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Abstract

We survey the growing literature on fat-tailed distributions in environmen-
tal economics. We then examine the theoretical and statistical properties of
such distributions, focusing especially on when these properties are likely to
arise in environmental problems.We find that a number of variables are fat
tailed in environmental economics, including the climate sensitivity, natu-
ral disaster impacts, spread of infectious diseases, and stated willingness to
pay.We argue that different fat-tailed distributions arise from common path-
ways. Finally, we review the literature on the policy implications of fat-tailed
distributions and controversies over their interpretation. We conclude that
the literature has made great strides in demonstrating when fat tails matter
for optimal environmental policy. Yet, much is less well understood, includ-
ing how alternative policies affect fat-tailed distributions, the optimal policy
in a computational economy with many fat-tailed problems, and how to ac-
count for imprecision in empirical tests for fat tails.
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1. INTRODUCTION

The long-run average daily rainfall in Beaumont, Texas in late August is about 0.2 inches. In
48 hours in August 2017, 39.23 inches of rain fell in Beaumont, with 22.33 inches falling on
August 30 alone. This staggering amount of rainfall was due to Hurricane Harvey, which made
landfall in Texas and Louisiana in late August 2017. Due to its combination of extreme rainfall
and landfall in a heavily populated area, Hurricane Harvey caused $125 billion (2017 USD) in
damages, on par with Hurricane Katrina in 2005.

Decision making under uncertainty is an essential area of research in many fields across the
economics discipline. Such work has long recognized that risk affects optimal decisions.However,
risk comes in many forms, including both variability and extreme events. Extreme value theory
recognizes that low-probability, extreme events can be meaningful determinants of behavior in
many contexts.

In many fields, a natural focus exists on extreme events. It is essential that a building remain
standing after a substantial seismic event, that a levee holds after a torrential downpour, and that
a portfolio of investments remains solvent after an extreme market shock. Extreme events are
becoming more salient to economists and policy makers in the areas of climate change, natural
disaster management, and other areas related to the environment.

Here, we review active areas of research within environmental and resource economics that
might benefit from continued exploration and incorporation of fat-tailed distributions, in which
extreme events are more common than predicted by traditional thin-tailed distributions, such as
the normal distribution.Wefirst introduce a working definition of fat-tailed distributions and their
properties. We then discuss the empirical challenge of determining whether a data set is drawn
from a fat-tailed distribution. Next, we review cases in environmental economics that feature fat-
tailed distributions. Climate change is the most explored example, largely owing to MartinWeitz-
man’s work, and we devote much of our review to an exploration of the implications of fat tails for
the optimal climate change policy. We also consider natural disasters, infectious diseases, and the
preferences for nonmarket environmental amenities, each of which is an active area of research
associated with fat tails. We then turn to a description of the mechanisms responsible for fat tails
and the implications of fat tails for policy makers. Finally, we highlight a few important, though
currently unexplored, questions relating to fat tails in environmental and resource economics.

2. THEORY

2.1. Definition and Properties

A variety of distributions satisfy some notion of a thick upper tail, and terminology varies in the
literature.Here, we follow the literature (e.g.,Nordhaus 2011,Millner 2013,Conte &Kelly 2018)
that defines a distribution that is asymptotically equivalent to a Pareto distribution as fat upper
tailed. That is, the probability density eventually declines according to a polynomial.1

Fat-upper-tailed distributions have a number of interesting properties. Of course, the defining
distinction between fat and thin tails is the frequency of tail events (e.g., Nordhaus 2011). Tail
events are extremely rare with a normal distribution. For example, an event larger than 3σ from
the mean occurs only 0.13% of the time. In contrast, an event larger than 3σ from the mean for a

1Heavy-tailed distributions decline slower than exponential distributions but faster than distributions that
decline according to a polynomial. Heavy-tailed distributions such as the log-normal distribution are also
common in environmental economics problems (Ott 1990, Kampas & White 2004). For conciseness, heavy-
tailed distributions are not part of this review.
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Pareto distribution with a shape parameter equal to three occurs with a probability of 1.5%: more
than ten times as often. Conte & Kelly (2018) estimate the distribution of US hurricane damages
using both a normal distribution and the potentially fat-tailed generalized Pareto distribution
(GPD).2 The best fit normal distribution has a 1% upper quantile of $31.1 billion, but three of
the last 71 storms through 2017 had damages exceeding $31.1 billion, indicating that the normal
distribution does not fit the upper tail of the damage distribution well. In fact, Conte & Kelly
estimate the hurricane damage distribution and reject thin tails.3

A second interesting property of fat-tailed distributions is that the largest observation in the
data is a poor predictor of subsequent tail events. The mean excess, or the mean conditional on
being greater than a threshold, is increasing in the threshold. Therefore, the expected new record
largest observation is unlikely to be close to the previous record observation. This provides an
immediate intuition as to which data sets are likely generated from a fat-tailed distribution. For
example, new records in athletic events such as the 100-m dash are typically close to previous
records, indicating a thin-tailed distribution.4 Similarly, the most intense hurricane on record, Pa-
tricia in 2015, had central pressure of 872 hPA (hectopascal pressure units). This beat the previous
record of Wilma in 2004 by 1.1% (882 hPA), which in turn was 0.7% lower than the previous
record. Hurricane intensity appears to be thin tailed. Yet, interestingly, the most damaging hur-
ricane since 1980 is Katrina, with normalized damages that are 10% greater than the next most
damaging hurricane, which is in turn 44% larger than the next most damaging hurricane (Weinkle
et al. 2018). We argue below that this property potentially explains some findings in the risk per-
ceptions literature.

A third property of fat-tailed distributions is that some moments are infinite. Suppose a fat-
tailed distribution is asymptotically equivalent to a Pareto distribution with tail index k or shape
parameter 1

k . That is, the distribution declines according to a polynomial of degree k. Then, mo-
ments greater than or equal to k are infinite. For example, Roe & Baker (2007) and Kelly & Tan
(2015) show that the climate sensitivity distribution has tail index k = 2, indicating infinite vari-
ance. Similarly,Conte&Kelly (2018) show that the hurricane damage distribution also has infinite
variance. Practically, upper bounds on the distribution that bound the moments must exist, so an
estimated infinite moment just means the data have few or no observations near the bound. Re-
searchers therefore sometimes impose an upper bound (see Section 3.2).

