated “expert” GP. Snelson and Ghahramani [11] further 49

developed this idea, but only as a supplementary method to sparse GP regression. 50

An adjacent line of research on treed GP models was begun by Gramacy and Lee [2]. 51

Treed GP models perform domain decomposition in the same manner as classification 52

and regression trees [12], and fit distinct GP models to each resulting partition. 53

Predictions are then formed using k-nearest neighbors. Gramacy and Lee [2] found that 54

local GP regression methods, such as treed GP models, were well-suited to 55

non-stationary regression tasks since each leaf GP model in the tree could specialize to 56

local phenomena in the data. Since the inception of this method, further advances have 57

been made by Gramacy and collaborators [3, 13], particularly with respect to large scale 58

computer experiments and surrogate modeling. It is acknowledged by Gramacy and 59

collaborators that predictions by the treed GP model are not continuous in the input 60

space [2, 3]. Additionally, the construction of the tree is performed probabilistically, and 61

does not make use of the intrinsic structure of the data for domain decomposition. 62

Since the original proposal of local GP regression, several methods have been 63

proposed which are adapted to the sequential setting. Shen et al. [14] reduced the 64

prediction time and kernel matrix storage for isotropic kernels by building a kd-tree 65

from the training data set. Nguyen-Tuong et al. [15] proposed a method of local GP 66

regression for online learning, which assigns incoming data to local models by similarity 67

in the feature space and forms mean predictions by weighting local predictions. This 68

local GP model was among the first to consider a fully sequential setting. This model 69

has two notable drawbacks: it suffers from discontinuities in its predictive mean, and 70

depends on a hyperparameter which is difficult to tune in practice and strongly affects 71

2/15

prediction performance. Another local GP method which may be used in the sequential 72

setting is the robust Bayesian committee machine (rBCM) by Deisenroth et al. [16], 73

which can be seen as a product of GP experts [17]. The rBCM emphasizes rapid, 74

distributed computation over model flexibility. This is demonstrated by a) its 75

assumption that the latent function is well-modeled by a single GP and b) consequent 76

random assignment of observations to GP experts, rather than a partitioning-based 77

approach. This modeling approach does not address potential non-stationarity of the 78

latent function. Streaming sparse GP approximations [18] use variational inference to 79

select n0 ≪ n pseudo-inputs to create an approximation of the full GP with 80

constant-time updating. However, this method neglects the possibility of 81

non-stationarity. 82

More recently, Park and collaborators have done significant work in this area, 83

applying mesh generating procedures from finite element analysis [19,20] and the 84

recursive Principal Direction Divisive Partitioning algorithm [4,21] to partition the 85

input space for fitting local models. However, in these papers it is assumed that a 86

substantial number of observations are available during the initial model construction to 87

perform the partitioning procedure, particularly when using mesh generation methods. 88

These models also suffer from discontinuities at the boundaries of partition cells, an 89

issue which the authors have creatively addressed by adding constraints to the 90

hyperparameter optimization which force equality at finitely many boundary points, or 91

by adding pseudo-points at the boundaries to induce continuity. 92

Recursive splitting of local Gaussian processes 93

As previous works have shown, there is a trade-off between the predictive ability of the 94

aggregate model, the number of local models, and computation speed. Given this fact, 95

we aim to construct a model which maintains strong predictive capability while keeping 96

its computational demands below a pre-specified upper bound. We show that this can 97

be accomplished in a straightforward manner by recursively splitting GP models once 98

they surpass a presupposed threshold in the number of observations. Splitting the model 99

amounts to performing a clustering subroutine which divides the observations associated 100

with the model into two subsets, and then fitting a new local model to each subset. 101

We consider a setting where the model may require sequential updating and 102

prediction. A natural quantity of interest is the time τ required for a single update; 103

since τ is a function of the size, m×m, of the kernel matrix Ki of a local model 104

indexed by i, m is then an interpretable parameter describing the period of splitting. 105

The parameter m may be interpreted as the splitting limit, the maximum number of 106

observations which may be assigned to a local model before it is split. For the 107

remainder of the paper, we will describe the splitting GP model, which is characterized 108

almost entirely by this intuitive parameterization. Additionally, the full specification of 109

the splitting GP algorithm may be found as pseudo-code in the appendix. 110

Notation 111

In preparation for the proceeding material, we define some notation. We assume some 112

familiarity of readers with the theory of GPs and kernel methods [1]. 113

The input data matrix and the response vector associated with the ith local model 114

are denoted by 115

Xi = [xi1 xi2 . . . xini
]T ∈ Rni×M and Yi = (yi1, yi2, . . . , yini

) ∈ Rni , respectively, 116

where xij ∈ X := RM is a column vector and ni is the number of observations 117

associated with the ith local model. We call X the input space. 118

3/15

When creating the ith local GP, its center is defined to be the centroid of Xi as 119

follows: 120

ci =
1

ni

ni∑︂
j=1

xij .

