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1. Introduction

Let k be a field of positive characteristic p, let G be a finite group, and let V be a finitely generated 

kG-module. It is a classical problem to analyze when V can be lifted to a module for G over a complete 

discrete valuation ring W of characteristic 0 that has k as its residue field. For example, Green showed in [17]

that if all 2-extensions of V by itself are trivial, then V can always be lifted over W . When G is a p-group, 

Alperin showed in [2] that every endo-trivial kG-module can be lifted to an endo-trivial WG-module. In [19, 

Thm. 1.3], Alperin’s argument was generalized to endo-trivial modules for arbitrary finite groups. The proof 

given in [19, Sect. 2] uses that k contains enough roots of unity (see Example 3.2). We show how to combine 

the work in [19, Sect. 2] with obstruction theory to prove this result without any additional assumptions 
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on k (see Lemma 3.1). The question of whether V can be lifted over W can be reformulated in terms of the 

versal deformation ring R(G, V ) of V by asking whether there is a W -algebra homomorphism R(G, V ) → W . 

It is then a natural problem to determine the full versal deformation ring R(G, V ) and the corresponding 

versal deformation. In this paper, we do this for all endo-trivial kG-modules V . In the case when k has 

characteristic 2 and G is either a semidihedral or a (generalized) quaternion 2-group, we moreover give an 

explicit description of the versal deformation of every indecomposable endo-trivial kG-module.

Recall that for arbitrary p and G, a finitely generated kG-module V is called endo-trivial if the kG-module 

Homk(V, V ) ∼= V ∗ ⊗k V is isomorphic to a direct sum of the trivial simple kG-module k and a projective 

kG-module. Endo-trivial modules play an important role in the modular representation theory of finite 

groups. They arise in the context of derived equivalences and stable equivalences of block algebras, and 

also as building blocks for the more general endo-permutation modules (see for example [14,29]). In [12,11], 

Carlson and Thévenaz classified all endo-trivial kG-modules when G is a p-group. The classification of the 

endo-trivial kG-modules for arbitrary finite groups is still ongoing (see for example [9] and its references). 

Since the stable endomorphism ring of every endo-trivial kG-module is one-dimensional over k, it follows 

from [6, Prop. 2.1] that V has a well-defined universal deformation ring R(G, V ).

The topological ring R(G, V ) is universal with respect to deformations of V over all complete local 

commutative Noetherian W -algebras R with residue field k. A deformation of V over such a ring R is 

given by the isomorphism class of a finitely generated RG-module M which is free over R, together with 

a kG-module isomorphism k ⊗R M → V . There is also a universal deformation of V over R(G, V ) from 

which every other deformation of V over R arises via a unique specialization homomorphism R(G, V ) → R. 

(see Section 2 for more details).

In number theory, the main motivation for studying universal deformation rings of representations of 

finite groups is to provide evidence for and counter-examples to various possible conjectures concerning ring 

theoretic properties of universal deformation rings for profinite Galois groups. The idea is that universal 

deformation rings for finite groups can be more easily described using deep results from modular represen-

tation theory due to Brauer, Erdmann [16], Linckelmann [20,21], and others. Moreover, the results in [15]

show that if Γ is a profinite group and V is a finite dimensional k-vector space with a continuous Γ-action 

which has a universal deformation ring, then R(Γ, V ) is the inverse limit of the universal deformation rings 

R(G, V ) when G ranges over all finite discrete quotient groups of Γ through which the Γ-action on V factors. 

Thus to answer questions about the ring structure of R(Γ, V ), it is natural to first consider the case when 

Γ = G is finite.

The following is our first main result.

Theorem 1.1. Let V be a finitely generated endo-trivial kG-module. Let V1 be a non-projective indecomposable 

direct summand of V , which is unique up to isomorphism.

(i) The universal deformation ring R(G, V ) is isomorphic to the group algebra WGab,p where Gab,p is the 

maximal abelian p-quotient group of G.

(ii) Let VW be a lift of V over W . Then the universal deformation of V over WGab,p is given by the 

isomorphism class of VW ⊗W WGab,p, as a module for G over WGab,p, on which g ∈ G acts diagonally 

as multiplication by g on VW and as multiplication by its image g on WGab,p.

(iii) Suppose D is a defect group of the block of kG to which V1 belongs. Then R(G, V ) is a quotient ring 

of the group ring WD, giving a positive answer to [6, Question 1.1] for endo-trivial modules.

In [7,25], Broué and Puig introduced and studied so-called nilpotent blocks. Using [25], we obtain the 

following result as a consequence of Theorem 1.1, where we assume as in [25] that k is algebraically closed.
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Corollary 1.2. Suppose k is algebraically closed, and B̂ is a nilpotent block of WG with a defect group D. 

Suppose V is a finitely generated kG-module belonging to B̂ such that the stable endomorphism ring of V as 

a kG-module is isomorphic to k. Then the universal deformation ring R(G, V ) is isomorphic to WDab,p.

The main tools in the proof of Theorem 1.1 are the results in [2,19] about lifting endo-trivial kG-modules 

to endo-trivial WG-modules, together with the result [4, Lemma 2.2.2] that shows that stable equivalences 

of Morita type over W preserve universal deformation rings.

Alperin’s proof in [2], and its extended version in [19], of the existence of a lift of a given endo-trivial 

kG-module V over W is not constructive. Namely, after reducing to the case when the image of a represen-

tation ρ : G → GLn(k) giving rise to V lies in SLn(k), endo-triviality of V is used to show that an infinite 

sequence of lifting obstructions vanishes, leading to a lift of this image to a subgroup of SLn(W ).

Since the description of the universal deformation in part (ii) of Theorem 1.1 depends on the description 

of a lift of V over W , the question arises how one can construct a lift VW of V over W without using 

an infinite sequence of vanishing lifting obstructions. In other words, one would like to give an explicit 

description of the G-action on a W -basis of VW . This problem can be compared to constructing an explicit 

solution by radicals to a polynomial equation rather than just proving that such a solution exists.

In this paper, we focus on the case when G is a p-group and the group T (G) of equivalence classes of 

endo-trivial kG-modules has a non-trivial torsion subgroup. By [12, Thm. 1.1], this means that either G is 

cyclic of order at least 3, or p = 2 and G is a 2-group that is either semidihedral or (generalized) quaternion.