2.2. Statistical Theory

Given the policy implications, it is important for applied researchers to diagnose whether data are
drawn from thin-tailed or fat-tailed distributions. The GPD, which nests both thin and fat tails,
is particularly attractive here. The Pickands–Balkema–de Haan theorem (Embrechts et al. 2005)
shows that if the tail of a distribution is defined as the density greater than a threshold, then the
GPD approximates the tail of the distribution to arbitrary accuracy as the threshold increases. If
interest is in the tail of the distribution, it is sufficient to estimate a GPD. Still, difficulties arise
because, by definition, observations in the tail of the distribution are rare, and most estimators
focus on matching the moments of a distribution rather than the tail.

Empirical work can begin with visual inspection of the data. Quantile–quantile plots
provide a useful visual comparison between the empirical data and a specified distribution

2The GPD is discussed in detail in Section 2.2.
3Nordhaus (2011) gives other economic phenomena for which the frequency of tail events makes a normal
distribution unlikely, such as stock and oil prices.
4We thank Spencer Banzhaf for providing us with this example.
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(Das & Resnick 2008). Likewise, a plot of the mean excess of the data that is increasing in the
threshold provides evidence of a fat-tailed distribution.

de Zea Bermudez & Kotz (2010) introduce a variety of methods for estimating the parame-
ters of a GPD. Maximum likelihood estimation (MLE) is a common method, despite its many
challenges.5 The method described by Grimshaw (1993) carefully handles several of these known
difficulties. A particular challenge exists in that, after normalizing the data, only two parameters
describe the entire distribution. Because tail observations are rare, MLE using the entire data set
often results in estimates that fit the middle of the distribution better than the tail. Hence, when
the interest is in accurate estimation of the tail, researchers use only a subset of the data lying
above a chosen threshold. For this reason, the finite-sample properties of MLE, including small-
sample bias, have garnered attention in the literature (Cox & Snell 1968, Hosking &Wallis 1987,
Firth 1993, Cribari-Neto & Vasconcellos 2002).Giles et al. (2016) provide a method of correcting
MLE parameter estimates for small-sample bias.

A second strategy is to estimate the GPD parameters using the mean-excess function, which
records the expected value of the difference between a random variable and a selected threshold,
conditional on the random variable being larger than the threshold. The mean-excess function is
linear in the threshold if and only if the data are drawn from a GPD with a finite mean (Ghosh
& Resnick 2010; Embrechts et al. 2005, 2013). If the mean-excess plot is close to linear for large
thresholds, then there is no evidence against use of a GPDmodel (Davison& Smith 1990,Hogg&
Klugman 2009,Embrechts et al. 2013).6 For larger thresholds, few data points exist to estimate the
mean excess, and so the estimation must correct for heteroskedasticity. Finally, the slope function
of the mean-excess function is not necessarily continuous in the shape parameter, so consistency
of this estimator does not follow from consistency of the mean-excess function. Consistency of
the slope function is an active area of research (Ghosh & Resnick 2010).

While several empirical methods exist to test whether or not the data generating process is fat
tailed, a first-order concern is the number of extreme events available from which to estimate the
tail. Nonetheless, in a surprising number of contexts, environmental economists are confronted
by fat-tailed data. We now turn to a description of some of these contexts.

3. CLIMATE SENSITIVITY

The best-known example of a fat-tailed distribution in environmental economics is the prior be-
lief distribution of the climate sensitivity. The climate sensitivity is an elasticity that measures
the steady-state temperature change from a doubling of CO2 concentrations above preindustrial
levels. The climate sensitivity is a key parameter in integrated assessment models (IAMs) of the
climate and economy.7

It is well known that the climate sensitivity is uncertain (e.g., Kelly & Kolstad 1999,Weitzman
2009b, Kelly & Tan 2015, Lemoine & Traeger 2016), and one can estimate a prior belief distri-
bution using physical global circulation models (GCMs; e.g., Roe & Baker 2007), the modern
temperature and CO2 records (e.g., Forest et al. 2002, Gregory et al. 2002, Schwartz 2012,

5See Castillo &Hadi (1997),Chaouche& Bacro (2006),Del Castillo &Daoudi (2009), and Zhang& Stephens
(2009) for rich descriptions of the challenges of using MLE to estimate parameters of the GPD.
6However, Ghosh & Resnick (2010) show that the mean-excess plot is inconsistent if the tail index is less than
or equal to one.
7For example, Kayaratna et al. (2017) simulate the DICE model using draws from a fitted distribution of the
climate sensitivity and find the standard deviation of the social cost of carbon in 2020 is $23.48, or 81% of the
mean. Pycroft et al. (2011) obtain a similar result using the PAGE model.
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Skeie et al. 2014, Lewis & Curry 2015), more ancient proxy data such as ice cores and tree rings
(e.g., Hegerl et al. 2006), or some combination.

In a series of influential papers, Martin Weitzman (2009a,b,c; 2011; 2014), argues that the
prior distribution for beliefs about the climate sensitivity is fat tailed, with profound implications
for climate policy.Weitzman (2009b) shows that a Pareto prior combined with observational data
yields a fat-tailed Student-t posterior belief distribution.

Weitzman (2009b) summarizes the policy implications with the so-called dismal theorem.The
dismal theorem states that if (a) the coefficient of relative risk aversion is positive, (b) the con-
sumption growth rate distribution can be normalized into a mean plus a scale parameter times
a standardized random variable, (c) the scale parameter is uncertain with a Pareto prior with a
positive tail index, and (d) a finite number of observations exist to estimate the scale parameter,
then the stochastic discount factor (SDF) approaches infinity as the rate of substitution between
consumption and mortality risk (value of statistical life or VSL) increases.

The SDF is the price of a security that delivers one unit of consumption with certainty in the
future. Weitzman draws two policy conclusions. First, Weitzman (2009b,c) argues that conven-
tional cost-benefit analysis is unlikely to yield precise results, because the optimal policy will be
highly sensitive to the VSL or any alternative. Second,Weitzman (2009b) argues that potentially
catastrophic outcomes drawn from fat-tailed distributions will dominate policy results, beingmore
important than the discount factor and other parameters typically viewed as critical.

Likemany ofWeitzman’s ideas, the sharp result for the SDFwas created from amodel free from
distractions, which makes clear what drives the result. A number of subsequent papers examine
whether or not the dismal theorem continues to hold under more complex models and alternative
conditions. These, in turn, have led to a deeper understanding of the policy implications of fat-
tailed uncertainty. We turn next to several of the most important cases and extensions.

3.1. Is the Climate Sensitivity Really Fat Tailed?

Weitzman (2009b) argues that fat-tailed beliefs arise naturally from a fat-tailed Pareto prior and a
series of observations. If so, empirical estimates of the climate sensitivity distribution should have
a fat-tailed posterior.

