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Abstract

Let X be a smooth geometrically irreducible projective surface over a field. In this paper
we give an effective upper bound in terms of the Néron—Severi rank of X for the number
of irreducible curves C on X with negative self-intersection and geometric genus less than
b1(X)/4, where b1 (X) is the first étale Betti number of X. The proof involves a hyperbolic
analog of the theory of spherical codes. More specifically, we relate these curves to the
hyperbolic kissing number, and then prove upper and lower bounds for the hyperbolic kissing
number in terms of the classical Euclidean kissing number.

Mathematics Subject Classification Primary 14C20; Secondary 14J99 - SIM10

1 Introduction

Let X be a smooth geometrically irreducible projective surface over a field k. By a negative
curve on X we will mean a complete, reduced, irreducible curve with negative self intersec-
tion. The bounded negativity conjecture states thatif k = C, there is a lower bound depending
only on X for the self-intersection of all negative curves on X. The origins of this conjecture,
as well as various results concerning it, are discussed in [1,9,11] and their references. In this
paper we study a different but related question that was asked explicitly in the introduction
of [1]:
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Question 1.1 Let X be a smooth geometrically irreducible projective surface over an arbi-
trary field k. For which integers g > 0 are there infinitely many negative curves on X of
genus g?

Bogomolov proved in [2] that if k = C, X has general type and ¢ (X )2 > ¢ (X), the number
of negative curves C on X of geometric genus g is finite for every g. He did this by showing
that, under these hypotheses, the C on X that have a given geometric genus form a bounded
family. An effective version of the latter result was shown by Lu and Miyaoka in [10, Thm.
1(1)]. We refer the reader to [1, §2] for a more detailed account of subsequent related work.
The results of Bogomolov and Lu-Miyaoka need not hold for arbitrary X even over k = C.
For example, it was shown in [1, Thm. 4.3] that for each m > 1 and each g > 0 there is an
X over k = C containing infinitely many smooth irreducible curves of self-intersection —m
and genus g.

In this paper we prove that for all k and X, there is an effective finite upper bound on the
number of negative curves C on X of geometric genus less than b1 (X)/4, where b (X) is
the first étale Betti number of X. The proof uses a different method than Bogomolov’s and
involves studying a hyperbolic analog of the theory of spherical codes in Euclidean space.

The theory of spherical codes arose from the classical question, going back to Newton
and Gregory, of determining how many unit spheres in Euclidean n-space can touch a unit
sphere centered at the origin without overlapping interiors. The centers of these spheres then
form a spherical code on a sphere of radius 2 about the origin. The angle of such a code is at
least 7/3 in the sense that rays from the origin to two such centers must form an angle of at
least 7w /3. There is an extensive literature concerning spherical codes of varying angles; see,
for example, [4] and [5].

We will show how a hyperbolic analog of this theory arises naturally from studying
negative curves of genus less than b1 (X)/4 on surfaces. The relevant angle is then 77 /2 rather
than /3, as we will explain below. The study and classification of which hyperbolic codes
can in fact arise from negative curves in this way is a natural one when trying to determine
the constraints on such curves coming from intersection theory.

To state an explicit result, recall that by (X) = dimg , H élt(X , Q) for any prime p different
from char(k). The Picard number p (X) is the rank over Z of the Néron—Severi group NS(X)
of X. We prove:

Theorem 1.2 Let X be a smooth geometrically irreducible projective surface over a field k.
There are effective constants ¢y and ¢y for which the number t(X) of negative curves C on
X with geometric genus g(C) < by(X)/4 is finite and bounded above by c1e2*X). One has
7(X) < 299920 for sufficiently large p(X).

We do not know if the condition g(C) < b1 (X)/4 in Theorem 1.2 is sharp in characteristic
zero. However, it is sharp in positive characteristic in view of the following example.

Example 1.3 Let X be the direct product ¥ x Y, where Y is a smooth projective irreducible
curve of genus g > 2 defined over IF),. Set k = F,,, and let C,, be the graph of o” in X(E,),
where o : ¥ — Y is the Frobenius automorphism. Then C,, is a reduced irreducible curve
on X of arithmetic genus g, and [7, Ex. V.1.10] implies that C,% —> —ooasn —> o0. One
has b1 (X) = 4g. In particular, there are infinitely many distinct reduced irreducible curves
on X of genus g = by (X)/4 with negative self-intersection.

