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Abstract

Let X be a smooth geometrically irreducible projective surface over a field. In this paper
we give an effective upper bound in terms of the Néron–Severi rank of X for the number
of irreducible curves C on X with negative self-intersection and geometric genus less than
b1(X)/4, where b1(X) is the first étale Betti number of X . The proof involves a hyperbolic
analog of the theory of spherical codes. More specifically, we relate these curves to the
hyperbolic kissing number, and then prove upper and lower bounds for the hyperbolic kissing
number in terms of the classical Euclidean kissing number.

Mathematics Subject Classification Primary 14C20; Secondary 14J99 · 51M10

1 Introduction

Let X be a smooth geometrically irreducible projective surface over a field k. By a negative
curve on X we will mean a complete, reduced, irreducible curve with negative self intersec-
tion. The bounded negativity conjecture states that if k = C, there is a lower bound depending
only on X for the self-intersection of all negative curves on X . The origins of this conjecture,
as well as various results concerning it, are discussed in [1,9,11] and their references. In this
paper we study a different but related question that was asked explicitly in the introduction
of [1]:
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310 T. Chinburg, M. Stover

Question 1.1 Let X be a smooth geometrically irreducible projective surface over an arbi-

trary field k. For which integers g ≥ 0 are there infinitely many negative curves on X of

genus g?

Bogomolov proved in [2] that if k = C, X has general type and c1(X)2 > c2(X), the number
of negative curves C on X of geometric genus g is finite for every g. He did this by showing
that, under these hypotheses, the C on X that have a given geometric genus form a bounded
family. An effective version of the latter result was shown by Lu and Miyaoka in [10, Thm.
1(1)]. We refer the reader to [1, §2] for a more detailed account of subsequent related work.
The results of Bogomolov and Lu–Miyaoka need not hold for arbitrary X even over k = C.
For example, it was shown in [1, Thm. 4.3] that for each m > 1 and each g ≥ 0 there is an
X over k = C containing infinitely many smooth irreducible curves of self-intersection −m

and genus g.
In this paper we prove that for all k and X , there is an effective finite upper bound on the

number of negative curves C on X of geometric genus less than b1(X)/4, where b1(X) is
the first étale Betti number of X . The proof uses a different method than Bogomolov’s and
involves studying a hyperbolic analog of the theory of spherical codes in Euclidean space.

The theory of spherical codes arose from the classical question, going back to Newton
and Gregory, of determining how many unit spheres in Euclidean n-space can touch a unit
sphere centered at the origin without overlapping interiors. The centers of these spheres then
form a spherical code on a sphere of radius 2 about the origin. The angle of such a code is at
least π/3 in the sense that rays from the origin to two such centers must form an angle of at
least π/3. There is an extensive literature concerning spherical codes of varying angles; see,
for example, [4] and [5].

We will show how a hyperbolic analog of this theory arises naturally from studying
negative curves of genus less than b1(X)/4 on surfaces. The relevant angle is then π/2 rather
than π/3, as we will explain below. The study and classification of which hyperbolic codes
can in fact arise from negative curves in this way is a natural one when trying to determine
the constraints on such curves coming from intersection theory.

To state an explicit result, recall that b1(X) = dimQp
H1

ét(X , Qp) for any prime p different
from char(k). The Picard number ρ(X) is the rank over Z of the Néron–Severi group NS(X)

of X . We prove:

Theorem 1.2 Let X be a smooth geometrically irreducible projective surface over a field k.

There are effective constants c1 and c2 for which the number τ(X) of negative curves C on

X with geometric genus g(C) < b1(X)/4 is finite and bounded above by c1ec2ρ(X). One has

τ(X) ≤ 2 0.902 ρ(X) for sufficiently large ρ(X).

We do not know if the condition g(C) < b1(X)/4 in Theorem 1.2 is sharp in characteristic
zero. However, it is sharp in positive characteristic in view of the following example.

Example 1.3 Let X be the direct product Y × Y , where Y is a smooth projective irreducible
curve of genus g ≥ 2 defined over Fp . Set k = Fp , and let Cn be the graph of σ n in X(Fp),
where σ : Y −→ Y is the Frobenius automorphism. Then Cn is a reduced irreducible curve
on X of arithmetic genus g, and [7, Ex. V.1.10] implies that C2

n −→ −∞ as n −→ ∞. One
has b1(X) = 4g. In particular, there are infinitely many distinct reduced irreducible curves
on X of genus g = b1(X)/4 with negative self-intersection.

The proof of Theorem 1.2 is effective and involves analyzing how negative curves of small
genus on X are constrained by the intersection pairing on the Neron–Severi group via the
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Negative curves of small genus on surfaces 311

Hodge index theorem. We will precisely define the set of constraints to be considered. In the
course of proving Theorem 1.2, we will also show that one cannot use these constraints alone
to improve the upper bound on τ(X) to one that is subexponential in ρ(X).

We discuss below how the curves of Theorem 1.2 give rise to a hyperbolic code of angle
at least π/2. Moreover, we will show that in fact, there do exist hyperbolic codes of angle at
least π/2 that grow exponentially in size with ρ(X). We state this in terms of the hyperbolic

kissing number. Recall that the classical kissing number Kn arises from finding maximal
spherical codes in the unit sphere Sn−1 in Euclidean n-space which have a given angle. See
Sect. 2 for more on the classical case. In Sect. 3, we define the hyperbolic kissing number in
an analogous manner, and one of our key technical results is Theorem 4.6, which gives upper
and lower bounds for the hyperbolic kissing number in terms of classical kissing numbers.

However, we do not know whether such large codes can arise from the intersection theory
of negative curves of small genus on surfaces. This leads to the following question:

Question 1.4 Is there a constant c > 1 and a sequence of surfaces X for which ρ(X) tends

to infinity such that τ(X) > cρ(X) for all X in this sequence? Can one find such a sequence

in which b1(X) remains bounded?

To describe the connection between negative curves and hyperbolic codes more precisely,
recall that NS(X) is a finitely generated abelian group, and the group Num(X) of divisors
modulo numerical equivalence on X is the quotient of NS(X) by its torsion subgroup. Thus
Num(X) is a free Z-module of rank ρ(X) ≥ 1. The curves C in Theorem 1.2 map bijectively
to their classes in Num(X)R = R ⊗Z Num(X). We show that these classes form a strict
hyperbolic code of angle at least π/2 in Num(X)R in the sense of Definition 3.4. The maximal
number of elements in such a code is the strict hyperbolic kissing number Rρ(X)−1(π/2).
We will prove:

Theorem 1.5 Let Rn(π/2) be the strict hyperbolic kissing number of hyperbolic n-space.

Then R0(π/2) = 0 and R1(π/2) = 1. For n ≥ 2, Rn(π/2) is bounded from above by

Kn−1(φ0)+2, where Kn−1(φ0) is the classical kissing number for the Euclidean unit sphere

Sn−2 in Rn−1 associated with the angle φ0 = arccos(3/4). Furthermore, if n ≥ 2 then

Rn(π/2) is bounded below by �Kn−1(2φ0)/2�, the greatest integer less than or equal to

Kn−1(2φ0)/2.

The bound in Theorem 1.2 then follows from an upper bound of Kabatiansky and Lev-
enshtein on Kn−1(φ0). This lower bound grows exponentially with n by work of Chabauty,
Shannon and Wyner. However, as mentioned above, we do not know if such large hyperbolic
codes can be realized by negative curves of small genus on surfaces. In the course of proving
these results, we will show the following:

Theorem 1.6 Let F be a set of at least two distinct irreducible curves C on X for which

C2 < 0. If F contains more than Rρ(X)−1(π/2) elements, there are two elements C1, C2 ∈ F

together with positive integers a, b such that aC1 + bC2 is an effective connected nef divisor

of positive self-intersection on X.

