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Abstract

Gaussian processes offer a flexible kernel method for regression. While Gaussian
processes have many useful theoretical properties and have proven practically useful,
they suffer from poor scaling in the number of observations. In particular, the cubic
time complexity of updating standard Gaussian process models can be a limiting factor
in applications. We propose an algorithm for sequentially partitioning the input space
and fitting a localized Gaussian process to each disjoint region. The algorithm is shown
to have superior time and space complexity to existing methods, and its sequential
nature allows the model to be updated efficiently. The algorithm constructs a model for
which the time complexity of updating is tightly bounded above by a pre-specified
parameter. To the best of our knowledge, the model is the first local Gaussian process
regression model to achieve linear memory complexity. Theoretical continuity properties
of the model are proven. We demonstrate the efficacy of the resulting model on several
multi-dimensional regression tasks.

Introduction

Gaussian process (GP) regression is a flexible kernel method for approximating smooth
functions from data. Assuming there is a latent function which describes the
relationship between predictors and a response, from a Bayesian perspective a GP
defines a prior over latent functions. When conditioned on the observed data, the GP
then gives a posterior distribution of the latent function. In practice, GP models are fit
to training data by optimizing the marginal log likelihood with respect to
hyperparameters of the kernel function, k.

A notable shortcoming of GP regression is its poor scaling both in memory and
computational complexity. In what we will hereafter refer to as full GP regression, the
posterior mean and variance can be directly computed at any finite number of points
using linear algebra [1]. However, a computational bottleneck is caused by the necessary
matrix inversion of the kernel matrix K, which is well-known to have a time complexity
of O(n?), where n is the number of observations. The O(n?) memory complexity of
storing K may also pose issues for massive data sets.

GP regression may also struggle to well-approximate latent functions which are
non-stationary [2,3]. Non-stationary latent function’s mean or covariance may vary over
its domain. Non-stationarity may be induced in more subtle ways as well, such as
heteroscedastic additive noise in the observed response.

Local GP regression is a class of models which address both of these problems, to
varying extents. The commonality of these models is the assignment of observations to

1/15

10

11

13

14

15

16

17

18

19

20

21



one of many local GPs during training, and the aggregation of the local models’
individual predictions. As a result of observations being assigned to a single local model,
effectively only a block-diagonal approximation of the full kernel matrix K is
maintained [4,5], easing the time and memory complexity. The price of this flexibility
and computational advantage is a potential decrease in predictive ability, relative to full
GP regression, on tasks for which a full GP is well-suited.

A successful method for assigning observations to local GPs is partitioning the input
space, the domain of the latent function, and creating a local GP model for each cell of
the partition [2-4,13]. Existing local GP models may encounter various difficulties
during the partitioning process and/or neglect a setting where only a sequential data
source is available and partitioning must be performed sequentially. This sequential
setting is important since it encompasses tasks with changing dynamics. For example,
in applications such as process quality monitoring [6,7] and motion tracking [§], a
sequential approach allows for the model to adapt to regimes which are yet-unobserved.

The primary contribution of this paper is an algorithm which recursively partitions
the input space to construct local GPs using sequential observations. The resulting
model is dubbed the splitting GP. The algorithm is shown to have superior asymptotic
time and memory complexity relative to other state-of-the-art local GP methods which
can be used in this problem setting. By design of the algorithm, we also ensure an exact
upper bound on the time complexity of updating the splitting GP model. We also prove
theoretical properties of the model related to continuity of the predictions and
empirically demonstrate the efficacy of the model. Additionally, a software
implementation of the algorithm is provided, which leverages the computational
advantages of the GPyTorch library [9], to facilitate the use of the algorithm by others.

Related work

The first exploration of local GP regression is due to Rasmussen and Ghahramani [10],
as a special case of their mixture of GP experts model, where prediction at a point is
performed by one designated “expert” GP. Snelson and Ghahramani [11] further
developed this idea, but only as a supplementary method to sparse GP regression.

An adjacent line of research on treed GP models was begun by Gramacy and Lee [2].