The proof of Theorem 1.2 is effective and involves analyzing how negative curves of small
genus on X are constrained by the intersection pairing on the Neron—Severi group via the
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Hodge index theorem. We will precisely define the set of constraints to be considered. In the
course of proving Theorem 1.2, we will also show that one cannot use these constraints alone
to improve the upper bound on 7(X) to one that is subexponential in p(X).

We discuss below how the curves of Theorem 1.2 give rise to a hyperbolic code of angle
at least 7w /2. Moreover, we will show that in fact, there do exist hyperbolic codes of angle at
least 7t /2 that grow exponentially in size with p(X). We state this in terms of the hyperbolic
kissing number. Recall that the classical kissing number K, arises from finding maximal
spherical codes in the unit sphere S"~! in Euclidean n-space which have a given angle. See
Sect. 2 for more on the classical case. In Sect. 3, we define the hyperbolic kissing number in
an analogous manner, and one of our key technical results is Theorem 4.6, which gives upper
and lower bounds for the hyperbolic kissing number in terms of classical kissing numbers.

However, we do not know whether such large codes can arise from the intersection theory
of negative curves of small genus on surfaces. This leads to the following question:

Question 1.4 Is there a constant ¢ > 1 and a sequence of surfaces X for which p(X) tends
to infinity such that T(X) > ¢ for all X in this sequence? Can one find such a sequence
in which by (X) remains bounded?

To describe the connection between negative curves and hyperbolic codes more precisely,
recall that NS(X) is a finitely generated abelian group, and the group Num(X) of divisors
modulo numerical equivalence on X is the quotient of NS(X) by its torsion subgroup. Thus
Num(X) is a free Z-module of rank p(X) > 1. The curves C in Theorem 1.2 map bijectively
to their classes in Num(X)r = R ®7z Num(X). We show that these classes form a strict
hyperbolic code of angle at least 7 /2 in Num (X )R in the sense of Definition 3.4. The maximal
number of elements in such a code is the strict hyperbolic kissing number R, x)—1(7/2).
We will prove:

Theorem 1.5 Let R, (7/2) be the strict hyperbolic kissing number of hyperbolic n-space.
Then Ro(rw/2) = 0 and Ry(w/2) = 1. For n > 2, R,(/2) is bounded from above by
K, —1(¢o) +2, where K,,_1 (o) is the classical kissing number for the Euclidean unit sphere
S"2 jn R"~! associated with the angle ¢g = arccos(3/4). Furthermore, if n > 2 then
R, (r/2) is bounded below by | K,_1(2¢0)/2], the greatest integer less than or equal to

Kp—1(2¢0)/2.

The bound in Theorem 1.2 then follows from an upper bound of Kabatiansky and Lev-
enshtein on K, _1(¢p). This lower bound grows exponentially with n by work of Chabauty,
Shannon and Wyner. However, as mentioned above, we do not know if such large hyperbolic
codes can be realized by negative curves of small genus on surfaces. In the course of proving
these results, we will show the following:

Theorem 1.6 Let F be a set of at least two distinct irreducible curves C on X for which
Cc? <0. If F contains more than R, (x)—1 (7w /2) elements, there are two elements C1, Co € F
together with positive integers a, b such that aCy + bC3 is an effective connected nef divisor
of positive self-intersection on X.

It was shown in [12, Lem. 4.1] that if the set F in Theorem 1.6 has more than ,o(X)2 +
p(X) + 1 elements, then there is an effective nef divisor supported on the union of the
elements of F. However, using this replaces the genus bound b1(X)/4 in Theorem 1.2 by
the weaker bound b1 (X)/(2p (X)?+2p(X) +2).In particular, it is crucial for the proof of
Theorem 1.2 that we reduce down to two the number of curves in F involved in an effective
connected nef divisor with positive self-intersection, which is clearly optimal.
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We now outline the contents of the paper and the proofs of Theorems 1.6 and 1.2.

In Sect. 2 we recall the definition of spherical codes and some classical results concerning
them. We define hyperbolic codes in Sect. 3. In Sect. 4 we state our results concerning the
relation between negative curves of small genus and hyperbolic codes of angle at least 7 /2.

