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ABSTRACT

We explore the use of Deep Learning to infer physical quantities from the observable transmitted flux in the Ly o« forest. We train
a Neural Network using redshift z = 3 outputs from cosmological hydrodynamic simulations and mock data sets constructed
from them. We evaluate how well the trained network is able to reconstruct the optical depth for Ly « forest absorption from
noisy and often saturated transmitted flux data. The Neural Network outperforms an alternative reconstruction method involving
log inversion and spline interpolation by approximately a factor of 2 in the optical depth root mean square error. We find no
significant dependence in the improvement on input data signal to noise, although the gain is greatest in high optical depth
regions. The Ly « forest optical depth studied here serves as a simple, one dimensional, example but the use of Deep Learning and
simulations to approach the inverse problem in cosmology could be extended to other physical quantities and higher dimensional

data.

Key words: methods: statistical —quasars: absorption lines — cosmology: observations.

1 INTRODUCTION

The ACDM cosmology (e.g. Dodelson 2003), combined with nu-
merical simulations (see the review by Vogelsberger et al. 2020)
can be used to create realistic and detailed forward models. Some
observables such as the Lyman-« forest (Rauch 1998; Weinberg et al.
2003) are particularly useful because almost all the relevant physical
processes are understood and can be resolved (Cen et al. 1994; Zhang,
Anninos & Norman 1995; Hernquist et al. 1996; Hui & Gnedin
1997). Given this level of fidelity, an interesting question is how
these forward models can be used in conjunction with observational
data in order to infer unobservable quantities, such as the dark matter
distribution from galaxy positions, cool gas using observations of
hot gas, or even the initial density fluctuations from data at redshift
zero. The advent of efficient machine learning algorithms (see e.g.
Mitchell 1997) offers a route to solving this inverse problem, and
one that we explore in this paper. In particular, we will use Deep
Learning (DL; LeCun, Bengio & Hinton 2015), the science of neural
networks (NN), combined with numerical simulations. We will train
NN using simulations that have well defined inputs and outputs. We
will then use those networks to infer the output (underlying physical
quantity) given an input (observational data).

The use of DL techniques in cosmology and astrophysics has
exploded over the last few years, following the trend of increasing
application of Artificial Intelligence (AI) to many scientific fields
and to everyday life (Russell & Norvig 2020). With DL, artificial
Neural Networks are used that are capable of learning, including
from data that is unstructured or unlabelled. The NNs consist of
neurons arranged in layers, with numerical values passed between
neurons subjected to weights which are adjusted as part of the
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training process. An introduction to DL and NN is Goodfellow,
Bengio & Courville (2016). Their use in astronomy so far has often
been to find and classify events, and example training in this case
consists in providing labelled data sets, with the NN learning to
associate particular inputs (for example astronomical images) with
output labels (e.g. galaxy types; Cheng et al. 2020). Lyman-« forest
data are one dimensional, and DL has been used successfully in
one dimension to find Gravitational Wave events from strain time-
series (George & Huerta 2018), to classify astronomical spectra
(Muthukrishna, Parkinson & Tucker 2019), and also to find and
characterize high column density absorption lines in quasar spectra
(Parks et al. 2018). Applications to 2D images are more common
e.g. finding gravitational lenses (Metcalf et al. 2019), or adding
subresolution details to galaxy images (Schawinski et al. 2017).

More recently, DL techniques are being applied increasingly
widely to the simulation of data sets and to the analysis of data.
NN trained using a grid of N-body simulations have been used to
infer cosmological parameters from galaxy weak lensing maps by
Fluri et al. (2019). Maps of the lensing potential itself have been
reconstructed from CMB observations (Caldeira et al. 2019), an
example of a DL solution to an inverse problem similar to the type
we consider here. Also closely related is the work of Charnock,
Lavaux & Wandelt (2018) who use Information Maximizing NN
to optimally compress data, and show as an example cosmological
constraints inferred from quasar spectra (specifically the Lyman-«
forest, see below). Training sets derived from simulations feature
heavily in this work, but DL has also been used to interpret and learn
the physical processes occurring in the simulations (e.g. Lucie-Smith
etal. 2018; He et al. 2019), as well as becoming part of the simulation
methodologies themselves (e.g. Kodi Ramanah et al. 2020; Li et al.
2020).

The physical system we will concentrate on is the Lyman-o
forest of absorption due to neutral hydrogen seen in quasar and
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galaxy spectra (Rauch 1998; Savaglio, Panagia & Padovani 2002),
because the physics is well understood (as mentioned above) and
also because the observations are one dimensional, and therefore
numerically easy to process. At redshifts where the Ly « transition
is at optical wavelengths, the forest absorption mostly arises in the
moderately overdense intergalactic medium (IGM) (Bi 1993; Cen
et al. 1994; Zhang et al. 1995; Hernquist et al. 1996). In the standard
cosmological model, the forest is generated by residual neutral
hydrogen in this photoionized medium. The space between galaxies
is filled with this absorbing material, and its structure on scales larger
than the Jean’s scale traces the overall matter density. The relevant
physics was first described by Gunn & Peterson (1965) in the context
of a uniform medium, leading to the characterization in the forest
as the ‘fluctuating Gunn—Peterson effect’ (FGPA; Weinberg et al.
1998). The Ly « forest has been used to test cosmological models,
allowing for example the measurement of the baryonic oscillation
scale at redshifts z > 2 (e.g. Aubourg et al. 2015).