Centers are critical to the assignment of observations to local GPs, as well as prediction, 121

in the splitting GP model. Each time a new observation is assigned to a local model, its 122

center is recomputed. 123

The kernel function k:X × X ↦→ R is a positive-definite, symmetric function. A 124

vector θ parameterizes the kernel, and is called the hyperparameter of the GP model. 125

For simplicity, we omit θ from our notation. We use the term feature space to refer to 126

the reproducing kernel Hilbert space in which k implicitly computes an inner product. 127

We write f ∼ GP(µ, k) to say that the function f is distributed as a GP with mean 128

µ and kernel function k, and implicitly assume that the domain of f is X . The notation 129

f |Xi, Yi denotes that f is conditioned on the data Xi, Yi. We use x∗ to denote a test 130

input at which a prediction is to be made and f∗|x∗ to be a GP conditioned on the test 131

input, i.e. the posterior distribution. 132

The splitting procedure 133

To address modeling a potentially non-stationary latent function, each local GP model 134

is split in a manner which centers the resulting child GPs on regions of different means. 135

This is done by performing principal component analysis (PCA) on the training inputs 136

associated with the parent model. The first principal component gives the direction of 137

most variance of the training inputs, which implies that the corresponding orthogonal 138

hyperplane is the minimizer of within-cluster variance among all linear bisections, 139

leading to Principal Direction Divisive Partitioning (PDDP) [21]. 140

Two new GPs, which we call child GPs, are then created, each of which is assigned 141

the data of the parent model from one side of the hyperplane, as in Fig 1. This heuristic 142

is based on the idea that, by fitting separate GPs to the subsets of training inputs 143

which are maximally different, the model may best adapt to non-stationary behavior of 144

the latent function. We utilize PDDP since the splitting procedure is computed 145

efficiently in closed form, i.e. without the use of a convergent algorithm such as 146

k -means. It also allows for different choices in how the principal direction is computed. 147

For example, in a setting where observations are fully sequential, the principal direction 148

can be efficiently approximated using Oja’s rule [22] to avoid computing a singular value 149

decomposition of the data matrix. 150

Fig 1. Splitting a 2-d input data set using PDDP into two subsets for two 151

child GPs. Note the principal direction (orange vector), orthogonal hyperplane (green 152

line), and the centroid (×) of each subset colored in blue or red. 153

Critically, the prior of each child GP is taken to be the posterior of the parent model 154

when conditioned on the m training observations, reflecting the Bayesian belief that the 155

latent function’s local covariance structure is not too dissimilar from its covariance 156

structure in the larger subspace prior to splitting. 157

Formally, in the function space inference view of GP regression, 158

fchild ∼ fparent|Xparent, Yparent, (1)

where fchild is the prior of the child and fparent|Xparent, Yparent is the posterior of the 159

parent given the training data Xparent, Yparent. This assumption of local similarity is 160

implicit in the use of many smooth kernel functions, particularly the radial basis 161

function family, which are infinitely differentiable. 162

4/15

Aggregating predictions of local models 163

A new data point (x, y) is assigned to a child GP whose center is most similar to the 164

predictor x in the feature space, as determined by the kernel function. That is, for C 165

child GPs, the data point is assigned to the child GP indexed by 166

iassign := argmax
i=1,...,C

k(ci,x).

Similarly, the posterior mean at the test input x∗ is computed by weighting the 167

prediction of each child GP by the relative similarity of its center to the test input in 168

the feature space. This idea is based upon an interpretation of the predictive mean as 169

weighting observations by their similarity to the point of prediction in the feature 170

space [14,15]. 171

Unlike these previous works, we take a weighted average of all predictions of child 172

GPs, rather than only a subset, as follows: 173

E[f∗|x∗] = S−1
C∑︂
i=1

k(ci,x
∗)E[f∗

i |Xi, Yi,x
∗], (2)

where 174

S =

C∑︂
i=1

k(ci,x
∗). (3)