It was shown in [12, Lem. 4.1] that if the set F in Theorem 1.6 has more than ρ(X)2 +
ρ(X) + 1 elements, then there is an effective nef divisor supported on the union of the
elements of F . However, using this replaces the genus bound b1(X)/4 in Theorem 1.2 by
the weaker bound b1(X)/(2ρ(X)2 + 2ρ(X) + 2). In particular, it is crucial for the proof of
Theorem 1.2 that we reduce down to two the number of curves in F involved in an effective
connected nef divisor with positive self-intersection, which is clearly optimal.
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312 T. Chinburg, M. Stover

We now outline the contents of the paper and the proofs of Theorems 1.6 and 1.2.
In Sect. 2 we recall the definition of spherical codes and some classical results concerning

them. We define hyperbolic codes in Sect. 3. In Sect. 4 we state our results concerning the
relation between negative curves of small genus and hyperbolic codes of angle at least π/2.

The proof of Theorem 1.6 involves the following steps. In Sect. 5 we study subsets D =
{Di }i of Num(X) for which there is a class h ∈ Num(X) with h2 > 0 such that D2

i < 0 ≤
Di · D j and h · Di > 0 ≥ (aDi + bD j )

2 for all i 
= j and all integers a, b ≥ 0. We show
D has these properties if and only if it forms a strict hyperbolic code with angle at least π/2
in the hyperbolic space of dimension n = ρ(X) − 1 associated with the intersection pairing
on Num(X).

Now, suppose that F is a set of curves as in Theorem 1.6. The map sending C ∈ F to its
class [C] in Num(X) is injective, since C1 · C2 ≥ 0 > C2

1 if C1 and C2 are distinct elements
of F . Since F has at least two distinct elements, we must have n + 1 = ρ(X) ≥ 2. Suppose
now that #F ≥ Rn(π/2) elements, so that D = {[C] : C ∈ F} has more than Rn(π/2)

elements. Taking h to be the class of an ample effective divisor, we conclude that there are
two curves C1, C2 ∈ F and integers a, b ≥ 0 such that E = aC1 + bC2 has E2 > 0. Since
the Ci are irreducible, we can adjust a and b so that E becomes an effective connected nef
divisor of positive self-intersection. This will prove Theorem 1.6.

To prove Theorem 1.2, we now let F be the set of irreducible curves C on X with C2 < 0
and g(C) < b1(X)/4. Suppose F has more than Rn(π/2) elements. We show in Sect. 8 that
this leads to a contradiction in the following way.

Theorem 1.6 implies there are C1, C2 ∈ F and a, b ≥ 0 such that E = aC1 + bC2 is an
effective connected nef divisor of positive self-intersection. An étale Lefschetz theorem (see
[6], [3, §2]) implies that the induced homomorphism of étale fundamental groups

π ét
1 (|E |, x) −→ π ét

1 (X , x)

at some geometric point x ∈ E has image of finite index in π ét
1 (X , x), where |E | is the

reduction of E . In Theorem 8.3 of Sect. 8 we use a motivic weight argument to show that the
natural morphism

Jac(C�
1) ⊕ Jac(C�

2) −→ Alb(X)

is surjective, where Jac(C�
i ) is the Jacobian of the normalization C

�
i of Ci and Alb(X) is the

Albanese variety of X . Since g(Ci ) = g(C
�
i ) = dim(Jac(C�

i )) this implies that

max(g(C1), g(C2)) ≥ dim(Alb(X))/2 = b1(X)/4.

This is impossible since the curves C in Theorem 1.2 are assumed to have geometric genus
strictly less than b1(X)/4.

This reduces the proof of Theorem 1.2 to bounding Rn(π/2) from above. We do this in
Sects. 5 and 6 using the upper half-space model of hyperbolic n-space to connect hyperbolic
codes to spherical codes. The connection comes about from the fact that geodesic half-spaces
in the upper half-space model are one side of either a vertical plane or a Euclidean sphere.
The latter spheres have centers on the Euclidean space Rn−1 of points at infinity different
from ∞. In Sect. 6 we prove an upper bound for the size of a strict hyperbolic code of angle
π/2 by showing that we can assume all the half-spaces associated with elements of the code
have boundaries that are Euclidean spheres, and we can place the center of the smallest such
sphere at the origin in Rn−1. Then the rays outward from the origin to the centers associated
to other spheres must intersect a unit sphere Sn−2 in Rn−1 in a spherical code with angle
at least arccos(3/4) = φ0. In Sect. 7 we prove a lower bound on the maximum size of a
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Negative curves of small genus on surfaces 313

hyperbolic code with angle at least π/2 by placing the above centers at a well-chosen subset
of a spherical code in Rn−1 with angle at at least 2φ0 and by taking the radii of all the spheres
around these centers to be

√
7/8.

2 Spherical codes

In this section we recall some definitions and results concerning spherical codes. See [5] for
further details.

Definition 2.1 A spherical code is a subset S of the unit sphere Sn−1 in n-dimensional
Euclidean space Rn . If x, y ∈ S, the angle φ(x, y) between x and y is the unique number in
the range 0 ≤ φ(x, y) ≤ π such that cos(φ(x, y)) = x · y. Define the angle φ(S) of S to
be the infimum of φ(x, y) over all distinct x, y ∈ S. For 0 < φ ≤ τ ≤ π define

Kn(φ, τ ) = max{#S : φ ≤ φ(x, y) ≤ τ for all x, y ∈ S with x 
= y}. (2.1)

We set Kn(φ) = Kn(φ, π).

Example 2.2 The kissing number Kn = Kn(π/3) is the maximum number of spheres of a
given positive radius that can touch a sphere of the same radius without having overlapping
interiors.

The following result is due to Kabatiansky and Levenshtein [8]:

Theorem 2.3 Suppose 0 < φ ≤ π/3. If n is sufficiently large, then Kn(φ) ≤ c(φ)n , where

c(φ) = 1

2 0.099
√

1 − cos(φ)
. (2.2)

In fact, [8] shows that the same conclusion holds for φ in the range from 0 to a number
slightly larger than π/3. The following lower bound is due Chabauty, Shannon and Wyner
[5, §1.6].

Theorem 2.4 Suppose 0 < φ < π/2 and 1 < c < 1
sin(φ)

. If n is sufficiently large, then

Kn(φ) ≥ cn . (2.3)

3 Hyperbolic codes

The hyperbolic variant of spherical codes developed in this section is motivated by the
following observation. A point w in a spherical code W ⊂ Sn−1 determines and is determined
by the geodesic half-space

Z(w) = {w′ ∈ Sn−1 : 〈w,w′〉 ≤ 0},

where 〈,〉 is the usual Euclidean inner product. One can thus reformulate spherical codes as
collections of geodesic half-spaces of Sn−1 whose outward normals form at least a certain
angle at their intersections.

This interpretation carries over directly to hyperbolic space. One complication is that
in hyperbolic space, half-spaces may not intersect and one half-space can properly contain
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314 T. Chinburg, M. Stover

another. To formulate a precise definition, we first recall the definition of the hyperboloid
model Ln and the ball model Bn of hyperbolic n-space. See [13, §3.2] for details.

Let 〈 , 〉 : Rn ⊗Rn −→ R be the usual Euclidean inner product with norm ‖ ‖2 : Rn −→
R. Define an inner product I : (Rn ⊥ R) ⊕ (Rn ⊥ R) −→ R by

I ((v; u), (v′; u′)) = −〈v, v′〉 + u · u′.

For q = (v; u) write q2 = I (q, q). The (upper) hyperboloid model of hyperbolic space is
then

Ln =
{

q = (v; u) ∈ Rn ⊥ R : q2 = −‖v‖2 + u2 = 1 and u > 0
}

.