The matter density, temperature, and velocity field in simulations
can be used to predict Ly o forest observables as mentioned above.
The inverse procedure, reconstruction of these underlying physical
quantities from observations can also be carried out (Nusser &
Haehnelt 1999; Horowitz et al. 2019; Miiller, Behrens & Marsh
2020), although non-linearities and incomplete information make
this difficult. While the methods in this paper could be used to carry
out such reconstruction, we will instead restrict ourselves to a more
limited problem in this first use case. We will infer the optical depth
for absorption t by neutral hydrogen from the transmitted flux F
observed in a spectrum. These quantities are related by

F=e". (1)

The flux is often saturated (particularly at high redshift), meaning
that T cannot be directly inferred from observations of F.

We note that in truly dense regions, close to and in galaxies, the
FGPA is not obeyed. These are known as Lyman limit and Damped
Ly o (DLA) systems (see e.g. Wolfe, Gawiser & Prochaska 2005 for
a review), because of absorption of light beyond the Lyman limit
and presence of damping wings, respectively. These systems are
however rare, and we will not deal with them here. Our work could
be adapted to deal with them too, given simulations that model them
(e.g. Pontzen et al. 2008). Previous work has used Machine Learning
techniques to detect and characterize them in observational data (e.g.
Parks et al. 2018), as well as simulating them with generative NN
(Zamudio-Fernandez et al. 2019).

Here we will use cosmological simulations which resolve the
relevant physics for the Ly « forest to make training spectra. Once
trained, NN will recover the optical depth  from the observed
transmitted flux F. The NN will therefore be using information from
observable regions to infer the situation in unobservable (saturated)
regions. We will test the fidelity of this recovery using simulations for
which both quantities are available. Tests with different noise levels
will be important as these will dictate the fraction of spectra that are
effectively saturated. We will compare this DL recovery of optical
depths to an alternative which is to smooth spectra until they are
more easily invertible directly (using equation 1), along with spline
interpolation for regions that are still saturated. We concentrate on
relatively poor input signal-to-noise ratio (S/N) of 2.5-10 per pixel
as these are most relevant for large surveys (e.g. Lopez et al. 2016;
eBOSS Collaboration 2020).

Our plan for the paper is as follows. In Section 2, we introduce the
cosmological hydrodynamic simulation Ly « forest data we use for
training and testing. In Section 3, we describe the NN based method
we will use for reconstruction, including data pre-processing and
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the network architecture. We also give details of some alternative
reconstruction methods we will use for comparison. In Section 4,
we present the results of our reconstructions, with both example
sightlines shown as well as statistical measurements of accuracy.
In Section 5, we summarize our work and discuss the results and
possible future directions.

2 THE LYMAN-a FOREST: TRAINING DATA

2.1 Hydrodynamic simulation

In order to make training data for our NN, we use the Ly o spectra
computed from a large hydrodynamic cosmological simulation of
the ACDM model. The smoothed particle hydrodynamics code
P-GADGET (see Springel 2005; Di Matteo et al. 2012) evolved
2 x 4096° = 137 billion particles in a cubical periodic volume of
(400h~'Mpc)?. This simulation was previously used in other works
such as Cisewski et al. (2014) and Croft et al. (2018), where more
details are given.

The cosmological parameters used in the simulation were
h =0.702, @, =0.725, @, = 0.275, @, = 0.046, n, = 0.968 ,
and g = 0.82. The mass per particle was 1.19 x 107 h~'M, (gas)
and 5.92 x 107 h~'My (dark matter). An ultraviolet background
radiation field consistent with that of Haardt & Madau (1996) is
included, as well as cooling and star formation. The star formation
model however uses a lower density threshold (o = 1000, in units of
the mean density) than usual (for example in Springel & Hernquist
2003) so that gas particles are quickly converted to collision-less
gas particles. In this way, the execution of the simulation is sped up,
but this has no significant effect on the diffuse IGM that gives rise
to the Lyman-« forest.

2.2 Mock observational data

We use the simulation snapshot at redshift z = 3.0 to generate a set
of Lyman-« spectra using information from the particle distribution
(Hernquist et al. 1996). The spectra are generated on a grid with
2562 = 65536 evenly spaced sightlines. These many sightlines
are therefore available for training purposes. Because neighbouring
sightlines arise in the same large-scale structures, they are not
completely independent data sets. The spectra are generated with
4096 pixels each, but these are rebinned into 512 pixels per sightline,
in order to approximate the resolution of spectra in the Sloan
Digital Sky Survey (SDSS; e.g. Lee et al. 2013). The pixel width
is 90 kms~!. In Fig. 1 we show the pdf of the underlying 7 values
in the pixels. We can see that the mode of the distribution is 7 ~ 0.6,
which corresponds to F ~ 0.5. Nevertheless there are a significant
number of pixels with high . Because these represent an interesting
subset for our analysis (being close to saturated), we evaluate the
accuracy of the reconstruction separately for high and low 7 pixels.
The (arbitrary) boundary between the two sets of pixels we set to be
at T = 2 (which corresponds to F = 0.135). This boundary is shown
in Fig. 1.

