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1. Introduction

Let k be a field of positive characteristic p, let G be a finite group, and let V' be a finitely generated
kG-module. It is a classical problem to analyze when V can be lifted to a module for G over a complete
discrete valuation ring W of characteristic 0 that has k as its residue field. For example, Green showed in [17]
that if all 2-extensions of V' by itself are trivial, then V' can always be lifted over W. When G is a p-group,
Alperin showed in [2] that every endo-trivial kG-module can be lifted to an endo-trivial WG-module. In [19,
Thm. 1.3], Alperin’s argument was generalized to endo-trivial modules for arbitrary finite groups. The proof
given in [19, Sect. 2] uses that k contains enough roots of unity (see Example 3.2). We show how to combine
the work in [19, Sect. 2] with obstruction theory to prove this result without any additional assumptions
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on k (see Lemma 3.1). The question of whether V' can be lifted over W can be reformulated in terms of the
versal deformation ring R(G, V) of V by asking whether there is a W-algebra homomorphism R(G,V) — W.
It is then a natural problem to determine the full versal deformation ring R(G, V') and the corresponding
versal deformation. In this paper, we do this for all endo-trivial kG-modules V. In the case when k has
characteristic 2 and G is either a semidihedral or a (generalized) quaternion 2-group, we moreover give an
explicit description of the versal deformation of every indecomposable endo-trivial kG-module.

Recall that for arbitrary p and G, a finitely generated kG-module V is called endo-trivial if the kG-module
Hom(V,V) 2 V* ®; V is isomorphic to a direct sum of the trivial simple kG-module k and a projective
kG-module. Endo-trivial modules play an important role in the modular representation theory of finite
groups. They arise in the context of derived equivalences and stable equivalences of block algebras, and
also as building blocks for the more general endo-permutation modules (see for example [14,29]). In [12,11],
Carlson and Thévenaz classified all endo-trivial kG-modules when G is a p-group. The classification of the
endo-trivial kG-modules for arbitrary finite groups is still ongoing (see for example [9] and its references).
Since the stable endomorphism ring of every endo-trivial kG-module is one-dimensional over k, it follows
from [6, Prop. 2.1] that V has a well-defined universal deformation ring R(G, V).

The topological ring R(G,V) is universal with respect to deformations of V over all complete local
commutative Noetherian W-algebras R with residue field k. A deformation of V' over such a ring R is
given by the isomorphism class of a finitely generated RG-module M which is free over R, together with
a kG-module isomorphism k @z M — V. There is also a universal deformation of V over R(G,V) from
which every other deformation of V over R arises via a unique specialization homomorphism R(G,V) — R.
(see Section 2 for more details).

In number theory, the main motivation for studying universal deformation rings of representations of
finite groups is to provide evidence for and counter-examples to various possible conjectures concerning ring
theoretic properties of universal deformation rings for profinite Galois groups. The idea is that universal
deformation rings for finite groups can be more easily described using deep results from modular represen-
tation theory due to Brauer, Erdmann [16], Linckelmann [20,21], and others. Moreover, the results in [15]
show that if I is a profinite group and V is a finite dimensional k-vector space with a continuous I'-action
which has a universal deformation ring, then R(I", V) is the inverse limit of the universal deformation rings
R(G,V) when G ranges over all finite discrete quotient groups of I through which the I'-action on V factors.
Thus to answer questions about the ring structure of R(I', V), it is natural to first consider the case when
I' = G is finite.

The following is our first main result.

Theorem 1.1. Let V be a finitely generated endo-trivial kG-module. Let V1 be a non-projective indecomposable
direct summand of V', which is unique up to isomorphism.

(i) The universal deformation ring R(G,V) is isomorphic to the group algebra WGP where G*®P is the
mazximal abelian p-quotient group of G.

(ii) Let Viy be a lift of V over W. Then the universal deformation of V over WGP is given by the
isomorphism class of Viy @w WGP, as a module for G over WG?P, on which g € G acts diagonally
as multiplication by g on Vi and as multiplication by its image § on WGaP:P.

(iii) Suppose D is a defect group of the block of kG to which Vy belongs. Then R(G,V) is a quotient ring
of the group ring WD, giving a positive answer to [6, Question 1.1] for endo-trivial modules.

In [7,25], Broué and Puig introduced and studied so-called nilpotent blocks. Using [25], we obtain the
following result as a consequence of Theorem 1.1, where we assume as in [25] that k is algebraically closed.
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Corollary 1.2. Suppose k is algebraically closed, and B is a milpotent block of WG with a defect group D.
Suppose V' is a finitely generated kG-module belonging to B such that the stable endomorphism ring of V as
a kG-module is isomorphic to k. Then the universal deformation ring R(G,V) is isomorphic to W D*PP,

The main tools in the proof of Theorem 1.1 are the results in [2,19] about lifting endo-trivial kG-modules
to endo-trivial WG-modules, together with the result [4, Lemma 2.2.2] that shows that stable equivalences
of Morita type over W preserve universal deformation rings.

Alperin’s proof in [2], and its extended version in [19], of the existence of a lift of a given endo-trivial
kG-module V over W is not constructive. Namely, after reducing to the case when the image of a represen-
tation p : G — GL, (k) giving rise to V lies in SL,,(k), endo-triviality of V' is used to show that an infinite
sequence of lifting obstructions vanishes, leading to a lift of this image to a subgroup of SL,,(W).

Since the description of the universal deformation in part (ii) of Theorem 1.1 depends on the description
of a lift of V over W, the question arises how one can construct a lift Vi of V over W without using
an infinite sequence of vanishing lifting obstructions. In other words, one would like to give an explicit
description of the G-action on a W-basis of Vyy. This problem can be compared to constructing an explicit
solution by radicals to a polynomial equation rather than just proving that such a solution exists.