This may be interpreted as weighting each child GP’s mean prediction by the 175

similarity of its local region to the test input x∗. In the next section, we will show that 176

using predictions from all child GPs has important consequences on the theoretical 177

properties of the resulting model. 178

Theoretical properties of the splitting GP model 179

Continuity of the splitting GP 180

As a consequence of this weighting procedure and the choice of priors for the child GPs, 181

the splitting GP model has some convenient properties. The proofs of the following 182

propositions may be found in the appendix. 183

Proposition 1. Let f∗
parent|Xparent, Yparent ∼ GP(µ, k) be the full GP prior to 184

splitting and let x∗ be a test input. The child GPs fi|Xi, Yi ∼ GP(µi, k), i = 1, 2 from 185

the first split have the property that, prior to being updated with any new observations, 186

f∗|x∗ = f∗
parent|Xparent, Yparent,x

∗. That is, the predictive distribution is preserved by 187

the splitting procedure. 188

This result is somewhat intuitive, since no additional evidence has been obtained 189

which might alter our Bayesian beliefs about the latent function; we have simply altered 190

the model structure. In agreement with this idea, the equality of the parent and 191

childrens’ predictive distribution no longer holds after any new data is assigned to one 192

of the child GPs. Note that, in general, this relationship does not hold for any split 193

after the first. 194

An important property of the splitting GP model is the preservation of continuity 195

properties of the child GPs. We provide a result which shows the necessary and 196

sufficient condition for continuity of the splitting GP model’s predictions. 197

5/15

Proposition 2. Suppose k is a kernel function and fi|Xi, Yi ∼ GP(µi, k), i = 1, ..., C. 198

Then the random field given by 199

f∗|x∗ = S−1
C∑︂
i=1

k(ci,x
∗) f∗

i |Xi, Yi,x
∗

is mean square continuous in the input space if and only if the kernel function, k, is 200

continuous. Under the same condition, the mean prediction E[f∗|x∗] is also continuous 201

in the input space. 202

While it may seem obvious that the mean prediction is continuous in the input 203

space, it is reassuring to know that the random field created by the splitting model has 204

the same sufficient condition for mean square continuity as the underlying child GPs. 205

Intuitively, we are computing a continuously weighted average of smooth random fields, 206

so the resulting random field should also be smooth. 207

Note that it is not necessary to aggregate the predictions of each local model. 208

Instead, one may elicit predictions only from the C0 < C local models most similar to 209

the point of prediction, as measured by the kernel. This variation of the prediction 210

method, as used by Nguyen-Tuong et al. [15], may result in faster computation of 211

predictions. However, we caution against this practice without careful consideration. 212

This prediction method will result in a loss of continuity of the mean prediction 213

E[f∗|x∗], and consequently the mean square continuity of the random field f∗|x∗, since 214

the mean prediction is computed using a maximum function, which is not continuous. 215

The discontinuity will manifest as sharp jumps in the mean predictions, as illustrated in 216

Fig 2. 217

Fig 2. Example of discontinuous predictive mean. The discontinuous predictive 218

mean of Y in X is due to using only the closest child GP (left) instead of both child 219

GPs (right). Note the center of each child GP (red vertical line). 220

Complexity analysis of the algorithm 221

The algorithm for the splitting GP model has improved complexity in both memory and 222

training/prediction time compared to the full GP regression. Additionally, it maintains 223

some benefit in asymptotic complexity relative to other local GP methods. 224

The complexity of updating the splitting GP model with a single datum is bounded 225

above by O(m3), corresponding to a matrix inversion of one child GP. The contribution 226

of the PCA-based splitting procedure to the time complexity is negligible. Assuming the 227

PCA is performed via naive singular value decomposition, the procedure would have 228

O(m2) complexity amortized over m sequential observations, which yields a linear 229

additive term m < m3. 230

While each child GP has at most m observations, the average case will clearly be 231

lower. It should be noted that we explicitly chose to not utilize a rank-one update of the 232

Cholesky decomposition of the kernel matrix during the update procedure, a method 233

which is used in other local GP methods [15]. We made this choice to permit updating 234

the model with a batch of observations, in addition to fully sequential updating, which 235

would require an update of rank greater than one. We also observed empirically that 236

repeatedly updating a single child GP using rank-one updates would cause numerical 237

issues if the kernel length-scale parameter is small. 238

Since the time complexity of the algorithm is characterized primarily by the 239

parameter m, the largest number of observations which may be associated with a single 240

child model, it is straightforward to select an appropriate parameter value for 241

applications requiring rapid sequential updating. After empirically determining the 242