Treed GP models perform domain decomposition in the same manner as classification
and regression trees [12], and fit distinct GP models to each resulting partition.
Predictions are then formed using k-nearest neighbors. Gramacy and Lee [2] found that
local GP regression methods, such as treed GP models, were well-suited to
non-stationary regression tasks since each leaf GP model in the tree could specialize to
local phenomena in the data. Since the inception of this method, further advances have
been made by Gramacy and collaborators [3,13], particularly with respect to large scale
computer experiments and surrogate modeling. It is acknowledged by Gramacy and
collaborators that predictions by the treed GP model are not continuous in the input
space [2,3]. Additionally, the construction of the tree is performed probabilistically, and
does not make use of the intrinsic structure of the data for domain decomposition.
Since the original proposal of local GP regression, several methods have been
proposed which are adapted to the sequential setting. Shen et al. [14] reduced the
prediction time and kernel matrix storage for isotropic kernels by building a kd-tree
from the training data set. Nguyen-Tuong et al. [15] proposed a method of local GP
regression for online learning, which assigns incoming data to local models by similarity
in the feature space and forms mean predictions by weighting local predictions. This
local GP model was among the first to consider a fully sequential setting. This model
has two notable drawbacks: it suffers from discontinuities in its predictive mean, and
depends on a hyperparameter which is difficult to tune in practice and strongly affects
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prediction performance. Another local GP method which may be used in the sequential
setting is the robust Bayesian committee machine (rBCM) by Deisenroth et al. [16],
which can be seen as a product of GP experts [17]. The rBCM emphasizes rapid,
distributed computation over model flexibility. This is demonstrated by a) its
assumption that the latent function is well-modeled by a single GP and b) consequent
random assignment of observations to GP experts, rather than a partitioning-based
approach. This modeling approach does not address potential non-stationarity of the
latent function. Streaming sparse GP approximations [18] use variational inference to
select ng < n pseudo-inputs to create an approximation of the full GP with
constant-time updating. However, this method neglects the possibility of
non-stationarity.

More recently, Park and collaborators have done significant work in this area,
applying mesh generating procedures from finite element analysis [19,20] and the
recursive Principal Direction Divisive Partitioning algorithm [4,21] to partition the
input space for fitting local models. However, in these papers it is assumed that a
substantial number of observations are available during the initial model construction to
perform the partitioning procedure, particularly when using mesh generation methods.
These models also suffer from discontinuities at the boundaries of partition cells, an
issue which the authors have creatively addressed by adding constraints to the
hyperparameter optimization which force equality at finitely many boundary points, or
by adding pseudo-points at the boundaries to induce continuity.

Recursive splitting of local Gaussian processes

As previous works have shown, there is a trade-off between the predictive ability of the
aggregate model, the number of local models, and computation speed. Given this fact,
we aim to construct a model which maintains strong predictive capability while keeping
its computational demands below a pre-specified upper bound. We show that this can
be accomplished in a straightforward manner by recursively splitting GP models once
they surpass a presupposed threshold in the number of observations. Splitting the model
amounts to performing a clustering subroutine which divides the observations associated
with the model into two subsets, and then fitting a new local model to each subset.

We consider a setting where the model may require sequential updating and
prediction. A natural quantity of interest is the time 7 required for a single update;
since 7 is a function of the size, m x m, of the kernel matrix K; of a local model
indexed by i, m is then an interpretable parameter describing the period of splitting.
The parameter m may be interpreted as the splitting limit, the maximum number of
observations which may be assigned to a local model before it is split. For the
remainder of the paper, we will describe the splitting GP model, which is characterized
almost entirely by this intuitive parameterization. Additionally, the full specification of
the splitting GP algorithm may be found as pseudo-code in the appendix.

Notation

In preparation for the proceeding material, we define some notation. We assume some
familiarity of readers with the theory of GPs and kernel methods [1].

The input data matrix and the response vector associated with the i*" local model
are denoted by

X; = [Xil X2 .- - Xini]T € R%*M and Y, = (yila Yi2y e - - 7yini) € R™ respectively,
where x;; € X = RM is a column vector and n; is the number of observations
associated with the i*" local model. We call X the input space.
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When creating the i*" local GP, its center is defined to be the centroid of X; as

follows:
.
1 k3
c;, = — E X
) n; 4 i
j=1

Centers are critical to the assignment of observations to local GPs, as well as prediction,
in the splitting GP model. Each time a new observation is assigned to a local model, its
center is recomputed.

The kernel function k: X x X — R is a positive-definite, symmetric function. A
vector @ parameterizes the kernel, and is called the hyperparameter of the GP model.
For simplicity, we omit 8 from our notation. We use the term feature space to refer to
the reproducing kernel Hilbert space in which k implicitly computes an inner product.