The line element for Ln is ds =
√

(dv)2 − (du)2.
Let 0 be the origin in Rn . Projection

π : (Rn ⊥ R) � {(0;−1)} −→ Rn

from the point (0;−1) identifies Ln with the ball model

Bn = {v ∈ Rn : ‖v‖2 < 1}

of hyperbolic space. The ideal boundary of Bn is the closed unit sphere ∂ Bn = Sn−1. Define
B

n = Bn ∪ ∂ Bn , which is the closed unit ball in Rn .
Suppose w ∈ Rn ⊥ R is a negative vector, i.e., that I (w,w) = w2 < 0. The ray

determined by w is

r(w) = {tw : 0 < t ∈ R},

and the set of points

Y (w) = {π(q) ∈ Bn : q = (v; u) ∈ Ln and I (w, q) ≤ 0} (3.1)

is a closed geodesic half-space in Bn . Let

W (w) = {π(q) ∈ Bn : q = (v; u) ∈ Ln and I (w, q) = 0}

be the boundary of Y (w) in Bn and define ∂Y (w) ⊂ Sn−1 (resp. ∂W (w) ⊂ Sn−1) to be the
ideal boundary of Y (w) (resp. W (w)). Then set Y (w) = Y (w)∪∂Y (w) and W (w) = W (w)∪
∂W (w). The following is well-known (e.g., see [14, §2.3] and Fig. 1 for an illustration).

0

w

R
n

⊥ R

Bn

r(w)

π

0

π(r)

Y (w)
z

Fig. 1 Illustration of Lemma 3.1
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Lemma 3.1 The map identifying the ray r(w) with the closed half-space Y (w) defines a

bijection between the set of negative rays in Rn ⊥ R and the set of closed geodesic half-

spaces in Bn . The set W (w) is the intersection of the closed unit ball B
n

with a Euclidean

sphere or with a hyperplane of dimension n − 1. If n ≥ 2 then W (w) intersects Sn−1 at right

angles and W (w) ∩ Sn−1 = ∂W (w) is a Euclidean sphere of dimension n − 2 and positive

radius.

Definition 3.2 Suppose that q ∈ W (w). If q ∈ W (w) ⊂ Bn , let nw(q) be the outward unit
normal to Y (w) at q in the tangent space Tq Bn of q in Bn . If q ∈ ∂W (w) ⊂ Sn−1 and n ≥ 2,
let nw(q) be the outward unit normal to Y (w) ∩ Sn−1 = ∂Y (w) at q in the tangent space
Tq Sn−1.

We now need to understand more about the properties of the subspaces associated with
a pair of negative vectors. Suppose that w1, w2 ∈ Rn ⊥ R are negative vectors, and in
what follows set Wi = W (wi ) and Yi = Y (wi ), i = 1, 2. Suppose that there exists a point
q ∈ W 1 ∩ W 2. It is well-known that the angle θ(w1, w2) ∈ [0, π] between nw1(q) and
nw2(q) satisfies

cos(θ(w1, w2)) = −I (w1, w2)√
I (w1, w1) · I (w2, w2)

. (3.2)

See [13, §3.2], and note that our I is the negative of the form used there. If W (w1)∩W (w2) =
∅, define θ(w1, w2) = −∞. We will need the following observations.

Lemma 3.3 Suppose w1 and w2 are two negative elements of Rn ⊥ R. The following condi-

tions are equivalent:

(i.) θ(w1, w2) ≥ π/2;

(ii.) I (w1, w2) ≥ 0 and there exists a point q ∈ W 1 ∩ W 2;

(iii.) I (w1, w2) ≥ 0 and for all 0 ≤ a, b ∈ R one has

I (aw1 + bw2, aw1 + bw2) ≤ 0. (3.3)

Now suppose that any (and hence all) of these conditions hold and that there exists h ∈ Ln ⊂
Rn ⊥ R with I (wi , h) > 0 for i = 1, 2. Then π(h) /∈ Y1 ∪ Y2. Let P ∈ Sn−1 = ∂ Bn be the

limit point of the geodesic ray in Bn starting at π(h) and perpendicular to W1. Then P is a

point of Y 1 � W 1 that is not in Y 2.

Proof We will see that the proof reduces to checking the case n = 2. Since conditions
(i), (ii) and (iii) are invariant under scaling, we can assume that w2

1 = w2
2 = −1. The

fact that (i) implies (ii) is clear from (3.2). If (ii) holds, then (iii) follows from expanding
I (aw1 + bw2, aw1 + bw2) and using (3.2). Similarly, (iii) implies |I (w1, w2)| ≤ 1, which
means that W 1 and W 2 meet with angle given as in (3.2) and hence (iii) implies (i).

We now suppose that (i), (ii) and (iii) hold and that there is an h ∈ Ln as in the last part of
the lemma. The fact that π(h) /∈ Y1 ∪ Y2 follows immediately from the definition of the Yi .
Intersecting with the appropriate totally geodesic B2 inside Bn , it suffices to prove the claim
for P in the hyperbolic plane. Then we have the geometric arrangement shown in Fig. 2. If
the geodesic ray 
 from π(h) intersecting W1 orthogonally were to have endpoint on ∂Y 2,
then it would need to also meet W 2.

Let z1 be the point at which 
 meets W1 and z2 the point where 
 meets W 2. When q ,

z1, and z2 are distinct, they form a triangle in B
2
, possibly with an ideal vertex at z2, with

interior angle θ at q and π/2 at z1. Therefore the triangle has angle sum greater than or equal
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Fig. 2 Geometric picture for
Lemma 3.3

w1

w2

Y1 ∩ Y2

π(h)

Y2

Y1

q θ

W1

W2

to π , which is impossible for a triangle in B
2

[13, §3.5]. In the degenerate case, q = z1 = z2,
and the geodesic from π(h) to q visibly makes an angle

φ < π − θ ≤ π/2

with W1 at q , and hence cannot be orthogonal to W1. Since π(h) is not in W1 and W1 is
totally geodesic, it is also clear that the endpoint of 
 cannot be in W 1. This completes the
proof of Lemma 3.3.

��

Definition 3.4 A hyperbolic code is a collection S of negative vectors w ∈ Rn ⊥ R. We
say that S is strict if the union over all w ∈ S of the half-spaces Y (w) is not all of Bn .
Define θ(S) ∈ {−∞}∪ [0, π ] to be the greatest lower bound over all pairs w1, w2 of distinct
elements of S of the angle θ(w1, w2) defined above.

Definition 3.5 Let θ be an angle in the range 0 < θ ≤ π . The hyperbolic kissing number

(resp. strict hyperbolic kissing number) Rn(θ) (resp. Rn(θ)) in Z ∪ {∞} is the supremum of
#S over all hyperbolic codes S (resp. strict hyperbolic codes S) for which θ(S) ≥ θ .

4 Negative curves, hyperbolic codes, and Theorem 1.2.

As in the introduction, let X be an irreducible smooth projective surface over a field k. The
group Num(X) is torsion free and finitely generated. Let

Num(X)R = R ⊗Z Num(X).

The Hodge index theorem implies that the intersection pairing on Num(X) extends to a
pairing

I : Num(X)R × Num(X)R −→ R

with signature (1, n), where dim(Num(X)R) = n + 1.

Definition 4.1 Let L(X) be the hyperboloid model of hyperbolic n-space associated with the
choice of isometry carrying I to the standard signature (1, n) pairing on Rn ⊥ R.
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Negative curves of small genus on surfaces 317

Definition 4.2 Let T (X) be the set of all irreducible curves C on X for which C2 =
I (C, C) < 0 and g(C) < b1(X)/4. For C ∈ T (X), let [C] be the class of C in Num(X)R

and define S(X) = {[C] : C ∈ T }.

The following is a well-known consequence of the fact that distinct curves have non-
negative intersection.

Lemma 4.3 The map T (X) −→ S(X) sending C to [C] is a bijection.

We prove the following theorem, which is the key technical result connecting hyperbolic
codes to negative curves, in Sect. 8.

Theorem 4.4 The set S(X) is a strict hyperbolic code in Num(X)R of angle at least π/2.

Recall that ρ(X) is the rank of Num(X), i.e., the real dimension of Num(X)R. We then
have the following conclusion.

Corollary 4.5 The number of elements of T (X) is bounded above by the strict hyperbolic

kissing number Rn(π/2), where n = ρ(X) − 1.

Recall that Kn−1(θ) is the kissing number associated to the angle θ in the Euclidean space
Rn−1. The first statement of the following Theorem will be proved in Sect. 5. The second
statement will be proved in Sects. 6 and 7.