The proof of Theorem 1.6 involves the following steps. In Sect. 5 we study subsets D =
{D;}; of Num(X) for which there is a class # € Num(X) with #2 > 0 such that Dl.2 <0<
D;-Djandh-D; >0 > (aD; + bDj)2 for all i # j and all integers a, b > 0. We show
D has these properties if and only if it forms a strict hyperbolic code with angle at least 7 /2
in the hyperbolic space of dimension n = p(X) — 1 associated with the intersection pairing
on Num(X).

Now, suppose that F is a set of curves as in Theorem 1.6. The map sending C € F to its
class [C] in Num(X) is injective, since C1 - C2 > 0 > C12 if C; and C; are distinct elements
of F. Since F has at least two distinct elements, we must have n + 1 = p(X) > 2. Suppose
now that #% > R, (7 /2) elements, so that D = {[C] : C € F} has more than R, (1 /2)
elements. Taking / to be the class of an ample effective divisor, we conclude that there are
two curves Cp, C» € F and integers a, b > 0 such that £ = aC + bC> has E? > 0. Since
the C; are irreducible, we can adjust @ and b so that E becomes an effective connected nef
divisor of positive self-intersection. This will prove Theorem 1.6.

To prove Theorem 1.2, we now let F be the set of irreducible curves C on X with C?2<0
and g(C) < b1(X)/4. Suppose F has more than R, (7 /2) elements. We show in Sect. 8 that
this leads to a contradiction in the following way.

Theorem 1.6 implies there are C1, C2 € F and a, b > 0 such that E = aCy + bC; is an
effective connected nef divisor of positive self-intersection. An étale Lefschetz theorem (see
[6], [3, §2]) implies that the induced homomorphism of étale fundamental groups

7 (El, x) — mf'(X, x)

at some geometric point x € E has image of finite index in nft(X, x), where |E]| is the
reduction of E. In Theorem 8.3 of Sect. 8 we use a motivic weight argument to show that the
natural morphism

Jac(CY) @ Jac(Ch) — Alb(X)

is surjective, where Jac(C lﬁ ) is the Jacobian of the normalization C lﬁ of C; and Alb(X) is the
Albanese variety of X. Since g(C;) = g(Cij) = dim(JaC(C?)) this implies that

max(g(C1), g(C2)) = dim(Alb(X))/2 = b1 (X)/4.

This is impossible since the curves C in Theorem 1.2 are assumed to have geometric genus
strictly less than b1 (X)/4.

This reduces the proof of Theorem 1.2 to bounding R, (7/2) from above. We do this in
Sects. 5 and 6 using the upper half-space model of hyperbolic n-space to connect hyperbolic
codes to spherical codes. The connection comes about from the fact that geodesic half-spaces
in the upper half-space model are one side of either a vertical plane or a Euclidean sphere.
The latter spheres have centers on the Euclidean space R"~! of points at infinity different
from oo. In Sect. 6 we prove an upper bound for the size of a strict hyperbolic code of angle
7 /2 by showing that we can assume all the half-spaces associated with elements of the code
have boundaries that are Euclidean spheres, and we can place the center of the smallest such
sphere at the origin in R”~!. Then the rays outward from the origin to the centers associated
to other spheres must intersect a unit sphere "2 in R”~! in a spherical code with angle
at least arccos(3/4) = ¢o. In Sect. 7 we prove a lower bound on the maximum size of a
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Negative curves of small genus on surfaces 313

hyperbolic code with angle at least 7 /2 by placing the above centers at a well-chosen subset
of a spherical code in R”~! with angle at at least 2¢ and by taking the radii of all the spheres
around these centers to be /7/8.

2 Spherical codes

In this section we recall some definitions and results concerning spherical codes. See [5] for
further details.

Definition 2.1 A spherical code is a subset S of the unit sphere S"~! in n-dimensional
Euclidean space R". If x, y € S, the angle ¢ (x, y) between x and y is the unique number in
the range 0 < ¢ (x, y) < 7 such that cos(¢(x, y)) = x - y. Define the angle ¢(S) of S to
be the infimum of ¢ (x, y) over all distinct x, y € S. For 0 < ¢ < t < 7 define

Ky(¢p, 1) = max{#S : ¢ < p(x,y) <t forall x,y € S with x #£ y}. 2.1
We set K,,(¢) = K, (¢, ).