We write f ~ GP(u, k) to say that the function f is distributed as a GP with mean
1 and kernel function k, and implicitly assume that the domain of f is X'. The notation
f1X;,Y; denotes that f is conditioned on the data X;,Y;. We use x* to denote a test
input at which a prediction is to be made and f*|x* to be a GP conditioned on the test
input, i.e. the posterior distribution.

The splitting procedure

To address modeling a potentially non-stationary latent function, each local GP model
is split in a manner which centers the resulting child GPs on regions of different means.
This is done by performing principal component analysis (PCA) on the training inputs
associated with the parent model. The first principal component gives the direction of
most variance of the training inputs, which implies that the corresponding orthogonal
hyperplane is the minimizer of within-cluster variance among all linear bisections,
leading to Principal Direction Divisive Partitioning (PDDP) [21].

Two new GPs, which we call child GPs, are then created, each of which is assigned
the data of the parent model from one side of the hyperplane, as in Fig 1. This heuristic
is based on the idea that, by fitting separate GPs to the subsets of training inputs
which are maximally different, the model may best adapt to non-stationary behavior of
the latent function. We utilize PDDP since the splitting procedure is computed
efficiently in closed form, i.e. without the use of a convergent algorithm such as
k-means. It also allows for different choices in how the principal direction is computed.
For example, in a setting where observations are fully sequential, the principal direction
can be efficiently approximated using Oja’s rule [22] to avoid computing a singular value
decomposition of the data matrix.

Fig 1. Splitting a 2-d input data set using PDDP into two subsets for two
child GPs. Note the principal direction (orange vector), orthogonal hyperplane (green
line), and the centroid (x) of each subset colored in blue or red.

Critically, the prior of each child GP is taken to be the posterior of the parent model
when conditioned on the m training observations, reflecting the Bayesian belief that the
latent function’s local covariance structure is not too dissimilar from its covariance
structure in the larger subspace prior to splitting.

Formally, in the function space inference view of GP regression,

fchild ~ fparent|Xparent7 Yparentv (1)

where fepiiq is the prior of the child and fparent|Xparent, Yparent is the posterior of the
parent given the training data Xpsrent, Yparent. This assumption of local similarity is
implicit in the use of many smooth kernel functions, particularly the radial basis
function family, which are infinitely differentiable.
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Aggregating predictions of local models

A new data point (x,y) is assigned to a child GP whose center is most similar to the
predictor x in the feature space, as determined by the kernel function. That is, for C'
child GPs, the data point is assigned to the child GP indexed by

lassign = argmax k(c;, x).
i=1,...,C

Similarly, the posterior mean at the test input x* is computed by weighting the
prediction of each child GP by the relative similarity of its center to the test input in
the feature space. This idea is based upon an interpretation of the predictive mean as
weighting observations by their similarity to the point of prediction in the feature
space [14,15].

Unlike these previous works, we take a weighted average of all predictions of child
GPs, rather than only a subset, as follows:

c
E[f*x"] =S k(e x")E[f7|X,, Vi, x"], 2)
i=1
where
c
S:Zk(ci,x*). (3)
i=1

This may be interpreted as weighting each child GP’s mean prediction by the
similarity of its local region to the test input x*. In the next section, we will show that
using predictions from all child GPs has important consequences on the theoretical
properties of the resulting model.

Theoretical properties of the splitting GP model

Continuity of the splitting GP

As a consequence of this weighting procedure and the choice of priors for the child GPs,
the splitting GP model has some convenient properties. The proofs of the following
propositions may be found in the appendix.

Proposition 1. Let f;amm|Xpamm,Ypamm ~ GP(u, k) be the full GP prior to
splitting and let x* be a test input. The child GPs f;|X;,Y; ~ GP(u;, k), i = 1,2 from
the first split have the property that, prior to being updated with any new observations,
frx* = ;arent‘Xparenh Yparent, x*. That is, the predictive distribution is preserved by
the splitting procedure.

This result is somewhat intuitive, since no additional evidence has been obtained
which might alter our Bayesian beliefs about the latent function; we have simply altered
the model structure. In agreement with this idea, the equality of the parent and
childrens’ predictive distribution no longer holds after any new data is assigned to one
of the child GPs. Note that, in general, this relationship does not hold for any split
after the first.