Our second main result is an explicit description of a lift over W of every indecomposable endo-trivial 

kG-module for these G. The following remark gives a summary of this result. For the precise versions, see 

Propositions 4.5–4.7 and 4.9 and Remark 4.10.

Remark 1.3. Let G be a p-group such that the group of equivalence classes of endo-trivial modules T (G)

has a non-trivial torsion subgroup. Let V be an indecomposable endo-trivial kG-module of k-dimension n.

To provide an explicit description of a G-action on W n making W n into a WG-module VW that lifts V

over W , one needs to solve at most one quadratic equation of the form

b2 + f1(t) b + f0(t) = 0 (1.1)

with f0(t), f1(t) ∈ Z[t] for an element b in Zp[[t]]. Moreover, if one needs to solve such an equation (1.1)

then p = 2 and G is a generalized quaternion group whose order is at least 16. In this case, finding such a 

solution is equivalent to taking the square roots of explicitly given elements in certain cyclotomic extensions 

of Q2.

When p is odd, the isomorphism class of VW , as a module for G over W , is the unique deformation 

of V over W . When p = 2, there are precisely four distinct deformations of V over W . In all cases, the 

isomorphism class of VW ⊗W WGab,p, as a module for G over WGab,p on which G acts diagonally, is the 

universal deformation of V over WGab,p.

The significance of this result is that it bounds the computational complexity of producing universal 

deformations. We view this as analogous to how the quadratic formula gives a more explicit solution of 

a quadratic equation than saying the roots are the convergent limits of an infinite sequence of operations 

resulting from Newton’s method. The latter is similar to Alperin’s method in [2] of showing that an infinite 

sequence of lifting obstructions vanishes.

The main ingredient in the proof of Remark 1.3, and its more precise versions, is the explicit description 

of the indecomposable endo-trivial kG-modules V . If G is cyclic, this is given in [14, Cor. 8.8]. If p = 2

and G is either a semidihedral or a (generalized) quaternion 2-group, we use the description given in [10, 

Sects. 6 and 7].
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The paper is organized as follows: In Section 2, we give a brief introduction to deformation rings and 

deformations. In particular, we show in Remark 2.3 how to use an explicit lift of a finitely generated 

kG-module V over W to construct an explicit lift of any (co-)syzygy Ωi(V ) over W . In Section 3, we show 

how to combine the work in [19, Sect. 2] with obstruction theory to prove that we can lift any endo-trivial 

kG-module V over W , without any additional assumption on k (see Example 3.2 and Lemma 3.1). Moreover, 

we prove Theorem 1.1 and Corollary 1.2. In Section 4, we prove the precise versions of Remark 1.3 and give 

an explicit description of the universal deformation of every indecomposable endo-trivial kG-module when 

G is a p-group and T (G) has a non-trivial torsion subgroup. The case when p = 2 and G is a (generalized) 

quaternion group is proved in Propositions 4.5–4.7. The remaining cases are proved in Proposition 4.9 and 

Remark 4.10.

Part of this paper constitutes the Ph.D. thesis of the third author under the supervision of the first 

author [28]. We would like to thank the referee for their careful reading of our paper.

Unless stated otherwise, our modules are finitely generated left modules. On the other hand, when R

and S are associative rings with 1 then an R–S-bimodule M is both a left R-module and a right S-module 

such that for all r ∈ R, s ∈ S and m ∈ M one has r(ms) = (rm)s. Our maps are written on the left such 

that the map composition f ◦ g means f after g.

2. Preliminaries

In this section, we give a brief introduction to versal and universal deformation rings and deformations. 

For more background material, we refer the reader to [24] and [15].

Let k be a field of positive characteristic p, and let W be a complete local commutative Noetherian ring 

of characteristic 0 that has k as its residue field. If k is a perfect field, one often chooses W to be the ring of 

infinite Witt vectors over k. Let Ĉ be the category of all complete local commutative Noetherian W -algebras 

R with unique maximal ideal mR and fixed residue map πR : R → k = R/mR. The morphisms in Ĉ are 

continuous W -algebra homomorphisms which induce the identity map on k.

Suppose G is a finite group and V is a finitely generated kG-module. A lift of V over an object R in Ĉ
is a pair (M, φ) where M is a finitely generated RG-module that is free over R, and φ : k ⊗R M → V is an 

isomorphism of kG-modules. Two lifts (M, φ) and (M ′, φ′) of V over R are said to be isomorphic if there 

is an RG-module isomorphism f : M → M ′ with φ = φ′ ◦ (k ⊗ f). The isomorphism class [M, φ] of a lift 

(M, φ) of V over R is called a deformation of V over R, and the set of all such deformations is denoted by 

DefG(V, R). The deformation functor

F̂V : Ĉ → Sets

is a covariant functor which sends an object R in Ĉ to DefG(V, R) and a morphism α : R → R′ in Ĉ to 

the map DefG(V, R) → DefG(V, R′) defined by [M, φ] �→ [R′ ⊗R,α M, φα], where φα = φ after identifying 

k ⊗R′ (R′ ⊗R,α M) with k ⊗R M .

Suppose there exists an object R(G, V ) in Ĉ and a deformation [U(G, V ), φU ] of V over R(G, V ) with 

the following property: For each R in Ĉ and for each lift (M, φ) of V over R there exists a morphism 

α : R(G, V ) → R in Ĉ such that F̂V (α)([U(G, V ), φU ]) = [M, φ], and moreover α is unique if R is the ring 

of dual numbers k[ε]. Then R(G, V ) is called the versal deformation ring of V and [U(G, V ), φU ] is called 

the versal deformation of V . Note that R(G, V ) and [U(G, V ), φU ] are unique up to isomorphism.

If the morphism α is unique for all R and all lifts (M, φ) of V over R, then R(G, V ) is called the universal 

deformation ring of V and [U(G, V ), φU ] is called the universal deformation of V . In other words, R(G, V )

is universal if and only if R(G, V ) represents the functor F̂V in the sense that F̂V is naturally isomorphic 

to the Hom functor HomĈ(R(G, V ), −). In this case, R(G, V ) and [U(G, V ), φU ] are unique up to a unique 

isomorphism.
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By [24], every finitely generated kG-module V has a versal deformation ring. By a result of Faltings 

(see [15, Prop. 7.1]), V has a universal deformation ring if EndkG(V ) = k.