Example 2.2 The kissing number K, = K, (;r/3) is the maximum number of spheres of a
given positive radius that can touch a sphere of the same radius without having overlapping
interiors.

The following result is due to Kabatiansky and Levenshtein [8]:

Theorem 2.3 Suppose 0 < ¢ < /3. If n is sufficiently large, then K, (¢) < c(¢)", where

c(9) =

1
2009 /T —cos(@) (2.2)

In fact, [8] shows that the same conclusion holds for ¢ in the range from O to a number
slightly larger than /3. The following lower bound is due Chabauty, Shannon and Wyner
[5, §1.6].

Theorem 2.4 Suppose 0 < ¢ <m/2and1 < ¢ < ﬁ(@ If n is sufficiently large, then

Kn(@) = c". (2.3)

3 Hyperbolic codes

The hyperbolic variant of spherical codes developed in this section is motivated by the
following observation. A point w in a spherical code W C S"~! determines and is determined
by the geodesic half-space

Zw)={w €S (w,w) <0},

where (,) is the usual Euclidean inner product. One can thus reformulate spherical codes as
collections of geodesic half-spaces of §"~! whose outward normals form at least a certain
angle at their intersections.

This interpretation carries over directly to hyperbolic space. One complication is that
in hyperbolic space, half-spaces may not intersect and one half-space can properly contain
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314 T. Chinburg, M. Stover

another. To formulate a precise definition, we first recall the definition of the hyperboloid
model L" and the ball model B" of hyperbolic n-space. See [13, §3.2] for details.

Let (, ) : R"” ® R" —> R be the usual Euclidean inner product with norm || ||> : R” —>
R. Define an inner product 7 : (R* L R) & (R” L R) — R by

I((v;u), W;u) ==, v)+u-u.

For ¢ = (v; u) write ¢> = 1(q. q). The (upper) hyperboloid model of hyperbolic space is
then

L'"={g=@wu)eR" LR : ¢* = —|v|* +u* =landu > 0} .

The line element for L" is ds = /(dv)? — (du)?.

Let O be the origin in R". Projection
m:(R" LR) SO —D} — R”
from the point (0; —1) identifies L" with the ball model
B"={weR" : ||v|* <1}

of hyperbolic space. The ideal boundary of B” is the closed unit sphere d B* = S"~!. Define
B" = B" U dB", which is the closed unit ball in R".

Suppose w € R" L R is a negative vector, i.e., that /(w, w) = w? < 0. The ray
determined by w is

r(w)={tw : 0 <t eR},
and the set of points
Y(w)={n(g) € B" : g =(v;u) € L" and I(w, g) <0} (3.1)
is a closed geodesic half-space in B”. Let
W(w) ={n(g) € B" : ¢ =(v;u) € L" and I (w, g) = 0}

be the boundary of ¥ (w) in B" and define Y (w) C sl (resp. aW (w) gS"’l) to be the
ideal boundary of Y (w) (resp. W (w)). Thenset Y (w) = Y (w)UdY (w) and W(w) = W (w)U
oW (w). The following is well-known (e.g., see [14, §2.3] and Fig. 1 for an illustration).

r(w)

R*" L R

Fig. 1 Illustration of Lemma 3.1
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Lemma 3.1 The map identifying the ray r(w) with the closed half-space Y (w) defines a
bijection between the set of negative rays in R" 1 R and the set of closed geodesic half-
spaces in B". The set W(w) is the intersection of the closed unit ball B" with a Euclidean
sphere or with a hyperplane of dimensionn — 1. If n > 2 then W (w) intersects S"~" at right
angles and W(w) N'S"~ ' = dW (w) is a Euclidean sphere of dimension n — 2 and positive
radius.

Definition 3.2 Suppose that g € W (w). If ¢ € W(w) C B", let ny,(q) be the outward unit
normal to ¥ (w) at g in the tangent space Ty B" of g in B". If g € dW(w) C S"™landn > 2,
let 11, (g) be the outward unit normal to Y (w) N S"~! = dY (w) at g in the tangent space
Tq Sn—I.