An important property of the splitting GP model is the preservation of continuity
properties of the child GPs. We provide a result which shows the necessary and
sufficient condition for continuity of the splitting GP model’s predictions.
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Proposition 2. Suppose k is a kernel function and f;|X;,Y; ~ GP(pi, k), i =1,...,C.
Then the random field given by

C
Frx =871 k(e x") f71X, Vi, x®
=1

18 mean square continuous in the input space if and only if the kernel function, k, is
continuous. Under the same condition, the mean prediction E[ f*|x*] is also continuous
in the input space.

While it may seem obvious that the mean prediction is continuous in the input
space, it is reassuring to know that the random field created by the splitting model has
the same sufficient condition for mean square continuity as the underlying child GPs.
Intuitively, we are computing a continuously weighted average of smooth random fields,
so the resulting random field should also be smooth.

Note that it is not necessary to aggregate the predictions of each local model.
Instead, one may elicit predictions only from the Cy < C local models most similar to
the point of prediction, as measured by the kernel. This variation of the prediction
method, as used by Nguyen-Tuong et al. [15], may result in faster computation of
predictions. However, we caution against this practice without careful consideration.
This prediction method will result in a loss of continuity of the mean prediction
E[ f*|x*], and consequently the mean square continuity of the random field f*|x*, since
the mean prediction is computed using a maximum function, which is not continuous.
The discontinuity will manifest as sharp jumps in the mean predictions, as illustrated in
Fig 2.

Fig 2. Example of discontinuous predictive mean. The discontinuous predictive
mean of Y in X is due to using only the closest child GP (left) instead of both child
GPs (right). Note the center of each child GP (red vertical line).

Complexity analysis of the algorithm

The algorithm for the splitting GP model has improved complexity in both memory and
training/prediction time compared to the full GP regression. Additionally, it maintains
some benefit in asymptotic complexity relative to other local GP methods.

The complexity of updating the splitting GP model with a single datum is bounded
above by O(m?), corresponding to a matrix inversion of one child GP. The contribution
of the PCA-based splitting procedure to the time complexity is negligible. Assuming the
PCA is performed via naive singular value decomposition, the procedure would have
O(m?) complexity amortized over m sequential observations, which yields a linear
additive term m < m?3.

While each child GP has at most m observations, the average case will clearly be
lower. It should be noted that we explicitly chose to not utilize a rank-one update of the
Cholesky decomposition of the kernel matrix during the update procedure, a method
which is used in other local GP methods [15]. We made this choice to permit updating
the model with a batch of observations, in addition to fully sequential updating, which
would require an update of rank greater than one. We also observed empirically that
repeatedly updating a single child GP using rank-one updates would cause numerical
issues if the kernel length-scale parameter is small.

Since the time complexity of the algorithm is characterized primarily by the
parameter m, the largest number of observations which may be associated with a single
child model, it is straightforward to select an appropriate parameter value for
applications requiring rapid sequential updating. After empirically determining the
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necessary wall-clock time needed for an update, the parameter may be adjusted
appropriately.

The splitting algorithm also imposes a lower memory complexity in terms of the
number of observations, n. It is well known that local GP methods effectively store only
a block-diagonal approximation of the full covariance matrix [4,5]. In particular, when
the splitting algorithm has n observations, |n/m] child GPs have been created, each of
which will store a kernel matrix with up to m? entries. The resulting memory
complexity of the algorithm is then O(mn) < O(n?), where O(n?) is the memory
complexity of a full GP regression. In contrast, the rBCM [16] has an asymptotic
memory complexity of O(n?/E), where E is the (constant) number of experts specified
as a parameter. Nguyen-Tuong et al. [15] did not present the memory complexity of
their local GP model but, under the mild assumption that the input space is bounded,
it can be shown that the asymptotic memory complexity is O(n?). Notably, the
splitting GP model is, to the best of our knowledge, the only local GP model to achieve
a linear memory complexity.

Experimental Results and Discussion

The efficacy of the splitting GP model was experimentally evaluated on one synthetic
and two real-world data sets. For each experiment, all models used the radial basis
function kernel, with automatic relevance determination [23] enabled. We compared the
performance of the splitting GP model to the local GP regression [15], the robust
Bayesian committee machine (rBCM) [16], and full GP regression as a baseline
comparison. Each of these models was chosen since they may be updated using

sequential data, and make no use of a “complete” training data set to inform the model.