Proposition 2.1. ([6, Prop. 2.1], [5, Rem. 2.1]) Suppose V is a finitely generated kG-module whose stable 

endomorphism ring EndkG(V ) is isomorphic to k. Then V has a universal deformation ring R(G, V ). 

Moreover, if R is in Ĉ and (M, φ) and (M ′, φ′) are lifts of V over R such that M and M ′ are isomorphic 

as RG-modules then [M, φ] = [M ′, φ′].

In particular, this means that if the stable endomorphism ring of V is isomorphic to k, then we do not 

need to distinguish between deformations [M, φ] of V over an object R in Ĉ, as defined above, and so-called 

weak deformations [M ] of V over R (i.e., isomorphism classes of RG-modules M with k ⊗R M ∼= V , without 

specifying a particular kG-module isomorphism φ : k ⊗R M → V ).

Suppose V is a finitely generated kG-module with EndkG(V ) ∼= k. Then there is a non-projective inde-

composable kG-module V1, which is unique up to isomorphism, such that V is isomorphic to V1 ⊕Q for some 

projective kG-module Q. In particular, EndkG(V1) ∼= k. Moreover, if Ω = ΩkG denotes the syzygy functor 

(also called Heller operator, see, for example, [1, §20]) then EndkG(Ω(V )) ∼= k. We have the following result.

Lemma 2.2. [6, Cors. 2.5 and 2.8] Let V be a finitely generated kG-module with EndkG(V ) ∼= k.

(i) Then R(G, Ω(V )) is universal and isomorphic to R(G, V ).

(ii) Let V1 be a non-projective indecomposable kG-module such that V is isomorphic to V1 ⊕ Q for some 

projective kG-module Q. Then R(G, V1) is universal and isomorphic to R(G, V ).

One of our goals is to construct explicit deformations by constructing explicit lifts. The following remark 

shows how to construct an explicit lift of an arbitrary (co-)syzygy of a finitely generated kG-module V over 

W provided one knows an explicit lift of V over W .

Remark 2.3. Let V be a finitely generated kG-module, and suppose we know an explicit lift VW of V over 

W with corresponding kG-module isomorphism φV : k ⊗W VW → V .

By [13, Props. 6.5 and 6.7], a projective kG-module can always be lifted over W . Let π : P → V (resp. 

ι : V → E) be a projective cover (resp. injective hull) of V as a kG-module. Since kG is self-injective, 

it follows that E is a projective kG-module. Let PW (resp. EW ) be a lift of P (resp. E) over W , with 

corresponding kG-module isomorphism φP : k ⊗W PW → P (resp. φE : k ⊗W EW → E). In particular, 

EW is a projective WG-module.

Since PW is a projective WG-module, there exists a WG-module homomorphism πW : PW → VW such 

that φV ◦ (k ⊗W πW ) ◦ φ−1
P = π. By Nakayama’s Lemma, it follows that πW is surjective. Since Ker(πW )

is a free W -module, it follows that Ker(πW ) is a lift of Ω(V ) = Ker(π) over W . We use the notation 

ΩW G(VW ) = Ker(πW ). This is a variant for WG-lattices of the Heller operator defined in [23, §2.14].

We can use a similar argument as in the proof of [6, Prop. 2.4] to find an explicit lift of Ω−1(V ) = Coker(ι). 

Namely, we have a short exact sequence

0 → mW EW → EW → E → 0 (2.1)

and we have Ext1
W G(VW , mW EW ) = 0. This implies that there exists a WG-module homomorphism ιW :

VW → EW such that φE ◦ (k ⊗W ιW ) ◦ φ−1
V = ι. Since ι is injective and since VW and EW are free over 

W , it follows by Nakayama’s Lemma that ιW is also injective. Thus we have a commutative diagram of 

WG-modules
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0 VW

ιW

EW Coker(ιW ) 0

0 V
ι

E Ω−1(V ) 0

with exact rows, and Coker(ιW ) is a free W -module. Therefore, Coker(ιW ) is a lift of Ω−1(V ) = Coker(ι)

over W . We use the notation Ω−1
W G(VW ) = Coker(ιW ).

3. Endo-trivial modules

Assume the notation from the previous section. Moreover, assume that W is a complete discrete valuation 

ring of characteristic 0 that has k as its residue field. Suppose V is a finitely generated kG-module. We say 

V is endo-trivial if its k-endomorphism ring Endk(V ) is, as a kG-module, stably isomorphic to the trivial 

kG-module k. In other words, Endk(V ) is isomorphic to a direct sum of k and a projective kG-module.

Note that every endo-trivial kG-module satisfies EndkG(V ) ∼= k. If G is a p-group then it follows from 

[8] that the endo-trivial kG-modules coincide with the kG-modules V with EndkG(V ) ∼= k. However, for 

arbitrary finite groups, the set of isomorphism classes of kG-modules whose stable endomorphism rings are 

isomorphic to k usually properly contains the isomorphism classes of endo-trivial kG-modules.

In this section, we prove Theorem 1.1. One of the main ingredients in the proof is the following result. 

This was proved when G is a p-group by Alperin in [2] and in [19, Thm 1.3, pp. 144–145] for all G under 

the assumption that k is algebraically closed (see the assumptions of [19, Sect. 2]).

Lemma 3.1. Let k be an arbitrary field of positive characteristic p, and let W be a complete discrete valuation 

ring of characteristic 0 that has k as its residue field. If V is an endo-trivial kG-module then V can be lifted 

to an endo-trivial WG-module VW .

This result was in fact stated for all k and G in [19, Thm. 1.3]. However, the proof of [19, Thm. 1.3] given 

in [19, Sect. 2] uses that k has enough roots of unity and does not apply for all k, as the following example 

shows.

Example 3.2. Suppose p = 3, k = Z/3, and G = Σ3 is the symmetric group on 3 letters. Let V = Ω(k) be 

the first syzygy of the trivial simple kG-module k, so that V is an endo-trivial kG-module. Let H be the 

subgroup of order 3 in G. The action of G on V is faithful, giving an injection G ↪→ GL2(k) after picking 

a basis of V . View G as a subgroup of GL2(k) and let n = 2. On [19, p. 144] the groups G1 = GC and 

G0 = G1 ∩ SL2(k) are defined when one sets

C = {aIn : an = det(g) for some g ∈ G}.