In this paper, we focus on the case when G is a p-group and the group T(G) of equivalence classes of
endo-trivial kG-modules has a non-trivial torsion subgroup. By [12, Thm. 1.1], this means that either G is
cyclic of order at least 3, or p = 2 and G is a 2-group that is either semidihedral or (generalized) quaternion.

Our second main result is an explicit description of a lift over W of every indecomposable endo-trivial
kG-module for these G. The following remark gives a summary of this result. For the precise versions, see
Propositions 4.5-4.7 and 4.9 and Remark 4.10.

Remark 1.3. Let G be a p-group such that the group of equivalence classes of endo-trivial modules T'(G)
has a non-trivial torsion subgroup. Let V be an indecomposable endo-trivial kG-module of k-dimension n.

To provide an explicit description of a G-action on W™ making W™ into a W G-module Vi that lifts V'
over W, one needs to solve at most one quadratic equation of the form

b2+ fi(t) b+ fo(t) =0 (1.1)

with fo(t), fi(t) € Z[t] for an element b in Z,[[t]]. Moreover, if one needs to solve such an equation (1.1)
then p = 2 and G is a generalized quaternion group whose order is at least 16. In this case, finding such a
solution is equivalent to taking the square roots of explicitly given elements in certain cyclotomic extensions
of Q5.

When p is odd, the isomorphism class of Vi, as a module for G over W, is the unique deformation
of V over W. When p = 2, there are precisely four distinct deformations of V' over W. In all cases, the
isomorphism class of Vi @w WG?*PP, as a module for G over WGP on which G acts diagonally, is the
universal deformation of V over WG2b-P.

The significance of this result is that it bounds the computational complexity of producing universal
deformations. We view this as analogous to how the quadratic formula gives a more explicit solution of
a quadratic equation than saying the roots are the convergent limits of an infinite sequence of operations
resulting from Newton’s method. The latter is similar to Alperin’s method in [2] of showing that an infinite
sequence of lifting obstructions vanishes.

The main ingredient in the proof of Remark 1.3, and its more precise versions, is the explicit description
of the indecomposable endo-trivial kG-modules V. If G is cyclic, this is given in [14, Cor. 8.8]. If p = 2
and @G is either a semidihedral or a (generalized) quaternion 2-group, we use the description given in [10,
Sects. 6 and 7].
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The paper is organized as follows: In Section 2, we give a brief introduction to deformation rings and
deformations. In particular, we show in Remark 2.3 how to use an explicit lift of a finitely generated
kG-module V over W to construct an explicit lift of any (co-)syzygy Q2¢(V) over W. In Section 3, we show
how to combine the work in [19, Sect. 2] with obstruction theory to prove that we can lift any endo-trivial
kG-module V over W, without any additional assumption on k (see Example 3.2 and Lemma 3.1). Moreover,
we prove Theorem 1.1 and Corollary 1.2. In Section 4, we prove the precise versions of Remark 1.3 and give
an explicit description of the universal deformation of every indecomposable endo-trivial kG-module when
G is a p-group and T'(G) has a non-trivial torsion subgroup. The case when p = 2 and G is a (generalized)
quaternion group is proved in Propositions 4.5-4.7. The remaining cases are proved in Proposition 4.9 and
Remark 4.10.

Part of this paper constitutes the Ph.D. thesis of the third author under the supervision of the first
author [28]. We would like to thank the referee for their careful reading of our paper.

Unless stated otherwise, our modules are finitely generated left modules. On the other hand, when R
and S are associative rings with 1 then an R—S-bimodule M is both a left R-module and a right S-module
such that for all r € R, s € S and m € M one has r(ms) = (rm)s. Our maps are written on the left such
that the map composition f o g means f after g.

2. Preliminaries

In this section, we give a brief introduction to versal and universal deformation rings and deformations.
For more background material, we refer the reader to [24] and [15].

Let k be a field of positive characteristic p, and let W be a complete local commutative Noetherian ring
of characteristic 0 that has k as its residue field. If k is a perfect field, one often chooses W to be the ring of
infinite Witt vectors over k. Let C be the category of all complete local commutative Noetherian W -algebras
R with unique maximal ideal mpg and fixed residue map ng : R — k = R/mpg. The morphisms in C are
continuous W-algebra homomorphisms which induce the identity map on k.

Suppose G is a finite group and V is a finitely generated kG-module. A lift of V' over an object R in 4
is a pair (M, ¢) where M is a finitely generated RG-module that is free over R, and ¢ : k ®g M — V is an
isomorphism of kG-modules. Two lifts (M, ¢) and (M’,¢’) of V over R are said to be isomorphic if there
is an RG-module isomorphism f : M — M’ with ¢ = ¢’ o (k ® f). The isomorphism class [M, ¢] of a lift
(M, ) of V over R is called a deformation of V over R, and the set of all such deformations is denoted by
Def(V, R). The deformation functor

Fy i C — Sets

is a covariant functor which sends an object R in C to Defg(V, R) and a morphism « : R — R’ in C to
the map Defg(V, R) — Defg(V, R’) defined by [M,¢] — [R' @r.a M, o], where ¢, = ¢ after identifying
k Qg (R/ QR,« M) with £k @g M.

Suppose there exists an object R(G,V) in ¢ and a deformation [U(G,V),¢u] of V over R(G,V) with
the following property: For each R in C and for each lift (M, ) of V over R there exists a morphism
o : R(G,V) — R in C such that Fy (a)([U(G,V), ¢u]) = [M, ¢], and moreover o is unique if R is the ring
of dual numbers k[e]. Then R(G,V) is called the versal deformation ring of V' and [U(G,V), ¢y] is called
the versal deformation of V. Note that R(G,V) and [U(G, V), ¢y] are unique up to isomorphism.