We now need to understand more about the properties of the subspaces associated with
a pair of negative vectors. Suppose that wi, w, € R" L R are negative vectors, and in
what follows set W; = W(w;) and ¥; = Y (w;), i = 1, 2. Suppose that there exists a point
q € W1 N Ws. It is well-known that the angle 6(wy, wy) € [0, ] between ny,, (¢) and
Ny, (q) satisfies

—1(wy, w2)
\/I(w19 wl) : I(w27 w2).

See [13, §3.2], and note that our / is the negative of the form used there. IfW(w)NW(w) =
#, define 6 (w1, wy) = —oo. We will need the following observations.

cos(0(wy, wy)) =

(3.2)

Lemma 3.3 Suppose wi and wy are two negative elements of R" L R. The following condi-
tions are equivalent:

(i.) 0w, wa) = 7/2; -
(ii.) I(wy, w2) > 0 and there exists a pointqg € W1 N Wo;
(iii.) I(wy, w2) > 0and forall 0 < a,b € R one has

I(aw| 4+ bwy, awy + bwy) < 0. 3.3)

Now suppose that any (and hence all) of these conditions hold and that there exists h € L" C
R" L Rwith I(wi, h) >0 fori =1,2. Thenm(h) ¢ YUY, Let P € S"~1 = 9 B" be the
limit point of the geodesic ray in B" starting at w(h) and perpendicular to Wy. Then P is a
point of Y1 ~ W that is not in Y 5.

Proof We will see that the proof reduces to checking the case n = 2. Since conditions
(i), (ii) and (iii) are invariant under scaling, we can assume that w% = w% = —1. The
fact that (i) implies (ii) is clear from (3.2). If (ii) holds, then (iii) follows from expanding
I(awy + bwj, aw; 4+ bwy) and using (3.2). Similarly, (iii) implies |/ (w1, wy)| < 1, which
means that W and W, meet with angle given as in (3.2) and hence (iii) implies (i).

We now suppose that (i), (i) and (iii) hold and that there is an 4 € L" as in the last part of
the lemma. The fact that w(h) ¢ Y, U Y> follows immediately from the definition of the ¥;.
Intersecting with the appropriate totally geodesic B2 inside B”, it suffices to prove the claim
for P in the hyperbolic plane. Then we have the geometric arrangement shown in Fig. 2. If
the geodesic ray £ from 7 (%) intersecting Wi orthogonally were to have endpoint on 3Y 5,
then it would need to also meet W.

Let z; be the point at which £ meets W and z» the point where £ meets W,. When q,

. . . =2 . . . .
Z1, and zp are distinct, they form a triangle in B™, possibly with an ideal vertex at zo, with
interior angle 6 at ¢ and 7 /2 at z1. Therefore the triangle has angle sum greater than or equal
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Fig.2 Geometric picture for
Lemma 3.3

to 7, which is impossible for a triangle in §2 [13, §3.5]. In the degenerate case, ¢ = z1 = z2,
and the geodesic from (k) to g visibly makes an angle

¢p<m—0<m/2

with Wy at ¢, and hence cannot be orthogonal to Wj. Since 7 (h) E not in Wy and Wy is
totally geodesic, it is also clear that the endpoint of £ cannot be in W. This completes the
proof of Lemma 3.3.

[m]

Definition 3.4 A hyperbolic code is a collection S of negative vectors w € R” L R. We
say that S is strict if the union over all w € S of the half-spaces Y (w) is not all of B”".
Define 6(S) € {—oo}U [0, 7] to be the greatest lower bound over all pairs wy, w, of distinct
elements of S of the angle 6 (w;, w,) defined above.

Definition 3.5 Let 6 be an angle in the range 0 < 6 < m. The hyperbolic kissing number
(resp. strict hyperbolic kissing number) R, (9) (resp. R,()) in Z U {00} is the supremum of
#S over all hyperbolic codes S (resp. strict hyperbolic codes S) for which 6(S) > 6.

4 Negative curves, hyperbolic codes, and Theorem 1.2.
As in the introduction, let X be an irreducible smooth projective surface over a field k. The
group Num(X) is torsion free and finitely generated. Let

Num(X)r = R ®7z Num(X).