One checks that G0 = H · {±I2}. However, G1 is not the central product of G0 and C, so the argument of 

[19, pp. 144–145] does not apply for arbitrary k of characteristic p.

Proof of Lemma 3.1. We indicate how to combine the work in [19, Sect. 2] with obstruction theory to deduce 

the general case from the case in which k is algebraically closed.

Both [19, Lemma 2.1] and [19, Prop. 2.4] are true for an arbitrary field k of characteristic p. Moreover, 

if N is a WG-module that is free over W such that N/mW N is a projective kG-module, then it follows, 

for example from [27, Sect. 14.2], that N is a projective WG-module without any additional assumptions 

on k. Write the order of G as pd m, where p does not divide m. Let n = dimk V and let ρ : G → GLn(k) be 

a representation of V . By [19, Lemma 2.1], n is relatively prime to p.



F.M. Bleher et al. / Journal of Pure and Applied Algebra 223 (2019) 1897–1912 1903

Suppose first that k contains all (nm)-th roots of unity. Then the arguments of [19, pp. 144–145] show 

that V can be lifted to an endo-trivial WG-module VW .

Suppose next that k is an arbitrary field of characteristic p. Let ζ be a primitive (nm)-th root of unity 

in a fixed separable closure of k. Define k′ = k(ζ) and W ′ = W [ζ]. Note that since nm is relatively prime 

to p, W ′ is unramified over W . In particular, if 
 is a uniformizer for W then 
 is also a uniformizer 

for W ′. Let ρ′ : G → GLn(k′) be the representation of G over k′ obtained by composing ρ with the inclusion 

GLn(k) ↪→ GLn(k′). Define Gρ (resp. Gρ′) to be the image of ρ (resp. ρ′). Our goal is to lift Gρ to a subgroup 

of GLn(W ), by knowing that we can lift Gρ′ to a subgroup of GLn(W ′). Let � ≥ 1. Suppose we have lifted Gρ

to a subgroup Gρ,� of GLn(W/
�W ) such that the injection GLn(W/
�W ) → GLn(W ′/
�W ′) provides a 

subgroup Gρ′,� of GLn(W ′/
�W ′) lifting Gρ′ . The obstruction to lifting Gρ,� to GLn(W/
�+1W ) is a class c

in H2(G, ��W
��+1W

⊗k Ad(ρ)), where Ad(ρ) is the adjoint representation associated to ρ, i.e. Ad(ρ) = Endk(V )

with G acting by conjugation. On the other hand, the obstruction to lifting Gρ′,� to GLn(W ′/
�+1W ′) is 

the class c′ in

H2(G,

�W ′


�+1W ′
⊗k′ Ad(ρ′)) = k′ ⊗k H2(G,


�W


�+1W
⊗k Ad(ρ))

which is obtained from c by base changing from k to k′. (Note that we use here that W ′ is unramified over W .) 

Since by the arguments of [19, pp. 144–145], the class c′ vanishes, this means that c must vanish as well, 

leading to a lift of Gρ to a subgroup Gρ,�+1 of GLn(W/
�+1W ) such that the injection GLn(W/
�+1W ) →
GLn(W ′/
�+1W ′) provides a subgroup Gρ′,�+1 of GLn(W ′/
�+1W ′) lifting Gρ′ . Taking the limit as � → ∞
of these lifts completes the proof of Lemma 3.1. �

Using Lemma 3.1 together with [4, Lemma 2.2.2], we can now prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.1, V can be lifted to an endo-trivial WG-module VW . We may view the 

left WG-module VW as a WG–WG-bimodule by letting G act trivially on the right. Define M = VW ⊗W WG. 

Then M is a WG–WG-bimodule, where the G-action on the left is diagonal and the G-action on the right 

is on the WG-factor. Hence M is projective (in fact, free) both as a left and as a right WG-module. Define 

N = HomW (M, W ). Then

M ⊗W G N ∼= WG ⊕ P and

N ⊗W G M ∼= WG ⊕ Q

where P and Q are projective WG–WG-bimodules, and both of these isomorphisms are isomorphisms 

of WG–WG-bimodules. In particular, M and N define a stable autoequivalence of Morita type of the 

W -stable category WG-mod, which is the quotient category of the category WG-mod of finitely generated 

WG-modules by the subcategory of relatively W -projective modules (see [22] and [23, §2.13 and §4.13] for 

more details). If V0 = k is the trivial simple kG-module then

(k ⊗W M) ⊗kG V0
∼= (k ⊗W VW ) ⊗k (kG ⊗kG V0)

∼= V ⊗k V0
∼= V

where we use that G acts trivially on the right of VW . Hence it follows by [4, Lemma 2.2.2] that R(G, V ) ∼=
R(G, V0). By [24, Sect. 1.4], R(G, V0) is isomorphic to WGab,p and the universal deformation of V0 is 

given by the isomorphism class of U(G, V0) = WGab,p as an R(G, V0)G-module on which g ∈ G acts as 

multiplication by its image g ∈ Gab,p. The proof of [4, Lemma 2.2.2] shows that the isomorphism class of 

the universal deformation of V is given by the isomorphism class of
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(M ⊗W R(G, V0)) ⊗R(G,V0)G U(G, V0) ∼= (VW ⊗W R(G, V0)G) ⊗R(G,V0)G U(G, V0)

∼= VW ⊗W U(G, V0)

∼= VW ⊗W WGab,p

where g ∈ G acts diagonally as multiplication by g on VW and as multiplication by its image g on WGab,p. 

This proves parts (i) and (ii) of Theorem 1.1.

For part (iii) of Theorem 1.1, let V1 be a non-projective indecomposable direct summand of V , as in 

the statement of the theorem. Then V1 is unique up to isomorphism, and V is the direct sum of V1 and a 

projective kG-module. In particular, we have R(G, V ) ∼= R(G, V1). Since by [19, Lemma 2.1] the k-dimension 

of V1 is not divisible by p, it follows by [13, Thm. 19.26] that the vertices of V1 are Sylow p-subgroups of G. 

Therefore, D must also be a Sylow p-subgroup. Since Gab,p is a quotient group of each Sylow p-subgroup 

of G, it follows that R(G, V ) is isomorphic to a quotient ring of WD. �

Remark 3.3. In the notation of Theorem 1.1(ii), the isomorphism class of VW , as a module for G over W , is the 

unique deformation of V over W when p > 2. If p = 2 then the number of deformations of V over W equals 

the order of the maximal elementary abelian 2-quotient group of G. This follows since R(G, V ) ∼= WGab,p

by Theorem 1.1(i) and since the deformations of V over W are in one-to-one correspondence with the 

morphisms R(G, V ) → W in the category Ĉ.