Estimation of the climate sensitivity is difficult. First, many feedback effects and the heat ab-
sorption of the deep ocean play out over centuries (Held et al. 2010), a time span that far exceeds
the modern temperature record. Second, many variables of interest, including upper and deep
ocean temperatures and forcing from aerosols, are either unobserved, imperfectly observed, or
have a shorter record than the atmospheric temperature. This seems to support Weitzman’s idea
that a fat tail is a necessary component of a prior given little or no data and a wide range of the-
oretical models. Nonetheless, a number of studies try to estimate the climate sensitivity from the
modern temperature record (e.g., Forest et al. 2002, Gregory et al. 2002, Schwartz 2012, Skeie
et al. 2014, Lewis & Curry 2015). This literature has made significant progress in narrowing the
uncertainty, especially in the upper tail (Skeie et al. 2014).

However, given that an ideal data set is lacking (Schwartz 2012), such research makes a num-
ber of compromises. First, the literature estimates a transient response over the modern record,
typically fewer than 100 years. The transient response is then used to calculate a steady-state re-
sponse. Because the thickness in the upper tail is primarily related to uncertain long-run feedbacks,
the posterior is sensitive to the assumed relationship between transient and long-run feedbacks
(Armour et al. 2013).8

8Skeie et al. (2014) show that explicitly accounting for decadal climate effects also adds to the posterior tail
thickness.
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Second, the estimation is in some ways more similar to what economics would call calibration,
where many parameters and GCM modeling choices (e.g., the spatial resolution and whether
features like cloud formation are included) are assumed certain, and other parameters are given
assumed prior distributions (e.g., Forest et al. 2002, Huber & Knutti 2012). The posterior distri-
bution is then formed by simulating the GCM over candidate parameter vectors and assessing the
posterior probability of each vector by combining the prior probability and the fit of the model
output to the data. Such techniques are necessary due to data limitations, but they obscure how
the upper tail of the posterior depends on modeling choices in the GCM. Further, most studies
use a uniform prior, not the Pareto prior advocated by Weitzman.

Third, the empirical literature typically reports statistics computed from the (nonclosed form)
posterior distribution; typically the interest is in the mean and 90% and/or 95% quantiles (e.g.,
Forest et al. 2002, Lewis & Curry 2018). However, large quantiles may result from either fat tails
or thin tails with high variance.9 To our knowledge, no study has tested the empirical posterior
distributions to see if the asymptotic decline is polynomial or exponential, whichWeitzman argues
is important for policy.

Roe & Baker (2007) and others provide an alternative, theoretical justification using GCMs.
Consider a simple climate model in which radiative forcing from CO2 causes warming, which
induces icemelt (reducing the surface albedo of the planet) and other feedbacks that induce further
warming. The climate sensitivity is a steady-state statistic and thus includes the cumulative direct
and indirect effects of CO2. Then, thin-tailed feedback uncertainties have a multiplicative effect
on the climate sensitivity distribution, generating fat tails in the climate sensitivity distribution.

Although considerable work exists regarding the climate sensitivity distribution, the dismal
theorem is ultimately about consumption, which is affected by the climate sensitivity through the
damage function.Unfortunately, estimating an implied damage or consumption distribution is dif-
ficult, because little to no data exist on the performance of most economies following temperature
changes of 7°C or more.

In summary, data limitations prevent estimation of a precise empirical distribution for the cli-
mate sensitivity, a problem magnified for the resulting consumption distribution.Whether or not
existing studies based on short-/medium-run data are sufficient to declare the consumption dis-
tribution thin or fat tailed has unfortunately not been established (Pindyck 2011). Nonetheless,
certainly nothing in the empirical literature contradicts Weitzman’s characterization of a fat tail
derived from diverse GCM model outputs and limited data.

3.2. Bounds on Distributions

We live in a finite world. The dismal theorem is superficially about infinite marginal utility re-
sulting from zero consumption due to an infinitely high temperature that occurs in the infinite
future. Thus, many researchers (including Weitzman himself ) consider the robustness of the dis-
mal theorem to finite bounds.

A bounded distribution is no longer asymptotically equivalent to a Pareto distribution, and thus
no longer fat tailed. Nonetheless, a distribution with a sufficiently high bound is arbitrarily close

9Of course, a thin-tailed distribution with a high variance may not fit other quantiles well. Weitzman (2011)
chooses the mean and variance of both the normal and Pareto distributions to match the mean and upper
15% quantiles of an average of GCMs considered by the Intergovernmental Panel on Climate Change (IPCC
2007). Given these constraints, the Pareto distribution fits the upper 5% quantile better than the normal
distribution. Also, Nordhaus (2011) notes that the average of the quantiles is a biased estimator of the true
quantile unless the studies represent draws from an identical population.
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to a fat-tailed distribution. Weitzman (2009c) argues that imposing an arbitrary bound makes
the optimal policy sensitive to the bound, because the dismal theorem holds approximately for
a sufficiently large bound. Ideally then, such bounds should have empirical support, but this is
difficult, as any bound is almost certainly outside the modern historical experience.

Pindyck (2011) considers an upper bound on marginal utility. The marginal willingness to pay
(WTP) for consumption risk reduction then depends on the likelihood of the disaster, the cost of
the risk-reducing activity, risk aversion, and other parameters. Indeed, he constructs examples for
which expected marginal WTP is higher for thin-tailed distributions. Still, the issue of sensitivity
to the assumed upper bound remains.

Solar energy is finite, and therefore the steady-state temperature must be bounded. Costello
et al. (2010) show that the WTP to eliminate all damage is relatively insensitive (3–5% of
consumption) to temperature bounds between 20 and 50°C. The key assumption is that damages
are calibrated such that an 11°C temperature increase causes a 20% loss of gross domestic product
(GDP). If a 20% loss of GDP occurs at 8.4°C, thenWTP remains insensitive for risk aversion co-
efficients less than two.10 However,Weitzman (2009c, p. 10) argues that even 10–20°C may cause
100% consumption loss (“would effectively destroy planet Earth as we know it”). Millner (2013)
also eloquently makes this point, noting that a temperature increase of 85°C would boil blood.

Newbold & Daigneault (2009) consider both a maximum temperature increase and a mini-
mum consumption level.Once theminimum consumption bound becomes active, the temperature
bound is irrelevant. Newbold & Daigneault (2009) show that if the lower bound on consumption
is about 0.5% or 10−7 of current levels, then it is optimal to pay 10% or 99%, respectively, of
consumption per year to eliminate all temperature changes. Thus, WTP is sensitive only to very
low minimum consumption bounds.