If the morphism « is unique for all R and all lifts (M, ¢) of V over R, then R(G, V) is called the universal
deformation ring of V' and [U(G, V), ¢y] is called the universal deformation of V. In other words, R(G,V)
is universal if and only if R(G, V') represents the functor Fy in the sense that Fy is naturally isomorphic
to the Hom functor Homs(R(G, V'), —). In this case, R(G, V) and [U(G, V), ¢y] are unique up to a unique
isomorphism.
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By [24], every finitely generated kG-module V has a versal deformation ring. By a result of Faltings
(see [15, Prop. 7.1]), V has a universal deformation ring if Endgg (V) = k.

Proposition 2.1. ([6, Prop. 2.1], [5, Rem. 2.1]) Suppose V is a finitely generated kG-module whose stable
endomorphism ring End, (V) is isomorphic to k. Then V has a universal deformation ring R(G,V).
Moreover, if R is in C and (M, ¢) and (M',¢") are lifts of V over R such that M and M’ are isomorphic
as RG-modules then [M,¢] = [M', ¢'].

In particular, this means that if the stable endomorphism ring of V is isomorphic to k, then we do not
need to distinguish between deformations [M, ¢] of V over an object R in ¢ , as defined above, and so-called
weak deformations [M] of V over R (i.e., isomorphism classes of RG-modules M with k®p M =V, without
specifying a particular kG-module isomorphism ¢ : k @ M — V).

Suppose V is a finitely generated kG-module with End; ~(V) = k. Then there is a non-projective inde-
composable kG-module V7, which is unique up to isomorphism, such that V' is isomorphic to V; & Q for some
projective kG-module @Q. In particular, End,~ (V1) = k. Moreover, if 2 = Q¢ denotes the syzygy functor
(also called Heller operator, see, for example, [1, §20]) then End,.(2(V)) & k. We have the following result.

Lemma 2.2. [6, Cors. 2.5 and 2.8] Let V be a finitely generated kG-module with End,-(V) = k.

(i) Then R(G,Q(V)) is universal and isomorphic to R(G,V).
(ii) Let Vi be a non-projective indecomposable kG-module such that V is isomorphic to Vi ® Q for some
projective kG-module Q). Then R(G, V1) is universal and isomorphic to R(G,V).

One of our goals is to construct explicit deformations by constructing explicit lifts. The following remark
shows how to construct an explicit lift of an arbitrary (co-)syzygy of a finitely generated kG-module V' over
W provided one knows an explicit lift of V' over W.

Remark 2.3. Let V' be a finitely generated kG-module, and suppose we know an explicit lift Vi of V' over
W with corresponding kG-module isomorphism ¢y : k Qw Viy — V.

By [13, Props. 6.5 and 6.7], a projective kG-module can always be lifted over W. Let w: P — V (resp.
t :' V. — E) be a projective cover (resp. injective hull) of V' as a kG-module. Since kG is self-injective,
it follows that F is a projective kG-module. Let Py (resp. Ew) be a lift of P (resp. E) over W, with
corresponding kG-module isomorphism ¢p : k @w Py — P (resp. ¢p : k Qw Ew — E). In particular,
Eyw is a projective WG-module.

Since Py is a projective WG-module, there exists a WG-module homomorphism myy : Py — Vi such
that ¢y o (k @w mw) o (;5131 = 7. By Nakayama’s Lemma, it follows that 7y is surjective. Since Ker(my)
is a free W-module, it follows that Ker(my ) is a lift of Q(V) = Ker(w) over W. We use the notation
Qwe(Viv) = Ker(mw ). This is a variant for WG-lattices of the Heller operator defined in [23, §2.14].

We can use a similar argument as in the proof of [6, Prop. 2.4] to find an explicit lift of Q~(V') = Coker(s).
Namely, we have a short exact sequence

0= mwEy - Ew - FE—=0 (2.1)

and we have Extiy o (Viv, mw Ew) = 0. This implies that there exists a WG-module homomorphism vy
Vw — Ew such that ¢g o (k Qw tw) o gb‘_/l = . Since ¢ is injective and since Vyy and Eyy are free over
W, it follows by Nakayama’s Lemma that ¢y is also injective. Thus we have a commutative diagram of
W G-modules
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tw

0 Viv Eyw Coker(tw) —= 0
0 V——>E Q-1(V) 0

with exact rows, and Coker(tyy) is a free W-module. Therefore, Coker(iy) is a lift of Q=1(V) = Coker(s)
over W. We use the notation Q' (Vi) = Coker(tyy).

3. Endo-trivial modules

Assume the notation from the previous section. Moreover, assume that W is a complete discrete valuation
ring of characteristic 0 that has k as its residue field. Suppose V is a finitely generated kG-module. We say
V is endo-trivial if its k-endomorphism ring Endg (V) is, as a kG-module, stably isomorphic to the trivial
kG-module k. In other words, Endy (V) is isomorphic to a direct sum of k and a projective kG-module.

Note that every endo-trivial kG-module satisfies End, (V) = k. If G is a p-group then it follows from
[8] that the endo-trivial kG-modules coincide with the kG-modules V' with End, (V) = k. However, for
arbitrary finite groups, the set of isomorphism classes of kG-modules whose stable endomorphism rings are
isomorphic to k usually properly contains the isomorphism classes of endo-trivial kG-modules.

In this section, we prove Theorem 1.1. One of the main ingredients in the proof is the following result.
This was proved when G is a p-group by Alperin in [2] and in [19, Thm 1.3, pp. 144-145] for all G under
the assumption that k is algebraically closed (see the assumptions of [19, Sect. 2]).

Lemma 3.1. Let k be an arbitrary field of positive characteristic p, and let W be a complete discrete valuation
ring of characteristic 0 that has k as its residue field. If V' is an endo-trivial kG-module then V' can be lifted
to an endo-trivial W G-module Vi .