We now turn to nilpotent blocks, and the proof of Corollary 1.2. The following remark recalls the most 

important definitions and results for nilpotent blocks.

Remark 3.4. Assume that k is algebraically closed. Let D be a finite p-group, let G be a finite group and 

let B̂ be a nilpotent block of WG that has D as a defect group. By [7, Def. 1.1], this means that whenever 

(D1, e1) is a B̂-Brauer pair then the quotient group NG(D1, e1)/CG(D1) is a p-group. In other words, for 

all subgroups D1 of D and for all block idempotents e1 of kCG(D1) associated with B̂, the quotient of 

the stabilizer NG(D1, e1) of e1 in NG(D1) by the centralizer CG(D1) is a p-group. In [25, Sect. 1.7], Puig 

rephrased this definition using the theory of local pointed groups (see also [29, Prop. 49.8]).

By [25, §1.4], B̂ is Morita equivalent to WD. In [26, Thm. 8.2], Puig showed that the converse is also 

true in a very strong way. Namely, if B̂′ is another block over W such that there is a stable equivalence of 

Morita type between B̂ and B̂′, then B̂′ is also nilpotent. Hence Corollary 1.2 can be applied in particular 

if there is only known to be a stable equivalence of Morita type between B̂ and WD.

Proof of Corollary 1.2. By Remark 3.4, the nilpotent block B̂ of WG is Morita equivalent to WD. Suppose 

V is a finitely generated kG-module belonging to B̂, and V ′ is the kD-module corresponding to V under this 

Morita equivalence. Then the stable endomorphism ring of V as a kG-module is isomorphic to k if and only 

if the stable endomorphism ring of V ′ as a kD-module is isomorphic to k. Suppose now that EndkG(V ) ∼= k. 

Then it follows for example from [3, Prop. 2.5] that R(G, V ) ∼= R(D, V ′). By [8] and Theorem 1.1, this 

implies that R(G, V ) ∼= WDab,p. �

4. Explicit universal deformations of endo-trivial modules

Assume the notation from the previous section. Suppose G is a p-group such that the group T (G) of 

equivalence classes of endo-trivial kG-modules has a non-trivial torsion subgroup. By [12, Thm. 1.1], this 

means that G is either cyclic of order at least 3, or p = 2 and G is a semidihedral or a (generalized) 

quaternion 2-group.

The goal of this section is to give an explicit description of the universal deformations of all endo-trivial 

kG-modules V . In particular, we will prove the precise versions of Remark 1.3. In Section 4.1, we will 
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consider the case when p = 2 and G is a (generalized) quaternion 2-group. In Section 4.2, we will consider 

the remaining cases.

4.1. The (generalized) quaternion 2-groups

Fix an integer d ≥ 3, and let Q be a (generalized) quaternion group of order 2d with the following 

presentation

Q = 〈x, y | x2d−1

= 1, x2d−2

= y2, yxy−1 = x−1〉. (4.1)

Then Q = 〈yx, y〉 where yx and y both have order 4. Define

Q = Qab,2 = 〈yx, y〉 = {1, x, y, yx} (4.2)

where for g ∈ Q, g denotes its image in Q.

Let k be a field of characteristic 2 and let W be a complete discrete valuation ring of characteristic 0 

that has k as its residue field. Let F2 be the prime subfield of k with two elements, and let Z2 be the 2-adic 

integers such that Z2 ⊆ W .

Definition 4.1. Let X = 〈x〉 be a maximal cyclic subgroup of Q, which is unique when d ≥ 4. Let TrX =
∑2d−1−1

j=0 xj be the trace element of X, and let S be the ring kX/k · TrX . Let ∗ denote the involution of S

that is induced by inversion on X. Suppose β ∈ S is an element satisfying

β β
∗

= x2d−2

(4.3)

and define

y · s = β s∗ for all s ∈ S. (4.4)

As in the proof of [10, Lemma 6.4], this makes S = kX/k ·TrX into a kQ-module, which we denote by L(β). 

Since ResQ
〈x〉 L(β) ∼= Ω1

k〈x〉(k) and 〈x〉 contains the unique elementary abelian subgroup of Q, it follows from 

[10, Lemma 2.9] that L(β) is an endo-trivial kQ-module of k-dimension 2d−1 − 1.

Remark 4.2. Concerning the existence of an element β ∈ S satisfying (4.3), we have the following by [10, 

Sect. 6].

(a) If d ≥ 4 then it is shown in the proof of [10, Lemma 6.4] that the element

β = 1 + (x + x2)(1 + x2d−2+2)

⎛

⎝

2d−4−1
∑

i=0

x4i

⎞

⎠

in S satisfies (4.3).

(b) Suppose now that d = 3 and that k contains a primitive cube root ω of unity. Then

β = ω2 + ωx

in S satisfies (4.3). Moreover, consider the k-basis of S given by {1, 1 + x, 1 + x2}. Then the actions of 

x and y on L(β) with respect to this basis are given by the matrices
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ρ(x) =

⎛

⎜

⎝

1 0 0

1 1 0

0 1 1

⎞

⎟

⎠
and ρ(y) =

⎛

⎜

⎝

1 0 0

ω 1 0

0 ω2 1

⎞

⎟

⎠
.

Remark 4.3. Let T (Q) be the group of equivalence classes of endo-trivial kQ-modules. By [10, Sect. 6], we 

have the following result.

(a) If d = 3 and k does not contain a primitive cube root of unity, then T (Q) is a cyclic group of order 4 

given by {[Ωi
kQ(k)]}3

i=0. Since the k-dimensions of Ωi
kQ(k) are congruent to ±1 modulo 2d = 8, there 

cannot be an endo-trivial kQ-module of dimension 2d−1 − 1 = 3. By Definition 4.1, this means that 

there cannot exist an element β ∈ S satisfying (4.3).