Theorem 4.6 For every n ≥ 2, one has

Rn(π/2) ≤ Rn(π/2) ≤ 2Rn(π/2). (4.1)

Let 0 < φ < τ ≤ π be any choice of constants such that
√

2 sin(φ/2) = sin(τ/2). Then

max

{⌊

Kn−1(2φ0)

2

⌋

, Kn−1(φ, τ )

}

≤ Rn(π/2) ≤ Kn−1(φ0) + 2, (4.2)

where φ0 = arccos(3/4).

From the results about spherical kissing numbers quoted in Sect. 2 we now have the
following conclusion.

Corollary 4.7 One has

2 0.011 n(1 + o(n)) ≤ Rn(π/2) ≤ 2 0.901 n(1 + o(n)),

where o(n) −→ 0 as n −→ ∞.

Proof of Theorem 1.2 Combine Corollary 4.5, Theorem 4.6, and Corollary 4.7. ��

5 Hyperbolic codes and the upper half-spacemodel

We now use the upper half-space model

Hn = {(z1, . . . , zn) : zi ∈ R, zn > 0} ⊂ Rn .

of hyperbolic space to give another description of hyperbolic codes.
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Recall from [13, §4.4] that there is an isometry f : Ln −→ Hn defined in the following
way. For x ∈ Ln ⊂ Rn ⊥ R = Rn+1, let y be the point (y1, . . . , yn+1) on the unit (n + 1)-
sphere Sn in Rn+1 that is on the ray from the origin in Rn+1 to x . Then f (x) is the unique
point z = (z1, . . . , zn) ∈ Hn such that (1, z1, . . . , zn) ∈ Rn+1 lies on the ray outward from
((−1, 0, 0, . . . , 0); 0) ∈ Rn+1 through y.

Consider the one-point compactification

∂ Hn = {∞} ∪ {(z1, . . . , zn−1, 0) : zi ∈ R}

of Rn−1 = {(z1, . . . , zn−1, 0) : zi ∈ R}. Then ∂ Hn is homeomorphic to Sn−1, and the above
construction identifies ∂ Hn with the boundary of Hn . Geodesics in Hn are the intersection of
Hn with either circles or vertical lines in Rn that intersect ∂ Hn � {∞} = Rn−1 orthogonally.
Geodesic hypersurfaces in Hn are the intersection of Hn with either

(i) vertical planes in Rn (i.e., planes intersecting ∂ Hn � {∞} = Rn−1 orthogonally), or
(ii) Euclidean spheres with center on ∂ Hn � {∞} (which then intersect ∂ Hn � {∞} every-

where orthogonally).

Geodesic half-spaces are then formed by the set of all points of Hn that lie either on one
chosen side of a geodesic hypersurface or on the hypersurface itself. Define H

n = Hn ∪∂ Hn .

Definition 5.1 In (3.1) to each negative vector w ∈ Rn ⊥ R we defined a geodesic half-
space Y (w) in the open ball model Bn of hyperbolic space with boundary W (w), a geodesic
hypersurface. Let Y ′(w) be the corresponding geodesic half-space in Hn with boundary
W ′(w). Similarly, let ∂Y ′(w) ⊂ ∂ Hn (resp. ∂W ′(w) ⊂ ∂ Hn) be the ideal boundary of
Y ′(w) (resp. W ′(w)). Finally, set Y ′(w) = Y ′(w)∪∂Y ′(w) and W ′(w) = W ′(w)∪∂W ′(w).

If W ′(w) lies in a vertical plane we will say that the center z(w) of Y ′(w) is the point ∞ of
∂ Hn and that the Euclidean radius of ∂Y ′(w) is ∞. Otherwise, W ′(w) is the intersection of
Hn with a Euclidean sphere of some positive radius d(w) centered at a point z(w) ∈ Rn−1 =
∂ Hn � {∞}. If z(w) 
= ∞ and z(w) ∈ Y ′(w), then Y ′(w) is the intersection of Hn with the
closed Euclidean ball of radius d(w) about z(w). Otherwise, Y ′(w) is the intersection of Hn

with the complement of the interior of this ball.

We now reformulate the condition that θ(w1, w2) ≥ π/2 in Lemma 3.3 using the upper
half-space model. To simplify notation in what follows, given a negative vector wi ∈ Rn ⊥ R

we let Yi = Y (wi ) and similarly for the other notation from Definition 5.1.

Lemma 5.2 Suppose w1 and w2 are two negative elements of Rn ⊥ R such that neither W ′
1

nor W ′
2 lie in a vertical plane. For z1, z2, d1, d2 as in Definition 5.1, let |z1 − z2| be the

Euclidean distance between z1 and z2 in Rn−1. Define δi = 1 if zi ∈ Y
′
i , and set δi = −1

otherwise. Then θ(w1, w2) ≥ π/2 if and only if and only if

√

d2
1 + d2

2 ≤|z1 − z2| ≤ d1 + d2 when δ1δ2 = 1 (5.1)

|d1 − d2| ≤|z1 − z2| ≤
√

d2
1 + d2

2 when δ1δ2 = −1. (5.2)

Finally, if θ(w1, w2) ≥ π/2 and I (h, w1), I (h, w2) > 0 for some h ∈ Ln ⊂ Rn ⊥ R, then

z1 
= z2.

Proof For i = 1, 2, the half-space Y
′
i is either H

n∩B(zi , di ) (when δi = 1) or the complement
in H

n
of the interior of B(zi , di ) (when δ(wi ) = −1).
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Suppose first that θ(w1, w2) ≥ π/2, so that there is a point q ∈ W 1 ∩ W 2. If δ1δ2 = 1,
the angle between the rays from q to z1 and from q to z2 is at least θ(w1, w2) ≥ π/2.

Therefore |z1 − z2| ≥
√

d2
1 + d2

2 . In this case, the existence of a point in W
′
1 ∩ W

′
2 implies

that |z1 − z2| ≤ d1 + d2. This proves (5.1).
If δ1δ2 = −1, the angle between the rays from q to w1 and from q to w2 is at most π/2,

rather than being at least π/2. This leads to |z1 − z2| ≤
√

d2
1 + d2

2 . Since W
′
1 and W ′

2 must

intersect, we see that d1 + d2 ≥ |z1 − z2| ≥ |d1 − d2|. Note that |z1 − z2| ≤
√

d2
1 + d2

2
already implies d1 + d2 ≥ |z1 − z2|. This gives (5.2).

For the converse, one reverses the above reasoning to show that (5.1) and (5.2) imply that
θ(w1, w2) ≥ π/2. If z1 = z2, then W ′

1 and W ′
2 are the the intersection of Hn with concentric

spheres. Hence if θ(w1, w2) ≥ π/2, we would have W
′
1 = W

′
2 and θ(w1, w2) = π . However,

then Y 1 ∪ Y 2 = B
n
, so there could be no h ∈ Ln with I (h, w1), I (h, w2) > 0. ��

We now have the following, which is one of the main technical results in this paper.

Theorem 5.3 For all integers m, n ≥ 1 , the following are equivalent:

(1) There are elements w0, . . . , wm ∈ Rn ⊥ R such that for some h ∈ Rn ⊥ R one has

(a) I (h, h) > 0 > I (wi , wi ),

(b) I (h, wi ) > 0,

(c) I (wi , w j ) ≥ 0, and

(d) I (awi +bw j , awi +bw j ) ≤ 0 for all distinct 0 ≤ i, j ≤ m and all positive a, b ∈ R.

(2) The subset {w0, . . . , wm} ⊂ Rn ⊥ R is a strict hyperbolic code having m + 1 elements

and angle at least π/2.

(3) After replacing the m + 1 element subset {w0, . . . , wm} ⊂ Rn ⊥ R by their image under

an isometry, the set {Y ′
0, . . . , Y

′
m} of half-spaces in Hn has the following description.

The ideal boundary of each Y
′
i is a sphere centered at a point zi ∈ Rn−1 of some radius

di > 0. When i = 0, the point z0 is the origin 0 of Rn−1, and Y
′
0 is the exterior in H

n
of

the open ball of radius d0.

If 1 ≤ i ≤ m, Y
′
i is the intersection of H

n
with the closed ball of radius di around zi .