6/15

necessary wall-clock time needed for an update, the parameter may be adjusted 243

appropriately. 244

The splitting algorithm also imposes a lower memory complexity in terms of the 245

number of observations, n. It is well known that local GP methods effectively store only 246

a block-diagonal approximation of the full covariance matrix [4, 5]. In particular, when 247

the splitting algorithm has n observations, ⌊n/m⌋ child GPs have been created, each of 248

which will store a kernel matrix with up to m2 entries. The resulting memory 249

complexity of the algorithm is then O(mn) < O(n2), where O(n2) is the memory 250

complexity of a full GP regression. In contrast, the rBCM [16] has an asymptotic 251

memory complexity of O(n2/E), where E is the (constant) number of experts specified 252

as a parameter. Nguyen-Tuong et al. [15] did not present the memory complexity of 253

their local GP model but, under the mild assumption that the input space is bounded, 254

it can be shown that the asymptotic memory complexity is O(n2). Notably, the 255

splitting GP model is, to the best of our knowledge, the only local GP model to achieve 256

a linear memory complexity. 257

Experimental Results and Discussion 258

The efficacy of the splitting GP model was experimentally evaluated on one synthetic 259

and two real-world data sets. For each experiment, all models used the radial basis 260

function kernel, with automatic relevance determination [23] enabled. We compared the 261

performance of the splitting GP model to the local GP regression [15], the robust 262

Bayesian committee machine (rBCM) [16], and full GP regression as a baseline 263

comparison. Each of these models was chosen since they may be updated using 264

sequential data, and make no use of a “complete” training data set to inform the model. 265

This is in contrast to, for example, the patchwork kriging method [4], which utilizes 266

information from the entirety of data for domain decomposition. 267

Synthetic data with a non-stationary latent function 268

The synthetic data set (see Fig 3) was constructed to have a non-stationary latent
function f of a two-dimensional predictor (x1, x2) ∈ [−1, 1]2. The response function is
defined as

y = f(x1, x2) + ϵ

= 5 sin(x2
1 + x2

2) + 3x1 + ϵ, (4)

where ϵ
iid∼ N (0, σ) with σ = (0.05)max

x1,x2

f(x1, x2). To construct the synthetic data set, a 269

grid of 10,000 points was constructed in the x1-x2 plane and the latent function 270

evaluated at each point. A subset of 2500 observations were sampled uniformly, without 271

replacement, from the resulting grid for each replicate of the experiment. This sampling 272

over the grid ensured that no two observations are too close to one another, which may 273

cause numerical issues during training. 274

Fig 3. Contours of the response for the synthetic dataset. The contours of the 275

response of the synthetic data set from Eq (4). 276

For this experiment, we compared three metrics of the models’ performance: 277

prediction error (in mean squared error, or MSE), memory usage (in kilobytes, or kB), 278

and training time (in seconds). Each metric was estimated using a 5-fold cross 279

validation procedure. We utilized common random numbers [24] as a variance reduction 280

technique. Each experiment was replicated 10 times to reduce variability of results. In 281

7/15

Fig 4, the shaded region shows the 95% pointwise confidence region for the mean metric. 282

The experiment was performed with different numbers of observations, ranging from 100 283

to 2500 in increments of 100, to demonstrate the relative data requirements for each 284

model to converge. Each model was updated sequentially with single observations to 285

simulate a setting with sequential updating and prediction. 286

Fig 4. Comparison of alternative models with sequentially added data. The 287

alternative models’ MSE (a), memory usage (b), and training time (c) were evaluated 288

on the synthetic data set from (4). The shaded areas give the 95% pointwise confidence 289

region for each model. 290

For each alternative model compared, the experiment was replicated for a range of 291

parameter values and the most favorable, in terms of MSE, results for each model are 292

reported. For the splitting GP model, we used a splitting limit of m = 500. For the 293

rBCM, E = 10 local experts were used. We found the parameter wgen of the local GP 294

model difficult to tune and eventually used wgen = 10−3 based on an extensive grid 295

search (detailed in the appendix). 296

In Fig 4, one can see that the splitting model and full GP required relatively few 297

observations to achieve strong predictive power. The rBCM was much slower to 298

converge, and exhibited high variability in its MSE across replicates of the experiment. 299