(b) Suppose now that either d ≥ 4 or d = 3 and k contains a primitive cube root ω of unity. Then T (Q) is 

isomorphic to Z/4 ⊕Z/2. More precisely, let L = L(β) be as in Definition 4.1 for some β ∈ S satisfying 

(4.3). Then T (Q) is generated by [Ω1
kQ(k)] and [Ω1

kQ(L)], and [Ω1
kQ(L)] has order 2. In particular, each 

element of T (Q) is of the form [Ωi
kQ(k)] or [Ωi

kQ(L)] = [Ωi
kQ(k) ⊗ L] for some i ∈ {0, 1, 2, 3}.

By Theorem 1.1, we know that the universal deformation ring of every endo-trivial kQ-module is iso-

morphic to W Q where Q is as in (4.2). We now give an explicit description of the universal deformation 

of every endo-trivial kQ-module V . Since projective kQ-modules are free, and hence can easily be lifted 

over W , we can concentrate on the indecomposable endo-trivial kQ-modules.

The crucial step in constructing an explicit lift over W of the endo-trivial kQ-module L = L(β) as in 

Remark 4.3(b) when d ≥ 4 is to give a constructive version in Proposition 4.6 of the following result:

Proposition 4.4. Suppose d ≥ 4. Let X = 〈x〉, let TrX =
∑2d−1−1

j=0 xj, and let S2 = Z2X/ Z2 · TrX . Let ∗
denote the involution of S2 that is induced by inversion on X. There exists an element β ∈ S2 satisfying

ββ∗ = x2d−2

. (4.5)

The existence of β is subtle because S2 is not a regular ring. We use a surjection π : Z2[[t]] → S+
2 where 

S+
2 is the subring of S2 that is invariant under ∗. To construct β we need Proposition 4.5 below which shows 

that a particular quadratic equation, given by (4.7), with coefficients in Z[t] has a solution in Z2[[t]]. In 

Proposition 4.6, we then use this solution to find β ∈ S2 satisfying (4.5).

Proposition 4.5. Suppose d ≥ 4. For j ≥ 0, define pj ∈ Z[t] inductively by p0 = 2, p1 = t and the recurrence 

relation

pj+1 = tpj − pj−1 for j ≥ 1. (4.6)

Let τ =
∑2d−2−1

j=0 pj, and let a = 1 + 2d−4 t. Then the equation

b2 + tab + a2 = 1 − τ (4.7)

has a solution b in Z2[[t]]. Moreover, the discriminant Δ(t) of (4.7) is a polynomial in Z[t] such that 

Δ(t) = t2((1 − t)2 − 8) if d = 4, and if d ≥ 5 then Δ(t) = t2(1 + 4 m(t)) for some polynomial m(t) ∈ Z[t]

whose constant coefficient is divisible by 2.

Proof. Consider the recurrence relation for pj in (4.6). The associated quadratic equation

Y 2 − tY + 1 = 0 (4.8)
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in the variable Y has two solutions y1, y2 which belong to a quadratic extension of the field Q2((t)) and 

which are integral units over the ring Z2[[t]]. Note that y0
1 + y0

2 = 2 = p0 and y1
1 + y1

2 = t = p1. Since y1 and 

y2 are roots of (4.8), it follows that the recurrence relation (4.6) holds for yj
1 + yj

2, which implies that

pj = yj
1 + yj

2 (4.9)

for all j ≥ 0. Using that (y1 − 1)(y2 − 1) = 2 − t and that y1, y2 satisfy (4.8), we rewrite τ as

τ =
2d−2−1

∑

j=0

(yj
1 + yj

2) =
y2d−2

1 − 1

y1 − 1
+

y2d−2

2 − 1

y2 − 1

=
(y2 − 1)

(

∑2d−3

a=1

(

2d−3

a

)

(ty1)a(−1)a
)

+ (y1 − 1)
(

∑2d−3

a=1

(

2d−3

a

)

(ty2)a(−1)a
)

2 − t

=
t g(t)

2 − t

for some g(t) ∈ Z2[[t]]. Since τ ∈ Z2[[t]] and Z2[[t]] is a unique factorization domain, there exists h(t) ∈ Z2[[t]]

such that g(t) = (2 − t) h(t). Let A = Z2[[t]][y1, y2]. Using that y1, y2 satisfy (4.8), we have t2y2
1 ≡ −t2

mod t3A and t2y2
2 ≡ −t2 mod t3A. Hence we obtain the following congruence relations:

t(2 − t)h(t) ≡ (y2 − 1)

(

2
∑

a=1

(

2d−3

a

)

(ty1)a(−1)a

)

+ (y1 − 1)

(

2
∑

a=1

(

2d−3

a

)

(ty2)a(−1)a

)

mod t3A

≡ (y2 − 1)

(

2d−3(−ty1) −
(

2d−3

2

)

t2

)

+ (y1 − 1)

(

2d−3(−ty2) −
(

2d−3

2

)

t2

)

mod t3A

≡ t 2d−3 ((y2 − 1)(−y1) + (y1 − 1)(−y2)) + t2

(

2d−3

2

)

(−(y2 − 1) − (y1 − 1)) mod t3A

≡ t 2d−3 (−2 + t) + t2

(

2d−3

2

)

(2 − t) mod t3A

≡ t (2 − t)

(

−2d−3 + t

(

2d−3

2

))

mod t3A.

This implies

τ ≡ t

(

−2d−3 + t

(

2d−3

2

))

mod t3 Z2[[t]]. (4.10)

Setting a = 1 + 2d−4t in the quadratic equation (4.7) gives the discriminant

Δ(t) = t2(1 + 2d−4t)2 − 4(22d−8t2 + 2d−3t + τ) (4.11)

which is a polynomial in Z[t], since pj , j ≥ 0, and hence also τ , are polynomials in Z[t].

If d ≥ 5 then we obtain from (4.10) the congruence relation

Δ(t) ≡ t2
(

1 − 4
(

22d−8 + 2d−4
(

2d−3 − 1
)))

mod 4t3 Z2[[t]].

If d = 4 then τ =
∑3

j=0 pj = t3 + t2 − 2t and

Δ(t) = t2(1 − t)2

(

1 − 8

(1 − t)2

)

in Z2[[t]].
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In other words, for all d ≥ 4, there exists a polynomial f(t) ∈ Z2[t] and a power series m(t) in the maximal 

ideal (2, t) Z2[[t]] such that

Δ(t) = f(t)2(1 + 4 m(t)). (4.12)

Note that if d ≥ 5 then m(t) is actually a polynomial in Z[t] whose constant coefficient is divisible by 2. 