Finally, the following inequalities hold:

(a) |z j |2 > max(0, d2
j − d2

0 ) if 1 ≤ j ≤ m,

(b) |d0 − di | ≤ |zi | ≤
√

d2
0 + d2

i , and

(c)
√

d2
i + d2

j ≤ |zi − z j | ≤ di + d j if 1 ≤ i < j ≤ m

where |z − z′| is the Euclidean distance between points z, z′ ∈ R.

Lastly, if {z1, . . . , zm} is any set of m distinct points in Rn−1 for which there are posi-

tive constants d1, . . . , dm > 0 such that condition (c) of part (3) holds, then there exist

h, w1, . . . , wm ∈ Rn ⊥ R for which the statements in condition (1) hold for 1 ≤ i, j ≤ m.

Proof Lemma 3.3 shows the equivalence of (1) and (2). Indeed, if h ∈ Rn ⊥ R and I (h, h) >

0, we can replace h by h/
√

I (h, h) to make h an element of Ln .
To show that (1) implies (3), let h and w0, . . . , wm be as in (1), where as above we can

assume h ∈ Ln . Let P̃ be the limit point on ∂ Hn of the geodesic ray in Hn that starts at f (h)
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Fig. 3 Arrangement of half-spaces in Theorem 5.3

and is perpendicular to the geodesic hypersurface W ′
0, where f : Ln −→ Hn is the above

isometry. This geodesic ray is part of a geodesic line with another limit point P̃ ′ on ∂ Hn .
Applying an isometry, we can assume that P̃ = ∞ and P̃ ′ is the origin 0 of Rn−1 ⊂ ∂ Hn .

Translating the final statement of Lemma 3.3 to the upper half plane model, P̃ is a point of
Y

′
0 �W

′
0 that does not lie on Y

′
j for any j > 0. Consider the points z0, . . . , zm associated with

the wi by Definition 5.1. It is clear from our assumptions that each z j lies in Rn−1 ⊂ ∂ Hn .
Recall that W ′

j is the intersection of Hn with a Euclidean sphere of radius d j > 0 and center
z j .

When j = 0, we know ∞ = P ′ ∈ Y
′
0, so Y

′
0 must be the complement in H

n
of the interior

B(z0, d0) of the ball at z0 of radius d0. Thus δ0 = −1 in the terminology of Lemma 5.2.
Furthermore, the sphere W0 is perpendicular to the geodesic with limit points ∞ and 0, and
this geodesic contains f (h), and we conclude that z0 = 0. Note also that now f (h) must lie
in the interior 
0 of the vertical line segment of Euclidean length d0 that has one endpoint at
0. See Fig. 3.

Suppose 1 ≤ j ≤ m. Then ∞ /∈ Y
′
j implies that Y

′
j = H

n ∩ B(z j , d j ), so δ j = 1 for

1 ≤ j ≤ m. Since f (h) is not contained in Y
′
j , we find from the fact that f (h) is on 
0 that

d2
0 + |z j |2 > d2

j .

We now apply the criterion in Lemma 5.2 to every pair wi , w j with 0 ≤ i 
= j ≤ m to
produce the inequalities in part (3) of Theorem 5.3.

Conversely, suppose all of the inequalities stated in part (3) of Theorem 5.3 are satisfied
with z0 = 0 and some of {zi }m

i=1 ⊂ Rn−1 and positive real numbers {di }m
i=0. Then z0 
= zi

for 1 ≤ i ≤ m because |zi | 
= 0 was assumed in part (3c) of Theorem 5.3. We can choose
negative vectors w0, . . . , wm in Rn ⊥ R such that Y

′
0 is the complement in H

n
of the open

unit ball of radius d0 about the origin z0 and Y
′
i is H

n ∩ B(zi , di ) for 1 ≤ i ≤ m.
The assumption that d2

0 + |zi |2 > d2
i for 1 ≤ i ≤ m in part (3) of Theorem 5.3 implies

that if we choose h ∈ Ln so that f (h) lies in B(0, 1) and is close enough to the point that
lies at distance 1 directly above the origin, then f (h) will not be in Y

′
i for 1 ≤ i ≤ m or
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in Y
′
0. Now Lemma 5.2 shows that h, w0, w1, . . . , wm satisfy the conditions in part (1) of

Theorem 5.3.
The final statement we must prove is that if one has only points z1, . . . , zm in Rn−1

and positive numbers d1, . . . , dm for which part (c) of condition (3) holds, then there are
h, w1, . . . , wm ∈ N (X)R for which condition (1) holds for 1 ≤ i, j ≤ m. In this case, we
choose wi so that Y

′
i is H

n ∩ B(zi , di ) for 1 ≤ i ≤ m. Then the vertical heights of points of

each Y
′
i are bounded, so we can find a point f (h) ∈ Hn not in this union. Lemma 5.2 now

shows that h, w1, . . . , wm satisfy the conditions in part (1) of the theorem for 1 ≤ i, j ≤ m.
��

We now give a number of corollaries to Theorem 5.3.

Corollary 5.4 The strict hyperbolic kissing number Rn(π/2) is the supremum of m + 1 over

all integers m for which there exist distinct points z1, . . . , zm ∈ Rn−1 and positive real

constants d1, . . . , dm for which

(a) max{0, d2
i − 1} < |zi |,

(b) |1 − di | ≤ |di | ≤
√

1 + d2
i , and

(c)
√

d2
i + d2

j ≤ |zi − z j | ≤ di + d j .

Proof The corollary follows from renormalizing the zi and di as in part (3) of Theorem 5.3
by dividing each by d0, 1 ≤ i ≤ m. ��

Corollary 5.5 Suppose there is a possibly nonstrict hyperbolic code in Ln having m′ elements

and angle at least π/2. If m = �m′/2�, then there is a strict hyperbolic code having at least

m elements and angle at least π/2.

Proof Applying an isometry, suppose we have a nonstrict code S = {w1, . . . , wm′} with
angle at least π/2 such that, in the upper half-space model each wi gives a point zi ∈ Rn−1

together with a positive radius di . Removing at most half the wi , we can replace m′ by m

and assume that all of the constants δi are the same. In other words, all of the half-spaces
Y

′
i come from either the interiors Ui of the open balls B(zi , di ), or all of them come from

the exterior of its closure of Ui . This means that we now satisfy the inequalities in (5.1) of
Lemma 5.2 for all 1 ≤ i, j ≤ m with i = j . Replacing each Y

′
i by Ui now produces, via the

last statement of Theorem 5.3, a strict hyperbolic code with m elements, since the union of
all the Ui cannot be all of Hn . ��

Corollary 5.6 Suppose that there is a largest positive integer m = m(n) for which the equiv-

alent conditions (1), (2), and (3) in Theorem 5.3 can be satisfied by some choice of h, wi , zi

and di as i ranges over 0 ≤ i ≤ m. Then m + 1 is the strict hyperbolic kissing number

Rn(π/2). The (nonstrict) hyperbolic kissing number Rn(π/2) satisfies

Rn(π/2) ≤ Rn(π/2) ≤ 2Rn(π/2). (5.3)

6 The upper bound on Rn(�/2)

We begin with the following technical estimate.
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Fig. 4 Optimizing Lemma 6.1

z1 z2

z3

Lemma 6.1 Suppose n ≥ 2, z1, z2, z3 ∈ Rn−1, 0 < d1 ≤ d2 ≤ d3 and that
√

d2
i + d2

j ≤ |zi − z j | ≤ di + d j for all i 
= j (6.1)

as in condition (c) of Corollary 5.4 (cf. condition 2(c) of Theorem 5.3). Then n ≥ 3 and z1, z2

and z3 are not collinear. Let 0 < θ1 < π be the angle of the triangle (z1, z2, z3) at z1. Then

θ1 ≥ φ0 = arccos(3/4).