We attribute the greater variability in MSE to the rBCM’s random assignment of data 300

to GP experts. On the other hand, the splitting GP model exhibited remarkably low 301

variability in MSE between replicates. It is worth noting that the splitting model’s MSE 302

slowly increased as it splits at intervals of 500 observations (see Fig 5). 303

Fig 5. Zoom-in of alternative models’ MSE from Fig 4(a). The MSE of the 304

splitting GP model slowly increases as it splits to maintain an efficient approximation of 305

the full GP. 306

The memory usage of the splitting GP model proved to be significantly lower than 307

the full GP model, and marginally higher than that of the rBCM. However, for ∼2500 308

observations, it can be seen that the memory usage of the rBCM model began to 309

surpass that of the splitting GP model. This is to be expected, since the asymptotic 310

memory complexity of the rBCM is quadratic, as opposed to the linear complexity of 311

the splitting GP model. 312

The training time of the rBCM and local GP models were found to be comparable, 313

and the splitting GP model took slightly longer. The full GP took significantly longer 314

to train. The change in regime of the training time of the full GP at ∼1100 observations 315

is due to specialized numerical methods in the GPyTorch library [9]. 316

Real-world data in robotic control application 317

The first real-world data set, kin40k, consists of 40,000 records describing the location of 318

a robotic arm as a function of an 8-dimensional control input [25]. This data set was 319

chosen since it exemplifies a task where the fast sequential updating and low memory 320

profile offered by the splitting GP model are desirable. Furthermore, kin40k is a 321

popular benchmark for other GP regression methods [16,26,27], and thus facilitates 322

direct comparison. 323

We used the same training/test split of 10,000/30,000 points as in the previous 324

work [16,26,27]. Observations were added to the models in batches, with each batch 325

having a number of observations equal to the number of observations per local model. 326

The results can be seen in Fig 6. The splitting model’s root-mean-square error (RMSE) 327

is comparable with that of the rBCM, which is designed under a stronger assumption 328

(that the latent function is well-modeled by a single GP), which is satisfied in this 329

8/15

stationary regression task. In contrast, the local GP model struggled to achieve the 330

same RMSE in this experiment (see the appendix for more detail on the difficulty 331

tuning the parameter wgen). 332

Fig 6. Comparison of alternative models for the kin40k dataset. The bottom 333

label on the x-axis for both plots gives the parameter values of the splitting GP model 334

(observations per local model, m) and the rBCM (observations per expert). (a): The top 335

label on the x-axis gives the value of the parameter wgen in the local GP model of [15]. 336

Real-world data in power plant control application 337

The second real-world data set is powergen, which consists of four predictors describing 338

control inputs of a combined cycle power plant, and a response of the net electrical 339

energy production. This data set is due to [28] and [29] and is publicly available [30]. 340

We pre-processed the data to remove duplicate observations, leaving a total of 7622 341

observations. 342

In the powergen experiment, we compared both the predictive error (in RMSE) and 343

the combined training and prediction time (in seconds) of the splitting GP model and 344

rBCM. We compared only these two models, since they proved to be the most 345

competitive local GP methods in earlier experiments. The data set was randomly 346

divided into a 80%/20% train/test split, and each model evaluated for several different 347

parameter values. Observations were added to the models in batches, with each batch 348

having a number of observations equal to the number of observations per local model. 349

The experiment was replicated 10 times, and common random numbers were used for 350

splitting the data set and training the models for sharper comparisons between the 351

models. The results can be seen in Fig 7). 352

Fig 7. Comparison of alternative models for the powergen dataset. The 353

x-axis for both plots gives the parameter values of the splitting GP model (observations 354

per local model, m) and the rBCM (observations per expert). Markers on the line plots 355

show the average over 10 replicates, and the shaded regions denote the 95% pointwise 356

confidence intervals. For the final parameter value of 30 observations per expert, 357

numerical errors occurred with the rBCM model, so no result is shown. 358

The splitting GP model’s RMSE decreased with the number of observations per 359

local model, achieving a comparable performance with the rBCM. In terms of runtime, 360

the splitting GP model was significantly faster, while having little variability between 361

replicates. While the rBCM’s runtime decreased with the number of observations per 362

expert, its average runtime was 2.5-6 times longer than that of the splitting GP model, 363

depending on the choice of parameters. 364

Conclusion 365

In this paper, we have developed an algorithm for constructing splitting GP regression 366

models for potentially non-stationary latent functions using sequential data. We have 367

shown that splitting GP models attain comparable predictive performance, while 368

addressing critical shortcomings of other local GP models, such as discontinuity of 369

predictions, lack of flexibility for modeling non-stationary latent functions, and opaque 370

parameters which may be challenging to tune. Furthermore, splitting GP models are 371

shown to enjoy linear memory complexity which, to the best of our knowledge, is the 372

best among existing local GP methods, which typically have quadratic memory 373

complexity. An implementation of the splitting GP model is available at 374

https://github.com/nick-terry/Splitting-GP. 375

9/15

Acknowledgements 376

This work was supported in part by the National Science Foundation (NSF grants 377

CMMI-1824681 and DMS-1952781). 378

References
1. Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning

(Adaptive Computation and Machine Learning). The MIT Press; 2005.