Using the binomial series for (1 + T )1/2 when T = 4 m(t) and noticing that 
(

1/2
j

)

4j is an element in 2 Z2 for 

all j ≥ 1, it follows that there exists a power series δ(t) ∈ Z2[[t]] satisfying

(1 + 2 δ(t))2 = 1 + 4 m(t).

Hence, if d ≥ 5 then

b = −2d−5 t2 + t δ(t) (resp. b = −t − 2d−5 t2 − t δ(t)) (4.13)

and if d = 4 then

b = −t2 + t(1 − t) δ(t) (resp. b = −t − t(1 − t) δ(t)) (4.14)

are power series in Z2[[t]] satisfying (4.7).

Recall that a polynomial in Z2[t] is said to be distinguished (or a Weierstrass polynomial) if its leading 

coefficient is a unit in Z2 and all its non-leading coefficients are divisible by 2 (see [18, §IV.9]).

Proposition 4.6. Suppose d ≥ 4. Let X = 〈x〉, let TrX =
∑2d−1−1

j=0 xj, and let S2 = Z2X/ Z2 · TrX . Let 

∗ denote the involution of S2 that is induced by inversion on X, and let S+
2 be the subring of S2 that is 

invariant under ∗. The map

π : Z2[[t]] → S+
2 given by π(t) = x + x−1 (4.15)

defines a surjective Z2-algebra homomorphism. The kernel of π is the ideal of Z2[[t]] generated by the monic 

distinguished polynomial Φ(t) in Z2[t] with coefficients in Z that is the product of the irreducible polynomials 

qj(t) over Q of the numbers ζ2j + ζ−1
2j when ζ2j is a root of unity of order 2j and j = 1, . . . , d − 1.

Let τ, a ∈ Z[t] and b ∈ Z2[[t]] be as in Proposition 4.5. Then

π(1 − τ) = x2d−2

(4.16)

and

β = π(a) + x π(b)

is an element of S2 satisfying (4.5), i.e. ββ∗ = x2d−2

.

Finding π(b) explicitly as an element of S+
2 is equivalent to finding an explicit square root of π(Δ(t))

inside S+
2 ⊂ S2, where Δ(t) is the discriminant of (4.7). The latter is equivalent to taking particular square 

roots of explicitly given elements inside the image of S2 under the injective Z2-algebra homomorphism

ιS2
: S2 → Q2 ⊗Z2

S2 =
d−1
∏

j=1

Q2(ζ2j ) (4.17)

which sends x in S2 to the tuple (ζ2j )d−1
j=1 .
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Proof. Let J = 〈∗〉 be the group of order two generated by the involution ∗. Then J acts on Z2X and we 

have an exact sequence of J-modules

0 → Z2 · TrX → Z2X → S2 → 0

in which J acts trivially on Z2 · TrX . Taking J-cohomology and using that H1(J, Z2 · TrX) = 0 since J acts 

trivially on Z2 · TrX
∼= Z2 and Z2 is torsion free, we obtain that (Z2X)J → SJ

2 = S+
2 is surjective. Note 

that (Z2X)J is a free Z2-module generated by

{xj + x−j}2d−2−1
j=1 ∪ {1, x2d−2}.

Let π : Z2[t] → S+
2 be the Z2-algebra homomorphism given by π(t) = x + x−1. The recurrence relation 

(4.6) gives immediately that π(pj) = xj + x−j for all j ≥ 0. Moreover, the definition of τ in Proposition 4.5

shows (4.16).

Define Φ(t) ∈ Z[t] to be the product of the irreducible polynomials qj(t) over Q of the numbers ζ2j + ζ−1
2j

when ζ2j is a root of unity of order 2j and j = 1, . . . , d − 1. Since S2 can be identified with the image of the 

injective Z2-algebra homomorphism ιS2
from (4.17), it follows that π(Φ(t)) = 0. Note that q1(t) = t + 2 and 

q2(t) = t. Moreover, using (ζ2j+1 +ζ−1
2j+1)2−2 = ζ2

2j+1 +(ζ2
2j+1)−1, it follows that qj+1(t) = qj(t2−2) for j ≥ 2. 

Therefore, we see that Φ(t) is a monic distinguished polynomial in Z2[t] with coefficients in Z of degree 2d−2. 

This implies that π induces a well-defined surjective Z2-algebra homomorphism π : Z2[[t]] → S+
2 such that 

the kernel of π contains the ideal of Z2[[t]] generated by Φ(t). Since Z2[[t]]/(Φ(t)) is a free Z2-module of 

rank 2d−2 and the rank of Q2 ⊗Z2
S+

2 is also 2d−2, it follows that Φ(t) generates the kernel of π.

Letting a = 1 + 2d−4 t, it follows from Proposition 4.5 that the equation

b2 + tab + a2 = 1 − τ

has a solution b in Z2[[t]]. Applying the homomorphism π from (4.15) to a and b we obtain an element

β = π(a) + x π(b)

in S2. Since β∗ = π(a) + x−1π(b), we have

ββ∗ = π(a)2 + π(a)π(b)(x + x−1) + π(b)2

= π(b2 + tab + a2).

Using (4.16), it follows that β is an element of S2 satisfying the relation (4.5).

For the last statement of Proposition 4.6, we use the injective Z2-algebra homomorphism ιS2
from (4.17). 

By Proposition 4.5, Δ(t) = t2((1 − t)2 − 8) if d = 4, and if d ≥ 5 then Δ(t) = t2(1 + 4 m(t)) for some 

polynomial m(t) ∈ Z[t] whose constant coefficient is divisible by 2.

If d = 4 then the inverse of π(1 − t) = 1 − x − x−1 in S2 is given by

u1 =
1

3
(−1 − 2x − x2 + x3 + 2x4 + x5 − x6 − 2x7).

This means that

π(Δ(t)) = (x + x−1)2 (1 − x − x−1)2
(

1 − 8 u2
1

)

for d = 4.

Therefore, for all d ≥ 4,



1910 F.M. Bleher et al. / Journal of Pure and Applied Algebra 223 (2019) 1897–1912

π(Δ(t)) = s2 (1 + 4r)

for explicitly given elements r, s ∈ S2, where r is in the Jacobson radical of S2. Let (1 + 4r)j be the image 

of 1 + 4r in Q2(ζ2j ) under the injection ιS2
in (4.17). Then we can take 

√
1 + 4r ∈ S2 to be the unique 

element whose component in Q2(ζ2j ) is the square root of (1 + 4r)j which is congruent to 1 modulo 2 mj

when mj = Z2[ζ2j ](1 − ζ2j ) is the maximal ideal of the ring of integers Z2[ζ2j ].