Millner (2013) replaces the constant relative risk aversion (CRRA) utility function with a hy-
perbolic absolute risk aversion (HARA) function. Utility is then a function of consumption plus a
parameter that governs how household risk aversion decreases with consumption. If theHARApa-
rameter is positive, utility and marginal utility are bounded at zero consumption. ImposingHARA
utility has a number of advantages over imposing a bound on marginal utility (e.g., Weitzman
2009b, Pindyck 2011). First, HARA utility is fully differentiable and is therefore straightforward
to adapt to computationalmodels. Second, the parameter has economicmeaning and can therefore
be calibrated.

Millner (2013) shows that the SDF andWTP are relatively insensitive to the HARA parameter
for values greater than one. Some estimates of the HARA parameter are far greater than one (e.g.,
Levaggi & Menoncin 2013). However, other estimates find negative values (e.g., Menoncin &
Nembrini 2018), and more research is needed to determine whether or not the HARA parameter
in this context is in the insensitive region.

Weitzman (2009b) himself considers a lower bound on both utility and marginal utility. The
lower bound of consumption can then be calibrated using VSL estimates. Weitzman then shows
that the dismal theorem holds to an arbitrarily small approximation error for a sufficiently large
VSL. The SDF becomes driven by an uncertain VSL parameter.

10In a finite world, climate policy depends on a fat-tailed climate sensitivity indirectly. Thus, parameters and
modeling assumptions such as the shape of the damage function, risk aversion, the discount rate, and the heat
capacity of the ocean affect the sensitivity of climate policy to the fat tail. For example, Costello et al. (2010)
consider alternative damage parameters and risk aversion,Calel et al. (2015) consider alternative damage func-
tions and heat capacity parameters, and Weitzman (2011) considers alternative damage functions.
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Finally,Hwang et al. (2013, 2016) consider a bound on the climate sensitivity and show that the
optimal near-term carbon tax is a concave function of the variance of the fat-tailed climate sensitiv-
ity distribution (and thus the fat tail has a diminishing effect on policy), even for very high bounds.

In conclusion, one can assign lower bounds on consumption loss and utility, through limits
on temperature change, utility, damages (Dietz 2011), a finite VSL, or other means. Indeed, one
might speculate that human ingenuity and effort will find ways of limiting the impact of even ex-
treme climate change to some large but finite value. Nevertheless, in the DICE model a carbon
emissions–free economy currently costs only 7.4% of world GDP (Nordhaus 2017) and is declin-
ing. Thus, if a more realistic model with finite bounds indicates it is optimal to pay at least 7.4%
of GDP to reduce climate sensitivity risk, then the conclusions are in essence the same as the dis-
mal theorem: Both recommend zero emissions.11,12 A WTP of about 10% of GDP obtains with
a minimum consumption bound of 0.5% of current levels in the study by Newbold & Daigneault
(2009) and with a temperature bound of 45°C, with higher damage and risk aversion coefficients
in Costello et al.’s (2010) example. If these bounds are realistic,13 fat tails do indeed have strong
climate policy consequences.

3.3. Policy Translation

Under the dismal theorem, the SDF, and therefore marginal WTP (for the first unit of con-
sumption), are infinite. However, abatement is not generally equivalent to a security that delivers
one unit of consumption. For example, markets might be incomplete in the sense that a transfer
mechanism might not be available for the exact future states of interest: If the world ends, any
consumption transferred to the future is presumably lost.

Abatement technologies transfer consumption from the present to the future by reducing fu-
ture damages from climate change. Because damages are typically modeled as reducing total factor
productivity, abatement increases future productivity and therefore consumption.However, as the
climate sensitivity is uncertain, so are future damages, and thus so is the ability of abatement to
deliver future consumption.

Karp (2009) argues importantly that if it is possible to transfer a certain level of consumption
to the future, then future consumption and marginal utility are bounded, and society would never
transfermore than half of consumption to the future.He shows that even theweaker argument that
potential disasters may be more important for policy than other parameters such as the discount
rate is not universally true, at least within the context of a disaster distribution that is thin tailed.

However, abatement, which lowers the steady-state carbon concentrations, reduces dam-
ages more when the climate sensitivity is high, and so it flattens the tail rather than transfers
certain consumption. Horowitz & Lange (2014) develop conditions on transfer technologies
for which the transfer of 100% of consumption is optimal in a fat-tailed environment. If a
transfer technology exists that is sufficiently safe, namely, it is able to deliver consumption in
sufficiently bad states with sufficiently high probability, then the planner does not optimally
transfer all consumption. By transferring a finite amount of consumption, the planner ensures
that future consumption is sufficiently likely to be positive, while at the same time avoiding zero
current consumption. Conversely, as the probability of the technology transferring consumption

11Hwang et al. (2016) also emphasize the importance of emissions control.
12Strictly speaking, the dismal theorem might recommend additional measures, such as deployment of (or
R&D on) carbon capture to achieve negative emissions and/or geoengineering.
13Realistic means that in reality the probability of exceeding the bounds is zero, not that there is a high prob-
ability that the bound is the actual climate sensitivity.
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in bad states decreases, the planner optimally allocates more and more current consumption to
the future, until eventually all consumption is transferred.

Millner (2013) constructs a model in which abatement flattens the tail of the probability density
of future temperature states.The optimal abatement is at least the level that flattens the tail enough
(depending on damage convexity and risk aversion) so that total WTP is finite. If abatement is
sufficiently effective at flattening the tail, then little abatement is required, even if marginal WTP
is infinite. But if abatement is sufficiently ineffective, then total WTP becomes infinite.

In conclusion, the relationship between abatement policy and the SDF depends critically on
how abatement technologies affect future consumption through the damage function.14 If abate-
ment technologies satisfy the above conditions, then total WTP is infinite. Yet, whether or not
practical abatement technologies satisfy these conditions is less well understood. For example,
technologies such as carbon capture and solar geoengineering may shift the consumption distri-
bution differently, especially given that the effectiveness of such technologies is uncertain.

3.4. Learning and Mid-Course Corrections

Given prior beliefs that the true climate sensitivity is drawn from a Pareto distribution, after ob-
serving data (or other information), the posterior is the fat-tailed Student-t distribution, regardless
of the number of observations (Weitzman 2009b). However, after introducing bounds, modeling
assumptions, including learning, matter. Furthermore, learning might affect optimal abatement
policy by flattening the tail sufficiently so that total WTP falls, even if marginal WTP remains
infinite.