Proof Considering the subspace spanned by z1, z2, and z3, we can reduce to the case where
n ≤ 3. If z1, z2, and z3 are collinear, we can assume n = 2 and z1 < z2 < z3 in Rn−1 = R.
Then (6.1) leads to a contradiction. Therefore after a translation and scaling, we can assume
n = 3, z1 = (0, 0) = 0 is the origin in R2 and 0 < d1 ≤ d2 ≤ d3 = 1. The input of z2, z3, d1

and d2 is now specified by 6 real variables, and we want to maximize the function cos(θ1) of
these variables. It is a lengthy but elementary calculus exercise to show that the maximum is
obtained when cos(θ1) = 3/4. We list the steps involved here and include complete details
in an appendix.

Regarding d1, d2 and d3 = 1 as fixed for the moment, let S(d1, d2) be the set of
(z1, z2, z3) = (0, z2, z3) that satisfy (6.1). One checks that cos(θ1) is a continuous func-
tion on the compact set S(d1, d2), so that it attains its maximum at some point (z1, z2, z3) =
(0, z2, z3) in S(d1, d2). To prove the lemma it suffices to show that θ1 ≥ φ0.

The main fact we can now use is that since (z1, z2, z3) ∈ S(d1, d2) maximizes cos(θ1),
we cannot move z1, z2 and z3 in R2 and then translate z1 back to 0 in such a way that the
inequalities (6.1) still hold with the same d1, d2 and d3 = 1 but with a smaller value for θ1.
By considering such moves, we show in the appendix that the maximum value of cos(θ1)

over all possible choices of 0 < d1 ≤ d2 ≤ d3 = 1 is attained by the example in Remark 6.2
below. ��
Remark 6.2 An angle of θ1 = φ0 can be achieved by setting d1 = d2 = d3 = 1, n = 3,
z1 = (0, 0) ∈ Rn−1 = R2, z3 = (2, 0) and z2 = (2cos(θ0), 2sin(φ0)) = (3/2,

√
7/2). Then

|z1 − z3| = d1 +d3 = 2 = d1 +d2 = |z1 − z2| and |z2 − z3| =
√

d2
2 + d2

3 =
√

2. See Fig. 4.

We now prove the following, which implies the upper bound in (4.2) of Theorem 4.6 as
well as all the bounds in (4.1) via Corollary 5.6.

Corollary 6.3 Suppose z1, . . . , zm ∈ Rn−1 and d1, . . . , dm > 0 satisfy condition (c) of Corol-

lary 5.4, so that
√

d2
i + d2

j ≤ |zi − z j | ≤ di + d j for all i 
= j . Then m ≤ Kn−1(φ0) + 1. In

particular, the number m(n) from Corollary 5.6 satisfies m(n) ≤ Kn−1(φ0) + 2.

Proof Without loss of generality, we can order z1, . . . , zm so that d1 ≤ di for all 1 ≤ i ≤ m.
By condition (c), the points zi are all distinct. Therefore, for 1 < i ≤ m the points

ξi = (zi − z1)/|zi − z1|
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lie on the unit sphere Sn−2 in Rn−1. Lemma 6.1 shows that for all 1 < i < j ≤ m, the angle
between the rays from the origin to ξi and to ξ j must be at least φ0. Therefore ξ2, . . . , ξm

must form a spherical code with angular separation at least φ0, so m − 1 ≤ Kn−1(φ0). Then
the number m(n) from Corollary 5.6 is the number of points z0, z1, . . . , zm for which there
are d0, . . . , dm as in Theorem 5.3, so we conclude m(n) ≤ m + 1 ≤ Kn−1(φ0) + 2. ��

7 The lower bound on Rn(�/2)

Let 0 < φ < τ ≤ π be any choice of constants such that
√

2 sin(φ/2) = sin(τ/2) and define
m = Kn−1(φ, τ ). We can therefore find a spherical code S = {z1, . . . , zm} on the unit sphere
Sn−2 in Rn−1 such that the angular separation φ(zi , z j ) between the rays from the origin to
zi and to z j satisfies φ ≤ φ(zi , z j ) ≤ τ for all i 
= j . Therefore,

4sin2(φ/2) = 2 − 2cos(φ) ≤ |zi − z j |2 = 2 − 2cos(φ(zi , z j )) ≤ 4sin2(τ/2).

It follows that if we let dk =
√

2 sin(φ/2) = sin(τ/2) for all k = 1, . . . , m, then
√

d2
i + d2

j ≤ |zi − z j | ≤ di + d j

for all i 
= j , as in condition (c) of Corollary 5.4. Theorem 5.3 now says that there are
h, w1, . . . , wm ∈ N (X)R for which the statements in condition (1) of Theorem 5.3 hold for
1 ≤ i, j ≤ m. Part (2) of Theorem 5.3 now says {w1, . . . , wm} is a strict hyperbolic code
with angle at least π/2. Therefore Definition 3.5 gives that

m = Kn−1(φ, τ ) ≤ Rn(π/2).

This is the first part of the lower bound (4.2) in Theorem 4.6.
To show the other lower bound in (4.2) of Theorem 4.6, it will suffice to show that when

φ0 = arccos(3/4), we have

Kn−1(2φ0)/2 ≤ Kn−1(φ, τ )

for some φ and τ as above. Let φ = 2φ0 = 1.445 . . . and τ = π − φ0 = 2.418 . . ., so
0 < φ < τ ≤ π . We then have

2sin2(φ/2) = 2sin2(φ0) = 2(1 − cos2(φ0)) = 2(1 − 9/16) = 7/8

sin2(τ/2) = sin2(π/2 − φ0/2) = cos2(φ0/2) = cos(φ0) + 1

2
= 3/4 + 1

2
= 7/8.

Thus
√

2 sin(φ/2) = sin(τ/2) since both of these numbers are positive.
Recall that if z and w are points on the unit sphere Sn−1, φ(z, w) is the angle between the

rays z̃ and w̃ from the origin to z and to w, respectively. By the definition of 
 = Kn−1(2φ0),
we can find a spherical code S′ = {r1, . . . , r
} on Sn−2 such that

φ(ri , r j ) ≥ 2φ0 if i 
= j . (7.1)

For each i , consider the open cone C(−ri ) of points z ∈ Sn−2 such that φ(−ri , z) < φ0. If
there were two distinct points r j and rq in S′ ∩ C(−ri ), then

φ(r j , rq) ≤ φ(−ri , r j ) + φ(−ri , rq) < 2φ0,

which contradicts (7.1). Therefore there is at most point point of the form r j in S′ ∩ C(−ri ),
and if such an r j exists, ri is the unique point in S′ ∩ C(−r j ). Throwing away at most half
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of the points in S′ we then arrive at a spherical code S = {z1, . . . , z
′} with 
′ ≥ 
/2 =
Kn−1(2φ0)/2 such that S ∩ C(−zi ) = ∅ for all i . If j 
= i , then the angle φ(zi , z j ) can be
at most π − φ0, since z j does not lie in C(−zi ). We therefore have φ = 2φ0 ≤ φ(zi , z j ) ≤
π − φ0 = τ , which shows that Kn−1(2φ0)/2 ≤ Kn−1(φ, τ ). This finishes the proof of the
lower bound in (4.2) of Theorem 4.6.

8 The proofs of Theorems 1.6 and 4.4

Theorem 1.6 is equivalent to the following result.

Theorem 8.1 Suppose F is a set of irreducible curves C on X such that C2 < 0 and there

is no connected effective nef divisor with positive self-intersection of the form pC1 + qC2

with 0 ≤ p, q ∈ Z and C1, C2 ∈ F . Then the set {[C] : C ∈ F} is a strict hyperbolic code

of angle at least π/2.

Proof Recall from Lemma 4.3 that the elements [C] are all distinct in Num(X). Let A be
an ample effective divisor on X . Then I ([A], [C]) > 0 for C ∈ F , where I denotes the
intersection pairing. Therefore h = [A]/

√
I (A, A) is an element of the hyperbolic space

L(X) associated with the intersection pairing on R ⊗Z Num(X), and it does not lie in any
of the geodesic half-spaces

H([C]) = {q ∈ L(X) : I (q, [C]) ≤ 0},
hence

T =
⋃

C∈F

H([C])

is not all of L(X).
Suppose that T is not a strict hyperbolic code with angle at least π/2. Then we have that

θ([C1], [C2]) < π/2 for some distinct elements C1, C2 of F , and Lemma 3.3 shows that
there are 0 ≤ a, b ∈ R such that

I (a[C1] + b[C2], a[C1] + b[C2]) = αa2 + 2βab + γ b2 > 0,

where

α = I ([C1], [C1]) < 0

γ = I ([C2], [C2]) < 0

β = I ([C1], [C2]) ≥ 0.