We apply artificial noise to the F values by adding to each pixel
a value randomly drawn from a Normal distribution with mean zero

and standard deviation o y. The signal-to-noise ratio is defined to be
S/N =L, ®)
oN

where o = 0.635 is the standard deviation of flux values averaged
over all spectra. We try three different S/N values during our analysis:
10, 5, and 2.5. We explain further in Section 3.1.
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Figure 1. Density plot of t values in pixels in our simulated Ly « forest data
set. The vertical line at T = 2 represents the boundary between high and low
7 values used in the analysis in Section 4.

3 METHOD: DEEP LEARNING
RECONSTRUCTION OF THE LYMAN-« FOREST

3.1 Data preprocessing

As explained in Section 1, we train an NN using our mock data sets,
and use it to recover the optical depth to Ly o absorption, 7, from
input values of flux F.

The data are split into training, test, and validation sets (the role
of each will be explained in Section 3.4 below). 60 per cent of the
sightlines are assigned to the training set, and 20 per cent each to
the validation and testing sets. The sightlines are arranged in a 2D
array, where nearby sightlines are strongly correlated with each other.
The sightlines that make up the validation and test sets come from
opposite corners of the 2D array to ensure the test and validation sets
are as independent as possible from the training data.

As mentioned above, we generate Gaussian noise at three different
signal-to-noise ratios. While we generate new noise at every epoch
for the training data, we create and save the noise for the validation
and test sets for more consistent evaluation of the neural network and
comparison to other reconstruction methods.

For each sightline, the data used for training are the mock
observational data sets consisting of F values, to which noise has
been applied, and the optical depth t values. The latter represent
the underlying physical quantities which the NN will learn how to
derive from the former. Because we are primarily interested in the
large-scale structure of the forest, we smooth the 7 values as part of
our data preprocessing before passing them to the NN for training
(the training flux values are unsmoothed). The smoothing is done
with a Gaussian kernel of o equal to six pixels (4.7 4~'Mpc).

3.2 Neural network

Convolutional neural networks (CNNs) have revolutionized the field
of computer vision in the last decade achieving state-of-the-art
performance on almost all computer vision tasks, such as image
classification, object detection, and semantic segmentation (Rawat &
Wang 2017). CNNs provide the ability to solve non-linear inversion
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problems by learning spatial features that are invariant to translation
and local distortions. Consequently, they are being increasingly used
in various fields other than computer vision including cosmology
(Ravanbakhsh et al. 2017; Ribli et al. 2019). Hence we choose to use
a convolution neural network architecture to learn spatial features
from flux input to predict optical depth, and the proposed architecture
is displayed in Fig. 2. The inputs are the observed flux values, F, for
the 512 pixels in the same sightline. The output is the prediction for
the optical depth 7 at the centre pixel of a sightline (which we take to
be the 256th out of the 512 pixels). To predict t values for other pixels
in the sightline, we shift the pixels such that the position of output
pixel is at the centre of the sightline. Each sightline can therefore
be used for training 512 times, each time with a different pixel at
the centre. The periodic boundary conditions of the simulation are
respected during this process.

In Fig. 2, we can see the different layers that the input is processed
through. The first, (a) is a convolutional layer with kernel size of 5
pixels and stride of 1 pixel. This layer has four filters which it applies
to the sightline, producing four-channel data from the originally
1D data. The next, layer (b) is a max pool layer: for discrete sets
of five neighbouring pixels, the layer outputs the maximum value
using a stride of 1 pixel. This is done for each of the four channels
individually. Layers (c), (d), and (e) are fully connected linear layers
with decreasing numbers of outputs. Prior to layer (e), the array is
flattened so that the final layer returns a single output. The outputs of
layers (a), (c), and (d) pass through the Rectified Linear Unit (ReLU)
activation function, fix) = max(0, x). The final architecture and
hyperparameters are chosen by experimentation using the validation
data set which is described in the following Section 3.3.

As the NN is trained, the weights are adjusted based on minimiza-
tion of a loss function. We use the mean squared error (MSE) as the
loss function:

L3, 1) = % Z(f — )2 3

Here, 7 is the actual T value in a pixel and 7 is the neural network
prediction for 7, while n is the batch size. The adjustment of weights
is carried out using Adam optimizer (Kingma & Ba2014), an efficient
alternative to the standard stochastic gradient descent method. We
also use L2 regularization, which adds a regularization term to the
loss function. The goal is to decrease the network complexity and
improve generalization. For L2 regulation, we use the decoupled
weight decay regularization method (Loshchilov & Hutter 2017) that
is part of the Adam optimizer implementation within the PYTORCH
library (Paszke et al. 2019). We set the weight decay parameter in
L2 regularization to 5 x 107*. The neural network is trained on
10000 samples every epoch. The code base was written using the
PYTORCH library, and we make it publicly available' to the research
community.