This result was in fact stated for all k and G in [19, Thm. 1.3]. However, the proof of [19, Thm. 1.3] given
in [19, Sect. 2] uses that &k has enough roots of unity and does not apply for all k, as the following example
shows.

Example 3.2. Suppose p = 3, k = Z/3, and G = X3 is the symmetric group on 3 letters. Let V = Q(k) be
the first syzygy of the trivial simple kG-module k, so that V is an endo-trivial kG-module. Let H be the
subgroup of order 3 in G. The action of G on V is faithful, giving an injection G < GLa(k) after picking
a basis of V. View G as a subgroup of GLy(k) and let n = 2. On [19, p. 144] the groups G; = GC and
Go = G1 N SLa(k) are defined when one sets

C ={al, : a" = det(g) for some g € G}.

One checks that Gy = H - {£I>}. However, 1 is not the central product of Gy and C, so the argument of
[19, pp. 144-145] does not apply for arbitrary k of characteristic p.

Proof of Lemma 3.1. We indicate how to combine the work in [19, Sect. 2] with obstruction theory to deduce
the general case from the case in which k is algebraically closed.

Both [19, Lemma 2.1] and [19, Prop. 2.4] are true for an arbitrary field &k of characteristic p. Moreover,
if N is a WG-module that is free over W such that N/my N is a projective kG-module, then it follows,
for example from [27, Sect. 14.2], that N is a projective WG-module without any additional assumptions
on k. Write the order of G as p?m, where p does not divide m. Let n = dimy V and let p : G — GL, (k) be
a representation of V. By [19, Lemma 2.1], n is relatively prime to p.
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Suppose first that &k contains all (nm)-th roots of unity. Then the arguments of [19, pp. 144-145] show
that V' can be lifted to an endo-trivial WG-module Vi .

Suppose next that k is an arbitrary field of characteristic p. Let ¢ be a primitive (nm)-th root of unity
in a fixed separable closure of k. Define ¥’ = k(¢) and W/ = W|(]. Note that since nm is relatively prime
to p, W' is unramified over W. In particular, if @ is a uniformizer for W then w is also a uniformizer
for W'. Let p’ : G — GL,, (k) be the representation of G over k' obtained by composing p with the inclusion
GL, (k) — GL, (K). Define G, (resp. G /) to be the image of p (resp. p). Our goal is to lift G, to a subgroup
of GL,, (W), by knowing that we can lift G, to a subgroup of GL,,(W’). Let £ > 1. Suppose we have lifted G,
to a subgroup G, ¢ of GL,(W/w'W) such that the injection GL,,(W/w'W) — GL,,(W'/w‘W') provides a
subgroup G ¢ of GL,,(W'/w*W’) lifting G,. The obstruction to lifting G, ; to GL,,(W/wT1W) is a class ¢
in H3(G, ﬁ—%v ®1 Ad(p)), where Ad(p) is the adjoint representation associated to p, i.e. Ad(p) = Endy (V)
with G acting by conjugation. On the other hand, the obstruction to lifting G, ¢ to GL,(W'/w T1W’) is
the class ¢’ in
vl 14 o'W

sy O Ad(p) = K @ B (G, —s @k Ad(p))

2
H (G oviaat 1,4

which is obtained from ¢ by base changing from k to k’. (Note that we use here that W’ is unramified over W.)
Since by the arguments of [19, pp. 144-145], the class ¢’ vanishes, this means that ¢ must vanish as well,
leading to a lift of G, to a subgroup G, s41 of GL,, (W /w1 W) such that the injection GL,,(W/w W) —
GL,, (W' /@ 1W') provides a subgroup G, ¢+1 of GL,(W'/w* W) lifting G . Taking the limit as £ — oo
of these lifts completes the proof of Lemma 3.1. O

Using Lemma 3.1 together with [4, Lemma 2.2.2], we can now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.1, V can be lifted to an endo-trivial W G-module Vyy. We may view the
left W G-module Vi as a W G-W G-bimodule by letting G act trivially on the right. Define M = Viy @y WG.
Then M is a WG-W G-bimodule, where the G-action on the left is diagonal and the G-action on the right
is on the W G-factor. Hence M is projective (in fact, free) both as a left and as a right W G-module. Define
N = Homyy (M, W). Then

MOwae N=2WGEHP and
NOwaeMEWGE®Q

where P and @) are projective WG-W G-bimodules, and both of these isomorphisms are isomorphisms
of WG-W G-bimodules. In particular, M and N define a stable autoequivalence of Morita type of the
W-stable category W G-mod, which is the quotient category of the category WG-mod of finitely generated
W G-modules by the subcategory of relatively W-projective modules (see [22] and [23, §2.13 and §4.13] for
more details). If Vo = k is the trivial simple kG-module then

(k@w M) ®ra Vo = (k@w Vi) @ (kG Qra Vo)
=2VeVo =2V

where we use that G acts trivially on the right of Vj-. Hence it follows by [4, Lemma 2.2.2] that R(G,V) =
R(G,Vp). By [24, Sect. 1.4], R(G,Vy) is isomorphic to WGP and the universal deformation of Vj is
given by the isomorphism class of U(G,Vy) = WGP as an R(G, Vy)G-module on which g € G acts as
multiplication by its image g € G*”P. The proof of [4, Lemma 2.2.2] shows that the isomorphism class of
the universal deformation of V' is given by the isomorphism class of
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(M @w R(G, Vo)) ®ra,vi)c UG, Vo) = (Vv @w R(G,V)G) @ra, vy UG, Vo)
= Vw ow U(G, W)
= Vi Qw WGabr

where g € G acts diagonally as multiplication by g on Vj- and as multiplication by its image g on WGab-P.
This proves parts (i) and (ii) of Theorem 1.1.