This is in contrast to, for example, the patchwork kriging method [4], which utilizes
information from the entirety of data for domain decomposition.

Synthetic data with a non-stationary latent function

The synthetic data set (see Fig 3) was constructed to have a non-stationary latent
function f of a two-dimensional predictor (z1,x2) € [—1,1]2. The response function is
defined as

y=f(z1,22) +¢€
= 5sin(2? + 23) + 371 + ¢, (4)

where ¢ 2 N(0,0) with o = (0.05)max f(z1,22). To construct the synthetic data set, a
Z1,T2

grid of 10,000 points was constructed in the x1-z2 plane and the latent function
evaluated at each point. A subset of 2500 observations were sampled uniformly, without
replacement, from the resulting grid for each replicate of the experiment. This sampling
over the grid ensured that no two observations are too close to one another, which may
cause numerical issues during training.

Fig 3. Contours of the response for the synthetic dataset. The contours of the
response of the synthetic data set from Eq (4).

For this experiment, we compared three metrics of the models’ performance:
prediction error (in mean squared error, or MSE), memory usage (in kilobytes, or kB),
and training time (in seconds). Each metric was estimated using a 5-fold cross
validation procedure. We utilized common random numbers [24] as a variance reduction
technique. Each experiment was replicated 10 times to reduce variability of results. In
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Fig 4, the shaded region shows the 95% pointwise confidence region for the mean metric.

The experiment was performed with different numbers of observations, ranging from 100
to 2500 in increments of 100, to demonstrate the relative data requirements for each
model to converge. Each model was updated sequentially with single observations to
simulate a setting with sequential updating and prediction.

Fig 4. Comparison of alternative models with sequentially added data. The
alternative models’ MSE (a), memory usage (b), and training time (c) were evaluated
on the synthetic data set from (4). The shaded areas give the 95% pointwise confidence
region for each model.

For each alternative model compared, the experiment was replicated for a range of
parameter values and the most favorable, in terms of MSE, results for each model are
reported. For the splitting GP model, we used a splitting limit of m = 500. For the
rBCM, E = 10 local experts were used. We found the parameter wye,, of the local GP
model difficult to tune and eventually used wgen, = 103 based on an extensive grid
search (detailed in the appendix).

In Fig 4, one can see that the splitting model and full GP required relatively few
observations to achieve strong predictive power. The rBCM was much slower to
converge, and exhibited high variability in its MSE across replicates of the experiment.
We attribute the greater variability in MSE to the rBCM’s random assignment of data
to GP experts. On the other hand, the splitting GP model exhibited remarkably low
variability in MSE between replicates. It is worth noting that the splitting model’s MSE
slowly increased as it splits at intervals of 500 observations (see Fig 5).

Fig 5. Zoom-in of alternative models’ MSE from Fig 4(a). The MSE of the
splitting GP model slowly increases as it splits to maintain an efficient approximation of
the full GP.

The memory usage of the splitting GP model proved to be significantly lower than
the full GP model, and marginally higher than that of the rBCM. However, for ~2500
observations, it can be seen that the memory usage of the rBCM model began to
surpass that of the splitting GP model. This is to be expected, since the asymptotic
memory complexity of the rBCM is quadratic, as opposed to the linear complexity of
the splitting GP model.

The training time of the rBCM and local GP models were found to be comparable,
and the splitting GP model took slightly longer. The full GP took significantly longer
to train. The change in regime of the training time of the full GP at ~1100 observations
is due to specialized numerical methods in the GPyTorch library [9].

Real-world data in robotic control application

The first real-world data set, kin40k, consists of 40,000 records describing the location of
a robotic arm as a function of an 8-dimensional control input [25]. This data set was
chosen since it exemplifies a task where the fast sequential updating and low memory
profile offered by the splitting GP model are desirable. Furthermore, kin40k is a
popular benchmark for other GP regression methods [16,26,27], and thus facilitates
direct comparison.

We used the same training/test split of 10,000,/30,000 points as in the previous
work [16,26,27|. Observations were added to the models in batches, with each batch
having a number of observations equal to the number of observations per local model.
The results can be seen in Fig 6. The splitting model’s root-mean-square error (RMSE)
is comparable with that of the rBCM, which is designed under a stronger assumption
(that the latent function is well-modeled by a single GP), which is satisfied in this
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stationary regression task. In contrast, the local GP model struggled to achieve the
same RMSE in this experiment (see the appendix for more detail on the difficulty
tuning the parameter wgen).