Therefore β > 0 and β2 > αγ . There will be positive integers p and q such that

0 < −γ /β < p/q < −β/α.

Then I ([C1], p[C1]+q[C1]) = pα+βq > 0 and I ([C2], p[C1]+q[C2]) = pβ+qγ > 0. It
is then clear that pC1 +qC2 is an effective connected nef divisor of positive self-intersection,
contradicting the hypothesis of Theorem 8.1. This proves the theorem. ��
Remark 8.2 The referee noticed that one can also give the following simple argument for the
last part of the proof of Theorem 8.1. Our setup implies that the quadratic form αa2 +2βab+
γ b2 does not take positive values on the first quadratic in R2. Then any positive value can
be obtained with a, b of the same sign, since α, γ < 0 and β ≥ 0, hence the form takes no
positive values at all. This implies that β2 < αγ , which gives cos θ < 0.
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As in the statement of Theorem 4.4, let T (X) be the set of all irreducible curves C on X

for which C2 = I (C, C) < 0 and g(C) < b1(X)/4, and set

S(X) = {[C] : C ∈ T } ⊂ R ⊗Z Num(X).

We must show that S(X) is a strict hyperbolic code in L(X) with angle at least π/2. We
suppose throughout this section that this is not the case, and we will derive a contradiction.

Theorem 8.1 implies there is an effective connected nef divisor of positive self-intersection
on X of the form pC1 + qC2 in which C1 and C2 are elements of T (X) and 0 < p, q ∈ Z.
We will prove the following result below:

Theorem 8.3 Suppose that E is a connected effective nef divisor on a smooth projective

geometrically integral surface X over a field k with positive self-intersection . Let E� be the

normalization of the reduction |E | of E. Let J (E�) be the direct sum of the Jacobians of

the irreducible components of E�. Then the natural morphism from J (E�) to the Albanese

variety Alb(X) of X is surjective.

Before giving the proof, we note how it implies Theorem 4.4. If E = pC1 +qC2 as above,
we obtain a surjection

J (E�) = J (C
�
1) ⊕ J (C

�
2) −→ Alb(X).

Since Alb(X) has dimension b1(X)/4 and J (C
�
i ) has dimension the geometric genus g(Ci ),

we see that g(C1) + g(C2) ≥ b1(X)/2. However, we supposed that every curve C ∈ T (X)

has g(C) < b1(X)/4, and this contradiction proves Theorem 4.4. This also completes the
proof of Theorem 1.6.

Proof of Theorem 8.3 It suffices to prove the theorem for the base change of E and X to an
algebraic closure of k. We assume for the rest of the proof that k is algebraically closed.

Let f be the pullback morphism from the Picard variety Pic0,red(X) of X to the direct
sum Pic0,red(E�) of the Picard varieties of the irreducible components of E�. By duality, it
will be enough to show that Ker( f ) is a finite group scheme. We suppose in what follows
that Ker( f ) is not finite and we will derive a contradiction.

Since Ker( f ) is a subgroup scheme of an abelian variety, it is an extension of an abelian
variety B of positive dimension by a finite group scheme. Let 
 be a prime different from the
characteristic of k. Then the 
-adic Tate module T
(Ker( f )) is isomorphic to T
(B), and it is
a positive rank submodule of T
(Pic0,red(X)). The pullback morphism from T
(Ker( f )) =
T
(B) to T
(Pic0,red(E�)) is trivial.

We know from the étale Lefschetz theorem that the morphism

π ét
1 (|E |, x) −→ π ét

1 (X , x)

of étale fundamental groups at a geometric point x in the support of |E | is surjective, since
E is connected, nef, and effective. Results of this kind go back to Grothendieck in [6]; see
Bost [3, §2] for an excellent discussion, particularly Prop. 2.3. This means that

Hom(π ét
1 (X , x), Z/
n) −→ Hom(π ét

1 (|E |, x), Z/
n)

is injective for all n. Since k is algebraically closed, Z/
n is isomorphic to the group scheme
μ
n of (
n)th roots of unity. Hence the Kummer sequence shows that

Hom(π ét
1 (X , x), Z/
n) = Pic(X)[
n] −→ Hom(π ét

1 (|E |, x), Z/
n) = Pic(|E |)[
n]

is injective for all n.

123



326 T. Chinburg, M. Stover

Taking inverse limits over n we see that the pullback homomorphism

T
(Pic(X)) −→ T
(Pic(|E |))

is injective. On the other hand, T
(B) ⊆ T
(Pic(X)) maps to 0 in T
(Pic0,red(E�)), so the
pullback of line bundles must induce an injection

ξ : T
(B) −→ U = Ker
(

T
(Pic(|E |)) −→ T
(Pic0,red(E�)
)

. (8.1)

We will derive our contradiction from this statement.
All of the above schemes are defined over finitely generated algebras over Z. By increasing


, if necessary, we can find a specialization of all of the above schemes over a finite field
k′ of characteristic p not equal to 
 so that it will suffice to show the map ξ in (8.1) is not
injective for k an algebraic closure of k′.

We now analyze U using the map π : E� −→ |E | coming from the fact that E� is the
normalization of |E |. We have an exact sequence of sheaves of groups in the étale topology
of |E | given by

1 −→ Gm,|E | −→ π∗Gm,E� −→ V −→ 1

in which V has support of dimension 0. Since π is finite, when we take the étale cohomology
of this sequence, we find that U is a quotient of

M = lim
←−
n

H0(k ⊗k′ |E |, V )[
n],

where H0(k ⊗k′ |E |, V )[
n] is the 
n torsion in the H0(k ⊗k′ |E |, V ).
Recall that 
 is prime to the residue characteristic of the finite field k′ over which we are

working. There is a filtration of H0(k ⊗k′ |E |, V ) by Gal(k/k′)-stable submodules such that
each graded quotient is isomorphic to either k∗ or the additive group k+. Therefore, if � is
the arithmetic Frobenius of Gal(k/k′), then the eigenvalues of � on M are all equal to the
order #k′ of k′. This implies that the eigenvalues of � on U equal #k′.

On the other hand T
(B) is the Tate module of an abelian variety B over k′, so the
eigenvalues of � on T
(B) have absolute value the square root of #k′ by the Weil conjectures.
It follows from this that ξ cannot be injective, since T
(B) has positive rank. This contradiction
completes the proof. ��

Remark 8.4 We note that one can prove Theorem 8.3 using only the classical Lefschetz
theorem when k = C, as the maps

π1(E�) −→ π1(E) −→ π1(X)

are surjective. Our proof adapts this idea to arbitrary characteristic.

Acknowledgements The first author would like to thank the IHES, IMPA, and the University of Leiden for
their support during the writing of this paper.

9 Appendix: A calculus exercise

In this appendix we complete the proof of Lemma 6.1, whose notation we now assume. As
in that proof, we begin by fixing 0 < d1 ≤ d2 ≤ d3 = 1. Let 0 = (0, 0) be the origin in
R2 = Rn−1, and let S(d1, d2) be the set of triples (z1, z2, z3) = (0, z2, z3) with z2, z3 ∈ R2

that satisfy (6.1). Then (6.1) implies that |z1 − z2| = |z2|, |z1 − z3| = |z3|, and |z2 − z3| are
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bounded above and below by positive constants. It follows that S(d1, d2) is compact. The
law of cosines gives

cos(θ1) = |z1 − z2|2 + |z1 − z3|2 − |z2 − z3|2
2 · |z1 − z2| · |z1 − z3|

, (9.1)

where the denominator on the right is bounded away from 0. Thus cos(θ1) is a continuous
function on S(d1, d2), so it attains its maximum. We now assume this maximum occurs at
(z1, z2, z3) = (0, z2, z3). As noted in Sect. 6, to prove Lemma 6.1 it will suffice to show that
θ1 ≥ φ0.