For part (iii) of Theorem 1.1, let V4 be a non-projective indecomposable direct summand of V, as in
the statement of the theorem. Then V; is unique up to isomorphism, and V is the direct sum of V; and a
projective kG-module. In particular, we have R(G,V) = R(G, V;). Since by [19, Lemma 2.1] the k-dimension
of V7 is not divisible by p, it follows by [13, Thm. 19.26] that the vertices of V; are Sylow p-subgroups of G.
Therefore, D must also be a Sylow p-subgroup. Since G?P? is a quotient group of each Sylow p-subgroup
of G, it follows that R(G, V) is isomorphic to a quotient ring of WD. O

Remark 3.3. In the notation of Theorem 1.1(ii), the isomorphism class of Vjy/, as a module for G over W, is the
unique deformation of V over W when p > 2. If p = 2 then the number of deformations of V' over W equals
the order of the maximal elementary abelian 2-quotient group of G. This follows since R(G,V) = W Gab-»
by Theorem 1.1(i) and since the deformations of V' over W are in one-to-one correspondence with the
morphisms R(G,V) — W in the category C.

We now turn to nilpotent blocks, and the proof of Corollary 1.2. The following remark recalls the most
important definitions and results for nilpotent blocks.

Remark 3.4. Assume that k is algebraically closed. Let D be a finite p-group, let G be a finite group and
let B be a nilpotent block of WG that has D as a defect group. By [7, Def. 1.1], this means that whenever
(D1,e1) is a B-Brauer pair then the quotient group Ng(D1,e1)/Cq(D1) is a p-group. In other words, for
all subgroups Dy of D and for all block idempotents e; of kCq (D7) associated with B, the quotient of
the stabilizer Ng(D1,e1) of e1 in Ng(D;) by the centralizer Ce(D1) is a p-group. In [25, Sect. 1.7], Puig
rephrased this definition using the theory of local pointed groups (see also [29, Prop. 49.8]).

By [25, §1.4], B is Morita equivalent to WD. In [26, Thm. 8.2], Puig showed that the converse is also
true in a very strong way. Namely, if B’ is another block over W such that there is a stable equivalence of
Morita type between B and B, then B’ is also nilpotent. Hence Corollary 1.2 can be applied in particular
if there is only known to be a stable equivalence of Morita type between B and WD.

Proof of Corollary 1.2. By Remark 3.4, the nilpotent block B of WG is Morita equivalent to W D. Suppose
V is a finitely generated kG-module belonging to B, and V' is the kD-module corresponding to V' under this
Morita equivalence. Then the stable endomorphism ring of V' as a kG-module is isomorphic to & if and only
if the stable endomorphism ring of V' as a kD-module is isomorphic to k. Suppose now that End, ~(V) = k.
Then it follows for example from [3, Prop. 2.5] that R(G,V) = R(D,V’). By [8] and Theorem 1.1, this
implies that R(G,V) = WDbr. 0O

4. Explicit universal deformations of endo-trivial modules

Assume the notation from the previous section. Suppose G is a p-group such that the group T(G) of
equivalence classes of endo-trivial kG-modules has a non-trivial torsion subgroup. By [12, Thm. 1.1], this
means that G is either cyclic of order at least 3, or p = 2 and G is a semidihedral or a (generalized)
quaternion 2-group.

The goal of this section is to give an explicit description of the universal deformations of all endo-trivial
kG-modules V. In particular, we will prove the precise versions of Remark 1.3. In Section 4.1, we will
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consider the case when p = 2 and G is a (generalized) quaternion 2-group. In Section 4.2, we will consider
the remaining cases.

4.1. The (generalized) quaternion 2-groups

Fix an integer d > 3, and let Q be a (generalized) quaternion group of order 2¢ with the following
presentation

—1 2(1—2

Q=(z,y|2*  =1,2"" =y’ yayt =a"). (4.1)

Then Q = (yz,y) where yx and y both have order 4. Define
Q = Qab,Z = <y_37, @ = {Ta z,Y, y_} (42)

where for g € Q, g denotes its image in Q.

Let k be a field of characteristic 2 and let W be a complete discrete valuation ring of characteristic 0
that has k as its residue field. Let F5 be the prime subfield of k with two elements, and let Zy be the 2-adic
integers such that Zo C W.

Definition 4.1. Let X = (z) be a maximal cyclic subgroup of Q, which is unique when d > 4. Let Trx =

231_0171 27 be the trace element of X, and let S be the ring kX/k - Trx. Let * denote the involution of S

that is induced by inversion on X. Suppose 3 € S is an element satisfying

—2

BB =% (4.3)
and define
y-s=ps" forallseS. (4.4)

As in the proof of [10, Lemma 6.4], this makes S = kX /k- Trx into a kQ-module, which we denote by L(f).
Since Res?w L(B) = @) (k) and (z) contains the unique elementary abelian subgroup of Q, it follows from
[10, Lemma 2.9] that L(3) is an endo-trivial kQ-module of k-dimension 291 — 1.

Remark 4.2. Concerning the existence of an element § € S satisfying (4.3), we have the following by [10,
Sect. 6].

(a) If d > 4 then it is shown in the proof of [10, Lemma 6.4] that the element
2d-4_1

B=1+(z+a?)(1+a> 42 [ 3 o

in S satisfies (4.3).
(b) Suppose now that d = 3 and that k contains a primitive cube root w of unity. Then

B:wQ—wa

in S satisfies (4.3). Moreover, consider the k-basis of S given by {1,1+ x,1 + 22}. Then the actions of

2 and y on L(S) with respect to this basis are given by the matrices



1906 F.M. Bleher et al. / Journal of Pure and Applied Algebra 223 (2019) 1897-1912

= O

px) =

S =
— = O
= o O
= o O

1
and  p(y) = | w
0

€

Remark 4.3. Let T(Q) be the group of equivalence classes of endo-trivial kQ-modules. By [10, Sect. 6], we
have the following result.