Proposition 4.7. Let R = W Q where Q is as in (4.2). If V0 = k is the trivial simple kQ-module, let 

V0,W = W with trivial Q-action. Define S = WX/W · TrX and S = kX/k · TrX .

(a) If d ≥ 4, let β ∈ S2 be the element from Proposition 4.6, and let β be the reduction of β modulo 2. Using 

the natural injections S2 ↪→ S and F2X/F2 · TrX ↪→ S, we view β ∈ S and β ∈ S.

(b) If d = 3 and k contains a primitive cube root ω of unity, let ω̂ ∈ W be a primitive cube root of unity 

lifting ω. Let β = ω̂2 − ω̂x ∈ WX/W · TrX , and let β = ω2 + ωx be its image in S.

In both cases (a) and (b), let V1 = L(β) be the corresponding kQ-module as in Definition 4.1. Define a 

W Q-module structure on V1,W = S = WX/W · TrX by letting y act as

y · v1 = β v∗
1 for all v1 ∈ V1,W . (4.18)

Let i ∈ {0, 1, 2, 3}. Let j = 0 if d = 3 and k does not contain a primitive cube root of unity, and let 

j ∈ {0, 1} in all other cases. Then Ωi
W Q(Vj,W ), as defined in Remark 2.3, is a lift of Ωi

kQ(Vj) over W . 

Moreover, there are precisely four distinct deformations of Ωi
kQ(Vj) over W . The universal deformation of 

Ωi
kQ(Vj) is given by the isomorphism class of the RQ-module U(Q, Ωi

kQ(Vj)) = Ωi
W Q(Vj,W ) ⊗W R on which 

x (resp. y) acts diagonally as multiplication by x ⊗ x (resp. y ⊗ y).

Proof. In both cases (a) and (b), β satisfies (4.5). To check that (4.18) defines a W Q-module structure on 

V1,W = S, we follow the corresponding argument in the proof of [10, Lemma 6.4]. The remaining statements 

of Proposition 4.7 now follow from Theorem 1.1 and Remarks 2.3 and 3.3.

4.2. The remaining cases

We now consider the remaining cases of p-groups G such that T (G) has a non-trivial torsion subgroup.

Suppose first that k is a field of characteristic 2, and let W be a complete discrete valuation ring of 

characteristic 0 that has k as its residue field. Fix an integer d ≥ 4, and let SD be a semidihedral group of 

order 2d with the following presentation

SD = 〈x, y | x2d−1

= y2 = 1, yxy−1 = x2d−2−1〉. (4.19)

Then SD = 〈yx, y〉 where yx has order 4 and y has order 2. Define

SD = SDab,2 = 〈yx, y〉 = {1, x, y, yx}. (4.20)

Remark 4.8. Let T (SD) denote the group of equivalence classes of endo-trivial kSD-modules. By [10, Sect. 7], 

T (SD) is isomorphic to Z ⊕ Z/2. More precisely, define

Y = k SD/〈y〉 and L = rad(Y ), (4.21)
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where SD/〈y〉 denotes the set of distinct left cosets of 〈y〉 in SD, and Y is the corresponding permutation 

module for SD over k. Then T (SD) is generated by [Ω1
kSD(k)] and [Ω1

kSD(L)], and [Ω1
kSD(L)] has order 2. 

In particular, each element of T (SD) is of the form [Ωi
kSD(k)] or [Ωi

kSD(L)] for some i ∈ Z.

By Theorem 1.1, we know that the universal deformation ring of every endo-trivial kSD-module is iso-

morphic to WSD where SD is as in (4.20). We now give an explicit description of the universal deformation 

of every endo-trivial kSD-module V . Since projective kSD-modules are free, and hence can easily be lifted 

over W , we can concentrate on the indecomposable endo-trivial kSD-modules. The following result is proved 

using Theorem 1.1 and Remarks 2.3 and 3.3.

Proposition 4.9. Let R = WSD. If V0 = k is the trivial simple kSD-module, let V0,W = W with trivial 

SD-action. If V1 = L is as in (4.21), let V1,W = Ker(πW ) where πW : W SD/〈y〉 → W is the W SD-module 

homomorphism defined by πW (xa〈y〉) = 1W for all 0 ≤ a ≤ 2d−1 − 1.

Let i ∈ Z and j ∈ {0, 1}. Then Ωi
W SD(Vj,W ), as defined in Remark 2.3, is a lift of Ωi

kSD(Vj) over W . 

Moreover, there are precisely four distinct deformations of Ωi
kSD(Vj) over W . The universal deformation of 

Ωi
kSD(Vj) is given by the isomorphism class of the R SD-module U(SD, Ωi

kSD(Vj)) = Ωi
W SD(Vj,W ) ⊗W R on 

which x (resp. y) acts diagonally as multiplication by x ⊗ x (resp. y ⊗ y).

The following remark deals with the final case of cyclic groups.

Remark 4.10. Let p be a prime number, and let G be a cyclic group of order pd ≥ 3. Let k be a field of 

characteristic p and let W be a complete discrete valuation ring of characteristic 0 that has k as its residue 

field. Let T (G) denote the group of equivalence classes of endo-trivial kG-modules. By [14, Cor. 8.8], T (G)

is a cyclic group of order 2 given by {[k], [Ω1
kG(k)]}.

Let V0 = k be the trivial simple kG-module, and let V0,W = W with trivial G-action. If i ∈ {0, 1}, then 

Ωi
W G(V0,W ), as defined in Remark 2.3, is a lift of Ωi

kG(V0) over W . By Remark 3.3, the isomorphism class 

of Ωi
W G(V0,W ), as a module for G over W , is the unique deformation of Ωi

kG(V0) over W when p > 2. 

On the other hand, if p = 2 then there are precisely two distinct deformations of Ωi
kG(V0) over W . The 

universal deformation of Ωi
kG(V0) is given by the isomorphism class of the RG-module U(G, Ωi

kG(V0)) =

Ωi
W G(V0,W ) ⊗W R on which x (resp. y) acts diagonally as multiplication by x ⊗ x (resp. y ⊗ y).
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