Timing also matters. Indeed,Nordhaus (2011) argues that if the climate sensitivity is extremely
high, thenwe shouldmake amid-course correction after observing rapidly escalating temperatures
in the next 50 years. This assumes short-run feedback effects.15 Allen & Frame (2007) similarly
argue that short-run feedbacks, which determine the abatement level that stabilizes the short-run
climate, are most important for near-term policy.16 The ability to make a correction in time to
avoid catastrophic temperature changes is a computational question.

Kelly & Tan (2015) consider a DICE-type IAM where the planner is uncertain about a climate
feedback parameter but learns over time by observing temperature changes and radiative forcing.
As in Roe & Baker’s (2007) study, uncertain feedbacks create a fat-tailed prior climate sensitiv-
ity distribution. Kelly & Tan show that more abatement is optimal initially with uncertainty and
learning, relative to certainty. However, learning flattens the tail of the climate sensitivity distri-
bution considerably in the first few decades, allowing for mid-course corrections until the optimal
policy is not much different than the policy under certainty.17

Hwang et al. (2017) consider a related model in which the interaction between feedbacks and
parameters such as the ocean heat uptake are known and the remaining uncertain feedbacks are
incorporated into temperature changes more slowly. In this case, learning about the remaining

14Nordhaus (2011) argues similarly that no one relationship exists between the SDF and abatement policy.
15Mahadevan & Deutch (2010) show that both uncertain short- and long-run feedbacks generate fat tails, and
Roe & Bauman (2013) show that smaller, though significant, short-run uncertainties are more important for
abatement policy.
16However, Fitzpatrick & Kelly (2017) demonstrate that stabilization of the climate is difficult even in the
short run due to the lag between policy actions and climate response.
17Bistline (2015) considers a related model in which learning exogenously resolves uncertainty after a fixed
number of periods.He also finds thatmore abatement is optimal initially with uncertainty and learning and that
the amount of extra abatement is sensitive to when learning resolves, indicating that mid-course corrections
are possible if learning resolves quickly enough.
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uncertainty proceeds more slowly, and abatement is less sensitive to beliefs. Nonetheless, the
authors also find that the planner can make mid-course corrections, albeit after a longer period
of time.

Importantly, in the studies by Hwang et al. (2017) and Fitzpatrick & Kelly (2017), the opti-
mal temperature change is increasing in the climate sensitivity. At a higher climate sensitivity, the
abatement cost required to achieve a particular temperature increases, but the benefit of a par-
ticular temperature is constant. Mid-course corrections are thus easier, as the planner need not
correct the temperature all the way back to the original optimum after learning that the climate
sensitivity is higher than previously thought. Indeed, Fitzpatrick & Kelly (2017) show that the
optimal target increases with the climate sensitivity, and maintaining a constant target (e.g., 2°C)
results in a welfare loss.

In conclusion, learning does not make a fat tail thin. Yet, mid-course corrections are possible.
For short-run feedbacks that raise the temperature quickly, learning is relatively fast, and mid-
course corrections are possible. Long-run feedbacks raise the temperature more slowly, resulting
in slower learning, but the planner has more time to adjust, and so mid-course corrections are still
possible.

4. NATURAL DISASTERS

Natural disasters pose significant threats to society through property damage, loss of life, and
reduced quality of life. Research shows that a variety of natural disaster–related variables have
fat-tailed distributions, including the economic damages from tropical cyclones (Conte & Kelly
2018), the discharge from flood events (Malamud & Turcotte 2006), the magnitude and intensity
of volcanic eruptions (Pyle 2015), the volume of landslides (Guzzetti et al. 2009), the area burned
bywildfires (Malamud et al. 2005), and the size frequency of near-Earth asteroids (Chapman 2004).

Economists interested in risk amelioration policies and actions have been drawn to the issue
of natural disasters, and there is an active literature that continues to explore these issues (e.g.,
Botzen & van den Bergh 2009, Michel-Kerjan 2010, Bakkensen & Mendelsohn 2016, Bakkensen
& Barrage 2017, Sheldon & Zhan 2019). For example, several studies (e.g., Browne &Hoyt 2000,
Gallagher 2014) find that the purchase of insurance through the National Flood Insurance Pro-
gram in the United States is correlated with flood losses during the prior year. Atreya et al. (2013)
and Bin & Landry (2013) find decreases in property values in affected communities immediately
following significant disasters, though the price differentials fade quickly (4–6 years). Gallagher
(2014) finds an uptick in policy purchases in the wake of flood events, although Kousky (2017)
notes that most of the observed increase in coverage following hurricanes is due to requirements
associated with the acceptance of disaster relief.

These results are somewhat surprising, particularly if damages from such events are drawn
from a normal distribution, as there are centuries of experience from which to draw on in forming
expectations about exposure to damages from such events.Given a large, normally distributed data
set, decision makers should assume a second disaster is highly unlikely and not update beliefs or
change decisions significantly. In this context, it is difficult to explain the lack of adequate coverage
by private homeowners and changes in property values following flood events. Gallagher (2014)
proposes an explanation for this sensitivity of beliefs: Property owners overly discount past events.

Fat tails in the distribution of damagesmay offer an additional mechanism to explain changes in
beliefs and actions following natural disasters. Because tail events are rare and because a fat-tailed
distribution has the property that tail events are poor predictors of future tail events, a flood or
other disaster can cause a large change in beliefs and decision making, even with hundreds of years
of data. Similarly, a period of time without a disaster can also cause beliefs to optimally decline,
which can explain the fading issue in the literature (Conte & Kelly 2020).
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Born & Viscusi (2006) highlight the challenges that natural disasters pose to private insur-
ers, including bankruptcy risk and the rate increases required to support capital reserves held in
case of a tail event. Kousky & Cooke (2009) emphasize that damages from natural disasters are
characterized by three challenging features: fat-tailed damages, tail dependence (the tendency of
dependence between two random variables to concentrate in the extreme values), and microcor-
relations (positive correlations between variables that can be overlooked). Natural disasters can
generate damages through multiple pathways (e.g., tropical cyclones can cause damages through
high winds, flooding, and storm surge), and ignoring these tail dependencies can lead to under-
estimation of the damage from catastrophic events. Additionally, correlations between damages
caused by natural disasters in different locations are intensified by aggregation, undermining the
management of risk exposure via diversification. Kousky & Cooke (2009) use simulations to show
that that these features of natural disasters can drive a wedge between the price that private in-
surers must charge to maintain adequate reserves and the price that homeowners are willing to
pay for full insurance coverage, meaning that full insurance is not optimal for many at-risk house-
holds. Empirical analysis of the dynamics of private insurance markets for disaster coverage given
fat-tailed damages would be a meaningful contribution to this literature.18

The fat-tailed nature of damages from natural disasters causes challenges in estimating risk
and exposure for households and insurers alike. This challenge is compounded by the possibility
that these distributions are nonstationary, due to climate change. The search for time trends in
damages caused by natural disasters has been frequently undertaken in the literature, with mixed
results. One potential explanation is that such efforts have looked for changes in the mean damage
per event across time, typically using ordinary least squares, which might lead trends in extreme
events to go unnoticed. Using quantile regression, Coronese et al. (2019) find strong evidence of
tail fattening in the damage distribution over time. The presence of a shifting distribution, along
with fat tails, creates an additional challenge for insurers, let alone households, to accurately
estimate risk exposure.