The Hodge index theorem implies that the intersection pairing on Num(X) extends to a
pairing

I : Num(X)r Xx Num(X)p — R
with signature (1, n), where dim(Num(X)gr) =n + 1.
Definition 4.1 Let L(X) be the hyperboloid model of hyperbolic n-space associated with the

choice of isometry carrying I to the standard signature (1, n) pairing on R” L R.
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Definition 4.2 Let 7(X) be the set of all irreducible curves C on X for which C? =
I1(C,C) < 0and g(C) < b1(X)/4. For C € T(X), let [C] be the class of C in Num(X)g
and define S(X) = {[C]: C € T}.

The following is a well-known consequence of the fact that distinct curves have non-
negative intersection.

Lemma 4.3 The map T (X) —> S(X) sending C to [C] is a bijection.

We prove the following theorem, which is the key technical result connecting hyperbolic
codes to negative curves, in Sect. 8.

Theorem 4.4 The set S(X) is a strict hyperbolic code in Num(X)R of angle at least 7 /2.

Recall that p(X) is the rank of Num(X), i.e., the real dimension of Num(X)gr. We then
have the following conclusion.

Corollary 4.5 The number of elements of T (X) is bounded above by the strict hyperbolic
kissing number Ry, (7w /2), wheren = p(X) — 1.

Recall that K,,_1(0) is the kissing number associated to the angle € in the Euclidean space
R*~!. The first statement of the following Theorem will be proved in Sect. 5. The second
statement will be proved in Sects. 6 and 7.

Theorem 4.6 For every n > 2, one has
Ry(/2) < Ry(7w/2) < 2R, (7/2). 4.1

Let 0 < ¢ < T < 7 be any choice of constants such that ~/2 sin(¢/2) = sin(t/2). Then

max { {K%(M’O)J K1 (9, r)} < Ru(/2) < K1 () + 2. 4.2)
where ¢ = arccos(3/4).

From the results about spherical kissing numbers quoted in Sect. 2 we now have the
following conclusion.

Corollary 4.7 One has
2001 (1 4 o(n)) < Ry(r/2) < 291 (1 4 0(n)),

where o(n) — 0 asn —> o0.

Proof of Theorem 1.2 Combine Corollary 4.5, Theorem 4.6, and Corollary 4.7. O

5 Hyperbolic codes and the upper half-space model

We now use the upper half-space model
H" ={(z1,....20) : zi €R, 2z, >0} CR".

of hyperbolic space to give another description of hyperbolic codes.
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Recall from [13, §4.4] that there is an isometry f : L" —> H" defined in the following
way. Forx e L" CR" L R = R™*! Jet y be the point (y1, ..., Yp+1) on the unit (n + 1)-
sphere S in R"*! that is on the ray from the origin in R"*! to x. Then f(x) is the unique
point z = (z1,...,2,) € H" such that (1,z;,...,2,) € R™*! lies on the ray outward from
((=1,0,0,...,0);0) € R""! through y.

Consider the one-point compactification

OH" = {0} U{(z1,...,20-1,0) : z; € R}

of R"~1 = {(z1,...,20—1,0) : z; € R}. Then d H" is homeomorphic to S"—1 and the above
construction identifies d H" with the boundary of H". Geodesics in H" are the intersection of
H" with either circles or vertical lines in R” that intersect d H" . {oo} = R"~! orthogonally.
Geodesic hypersurfaces in H" are the intersection of H" with either

(i) vertical planes in R" (i.e., planes intersecting d H" \ {oo} = Rr-1 orthogonally), or
(ii) Euclidean spheres with center on d H" ~\ {oo} (which then intersect d H" ~\ {oo} every-
where orthogonally).

Geodesic half-spaces are then formed by the set of all points of H" that lie either on one
chosen side of a geodesic hypersurface or on the hypersurface itself. Define H " = H"UQH".

Definition 5.1 In (3.1) to each negative vector w € R” | R we defined a geodesic half-
space Y (w) in the open ball model B” of hyperbolic space with boundary W (w), a geodesic
hypersurface. Let Y'(w) be the corresponding geodesic half-space in H" with boundary
W'(w). Similarly, let 3Y’(w) C dH" (resp. dIW’'(w) C dH") be the ideal boundary of
Y'(w) (resp. W/(w)). Finally, set Y/ (w) = Y’ (w)UdY’(w) and W/ (w) = W/ (w) Ud W' (w).