Fig 6. Comparison of alternative models for the kin/0k dataset. The bottom
label on the z-axis for both plots gives the parameter values of the splitting GP model
(observations per local model, m) and the r-BCM (observations per expert). (a): The top

label on the z-axis gives the value of the parameter wge, in the local GP model of [15].

Real-world data in power plant control application

The second real-world data set is powergen, which consists of four predictors describing
control inputs of a combined cycle power plant, and a response of the net electrical
energy production. This data set is due to [28] and [29] and is publicly available [30].
We pre-processed the data to remove duplicate observations, leaving a total of 7622
observations.

In the powergen experiment, we compared both the predictive error (in RMSE) and
the combined training and prediction time (in seconds) of the splitting GP model and
rBCM. We compared only these two models, since they proved to be the most
competitive local GP methods in earlier experiments. The data set was randomly
divided into a 80%/20% train/test split, and each model evaluated for several different
parameter values. Observations were added to the models in batches, with each batch
having a number of observations equal to the number of observations per local model.
The experiment was replicated 10 times, and common random numbers were used for
splitting the data set and training the models for sharper comparisons between the
models. The results can be seen in Fig 7).

Fig 7. Comparison of alternative models for the powergen dataset. The
z-axis for both plots gives the parameter values of the splitting GP model (observations
per local model, m) and the rBCM (observations per expert). Markers on the line plots
show the average over 10 replicates, and the shaded regions denote the 95% pointwise
confidence intervals. For the final parameter value of 30 observations per expert,
numerical errors occurred with the rBCM model, so no result is shown.

The splitting GP model’s RMSE decreased with the number of observations per
local model, achieving a comparable performance with the rBCM. In terms of runtime,
the splitting GP model was significantly faster, while having little variability between
replicates. While the rBCM’s runtime decreased with the number of observations per
expert, its average runtime was 2.5-6 times longer than that of the splitting GP model,
depending on the choice of parameters.

Conclusion

In this paper, we have developed an algorithm for constructing splitting GP regression
models for potentially non-stationary latent functions using sequential data. We have
shown that splitting GP models attain comparable predictive performance, while
addressing critical shortcomings of other local GP models, such as discontinuity of
predictions, lack of flexibility for modeling non-stationary latent functions, and opaque
parameters which may be challenging to tune. Furthermore, splitting GP models are
shown to enjoy linear memory complexity which, to the best of our knowledge, is the
best among existing local GP methods, which typically have quadratic memory
complexity. An implementation of the splitting GP model is available at
https://github.com /nick-terry/Splitting-GP.
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Appendix
Proofs
Proposition 1

Proof. We consider the case of a single local model being split into two new local
models. By definition in (2), the posterior mean at an input x* is given by

FAx* = S k(ey, x*) £ X1, Y1, x* + S k(ca, X¥) f5| Xo, Yo, x*
By Eq (3), we then have
FrIx" = aff1X1, Y, x + (1 - a) 5] X, Yo, X7 (5)

where a = S~1k(cy, x*). Assuming that no data is observed since the split, we can see
that
X" = aff|x* + (1 —a)fi|x*, a=S5""k(c,x*) (6)

Finally, applying Eq (1) yields

[

* * * *
afpa'r‘ent |Xparent7 Yparent; X+ (1 - a)fparent |Xparent7 Yparenta X

*

*
parent |Xparent ’ Yparent , X

Proposition 2

Proof. A common result on random fields gives that the random field f*|x* is mean
square continuous if and only if its expectation and covariance functions are continuous;
see [31], Theorem 5.2, for example. It then suffices to show that E[ f*|x*] is continuous.

C
E[f*[x"]=E| S k(ei,x") f| X, Yi,x" (7)
. i=1
:S_lZk(ciax*)E[fi*lXi’Yi?X*] (8)
i=1

Recall that the predictive mean E[ 7| X;,Y;, x* ] is a linear function of x*, and therefore
continuous. Note from (3) that S~! is continuous if and only if k is continuous. In this
case, E[ f*|x*] is continuous, and hence f*|x* is mean square continuous. O

The splitting GP algorithm

Here we specify three algorithms which describe the main operations of the splitting GP
model: splitting a GP, updating the model, and computing the predictive mean. We
make use of the much of the same notation defined in the main paper.