3.3 Hyperparameters

We choose our proposed neural network architecture after training
and evaluating various architectures across a range of hyperpa-
rameters on the validation set. We initially experiment with fully
connected network architectures with varying numbers of hidden
layers and units, but we find that it does not learn. Hence we switch
to use CNN architectures as motivated in the previous section. For

'https://github.com/lhuangCMU/deep- learning- inter
galactic-medium.
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Figure 2. Architecture of the neural network used in this paper, which takes the flux as input and returns a prediction for optical depth t at the centre pixel.
Layer (a) is a convolutional layer with kernel size of 5 and stride of 1. Layer (b) is a max pool layer which also has a kernel size of 5 and stride of 1. At the top
of the figure, we write the number of channels and the size of feature map. For instance, 4@508 means the layer has four channels and 508 pixels. Layers (c),
(d), and (e) are linear layers. Prior to layer (e), the array is flattened so that the final layer returns a single output. Layers (a), (c), and (d) go through the ReLU

activation function, f{x) = max(0, x). See Section 3.2 for more details.

the CNN architecture, we experiment with different kernel sizes
between 3 and 5, output channels between 2 and 4, and linear layers
between 2 and 5 to find the optimal architecture. For each of the
architectures, we experiment with a range of learning rates between
1073 and 10~° for thorough comparison. Ultimately, we find that our
proposed architecture described in Fig. 2 results in the most accurate
predictions.

Additionally, we experiment with different types of pooling layers
including max, min, and average pooling layers. Pooling is often
performed after convolutional layers in order to reduce the spatial
resolution of the feature maps and thus achieve spatial invariance
to input distortions and translations. As we use a kernel size of 5,
max pooling separates the data into groups of 5 consecutive pixels.
For each of these groups, the maximum value within the consecutive
pixels is taken as the output value for the group. Similarly, min
pooling does the same using the minimum value, while average
pooling takes the arithmetic average of the 5 pixel group. Some works
(Jarrett et al. 2009; Scherer, Miiller & Behnke 2010) have empirically
shown that max pooling provides superior generalization and faster
convergence leading to most state-of-the-art architectures using
max pooling. However, another work (Boureau, Ponce & LeCun
2010) focuses on theoretical analysis of max pooling and average
pooling supplemented by empirical evaluations to conclude that the
performance of either max or average pooling depends on the data
and its features. Hence we conduct experimental analysis to evaluate
the optimal pooling layer type for our data set and architecture. We
find that min and average pooling perform marginally better (within
3 standard deviations of Root Mean Squared Error, RMSE) for 7
< 2, but perform marginally worse (within 1 standard deviation)
on higher values, 7 > 2, as compared to max pooling. Since the
performance across different pooling layers is comparable for our
data set, we choose max pooling in our proposed architecture as it
performs marginally better on the high  values, which is the region
of saturated flux data we are interested in. The details of RMSE and
standard deviation calculation are provided in Section 4.3.

We report the neural network’s hyperparameters here for com-
pleteness. We use a learning rate of 10~*, batch size of 10000, and

train for 50 000 epochs. We use Adam optimizer, as implemented in
the PYTORCH library, with betas equal to (0.9, 0.999), eps of 1078,
and weight_decay of 5 x 107%.

3.4 Training

In training, we randomly select 10 000 pixels from our training set,
shifting their sightlines so that the selected pixel is at the centre. We
then add noise to the F values. As explained in Section 2.2, we use
a normal distribution for noise, with standard deviation determined
by the desired signal-to-noise ratio. The NNs are both trained and
tested at a single signal-to-noise ratio. We do find, however that an
NN trained using data with an S/N of 5 still outperforms comparison
reconstruction methods at other signal-to-noise ratios (namely 2.5
and 10). We discuss further on this in Section 5.2. The validation
data set is used to evaluate performance of the neural network and
tune hyperparameters, while the test data set is used for final results.

3.5 Comparison methods for reconstruction

It will be useful to compare the NN reconstruction of T from noisy F
values with other reconstruction methods. Looking at equation (1),
one can see that the simplest method would be a straight inversion,
7 = —In F. This is the first alternative reconstruction method that we
try. Of course it is necessary in this case to deal with negative values
of F. We do this using cubic spline interpolation. When a pixel F
value is negative, we initially ignore it, calculating the negative log
of all positive F values while saving their positions on the sightline.
Once all positive F values have a predicted 7, we then use cubic
spline interpolation with a periodic boundary to estimate t for pixels
with negative F.

Our second comparison method (which gives better results)
involves first smoothing the F values with a Gaussian kernel with a
o of 6 pixels, and then computing T = —In F. We label this method
Smoothed Input Log. In this case, there are fewer negative pixel
values, but when there are, we again use cubic spline interpolation,
as in the previous method.
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Figure 3. Ly« optical depth 7 predicted by the curve fit NN (detailed in Section 4.2) for four example sightlines. We also show results for alternative
reconstruction methods involving taking the log and interpolating with cubic splines (see Section 3.5). In addition, we show the fractional difference between
predicted t and real t for each method beneath the reconstructions. We first calculate flux, then add noise with a signal-to-noise ratio of 5 before using the four
different reconstruction methods to predict . The x-axis units are comoving &~ Mpc.