If W/ (w) lies in a vertical plane we will say that the center z(w) of Y'(w) is the point co of
90 H" and that the Euclidean radius of 9Y’(w) is oo. Otherwise, W'(w) is the intersection of
H" with a Euclidean sphere of some positive radius d (w) centered at a point z(w) € R"~! =
dH" \ {o0}. If z(w) # oo and z(w) € Y/(w), then Y’ (w) is the intersection of H” with the
closed Euclidean ball of radius d (w) about z(w). Otherwise, Y’(w) is the intersection of H"
with the complement of the interior of this ball.

We now reformulate the condition that 6 (w;, wy) > /2 in Lemma 3.3 using the upper
half-space model. To simplify notation in what follows, given a negative vector w; € R" L R
we let ¥; = Y (w;) and similarly for the other notation from Definition 5.1.

Lemma5.2 Suppose wi and wy are two negative elements of R" L R such that neither W
nor Wé lie in a vertical plane. For 71, 22, d1, d> as in Definition 5.1, let |71 — z2| be the

Euclidean distance between z; and zo in R~ L, Define §; = 1ifz; € ?;, and set §; = —1
otherwise. Then (w1, wy) > 7/2 if and only if and only if

V& +d3 <z — ) <di+d> when 818, = 1 5.1
ldi — do| <|z1 — 22| <\/d} + d5 when 818, = —1. (5.2)

Finally, if (w1, wy) > /2 and I(h, wy), I (h, wy) > 0 for some h € L C R" L R, then
71 # 22.

Proof Fori = 1, 2,the half-space 7:» iseither H" NB(z;, d;) (whens; = 1)orthe complement
in H" of the interior of B(zi,d;) (when §(w;) = —1).
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Suppose first that @ (w1, wp) > /2, so that there is a point g € W1 N W». If 818, = 1,
the angle between the rays from ¢ to z; and from g to z, is at least 6(wy, wy) > 7/2.

Therefore |71 — z2| > ,/dlz + d22. In this case, the existence of a point in W/l N W; implies
that |71 — z2| < dj + d». This proves (5.1).
If 616, = —1, the angle between the rays from ¢ to w; and from ¢ to w, is at most /2,

rather than being at least 7t /2. This leads to |z — z2| < , /d12 + d22. Since W/l and W', must

intersect, we see that dy + d» > |z1 — z2| > |d1 — d3|. Note that |77 — z2| < ,/dlz —|—d22
already implies d + d» > |z1 — z2|. This gives (5.2).

For the converse, one reverses the above reasoning to show that (5.1) and (5.2) imply that
O(wy, wp) > /2. 1f z1 = 73, then Wl’ and Wz’ are the the intersection of H" with concentric
spheres. Hence if  (wy, wa) > /2, we wouldhave W = W5 and 0(w;, wy) = 7. However,
then YUY, = En, so there could be no & € L" with I(h, wy), I(h, wp) > O. O

We now have the following, which is one of the main technical results in this paper.

Theorem 5.3 For all integers m, n > 1, the following are equivalent:
(1) There are elements wy, . .., w, € R" L R such that for some h € R" L R one has

(a) I(h,h) >0 > I(w;, w;),

(b) I(h, w;) >0,

(c) I(w;, w;) >0, and

(d) I(aw;+bwj, aw;+bw;) < 0foralldistinct0 < i, j < mandallpositivea, b € R.

(2) The subset {wy, ..., wy,} C R" L R is a strict hyperbolic code having m + 1 elements
and angle at least 7w /2.

(3) After replacing the m + 1 element subset {wy, . .., w,;;} C R" L R by their image under
an isometry, the set {?E), e 7:,1} of half-spaces in H" has the following description.
The ideal boundary of each 7; is a sphere centered at a point z; € R"™! of some radius
d; > 0. When i = 0, the point zg is the origin 0 of R* !, and 76 is the exterior in H' of
the open ball of radius dy.

If1<i<m, 7; is the intersection ofﬁn with the closed ball of radius d; around z;.
Finally, the following inequalities hold:

(@) |zjI* > max(0,d; —dg) if 1 < j <m,

(b) |do —di| < |zi| < \/d} + d?, and

(c) diz—l—d]z-f lzi —zjl <di+djifl <i<j<m
where |z — 7/| is the Euclidean distance between points z,7 € R.