2. Gramacy RB. Bayesian Treed Gaussian Process Models [Doctoral Thesis].
University of California, Santa Cruz; 2005.

3. Gramacy RB, Lee HKH. Bayesian Treed Gaussian Process Models With an
Application to Computer Modeling. Journal of the American Statistical
Association. 2008;103(483):1119–1130.

4. Park C, Apley D. Patchwork Kriging for Large-scale Gaussian Process Regression.
Journal of Machine Learning Research. 2018;19(7):1–43.

5. Das K, Srivastava AN. Block-GP: Scalable Gaussian Process Regression for
Multimodal Data. In: 2010 IEEE International Conference on Data Mining; 2010.
p. 791–796.

6. Yu J. Online quality prediction of nonlinear and non-Gaussian chemical processes
with shifting dynamics using finite mixture model based Gaussian process
regression approach. Chemical Engineering Science. 2012;82:22–30.

7. Liu Y, Chen T, Chen J. Auto-Switch Gaussian Process Regression-Based
Probabilistic Soft Sensors for Industrial Multigrade Processes with Transitions.
Industrial & Engineering Chemistry Research. 2015;54(18):5037–5047.

8. Jixu Chen, Minyoung Kim, Wang Y, Ji Q. Switching Gaussian Process Dynamic
Models for simultaneous composite motion tracking and recognition. In: 2009
IEEE Conference on Computer Vision and Pattern Recognition; 2009. p.
2655–2662.

9. Gardner JR, Pleiss G, Bindel D, Weinberger KQ, Wilson AG. GPyTorch:
blackbox matrix-matrix Gaussian process inference with GPU acceleration. In:
Proceedings of the 32nd International Conference on Neural Information
Processing Systems. NIPS’18. Montréal, Canada; 2018. p. 7587–7597.

10. Rasmussen CE, Ghahramani Z. Infinite Mixtures of Gaussian Process Experts.
Advances in Neural Information Processing Systems. 2002;14:881–888.

11. Snelson E, Ghahramani Z. Local and global sparse Gaussian process
approximations. In: Artificial Intelligence and Statistics; 2007. p. 524–531.

12. Breiman L. Classification and Regression Trees. Routledge; 1984.

13. Gramacy RB, Apley DW. Local Gaussian Process Approximation for Large
Computer Experiments. Journal of Computational and Graphical Statistics.
2015;24(2):561–578.

14. Shen Y, Seeger M, Ng AY. Fast Gaussian Process Regression Using KD-Trees. In:
Advances in Neural Information Processing Systems; 2006. p. 1225–1232.

10/15

15. Nguyen-Tuong D, Peters J, Seeger M. Local Gaussian Process Regression for
Real Time Online Model Learning. Advances in Neural Information
ProcessingSystems. 2009; p. 1193–1200.

16. Deisenroth MP, Ng JW. Distributed Gaussian Processes. In: Proceedings of the
32nd International Conference on International Conference on Machine Learning -
Volume 37. ICML’15. JMLR.org; 2015. p. 1481–1490.

17. Hinton GE. Training Products of Experts by Minimizing Contrastive Divergence.
Neural Computation. 2002;14(8):1771–1800.

18. Bui TD, Nguyen C, Turner RE. Streaming Sparse Gaussian Process
Approximations. In: Advances in Neural Information Processing Systems. vol. 30;
2017.

19. Park C, Huang JZ. Efficient Computation of Gaussian Process Regression for
Large Spatial Data Sets by Patching Local Gaussian Processes. Journal of
Machine Learning Research. 2016;17(174):1–29.

20. Park C, Huang JZ, Ding Y. Domain Decomposition Approach for Fast Gaussian
Process Regression of Large Spatial Data Sets. Journal of Machine Learning
Research. 2011;12(47):1697–1728.