4 RESULTS

After training the NN for 50000 epochs using the training data,
and adjusting the hyperparameters using the validation data set, we
apply the NN reconstruction to the test data set (which consists of
20 per cent of the sightlines). In this section, we show some example
sightlines as well as some statistical evaluations of the fidelity of the
reconstructions.

4.1 Example sightlines

In Fig. 3, we show results for four randomly chosen sightlines. We
show the input noisy F' values as a function of distance along the
sightline in the top panel in each case. All of the examples in this
plot are for an input spectra with S/N = 5. Underneath the F panel
in each case, we show the actual T values, as well as the results of
the curve fit NN reconstruction (detailed in Section 4.2), and the
Smoothed Input Log inversion. For only one of the panels (the top
left) we show the results of the direct log inversion (‘Unsmoothed
Log’, in green), but do not show it in the others because it obscures
the other results. We also show the fractional difference between
predicted 7 and real t for each method beneath the reconstructions.
The fractional difference is calculated as (T pred — Trea)/T real-

We can see that the NN has learned to reconstruct the 7 curve from
the noisy flux quite well. The general nature of the fluctuations is
reproduced, even in regions where the F' values become significantly
negative due to noise. The Smoothed Input Log reconstruction also
works reasonably well, although appears to underpredict in the high
T regions. In Fig. 4,
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Figure 4. Reconstruction of a sightline with high values of . This sightline
was selected for having the most pixels with t greater than 50. See the caption
of Fig. 3 for more details.

we show the situation for a sightline with very high 7 values, again
with S/N = 5. This sightline was chosen because it had the most
pixels with T > 50. We can see that there is a significant region, about
100A~'Mpc in width, where the flux values are roughly consistent
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Figure 6. Scatter plots of the reconstruction predictions for the Ly « optical depth t as a function of the true 7 in each pixel. Each panel shows a different
reconstruction technique. Clockwise from top left these are, (a) NN prediction; (b) Log inversion of the unsmoothed F data, including cubic spline interpolation;
(c) Log inversion of the smoothed F data, including cubic spline interpolation; and (d) NN prediction adjusted with curve fit to high 7 pixels. The line in black
shows the median prediction for each bin of the real tau value. The right-hand subfigure shows the same scatter plots as the left, but with log scaling in the axes.

with zero given the noise. The direct inversion method shown in
green does not capture any of the high t structure in this region. The
Smoothed Log method does find a bump with t ~ 10 in the right
place, but the NN is able to use the information on F surrounding the
high 7 pixels to reconstruct a reasonable likeness of the ‘hidden’ t
in the most absorbed region.

The previous plots showed results for a moderate noise level,
S/N = 5. In Fig. 5 we show the flux and the t predictions across
the different levels of noise we have tried, where the S/N values are
equal to 2.5, 5, and 10. In this case, we show the same sightline
in each case, only the noise being different. We do not show the
Unsmoothed Log reconstruction to avoid obscuring the other lines.
We can see that there are significant differences in the small scale
structure of t reconstructed by both the NN and the Smoothed Log in
the low S/N case, although both recover the largest peak quite well.
As the S/N increases, the fidelity becomes markedly better, with the
largest qualitative improvement between S/N=2.5 and S/N = 5. The
statistical evaluation of the accuracy of this method for different S/N
is carried out in Section 4.3.

4.2 Scatter plots

We now move to comparisons of results from all pixels. We show
scatter plots of the t predictions from the NN and other reconstruction
methods versus the true T values in Fig. 6.

The NN prediction is in the top left-hand panel, and we can see
that the y = x line appears to pass through the centre of the point
cloud for 7 values below 10. We see however that the NN prediction
appears to be non-linear for 7 values that are higher than this. For
example, the T prediction never rises above T = 16, although there
are pixels in the spectra which have higher t values.

The neural network likely has difficulty predicting high 7 for two
reasons. Pixels with high t values will have a low flux, so any added
noise can have a large impact. The second reason is due to a class
imbalance problem (Buda, Maki & Mazurowski 2018), as pixels of
high t are rarer than pixels of low t, with only 0.01 per cent of pixels
being above T = 20. We attempt to deal with the class imbalance
problem by adjusting the loss function to evaluate loss differently for
higher values of r. We divide pixels into three bins; 7 < 2,2 <t
< 30, and v > 30. We calculate the proportion of pixels in each bin
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then take the weighted average of square errors:

.o 1 (-1 (¢ —1)7 (-1
L(r,r)_;(zibl + > o +>° b3 )

<2 2<1<30 7>30
Q)

where b; refers to the proportion of pixels in the entire training set
that are in each bin and n is the batch size, which we chose to be
10000. The numerical values for the bin proportions are as follows;
by = 0.906, by = 0.094, by =2.12 x 1073,

With this method, we increase the loss in bins of high 7 according
to the proportion of pixels in each bin. This method was unsuccessful
in increasing accuracy, with an RMSE value of 0.533 at a signal-to-
noise ratio of 5, which was 25 percent higher than using mean
square error as the loss function. We also attempted using two neural
networks to predict one sightline, with one network predicting low
values of t and the other predicting high values of . These models’
architectures are the same architecture we use in this paper. This
method was also unsuccessful in increasing accuracy.