5. INFECTIOUS DISEASES

Fat tails are an important consideration for researchers and policy makers seeking to understand
the spread of pathogens and to prepare for disease arrival.The health impacts of disease depend on
the characteristics of both the pathogen (e.g., mortality rate) and the community (e.g., population
size). Compartmental epidemiological models are a standard approach to determining the threat
posed by infectious diseases (e.g., Brauer 2008, Shaman & Karspeck 2012).

In these epidemiological models, a system of differential equations tracks the dynamics of sub-
sets of the population, with a common class of models focusing on susceptible (not yet infected
and susceptible to disease), infected (carrying the disease and infectious), and recovered (neither
able to spread the disease nor be reinfected) population segments (SIR models). Traditional SIR
models assume a deterministic contact rate, which is one component of the equation determining
the spread of the disease from infected to susceptible individuals. These models assume that indi-
viduals from various population segments mix uniformly and randomly with each other, with the
disease spreading when a susceptible individual interacts with an infected individual.

Assuming uniform contact rates with infected individuals is a modeling convenience that does
not align with observed heterogeneity in contact rates, which has substantial impacts on disease
dynamics at the population level (Bansal et al. 2007).Outbreaks of gonorrhoea,measles, and SARS

18See Conte & Kelly (2020) for an exploration of this issue in Florida between 2003 and 2016.
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have been linked to the behavior of small groups of individuals (Hethcote & Yorke 1984, Cent.
Dis. Control Prev. 2000, Poutanen et al. 2003). If the distribution of contact rates across time and
space is fat tailed, then not only is modeling heterogeneity important for predicting disease spread,
but the policy focus immediately shifts to preventing superspreader (tail) events.

For a given probability, the magnitude of extreme events is much greater for fat-tailed distri-
butions relative to thin-tailed distributions. Public-health officials and other policy makers must
therefore consider that extreme events play an important role in the efficient response to the dis-
ease. Heterogeneous contact rates have been explored using refined SIR models (e.g., Ball et al.
1997, Bjørnstad et al. 2002,Grenfell et al. 2002) and contact network models (e.g., Newman 2002,
Pastor-Satorras & Vespignani 2002,Meyers et al. 2005, Shirley & Rushton 2005), which allow for
individual-level resolution.

Some network models use scale-free networks, in which contacts follow a power-law distri-
bution, with a small fraction of very highly connected hubs (Barabási & Albert 1999). Hosts in
these networks with anomalously high numbers of potential disease-causing contacts are called
superspreaders (e.g., Shen et al. 2004, Lloyd-Smith et al. 2005). Such networks, which may have
large, or infinite, variance in the degree of contacts, are characterized by low or nonexistent
epidemic thresholds, meaning that even very sparse networks are highly vulnerable to epidemics
(Bansal et al. 2007).

Although scale-free networks have received substantial attention in the epidemiological liter-
ature (e.g., May & Lloyd 2001, Dezso & Barbasi 2002), relatively limited support exists for their
relevance in epidemiological contact patterns (Liljeros et al. 2001). Bansal et al. (2007) explore em-
pirical support for the adoption of scale-free networks in different epidemiological contexts and
find that, in their systems of study, networks have exponentially distributed contact patterns,which
generate epidemiological behavior that is much closer to the predictions of homogeneous-mixing
SIR models than the scale-free network models.

Scale-free network models allow for investigation of the impacts of fat tails on epidemiological
outcomes, although developing an exact contact network is not practical in large populations. For
airborne diseases, it is perhaps more valuable to identify communities in which conditions exist
that correspond to fat-tailed distributions of contact rates. Conte et al. (2020) use cellphone data
to define a stochastic contact rate in US counties based on visitation rates to places of interest
and observe fat tails in this distribution that are positively correlated with cases and deaths due to
COVID-19. Wong & Collins (2020) demonstrate fat tails in COVID-19 superspreading events,
and Chang et al. (2021) indicate that superspreader points of interest are responsible for a large
majority of COVID-19 infections in the United States.

6. PREFERENCES FOR ENVIRONMENTAL AMENITIES

Stated preference methods of valuing nonmarket environmental amenities play a critical role
in environmental policy development. For example, species on the brink of extinction are not
resource-providing goods with an observable market price, requiring nonmarket valuation meth-
ods to estimate their value in pursuit of policies dictating appropriate investment in species preser-
vation.Krutilla (1967) suggests that the existence value of species is a key component of their value,
which, if true, implies that stated preference methods are required to recover their full nonmarket
valuation.

Fat-tailedWTP values, as manifest in unexpectedly high yes-response rates at the highest avail-
able bid, are not an unusual result in the literature. Parsons & Myers (2017) survey 86 contingent
valuation studies published in eight of the top environmental economics journals between 1990
and 2015 and find that 60% of the studies include at least one scenario in which the yes-response
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rate at the greatest bid is at least 20%, and nearly 50% of the studies have at least one scenario
in which the yes-response rate at the largest bid is at least 30%. Because the frequency of tail
responses exceeds the frequency expected assuming normally distributed responses, researchers
sometimes truncate bids, drastically reducing estimates of mean WTP. In response to the chal-
lenge posed by fat-tailed WTP distributions for environmental amenities, it is essential that the
offered bids allow for well-defined tails of the WTP distribution, which are needed to ensure
reliable measures of central tendency of WTP (Haab & McConnell 2002).