21. Boley D. Principal Direction Divisive Partitioning. Data Mining and Knowledge
Discovery. 1998;2(4):325–344.

22. Oja E. The Nonlinear PCA Learning Rule in Independent Component Analysis.
Neurocomputing. 1997;17(1):25–45.

23. Neal RM. Bayesian Learning for Neural Networks. Berlin, Heidelberg:
Springer-Verlag; 1996.

24. Wright RD, Ramsay TE. On the Effectiveness of Common Random Numbers.
Management Science. 1979;25(7):649–656.

25. Nguyen V. trungngv/fgp; 2019. Available from:
https://github.com/trungngv/fgp.

26. Nguyen T, Bonilla E. Fast Allocation of Gaussian Process Experts. In: Xing EP,
Jebara T, editors. Proceedings of the 31st International Conference on Machine
Learning. vol. 32 of Proceedings of Machine Learning Research. Bejing, China:
PMLR; 2014. p. 145–153.

27. Lázaro-Gredilla M, Quiñonero-Candela J, Rasmussen CE, Figueiras-Vidal AR.
Sparse Spectrum Gaussian Process Regression. Journal of Machine Learning
Research. 2010;11(63):1865–1881.

28. Kaya H, Tüfekci P, Gürgen FS. Local and global learning methods for predicting
power of a combined gas & steam turbine. In: Proceedings of the international
conference on emerging trends in computer and electronics engineering
ICETCEE; 2012. p. 13–18.

29. Tüfekci P. Prediction of full load electrical power output of a base load operated
combined cycle power plant using machine learning methods. International
Journal of Electrical Power & Energy Systems. 2014;60:126–140.

30. Dua D, Graff C. UCI Machine Learning Repository; 2019. Available from:
http://archive.ics.uci.edu/ml.

11/15

https://github.com/trungngv/fgp
http://archive.ics.uci.edu/ml

31. Hristopulos DT. Geometric Properties of Random Fields. In: Random Fields for
Spatial Data Modeling: A Primer for Scientists and Engineers. Advances in
Geographic Information Science. Springer Netherlands; 2020. p. 173–244.

Appendix

Proofs
Proposition 1

Proof. We consider the case of a single local model being split into two new local
models. By definition in (2), the posterior mean at an input x∗ is given by

f∗|x∗ = S−1k(c1,x
∗)f∗

1 |X1, Y1,x
∗ + S−1k(c2,x

∗)f∗
2 |X2, Y2,x

∗

By Eq (3), we then have

f∗|x∗ = αf∗
1 |X1, Y1,x

∗ + (1− α)f∗
2 |X2, Y2,x

∗ (5)

where α = S−1k(c1,x
∗). Assuming that no data is observed since the split, we can see

that
f∗|x∗ = αf∗

1 |x∗ + (1− α)f∗
2 |x∗, α = S−1k(c1,x

∗) (6)

Finally, applying Eq (1) yields

f∗|x∗ = αf∗
parent|Xparent, Yparent,x

∗ + (1− α)f∗
parent|Xparent, Yparent,x

∗

= f∗
parent|Xparent, Yparent,x

∗

Proposition 2

Proof. A common result on random fields gives that the random field f∗|x∗ is mean
square continuous if and only if its expectation and covariance functions are continuous;
see [31], Theorem 5.2, for example. It then suffices to show that E[f∗|x∗] is continuous.

E[f∗|x∗] = E

[︄
S−1

C∑︂
i=1

k(ci,x
∗) f∗

i

⃓⃓⃓⃓
⃓Xi, Yi,x

∗

]︄
(7)

= S−1
C∑︂
i=1

k(ci,x
∗)E[f∗

i |Xi, Yi,x
∗] (8)

Recall that the predictive mean E[f∗
i |Xi, Yi,x

∗] is a linear function of x∗, and therefore
continuous. Note from (3) that S−1 is continuous if and only if k is continuous. In this
case, E[f∗|x∗] is continuous, and hence f∗|x∗ is mean square continuous.

The splitting GP algorithm
Here we specify three algorithms which describe the main operations of the splitting GP
model: splitting a GP, updating the model, and computing the predictive mean. We
make use of the much of the same notation defined in the main paper.