Another possibility is to directly address the class imbalance
problem by training the network on sightlines from a range of
redshifts so that the network has more training data with high ¢
values. We leave exploring this method to future work.

Even though the number of extremely high 7 pixels is small (only
1.16 per cent of pixels have true T > 10), in order to achieve higher
accuracy, we use a curve fitting algorithm on the ratio of actual 7 to
predicted T where the actual 7 is greater than or equal to 2. For these
datapoints, we use the actual to prediction ratio as our y-values and
the actual T as our x-values. By fitting a curve to these points, we
construct a function of actual 7 that outputs the ratio between actual
7 and predicted 7. In order to correct our neural network predictions,
we multiply each point in the scatterplot by the ratio given by the
function and the actual T value of the pixel.

When fitting a cubic function to these ratios, we find parameters
that minimize the residuals between the cubic function and these
datapoints using the Levenberg—Marquadt optimization algorithm.
The resulting cubic function is » = —0.000078 - x* + 0.0046 - x> +
0.047 - x + 0.81, where r is the ratio between actual T and predicted
7. Because the neural network’s prediction is linear for low t, we do
not modify those points. In future work, we will investigate whether
the NN can be trained to do better on the highest T points, but do not
do this here, in order to keep the NN part of our algorithm simple.

The result of including a curve fit to the predictions is shown in
the ‘Curve Fit Neural Network Prediction’ panel in Fig. 6. We do
not apply the same method to the analytical method Smoothed Input
Log because its prediction at the highest t values is approximately
symmetric about y = x, and we find that curve fitting would not
increase accuracy significantly.

The results from the Smoothed Input Log reconstruction are in the
bottom right-hand panel of Fig. 6. We can see both that the scatter
extends significantly wider than for the NN method, and that there
is curvature in the mean relation even for values as low as t ~ 3.
As mentioned above, for higher t values (above T = 15) there is
not evidence for curvature but the scatter is extremely high. The
Unsmoothed Log Prediction (top right-hand panel) is not biased at
low 7, but has visually much worse scatter.

4.3 Statistical measures

We have seen that the neural network appears to qualitatively
outperform our alternative reconstruction methods, and have seen
some examples of sightlines with different levels of signal to noise.
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Table 1. RMSE of our neural network’s prediction versus log prediction over
our test set, with a signal-to-noise ratio of 10. The RMSE is split into three
sections, where we calculate RMSE for the total test data set, just for high
values of 7, and just for low values. We define 7 > 2 to be a high value of 7.

Name RMSEota1 RMSEhign RMSEjow
Curve fit NN 0.285 +0.01 0.882 + 0.05 0.091 £ 0.02
Neural network 0.330 + 0.01 1.036 + 0.03 0.091 £ 0.02
Log 0.620+7e —4 1908 +£2e—3 0214+2e—4
Smooth input log 0511 +2e—-3 16208 —3 0.124+5e—-5

Table 2. RMSE values for SNR of 5 (see Table 1 caption for details).

Name RMSEqtal RMSEhign RMSEow

Curve fit NN 0342 +4e — 3 1.012 £ 0.01 0.151 £ 8¢ — 3
Neural network 0423 +3e —3 1.296 + 0.01 0.151 £ 8¢ — 3
Log 0.800+1e —3 2.192+4e—3 0455+3e—4
Smooth input log 0.538 £4e -3 1.696 £ 0.01 0.141 £4e — 4

Table 3. RMSE values for SNR of 2.5 (see Table 1 caption for details).

Name RMSEwm] RMSEhigh RMSEI(,W
Curve fit NN 0430+£7e -3 1.044 £ 0.08 0.299 £ 0.03
Neural network 0.560 £ 8e — 3 1.570 £ 0.03 0.299 £ 0.03
Log 1.076 £8e —4 2529+3e—-3 0.782+4de—4
Smooth input log 0.674 £7e¢ — 3 2.100 + 0.02 0.208 £ 1e — 3

We now evaluate the performance quantitatively, by comparing the
reconstructed t values in sightlines to the true t values. Again, the
results are from predictions on the test set, which the neural network
has not trained on. One measure of the accuracy of the reconstruction
is the Root Mean Squared Error, RMSE, defined as

ln
RMSE = 75 £ — 1), 5
";:1(r ) ()

where the sum is over the n pixels in the test data set, 7; is the
reconstructed optical depth in pixel i and t; is the true value.

Our second measure of the accuracy is the fractional error, which
we define to be RMSE/T, where T is the mean optical depth for the
particular data set being evaluated. The different data sets are either
the full range of pixels in spectra, or the high t pixels (with 7 > 2),
or those with low 7 (t < 2). Across the entire data set, mean T is
1.107. For T < 2, mean T = 0.543, and for T > 2, T = 5.468.