McFadden&Leonard (1993) develop amodel that maps the compensating variation associated
with an increase in the level of public good provision into the responses given by participants
in a contingent valuation study with a dichotomous choice format. The authors consider four
potential families of distributions to describe consumer tastes for the environmental resource,with
the families including the normal (thin tailed), log-normal (heavy tailed), gamma (heavy tailed),
andWeibull (fat tailed). In the empirical analysis, the authors find that the assumption of normally
distributed preferences for the environmental resource generates theworst fit of the four candidate
distribution families in terms of the likelihood criterion. Importantly, the authors find this to be
the case for WTP estimates from both dichotomous-choice and open-ended questions, which
are not subject to anchoring bias or yea-saying, two issues facing contingent valuation due to
the hypothetical nature of the questions that might be explanations for unexpectedly high yes-
response rates at the highest bids (Boyle 2003, Parsons & Myers 2017). These results suggest
that researchers working with contingent valuation methods might expect relatively high rates of
yes-response at extreme bid levels.

In contrast to McFadden & Leonard (1993), Desvousges et al. (1993) find meaningful dif-
ferences between participants responding to dichotomous-choice versus open-ended questions
regarding the frequency ofWTP values drawn from the upper tail of the distribution (while these
frequencies were in fact quite similar for values in the rest of the distribution). Participants re-
sponding to discrete-choice questions had WTP values in the tail of the distribution more often
than participants responding to open-ended question. In fact, 34% of dichotomous-choice re-
spondents offered a WTP of $1,000, versus 3% of open-ended respondents. Given these results,
the authors conclude that the high frequency of yes responses among dichotomous-choice par-
ticipants is evidence of anchoring bias: Respondents indicated a WTP that exceeds their true
preferences due to the anchor provided by the value mentioned in the question.

An alternative explanation consistent with fat tails is that nonresponse rates are higher for
open-ended questions for respondents whose WTP lies in the tail of the distribution. Also, Seller
et al. (1985) argue that tail respondents in open-ended questions might shade their responses in
order to avoid revealing their divergence from the norm.

Note that these questions about the shape of the preference function for nonmarket environ-
mental amenities also raise questions for value estimation based on choice experiments, which
have emerged as an alternative stated preference method to address many of the concerns about
contingent valuation (Adamowicz et al. 1994, Hanley et al. 1998). In this context, the concern is
that WTP estimates are sensitive to the maximum bid level used in the payment attribute of the
choice experiment.

Fat-tailed WTP for environmental amenities has several interesting policy implications. The
mean exceeds the median for fat-tailed distributions, so cost values exist such that a majority are
not willing to fund the amenity if the cost is shared equally, yet the amenity cost can be supported
by placing a greater burden on those with strong preferences for the amenity. Thus, for amenities
withmeaningful use value, user fees can result in amore efficient allocation than proportional taxes
when WTP is fat tailed. For amenities whose value derives primarily from existence, an income
tax can result in a more efficient allocation given strong correlation between income and WTP.
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A second policy implication concerns the option value of environmental amenities. Option
values are increasing in the level of uncertainty. If the WTP for preservation of an environmental
amenity is fat tailed, then the difficulty of estimating fat-tailed distributions noted above implies
that the tail of the WTP distribution is typically highly uncertain. Thus, with a fat-tailed WTP
distribution, the option value of preservation is likely to be substantially higher than the option
value given thin-tailed distributions, where uncertain tail events have a negligible effect.

7. COMMON FEATURES

Sections 3–6 show that fat tails arise in a number of seemingly disparate contexts: prior beliefs
about the climate sensitivity, damages from natural disasters, the size of networks in the spread of
infectious diseases, and WTP for environmental amenities. Yet, a close reading leads to the con-
clusion that fat-tailed distributions that arise in environmental economics share commonalities, in
particular, pathways by which fat tails arise and policy implications. By understanding these com-
mon features, we might identify other environmental problems where fat tails are likely relevant.

7.1. Population Centers

The size of population centers follows a fat-tailed distribution known as Zipf’s law (see Gabaix
1999 for an explanation). The size of the largest city in the United States, New York, is twice as
large as the second largest city, Los Angeles. The second largest city size is a poor predictor of the
largest city size, and indeed, Gabaix (1999) finds city size to follow a Pareto distribution with a tail
index of approximately one.

Such a population probability density is likely to have profound implications for environmen-
tal impacts and environmental policy. Natural disasters that are thin tailed in terms of physical
characteristics like hurricane pressure, might, nonetheless, have fat-tailed damages because the
damage likely depends on the population size of the area impacted by the disaster (Conte & Kelly
2018). Similarly, network connections are likely much larger in larger population centers reliant
on communal modes of transportation. Thus, we might expect a fat-tailed distribution of con-
tact rates, with implications for the outbreak intensity in highly populated areas. One might even
expect increases inWTP for environmental amenities in highly populated areas, if survey respon-
dents understand that their contribution to a public good benefits more people in a particular area.
Despite the clear relationship between environmental impacts and population size, little work has
been done to date understanding this relationship, beyond simply looking at impacts per capita.19

Finally, fat tails in a population distribution have important policy consequences. For example,
Muller &Mendelsohn (2009) show that a cap-and-trade system that accounts for the distribution
of population has optimal prices that vary by orders of magnitude depending on the emissions
location.

7.2. Stock/Decay Problem

If x is thin tailed, 1/x can be fat tailed. Even if the probability that x = 0 approaches zero as x
approaches zero, the values of 1/x get arbitrarily large, skewing the distribution. This problem is
likely to arise in a number of environmental contexts. As noted in Section 3.1, Roe & Baker (2007)
show that the climate sensitivity distribution becomes fat tailed because the normally distributed
strength of feedback effects have a multiplicative effect on the temperature. Small differences in
feedback effects repeated year after year eventually cause large changes in temperature.

19For example, how policies such as closures and social distancing affect a fat-tailed contact rate is unclear.
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This pathway is possible in other environmental problems. Consider stock pollutants with
small but uncertain decay rates, such as heavy metals. Small, thin-tailed uncertainties in the decay
rate can lead to fat-tailed uncertainty in the stock and therefore damages. Consider also relatively
small uncertainties in the parameters of an infectious disease, such as the time during which an
individual is contagious or the number of contacts. Repeated interactions result in much larger
uncertainties in the stock of infections after a period of time.

Owing to articles byWeitzman (2009b,c) and the subsequent literature, the policy implications
of the denominator problem are better understood. Yet, apparent small uncertainties in feedback
parameters in other contexts often lead to overconfidence in both prediction of the stock and the
optimality of policy, precisely what Weitzman warned against.

7.3. Correlated Micro Events

Similar to the stock/decay problem,microcorrelations can lead to an aggregate effect that is much
larger than expected. Kousky & Cooke (2009) demonstrate how microcorrelations can cause
fat tails in aggregate natural disaster damages. Microcorrelations are possible in other contexts.
Small correlations in susceptibility to adverse health consequences from pollution emissions or
infectious diseases can lead to much larger impacts than might be empirically estimated from a
small-scale study.