(a) If d = 3 and k does not contain a primitive cube root of unity, then 7'(Q) is a cyclic group of order 4
given by {[Q%Q(k)] 3_,- Since the k-dimensions of Q}CQ(k) are congruent to +1 modulo 2¢ = 8, there
cannot be an endo-trivial kQ-module of dimension 2¢~' — 1 = 3. By Definition 4.1, this means that
there cannot exist an element 3 € S satisfying (4.3).

(b) Suppose now that either d > 4 or d = 3 and k contains a primitive cube root w of unity. Then T(Q) is
isomorphic to Z/4 & Z/2. More precisely, let L = L(3) be as in Definition 4.1 for some 3 € S satisfying
(4.3). Then T(Q) is generated by [ (k)] and [Q}o(L)], and [Q}(L)] has order 2. In particular, each
element of T'(Q) is of the form [Q}. (k)] or [2q(L)] = [Q.q(k) @ L] for some i € {0, 1,2, 3}.

By Theorem 1.1, we know that the universal deformation ring of every endo-trivial kQ-module is iso-
morphic to W Q where Q is as in (4.2). We now give an explicit description of the universal deformation
of every endo-trivial kQ-module V. Since projective kQ-modules are free, and hence can easily be lifted
over W, we can concentrate on the indecomposable endo-trivial £Q-modules.

The crucial step in constructing an explicit lift over W of the endo-trivial kQ-module L = L(j3) as in
Remark 4.3(b) when d > 4 is to give a constructive version in Proposition 4.6 of the following result:

d—1 .
Proposition 4.4. Suppose d > 4. Let X = (z), let Trx = Z?:o L 2i, and let Sy = 72X/ 75 - Trx. Let
denote the involution of Ss that is induced by inversion on X. There exists an element B € So satisfying

(4.5)

The existence of 3 is subtle because S is not a regular ring. We use a surjection 7 : Zy[[t]] — S5 where
Sy is the subring of Sy that is invariant under . To construct 3 we need Proposition 4.5 below which shows
that a particular quadratic equation, given by (4.7), with coeflicients in Z[t] has a solution in Zs|[[¢]]. In
Proposition 4.6, we then use this solution to find 5 € 59 satisfying (4.5).

Proposition 4.5. Suppose d > 4. For j > 0, define p; € Z[t] inductively by po = 2, p1 =t and the recurrence
relation

Dj+1 =1tpj — pj-1 forj > 1. (4.6)
I 242 B g ]
et T = Zj:o Dj, and let a =1+ 2°7%¢. Then the equation
V> +tab+a*=1—7 (4.7
has a solution b in Zs[[t]]. Moreover, the discriminant A(t) of (4.7) is a polynomial in Z[t] such that
A(t) =t2((1 —t)2 = 8) if d = 4, and if d > 5 then A(t) = t2(1 + 4m(t)) for some polynomial m(t) € Z|[t]
whose constant coefficient is divisible by 2.

Proof. Consider the recurrence relation for p; in (4.6). The associated quadratic equation

Y2 —tY +1=0 (4.8)
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in the variable Y has two solutions yi,y2 which belong to a quadratic extension of the field Q2((t)) and
which are integral units over the ring Zs[[t]]. Note that 3 +y9 = 2 = pg and y; +y3 =t = p;. Since y; and
yo are roots of (4.8), it follows that the recurrence relation (4.6) holds for yJ + y3, which implies that

=yl +v} (4.9)
for all j > 0. Using that (y; — 1)(y2 — 1) = 2 — ¢ and that y1, yo satisfy (4.8), we rewrite 7 as

9d—2_q 9d—2 9d—2

_ j i U -1y —1
T = ]z:;)(leryz)— v — 1 + ys — 1
=D (S L) D) + -1 (S0 () (1))
N 2—t
_tg(t)
2—t

for some g(t) € Zs|[t]]. Since T € Zs[[t]] and Zs][[t]] is a unique factorization domain, there exists h(t) € Zs|[t]]
such that g(t) = (2 — t)h(t). Let A = Zs[[t]][y1,y2]. Using that yi,y2 satisfy (4.8), we have t?y? = —t2
mod 34 and t?y3 = —t?> mod t3A. Hence we obtain the following congruence relations:

2 d—3 2 d—3
2~ h() = (12~ 1) (Z (% )(tyl)“(—l)“> Fn-1) (Z (% )(tw)a(—n“) mod 174

a=

=(ya—1) <2d_3(—ty1) - (2d2_3>t2> +(y1 —1) (2d_3(—ty2) - <2d2_3)t2> mod 3 A

2d—3

2

1279 (g — 1)(—n) + (91 — () + tz( ) (g~ 1)~ (51— 1)) mod A
d—3

2

d-3
=t(2-1t) (—Qd_3 + t<2 9 )) mod t3A.