Let θ2 and θ3 be the angles at z2 and at z3 between the sides of the triangle with vertices
at z1, z2, z3, respectively. Since we observed in Sect. 6 that (6.1) implies that z1, z2, and z3

are not collinear, all of θ1, θ2 and θ3 lie in the open interval (0, π). Suppose θ3 ≥ π/2. Then
(6.1) gives

(d1 + d2)
2 ≥ |z1 − z2|2

≥ |z1 − z3|2 + |z2 − z3|2 (since θ3 ≥ π/2)

≥ d2
1 + d2

3 + d2
2 + d2

3 . (9.2)

This gives

2d1d2 ≥ 2d2
3 = 2.

However, d1 ≤ d2 ≤ d3 = 1, so this is only possible if d1 = d2 = d3 = 1 and if all
of the inequalities in (9.2) are equalities. Hence (z1, z2, z3) = (0, z2, z3) is a right triangle

with side lengths |z1 − z2| = |z2| = d1 + d2 = 2, |z1 − z3| =
√

d2
1 + d2

3 =
√

2, and

|z2 − z3| =
√

d2
2 + d2

3 =
√

2. This means that θ1 = π/4 ≥ φ0 in this case, as claimed.
As noted in Sect. 6, the main fact we can now apply is that since (z1, z2, z3) ∈ S(d1, d2)

minimizes θ1, we cannot move z1, z2 and z3 in R2 and then translate z1 back to 0 in such a
way that the inequalities (6.1) still hold with the same d1, d2 and d3 = 1 but a smaller value
for θ1.

We may assume that z3 is a point on the positive real axis by rotating both z2 and z3 around
z1 = 0. Since 0 < θ1 < φ0 < π/2, the point z2 now lies in the upper right quadrant. Let C1

be the circle of radius |z1 − z2| = |z2| around z2 in R2. Suppose that

|z1 − z3| < d1 + d3. (9.3)

Let z′
2 = z2 and z′

3 = z3. We now move z1 = 0 to a point z′
1 on C1 that lies in the upper

left quadrant and is very close to z1. The only side length which changes is then |z1 − z3|,
which becomes |z′

1 − z′
3| > |z1 − z3| since z′

3 = z3 lies on the positive part of the real line.
Since |z1 − z3| < d1 + d3, all of the inequalities in (6.1) will hold with the same d1, d2, d3

when we replace (z1, z2, z3) by (z′
1, z′

2, z′
3) = (z′

1, z2, z3) if z′
1 is a point on C1 that lies in

the upper left quadrant and is close enough to z1. We now show that the angle θ ′
1 between

the sides meeting at z′
1 of the triangle (z′

1, z′
2, z′

3) satisfies θ ′
1 < θ1. This will contradict the

minimality of θ1 and show that (9.3) cannot hold.
Let θ ′

3 be the angle between the sides of (z′
1, z′

2, z′
3) meeting at z′

3 = z3. Since z′
1 lies in

the upper left quadrant and on the same side of the line between z′
2 = z2 and z′

3 = z3 as the
origin z1 = (0, 0), we have 0 < θ ′

3 < θ3 < π/2. Thus 0 < sin(θ ′
3) < sin(θ3). The law of

sines now gives

sin(θ ′
1)

sin(θ ′
3)

= |z′
2 − z′

3|
|z′

1 − z′
2|
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= |z2 − z3|
|z1 − z2|

= sin(θ1)

sin(θ3)
. (9.4)

Since sin(θ ′
3) < sin(θ3) we conclude that sin(θ ′

1) < sin(θ1). Since we took z′
1 to be close to

z1 = (0, 0) on C1, we can ensure that that θ ′
1 is close to θ1. Since 0 < θ1 < φ0 < π/2, we

conclude that θ ′
1 < θ1, contradicting the minimality of θ1. Thus (9.3) is false, so

z1 = 0 = (0, 0) and z3 = (d1 + d3, 0) (9.5)

after rotating z3 as above so that it lies on the positive real line.
Now suppose that

d2
1 + d2

2 < |z1 − z2|2 < (d1 + d2)
2. (9.6)

Recall that z2 is a point in the upper right quadrant, and that we have reduced to the case
in which (9.5) holds. We let z′

2 = z2 and z′
3 = z3. Define C2 to be the circle with center

z3 = (d1 + d3, 0) and radius d1 + d2, so that C2 contains z1 = 0 by (9.5). Consider points
z′

1 very close to z1 on C2. The only edge distance that can change on replacing (z1, z2, z3)

by (z′
1, z′

2, z′
3) is |z1 − z2|. Since |z′

1 − z′
2| = |z′

1 − z2| will be close to |z1 − z2| = |z2| if z′
1

is close to z1, we conclude from (9.6) that all the inequalities in (6.1) will hold if (z1, z2, z3)

is replaced by (z′
1, z′

2, z′
3) = (z′

1, z2, z3) and z′
1 is any point on C2 sufficiently close to z1.

Recall that θ2 is the angle at z2 between the sides of the triangle (z1, z2, z3) adjoining z2.
Let θ ′

2 be the corresponding angle for the triangle (z′
1, z′

2, z′
3). If z′

1 lies in the upper half plane
and is sufficiently close to z1, it is on the other side of the line between z2 and z1 = 0 from
z3. It follows that θ ′

2 > θ2 in this case. We find similarly that θ ′
2 < θ2 in case z′

1 is a point of
C2 that lies in the lower half plane and is sufficiently close to z1. Thus we can in either case
choose a z′

1 on C2 arbitrarily close to z1 for which

0 < sin(θ ′
2) < sin(θ2). (9.7)

Since |z1 − z3| = d1 + d2 = |z′
1 − z3| and |z2 − z3| = |z′

2 − z′
3|, the law of sines gives

sin(θ ′
1)

sin(θ ′
2)

= |z′
2 − z′

3|
|z′

1 − z′
3|

= |z2 − z3|
|z1 − z3|

= sin(θ1)

sin(θ2)
. (9.8)

Now (9.7) shows sin(θ ′
1) < sin(θ1). Since θ ′

1 will be close to θ1 < φ0 < π/2 for z′
1 close to

z1, we conclude that θ ′
1 < θ1, which contradicts the minimality of θ1. Thus the hypothesis

(9.6) must be false, and so

d2
1 + d2

2 = |z1 − z2|2 or |z1 − z2|2 = (d1 + d2)
2. (9.9)

We now apply the law of cosines, together with (9.5) and d3
2 +d2

3 ≤ |z2 − z3|2 from (6.1).
This gives

cos(θ1) = |z1 − z2|2 + |z1 − z3|2 − |z2 − z3|2
2 · |z1 − z2| · |z1 − z3|
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≤ |z1 − z2|2 + (d1 + d3)
2 − d2

2 − d2
3

2 · |z1 − z2| · (d1 + d3)
(9.10)

where d1 ≤ d2 ≤ d3 = 1.
Suppose first that d2

1 + d2
2 = |z1 − z2| in (9.9). Then (9.10) becomes

cos(θ1) ≤ d2
1 + d2

2 + (d1 + 1)2 − d2
2 − 1

2 ·
√

d2
1 + d2

2 · (d1 + 1)

= d1
√

d2
1 + d2

2

= 1
√

1 + (d2/d1)2
≤ 1√

2
(9.11)

since 0 < d1 ≤ d2. This forces θ1 ≥ π/4, contradicting θ1 < φ0 < π/4.
The remaining possibility in (9.9) is that |z1 − z2| = d1 + d2. Then (9.10) gives

cos(θ1) ≤ (d1 + d2)
2 + (d1 + 1)2 − d2

2 − 12

2 · (d1 + d2) · (d1 + 1)

= (d1 + d2 + 1)d1

(d1 + d2) · (d1 + 1)

≤
(

1 + 1

d1 + d2

)

·
(

1

1 + 1/d1

)

≤ 3

4
· (9.12)

since 0 < d1 ≤ d2 ≤ d3 = 1. This gives θ1 ≥ φ0 = arccos(3/4), which completes the proof
of Lemma 6.1.
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