There are three levels of stochasticity to the RMSE values. The
first comes from the noise, the second comes from the initial weights
of the neural network, and the third comes from the source of our
sightlines. In order to capture two of the three levels of stochasticity,
the RMSE values in Tables 1, 2, and 3 are the averages of seven neural
networks with different initial weights predicting v with different
generated noise. The comparison reconstruction RMSE values are
also an average over seven different sets of randomly generated
noise. The standard deviations are calculated from the seven different
reconstructions in each category using the following formula:

o — V E(x - x)2. (6)
n—1

Here, x is the RMSE value, X is the average RMSE value for the

reconstruction method at a given signal-to-noise ratio and t range,

and n is the number of samples, which is 7 here.
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Figure 7. RMSE and fractional error for different methods across different noise levels, separated further into three groups; all t values; only high t values;
and only low 7 values. The four methods are neural network prediction, curve fit neural network prediction (where the output is fit on to y = x), log prediction,
and smoothed input log prediction (where the input flux is smoothed with a Gaussian kernel size of 6 pixels). The RMSE is calculated using equation (5). The

fractional error is defined to be RMSE divided by mean t in each group.

We present our results in Tables 1-3 and in graphical form in
Figs 7(a) and (b). A quick glance reveals that in these figures the
blue bar, the NN adjusted by curve fitting has the lowest RMSE and
fractional error in all cases, except for the v < 2 results for S/N of 2.5
and 5. The improvement over the raw log transformation is significant
for the total of all pixels, and for T < 2, varying from a factor of
2.1 to 2.5, with no variation for different S/N. If we compare instead
to the smoothed input log reconstruction, we find that the curve fit
neural network improves the reconstruction by a factor of between
1.6 and 2.0 for all and high 7 pixels.

The curve fitting addition to the NN makes the most difference
for low S/N and high 7 pixels. There is no difference for v < 2. The
improvement over the NN on its own varies from a factor of 1.1 to
1.5. Apart from the T < 2 low S/N results mentioned above, the NN
without curve fitting is significantly better than the smoothed input

log reconstruction. When considering the accuracy on a pixel-by-
pixel basis, the fractional error (Fig. 7b) is useful. We can see that we
can aspire to a fractional error on t reconstruction for r > 2 using
the curve fit NN of less than 20 per cent, for all S/N levels tested.

5 SUMMARY AND DISCUSSION

5.1 Summary

We have set up a neural network to train on 1D Ly« forest data
sets from simulations. The aim is to use the trained NN to recover
underlying Ly o optical depth values from noisy and saturated trans-
mitted flux data in quasar spectra. The NN has an architecture which
includes both convolutional and fully connected layers. We have
trained the network using spectra from hydrodynamic simulations of

MNRAS 506, 5212-5222 (2021)

120z 1snBny Gz uo Jasn AusisAlun uojiely aibauie) Aq GZ0yzE9/2 1L ZS/7/90S/2101e/seluw/woo dno olwapese//:sdiy woll papeojumod



5220 L. Huang, R. A. C. Croft and H. Arora

a CDM cosmology. The NN has been applied to a test data set, and its
accuracy evaluated statistically using the root mean square difference
between the reconstructed and true t values in the simulation. We
have compared the NN reconstruction to straightforward logarithmic
inversion of the noisy flux data (including spline interpolation of
T through saturated regions) and also logarithmic inversion of the
smoothed flux data. Our findings are as follows:

(i) The curve fit neural network is at least twice as accurate as the
naive log reconstruction method.

(ii) Curve fitting decreased the neural network’s RMSE by
15 per cent on average.

(iii) The curve fit neural network outperforms all the other meth-
ods except the Smoothed Input Log method for low values of 7 (7 <
2) where the signal-to-noise ratio is 2.5 or 5.

5.2 Discussion

Although we have concentrated on the simplest task in this paper,
inversion of equation (1) for noisy and saturated data, it should be
relatively straightforward in principle to apply the same techniques
to reconstruct other quantities from the transmitted Ly o forest flux,
F. The simulations include information on the underlying physical
quantities relevant to F, such as the baryonic and dark matter density,
temperature and velocity fields. We leave testing such reconstructions
to future work, but we note that some quantities such as the velocity
field may be difficult to infer from individual 1D sightlines, as
they are generated by the matter distribution in 3D space. It will
nevertheless be interesting to see how much can be recovered from
one dimension only. All reconstructed quantities will of course be
dependent on the simulations and model used for training the NN
(we return to this below). For example, little direct information on the
gas temperature is available from the low resolution spectra we have
considered so far (thermal broadening occurs on too small a scale),
but an NN would presumably recover a physically reasonable but
very model-dependent temperature indirectly from the relationship
between temperature and density in the IGM (Hui & Gnedin 1997).
Recent work on a similar theme, but in three dimensions is that
of Hong et al. (2020) who have used hydrodynamic simulations
of galaxy formation to train an NN to reconstruct the dark matter
distribution from galaxy positions and velocities.