=123 (=24 1) + 12 <2 >(2 —t) mod t*A

This implies

2d—3
r=t <—2d‘3 + t( ) >) mod 2 Zy|[t]]. (4.10)
Setting a = 1+ 297%¢ in the quadratic equation (4.7) gives the discriminant
A(t) = t2(1 4+ 29744)2 — 4(2247842 4 2973t 1 1) (4.11)

which is a polynomial in Z[t], since p;, j > 0, and hence also 7, are polynomials in Z[t].
If d > 5 then we obtain from (4.10) the congruence relation

Aty =t (1—4(2278 427974 (2972 —1)))  mod 4¢* Z[[¢]].
If d =4 then 7 = E?‘:opj =3 + 1% — 2t and

At) =t3(1 —t)? <1 - ﬁ) in Zs[[t]].
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In other words, for all d > 4, there exists a polynomial f(t) € Zs[t] and a power series m(t) in the maximal
ideal (2,t) Zs][t]] such that

A(t) = f(£)* (1 +4m(t)). (4.12)

Note that if d > 5 then m(¢) is actually a polynomial in Z[t] whose constant coeflicient is divisible by 2.
Using the binomial series for (14 7)'/? when T = 4m(t) and noticing that (142)4j is an element in 27, for
all j > 1, it follows that there exists a power series §(¢) € Zy[[t]] satisfying

(1+26(t)% =1+ 4mf(t).
Hence, if d > 5 then
b=—2"5¢2 1 t5(t)  (resp. b= —t — 277542 —t45(t)) (4.13)
and if d = 4 then
b=—t>+t(1—t)5(t)  (resp. b= —t —t(1—1t)3(t)) (4.14)
are power series in Zs[[t]] satisfying (4.7).

Recall that a polynomial in Zs[t] is said to be distinguished (or a Weierstrass polynomial) if its leading
coefficient is a unit in Z, and all its non-leading coefficients are divisible by 2 (see [18, §IV.9]).
d— .
Proposition 4.6. Suppose d > 4. Let X = (z), let Trx = Z?zol_laﬂ, and let So = ZoX/Zo - Trx. Let
* denote the involution of So that is induced by inversion on X, and let S be the subring of Sy that is
invariant under x. The map

T Zs[[t]] = Sy given by w(t) =24zt (4.15)

defines a surjective Zo-algebra homomorphism. The kernel of 7 is the ideal of Zs[[t]] generated by the monic
distinguished polynomial ®(t) in Zs[t] with coefficients in Z that is the product of the irreducible polynomials
q;(t) over Q of the numbers (i + C;jl when (o @5 a root of unity of order 29 and j=1,...,d — 1.

Let 7,a € Z[t] and b € Zs][t]] be as in Proposition 4.5. Then

2d—2

T(l—7)==x (4.16)

and

8 = (a) +a(b)

is an element of Sy satisfying (4.5), i.e. B5* = 227

Finding 7 (b) explicitly as an element of Sy is equivalent to finding an explicit square root of mw(A(t))
inside S C So, where A(t) is the discriminant of (/.7). The latter is equivalent to taking particular square
roots of explicitly given elements inside the image of Sy under the injective Zs-algebra homomorphism

d—1
L5, S = Qa®z, So = H Q2(¢25) (4.17)
i=1

which sends x in Sy to the tuple ((os );i;}
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Proof. Let J = (x) be the group of order two generated by the involution *. Then J acts on ZyX and we
have an exact sequence of J-modules

0—=>Zy -Trx —7Z3X — Sy —0

in which J acts trivially on Zy - Tryx. Taking J-cohomology and using that H(J,Zy - Trx) = 0 since J acts
trivially on Zs - Trx = Zo and Zs is torsion free, we obtain that (ZeX)’ — Sy = SQL is surjective. Note
that (Z9X)” is a free Zy-module generated by

2

{of + 2920 UL, )

Let 7 : Zo[t] — S3 be the Zs-algebra homomorphism given by 7(t) = x 4+ 2~!. The recurrence relation
(4.6) gives immediately that 7(p;) = 27 + 277 for all j > 0. Moreover, the definition of 7 in Proposition 4.5
shows (4.16).

Define ®(t) € Z[t] to be the product of the irreducible polynomials g;(t) over Q of the numbers (o + ;'
when (,; is a root of unity of order 2/ and j = 1,...,d — 1. Since Sy can be identified with the image of the
injective Zs-algebra homomorphism tg, from (4.17), it follows that 7(®(¢)) = 0. Note that ¢;(¢) =t + 2 and
ga(t) = t. Moreover, using (o1 +5541 )2 =2 = (240 +(¢2 1) 7L, it follows that ;41 () = ¢;(t>—2) for j > 2.
Therefore, we see that ®(t) is a monic distinguished polynomial in Zs[t] with coefficients in Z of degree 2972,
This implies that 7 induces a well-defined surjective Zy-algebra homomorphism 7 : Zs[[t]] — S5 such that
the kernel of 7 contains the ideal of Zs[[t]] generated by ®(t). Since Zz[[t]]/(P(t)) is a free Zg-module of
rank 2972 and the rank of Qy ®7, S5 is also 2972 it follows that ®(¢) generates the kernel of 7.

Letting a = 1 42974 ¢, it follows from Proposition 4.5 that the equation

b +tab+a?=1-7
has a solution b in Zs[[t]]. Applying the homomorphism 7 from (4.15) to a and b we obtain an element
B =m(a) +xm(b)
in S,. Since 8* = 7w(a) + 7 (b), we have

86" =m(a)? +m(a)m(b)(x +2~) + m(b)?
= 7(b* + tab + a?).

Using (4.16), it follows that 8 is an element of Sy satisfying the relation (4.5).

For the last statement of Proposition 4.6, we use the injective Zp-algebra homomorphism ¢g, from (4.17).
By Proposition 4.5, A(t) = t*((1 — t)®> — 8) if d = 4, and if d > 5 then A(t) = t*(1 + 4m(t)) for some
polynomial m(t) € Z[t] whose constant coefficient is divisible by 2.

If d = 4 then the inverse of 7(1 —t) =1 —x — 27! in Sy is given by

(=1 =2z — 2 + 2% +22% + 25 — 2% — 227).

SN

Uy =
This means that
T(A®)=(z+2 ") (1—2—2 ) (1-8uf) ford=4.