8. UNDEREXPLORED AREAS

8.1. Multiple Fat Tails

The policy implications of multiple fat tails remains largely unexplored. Nordhaus (2011) argues
that several potential catastrophesmight be fat tailed, including (prophetically!) emerging diseases,
asteroids, and earthquakes, but he provides evidence only for earthquakes and does not discuss how
optimal policy might be affected.20

Pindyck (2011) andMartin&Pindyck (2015) show that multiple possible catastrophes with fat-
tailed distributions reduce expected future consumption. Thus, the marginal value of transferring
consumption into the future rises, and so too doesWTP.However, a particular catastrophe causes
a smaller drop in future consumption because expected future consumption is lower due to all the
other catastrophes. For example, if a series of hurricanes is expected, it is also expected that fewer
buildings will be left standing to be protected against sea level rise. For a risk aversion coefficient
greater than one, the first effect dominates and the existence of a second catastrophe increases
WTP for the other. Martin & Pindyck (2015) conduct a simple calibration,21 which shows that
5 of 7 catastrophes should be averted.

However, Weitzman (2011) argues that other potential disasters might be very damaging but
are not necessarily fat tailed. A computational analysis that carefully calibrates other catastrophes
with potentially fat-tailed distributions in a capital accumulation model would be especially in-
teresting, because some disasters like pandemics reduce human lives, whereas others like sea level
rise primarily destroy capital.

8.2. Alternative Policies

As noted in Section 3.3, considerable effort has been devoted in the literature to under-
standing the policy implications of a fat-tailed climate sensitivity (Karp 2009, Millner 2013,

20Fat tails are only policy relevant if the damage causes fat tails in the consumption distribution.
21Interestingly, they predict a 20% chance of a pandemic in 10 years.
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Horowitz & Lange 2014). This work mainly looks for conditions under which a theoretical
abatement technology might have an infinite total WTP. Still, it remains unclear if practical
abatement technologies satisfy these conditions. For example, current abatement technologies
can achieve zero emissions at far less than 100% of current GDP. But even with zero emis-
sions, carbon concentrations and temperatures will remain elevated for many years. The tail of
the consumption distribution will potentially vary year by year, initially widening as feedback
effects continue to raise the temperature and then falling as concentrations return to preindustrial.
It is unclear if the year-by-year tail flattening behavior of abatement satisfies the conditions in
the literature. Consider also adaptation and emerging technologies such as geoengineering and
carbon capture. The tail-flattening behavior of such technologies remains poorly understood,
especially how fat tails affect optimal R&D spending on such technologies.

Natural disaster policies in a fat-tailed environment are also a fertile area for further study.
It is unclear if policies such as adaptation investments, more strict building codes, and reducing
subsidies for coastal development have the ability to flatten tails, and whether fat tails strengthen
the case for such policies at the margin or in a more significant way. It does seem clear that natural
disaster policies should be focused on vulnerable areas with high population density, as tail disasters
are more a function of the vulnerability of the area than the strength of the storm or other disaster
(Conte & Kelly 2018).

8.3. Empirical Measurement of Fat Tails

Section 3.1 shows that considerable work exists that estimates the upper quantiles of the climate
sensitivity distribution (especially the upper 5% quantile). However, the polynomial decay rate is
what defines a fat-tailed distribution, not specifically the value of a particular quantile. For exam-
ple, a distribution might have a large upper 5% quantile, and yet be thin tailed if the distribution
is bounded or has a large variance. Testing specifically for fat tails would help differentiate be-
tween these possibilities and provide data-based evidence for the upper bound of the uncertainty
distribution.

Another understudied empirical problem is the estimation of the tail of a distribution when
data are sparse. In particular, little guidance exists in defining the threshold above which a
realization qualifies as extreme. This subset of the full data set is the relevant subset for estimation
of the tail index and the shape parameter of the GPD. Using a threshold is important, because
the shape parameter and tail index, in addition to determining tail thickness, determine the mean
of the distribution. So, if the threshold is set too low, the estimate of the shape parameter may fit
the center of the distribution well, but poorly fit the upper tail of the data. Setting the threshold
too high means that only a handful of data points exist from which to estimate the parameters,
resulting in noisy estimates that may not distinguish between fat tails and thin tails. While
researchers in certain fields (e.g., finance, epidemiology) often have millions of observations and
may not be concerned about setting too high of a threshold, natural disaster researchers may
have only a few hundred observations in the full data set. A data-based threshold would allow the
literature to move beyond simply examining alternative thresholds as a robustness check.

Though reliable data exist to measure the distribution of the climate sensitivity, many of the
other variables described above must contend with an additional complexity in identifying fat
tails: measurement error.Natural disaster damages, infections and resultant mortality of infectious
diseases, and WTP for nonmarket environmental amenities are all measured with error in a way
that challenges confidence in the presence of fat tails. Correlations between the intensity of the
disaster or infectious disease and the resultant damages might lead to incorrect classification of a
distribution as thin or fat tailed. Furthermore, the truncation point in the stated preference survey
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might have a similar effect. Additional research on the implications of measurement error on the
presence of fat tails and on the methods currently available to identify fat tails would be a valuable
contribution to the literature.

8.4. Disparate Impacts

Finally, fat-tailed impacts from natural disasters are unlikely to be distributed evenly across the
population. First, because reserve costs drive insurance costs above actuarially fair levels, low-
income property owners are less likely to be insured (Picard 2008). Second, low-income residents
can less likely afford risk-reducing investments.22 An interesting question is to what extent fat-
tailed dollar damages underestimate the welfare cost when borne by residents with a highmarginal
utility of consumption.

9. CONCLUSIONS

The work of Martin Weitzman has sparked a growing literature exploring the implication of fat
tails for climate policy, and we have presented several other areas of active research by environ-
mental economists, including natural disasters, infectious diseases, and WTP for environmental
amenities. We argue that fat-tailed distributions of these variables result from similar pathways
such as fat tails in the population distribution and from uncertainties in the long-run decay rates
of stock pollutants.

Subsequent to the work of Weitzman, a developing literature has focused on understanding
the implications of fat tails. Considerable progress has been made understanding the conditions
under which fat tails have strong policy consequences. However, many policy implications remain
unexplored, including how alternative policies affect fat-tailed distributions, a computational anal-
ysis of an economy with multiple fat tails, and imprecision in empirical tests for fat tails resulting
from sparse data and other issues. Nonetheless, other than the paucity of data on extreme events,
few theoretical or empirical barriers exist to answering these questions. We expect that research
in these areas will continue to expand to answer these important questions.
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