From a computational perspective, the necessary components to construct a GP
model are the training inputs and training response, Xi and Yi, respectively. For
convenience of notation, the following algorithms are thus described in terms of matrix

12/15

operations on these variables. We will use the triple (Xi, Yi, ci) to characterize the ith

child GP, where ci is the center of the GP as defined in the main paper. The entirety of
the splitting GP model is itself given as a triple (A, kθ,m), where
A = {(Xi, Yi, ci) : i = 1, . . . , C} is a set of the child GPs, kθ is the kernel function with
hyperparameter θ, and m is the splitting limit of the splitting GP model. The following
pseudo-code makes use of explicit for loops for clarity, but please note that our
implementation (see the supplementary material) makes use of vectorized versions of
these algorithms for efficiency.

We first specify the splitting algorithm, which is used to divide a GP into two
smaller child GPs. To keep the pseudo-code as general as possible, we define the
function PrincipalDirection(X) as one which computes the first principal component
vector of a matrix X.

Algorithm 1: Split((Xi, Yi, ci))

X̂1, X̂2 ← [] , [];
Ŷ 1, Ŷ 2 ← [] , [];
n̂1, n̂2 ← 0, 0;
v← PrincipalDirection(Xi);
for j ← 1 to ni do

I ← vT (xij − ci);
if I > 0 then

X̂1 ←
[︂
X̂

T

1 xij

]︂T
;

Ŷ 1 ←
[︂
Ŷ

T

1 yij

]︂T
;

n̂1 ← n̂1 + 1;
else

X̂2 ←
[︂
X̂

T

2 xij

]︂T
;

Ŷ 2 ←
[︂
Ŷ

T

2 yij

]︂T
;

n̂2 ← n̂2 + 1;
end

end
ĉ1 ← n̂−1

1

∑︁n̂1

j=1 x̂1j ;
ĉ2 ← n̂−1

2

∑︁n̂2

j=1 x̂2j ;

Result:
(︂
X̂1, Ŷ 1, ĉ1

)︂
,
(︂
X̂2, Ŷ 2, ĉ2

)︂

Using Split, we can now define the algorithm Update for updating the splitting GP
model given a new data point (x, y). We use the shorthand Train to mean the standard
fitting of a GP model with the hyperparameter θ to data by means of maximizing the

13/15

log marginal likelihood [1].

Algorithm 2: Update((A, kθ,m) , (x, y))

if C = 0 then
X1 ← xT ;
Y1 ← yT ;
c1 ← x;
A ← [(X1, Y1, c1)];
C ← 1;

else
I ← argmax

i=1,...,C
kθ(x, ci);

XI ←
[︁
XT

I x
]︁T ;

YI ←
[︁
Y T
I y

]︁T ;
nI ← nI + 1;
cI ← n−1

I

∑︁nI

j=1 xIj ;
if nI > m then

(XI , YI , cI) , (XC+1, YC+1, cC+1)← Split ((XI , YI , cI));
A ← {(Xi, Yi, ci) : i = 1, . . . , C + 1};
C ← C + 1;

end
end
Train (θ,A);
Result: (A, kθ,m)

Finally, the algorithm for computing the mean prediction of response at the input x
follows. Here we use the abbreviated Mean function to give the posterior mean for a
child GP (Xi, Yi, ci). The posterior mean for each child GP is computed in closed form
using linear algebra [1].

Algorithm 3: Predict((A, kθ,m) ,x)

for i← 1 to C do
si ← kθ(x, ci);
Ei ← Mean((Xi, Yi, ci) ,x);

end
S ←

∑︁C
i=1 si;

ŷ ← S−1
∑︁C

i=1 siEi;
Result: ŷ

Hyperparameter tuning for the local GP model
In the experiment with the synthetic data set, we initially performed a grid search on
the parameter wgen of the local GP model [15] from .9 to .1 at increments of .05, and
obtained the best results for wgen = .1. However, the resulting MSE was much higher
than the other models considered. In the interest of fair comparison, we conducted a
second grid search ranging from .1 to 10−3 by increments of 5× 10−4, and the best
parameter was found to be 10−3, for which we show the results in Fig 4.

We chose not to continue lowering wgen further, since the local GP model’s MSE
may be expected to decrease monotonically with wgen. The parameter wgen defines a
similarity threshold, such that if a new observation is sufficiently dissimilar from existing

14/15

local models (i.e. k(x∗, ci) ≤ wgen, ∀i = 1, ..., C), a new local model will be created. If
wgen = 0, then only one local GP will be created, so that the model reduces to a full
GP. This behavior can be seen in Fig 6, where we performed a grid search on wgen

ranging as low as 10−10. For values less than 10−8, limitations to floating point
precision caused the local GP model’s prediction procedure to become numerically
unstable, so Fig 6 and Fig 7 do not include these parameter values.

15/15