Therefore, for all d > 4,
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m(A(t)) = s* (1 + 4r)

for explicitly given elements r, s € Sz, where r is in the Jacobson radical of Sy. Let (1 + 4r), be the image
of 1+ 4r in Q2({s) under the injection tg, in (4.17). Then we can take /1 +4r € Sy to be the unique
element whose component in Q2((ys) is the square root of (1 + 4r); which is congruent to 1 modulo 2m;
when m; = Zs[(25](1 — os) is the maximal ideal of the ring of integers Zs[(os].

Proposition 4.7. Let R = W Q where Q is as in (4.2). If Vo = k is the trivial simple kQ-module, let
Vo.w = W with trivial Q-action. Define S = WX/W -Trx and S = kX/k - Trx.

(a) Ifd >4, let B € Sy be the element from Proposition 4.6, and let B be the reduction of 8 modulo 2. Using
the natural injections Sa — S and FoX/Fo - Trx — S, we viewB €S and B € S.

(b) If d = 3 and k contains a primitive cube root w of unity, let & € W be a primitive cube root of unity
lifting w. Let B = &% — ox € WX/W - Trx, and let B = w? +wx be its image in S.

In both cases (a) and (b), let Vi = L(B) be the corresponding kQ-module as in Definition J.1. Define a

WQ-module structure on Vi yw =S =WX/W - Trx by letting y act as

y-v = Bvi  forallv, € Viw. (4.18)

Let i € {0,1,2,3}. Let j = 0 if d = 3 and k does not contain a primitive cube root of unity, and let
j € {0,1} in all other cases. Then Q@VQ(V]-,W), as defined in Remark 2.3, is a lift of Q}CQ(VJ) over W.
Moreover, there are precisely four distinct deformations of QzQ(%) over W. The universal deformation of
Q1.q(V;) is given by the isomorphism class of the RQ-module U(Q, .o (V;)) = Qiyq(Viw) @w R on which
x (resp. y) acts diagonally as multiplication by t @ T (resp. y R Y).

Proof. In both cases (a) and (b), § satisfies (4.5). To check that (4.18) defines a WQ-module structure on
Vi,w = S, we follow the corresponding argument in the proof of [10, Lemma 6.4]. The remaining statements
of Proposition 4.7 now follow from Theorem 1.1 and Remarks 2.3 and 3.3.

4.2. The remaining cases

We now consider the remaining cases of p-groups G such that T'(G) has a non-trivial torsion subgroup.

Suppose first that k is a field of characteristic 2, and let W be a complete discrete valuation ring of
characteristic 0 that has k as its residue field. Fix an integer d > 4, and let SD be a semidihedral group of
order 2¢ with the following presentation

—1

SD = (z,y |2 =y? = 1yay L =2 "), (4.19)
Then SD = (yz,y) where yz has order 4 and y has order 2. Define
SD = SD**? = (yz,7) = {1,Z,7,7%}. (4.20)

Remark 4.8. Let T'(SD) denote the group of equivalence classes of endo-trivial KSD-modules. By [10, Sect. 7],
T(SD) is isomorphic to Z @ Z/2. More precisely, define

Y =k SD/(y) and L =rad(Y), (4.21)
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where SD/(y) denotes the set of distinct left cosets of (y) in SD, and Y is the corresponding permutation
module for SD over k. Then T'(SD) is generated by [Qigp (k)] and [Q}gp(L)], and [Q}gp(L)] has order 2
In particular, each element of T'(SD) is of the form [Q} ¢ (k)] or [Qigp(L)] for some i € Z.

By Theorem 1.1, we know that the universal deformation ring of every endo-trivial kSD-module is iso-
morphic to WSD where SD is as in (4.20). We now give an explicit description of the universal deformation
of every endo-trivial kSD-module V. Since projective kSD-modules are free, and hence can easily be lifted
over W, we can concentrate on the indecomposable endo-trivial kSD-modules. The following result is proved
using Theorem 1.1 and Remarks 2.3 and 3.3.

Proposition 4.9. Let R = WSD. If Vo = k is the trivial simple kSD-module, let Voow = W with trivial
SD-action. If Vi = L is as in (4.21), let Vi w = Ker(mw) where myw : W SD/(y) = W is the WSD-module
homomorphism defined by mw (x%(y)) = 1y for all 0 < a < 2471 — 1.

Leti € Z and j € {0,1}. Then Qo (Viw), as defined in Remark 2.5, is a lift of Qigp(V;) over W.
Moreover, there are precisely four distinct deformations of Qg (V;) over W. The universal deformation of
Qion (V) is given by the isomorphism class of the R SD-module U(SD, Qi (V;)) = Qyap(Viw) @w R on
which x (resp. y) acts diagonally as multiplication by x @ T (resp. y @ Y).

The following remark deals with the final case of cyclic groups.

Remark 4.10. Let p be a prime number, and let G be a cyclic group of order p? > 3. Let k be a field of
characteristic p and let W be a complete discrete valuation ring of characteristic 0 that has k as its residue
field. Let T'(G) denote the group of equivalence classes of endo-trivial kG-modules. By [14, Cor. 8.8], T(G)
is a cyclic group of order 2 given by {[k], [ (k)]}.

Let Vp = k be the trivial simple kG-module, and let Vp w = W with trivial G-action. If ¢ € {0, 1}, then
Qo (Vow), as defined in Remark 2.3, is a lift of Q¢ (Vo) over W. By Remark 3.3, the isomorphism class
of Wy :(Vo.w), as a module for G over W, is the unique deformation of 2}, (Vy) over W when p > 2.
On the other hand, if p = 2 then there are precisely two distinct deformations of Q. (V) over W. The
universal deformation of Q. (Vp) is given by the isomorphism class of the RG-module U(G, Q% (Vo)) =
Yy o(Vow) @w R on which z (resp. y) acts diagonally as multiplication by = ® T (resp. y ® 7).
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