From a computational perspective, the necessary components to construct a GP
model are the training inputs and training response, X; and Y;, respectively. For
convenience of notation, the following algorithms are thus described in terms of matrix

12/15



operations on these variables. We will use the triple (X;,Y;, c;) to characterize the ith
child GP, where c; is the center of the GP as defined in the main paper. The entirety of
the splitting GP model is itself given as a triple (A, kg, m), where
A={(X;,Yi,¢;):i=1,...,C} is a set of the child GPs, kg is the kernel function with
hyperparameter 8, and m is the splitting limit of the splitting GP model. The following
pseudo-code makes use of explicit for loops for clarity, but please note that our
implementation (see the supplementary material) makes use of vectorized versions of
these algorithms for efficiency.

We first specify the splitting algorithm, which is used to divide a GP into two
smaller child GPs. To keep the pseudo-code as general as possible, we define the
function PrincipalDirection(X) as one which computes the first principal component
vector of a matrix X.

Algorithm 1: Split((X;,Y;,c;))
X, Xo«[ L[}
Vi.Youo [ L1 5
n1, N2 = 0,0;
v < PrincipalDirection(Xj;);
for j + 1 to n; do

I+ VT (Xij — Ci);

if I > 0 then

~ AT T

X1 < |:X1 xij:| ;

“ ~T T

Y, {Y1 yij} ;
TAll — ﬁl + 1;

else

“ AT T
X2 < |:X2 Xij:| ;
“ ~T T

Yo {YQ yij} ;
flg < ﬁQ —+ 1,

end

end

~ ~—1 n A

C1 < nq Zjél le;

~ A—1 2 ~

Co < Ty Zjil X2j}

Result: <X1,Y1,61) 5 (XQ,}A/Q,(A:Q)

Using Split, we can now define the algorithm Update for updating the splitting GP
model given a new data point (x,y). We use the shorthand Train to mean the standard
fitting of a GP model with the hyperparameter 8 to data by means of maximizing the
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log marginal likelihood [1].
Algorithm 2: Update((A, kg, m), (X,¥))
if ¢ =0 then
X« x1;
Vi ™y
C1 < X
A [(X1, Y1, e1)];
C «+1;
else

I « argmaz k¢(x,c;);
i=1,..,C

X« [x7 %"
T
Yr+ Y oyl
nr < ny+1;
cr < nj! >y X1
if n; > m then
(X1,Y1,¢1), (Xcg1, Yoy, €oqn) < Split (X, Y7, cp));
A+ {(X,Y,¢):i=1,...,C+1}
C+CH+1,
end

end
Train (0, A);
Result: (A, kg, m)

Finally, the algorithm for computing the mean prediction of response at the input x
follows. Here we use the abbreviated Mean function to give the posterior mean for a
child GP (X;,Y;,c;). The posterior mean for each child GP is computed in closed form
using linear algebra [1].

Algorithm 3: Predict((A, kg, m),x)
for i+ 1 to C do
s; « ko(x,¢;);
E; + Mean((X;,Y;,¢;),%x);
end
S« 210:1 843
@ — S_l chzl SIE“
Result: 3

Hyperparameter tuning for the local GP model

In the experiment with the synthetic data set, we initially performed a grid search on
the parameter wgey of the local GP model [15] from .9 to .1 at increments of .05, and
obtained the best results for wge, = .1. However, the resulting MSE was much higher
than the other models considered. In the interest of fair comparison, we conducted a
second grid search ranging from .1 to 10~3 by increments of 5 x 10~%, and the best
parameter was found to be 1073, for which we show the results in Fig 4.

We chose not to continue lowering wge,, further, since the local GP model’s MSE
may be expected to decrease monotonically with wge,. The parameter wgye, defines a
similarity threshold, such that if a new observation is sufficiently dissimilar from existing
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local models (i.e. k(x*,¢;) < Wgen, Vi =1, ...,C), a new local model will be created. If
Wgen = 0, then only one local GP will be created, so that the model reduces to a full
GP. This behavior can be seen in Fig 6, where we performed a grid search on wgep
ranging as low as 10719, For values less than 1078, limitations to floating point
precision caused the local GP model’s prediction procedure to become numerically
unstable, so Fig 6 and Fig 7 do not include these parameter values.
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