Having only trained our NN on one simulation, the answers that
it returns are likely to be strongly dependent on that training set.
We have carried out tests using mock data with different S/N ratios
(training with a different S/N than the test data), and find reasonable
results, but it would be very interesting in future work to try training
the NN with data from different redshifts or cosmologies from the
test data.

Another issue related to the finite size of the training data set is
that there will be rare events which could be underrepresented, such
as large fluctuations in the optical depth. There will also be features
in real data which are not included in the simulations, depending
on their level of sophistication. For example, we have not included
damped Ly « lines in our mock data sets, or metal lines. In principle,
these could be added to training data, as simulations exist which make
predictions for them (e.g. Pontzen et al. 2008). The physics involved
(including galaxy and star formation) is however more uncertain and
less likely to be resolved in the simulations than the physics leading
to the majority of the Ly « optical depth.

We have compared the NN reconstruction method with two
other methods for inferring the optical depth from the flux. It is
of course possible that other methods could be imagined which
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have better performance. For example, in one method, we smooth
the flux before log inversion and spline interpolation. One could
imagine using some more sophisticated denoising such as L1 trend
filtering (Politsch et al. 2020a, b) before log inversion. Physical
reconstruction modelling could also be tried, which uses the physics
of the intergalactic medium in simulations to go from flux to physical
quantities. Examples include Nusser & Haehnelt (1999), and Miiller
etal. (2020). Other machine learning techniques have been applied to
similar problems in absorption line data, for example use of a genetic
algorithm to model data with multiple metal line species (Lee et al.
2020), or the use of conditional neural spline flows to predict the
quasar continuum on the red side of the quasar Ly « line from blue
side data (Reiman et al. 2020).

Our particular NN approach works better than the alternatives we
have tested, except for the highest optical depth regions 7 < 15,
where the scatter is low but there is a bias. These correspond to an
extremely small percentage of pixels, but nevertheless it would be
very useful to improve the NN there. We have investigated changes
in NN hyperparameters, but have not been able to simply improve
the NN performance in these regions. We have instead adopted a
curve fit approach to the highest t pixels, which, like the NN uses
information from the simulations. The combined NN and curve fit
approach does yield good results at high 7, making use of the fact
that the NN is able to reduce the scatter even though its results are
biased. We leave a comprehensive effort to improve the NN in these
regions to future work.

Another open question is how the NN is making its predictions
for r. The flux in an entire simulated spectrum (spanning 512
pixels and 400 2~ 'Mpc) is used by the NN as an input. In future
work, we plan to investigate the response of the NN and how it is
using the input information, for example weighted by pixel distance.
The log inversion techniques use only single pixel information in
unsaturated regions, but signal over longer distances in the spline
interpolation part of the algorithms. It will be interesting to compare
the dependence of the NN algorithm on distance of the farthest data
used from the predicted pixel.

We have approached this paper from the point of view that solving
the inverse problem (in this example of observed flux to underlying
optical depth) is an interesting intellectual exercise. One should
obviously also ask however how useful our DL solution actually is,
what its limitations might be. Different use cases can be imagined,
but they will likely all be dependent on the model used in training,
unless significant testing (for example with different simulations)
shows how more general conclusions can be inferred. We indulge in
a limited amount of speculation here. If we are testing a particular
model (for example ACDM with specific parameters), we could use
simulations of that model for training and then compare statistics
of the reconstructed fields (e.g. temperature, density) to see if they
are consistent with the original model. This would allow testing
using statistical measurements of quantities which are not directly
observable. In the case of Ly « optical depth 7 studied in this paper,
we could imagine measuring the clustering of 7, including perhaps
higher order statistics. Whether these would actually have more
discriminatory power than statistics of measurable quantities such
as the flux F is debatable, but at the very least they may offer
different ways of weighting the data (see McCullagh et al. 2016
and related works for other approaches). For example the S/N of
Ly « BAO measurements may improve (or not) if the observations
are transformed to a 7 field or a density field first.

Certainly, in the case of the Ly « forest there is increasing interest in
the use of interpolation techniques to construct 3D maps from arrays
of 1D spectra (Pichon et al. 2001; Horowitz et al. 2019; Newman
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et al. 2020)). Instead of producing a 3D flux field, one could use
the NN reconstruction to make 3D t, temperature, or density fields.
One use of reconstructed sightlines or maps could be to use in cross-
correlation with other data. The Ly « forest has a low bias factor
(the ratio of F fluctuations to matter fluctuations), with |b| ~ 0.2
(Slosar et al. 2011), and transforming to a variable with a higher
|b| such as t could increase the S/N of Ly « forest — Ly & emission
cross-correlations (e.g. Croft et al. 2018), for example. Because the
DL reconstruction appears to work significantly better on noisy data
than smoothing does, one could imagine using it to remove noise
artefacts, or perhaps even set the unobserved quasar continuum level
(by training on mock data with varied continua).

We have seen that NN are able to learn the relationships between
complex physical quantities in simulations. In the case of the Ly « for-
est this can be used to carry out model-dependent reconstruction from
observables. As with many applications of Artificial Intelligence
techniques, the uses and limitations are not all yet apparent, but it is
obvious that there is much of promise that should be studied further.
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