Lastly, if {z1, ..., zm} is any set of m distinct points in R"~! for which there are posi-
tive constants dy, ...,d, > 0 such that condition (c) of part (3) holds, then there exist
h,wi, ..., wy, € R" L R for which the statements in condition (1) hold for 1 < i, j < m.

Proof Lemma 3.3 shows the equivalence of (1) and (2). Indeed, if h € R” 1 Rand I (h, h) >
0, we can replace h by h//I(h, h) to make h an element of L".

To show that (1) implies (3), let 2 and wy, ..., w,, be as in (1), where as above we can
assume i € L". Let P be the limit point on d H” of the geodesic ray in H" that starts at f (k)
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Y/ny,; 0
dl d() d?

Yyny;

Fig.3 Arrangement of half-spaces in Theorem 5.3

and is perpendicular to the geodesic hypersurface W, where f : L" — H" is the above
isometry. This geodesic ray is part of a geodesic line with another limit point P’ on H".
Applying an isometry, we can assume that P = oo and P’ is the origin 0 of R"~! ¢ 9 H".

Translating the final statement of Lemma 3.3 to the upper half plane model, Pisa point of
76 \W(,) that does not lie on 7} forany j > 0.Consider the points zg, . . ., z, associated with
the w; by Definition 5.1. Tt is clear from our assumptions that each z; lies in R"~! ¢ 9 H".
Recall that Wj’. is the intersection of H" with a Euclidean sphere of radius d; > 0 and center
Zj-

When j = 0, weknow oo = P’ € 76, ) ?Z) must be the complementin H' of the interior
B(zp, do) of the ball at zo of radius dp. Thus §o = —1 in the terminology of Lemma 5.2.
Furthermore, the sphere W is perpendicular to the geodesic with limit points oo and 0, and
this geodesic contains f(h), and we conclude that zg = 0. Note also that now f (k) must lie
in the interior £° of the vertical line segment of Euclidean length dy that has one endpoint at
0. See Fig. 3.

Suppose 1 < j < m. Then co ¢ ?Ij implies that 7]- = H" ﬂE(zj,dj), sod§; = 1 for
1 < j <m. Since f(h) is not contained in 7,, we find from the fact that f(h) is on 29 that

dg + 1z,1* > d.

We now apply the criterion in Lemma 5.2 to every pair w;, w; with 0 < i # j < m to
produce the inequalities in part (3) of Theorem 5.3.

Conversely, suppose all of the inequalities stated in part (3) of Theorem 5.3 are satisfied
with zo = 0 and some of {z;}/* | C R"~! and positive real numbers {d; "o Then zg # z;
for 1 < i < m because |z;| # 0 was assumed in part (3c) of Theorem 5.3. We can choose
negative vectors wo, . .., W, in R” L R such that 7/0 is the complement in H" of the open
unit ball of radius dy about the origin z and 7; isH' NB(z;,d;)forl <i <m.

The assumption that dg + 17> > di2 for 1 <i < m in part (3) of Theorem 5.3 implies
that if we choose & € L” so that f (k) lies in B(0, 1) and is close enough to the point that
lies at distance 1 directly above the origin, then f (k) will not be in 7; forl <i <mor
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in 7:). Now Lemma 5.2 shows that &, wg, wi, ..., w, satisfy the conditions in part (1) of
Theorem 5.3.

The final statement we must prove is that if one has only points zp, ..., z, in R*~!
and positive numbers dji, ..., d, for which part (c) of condition (3) holds, then there are
h,wi, ..., w, € N(X)r for which condition (1) holds for 1 < i, j < m. In this case, we
choose w; so that Y; is H" N B(z;, d;) for 1 < i < m. Then the vertical heights of points of
each 7; are bounded, so we can find a point f(h) € H" not in this union. Lemma 5.2 now
shows that 2, wy, ..., wy,, satisfy the conditions in part (1) of the theorem for 1 < i, j < m.

O

We now give a number of corollaries to Theorem 5.3.

Corollary 5.4 The strict hyperbolic kissing number R, (7w/2) is the supremum of m + 1 over
all integers m for which there exist distinct points 71, ...,Zm € R and positive real
constants dy, . . . , dy, for which

(a) max{0,d? — 1} < |z,

(b) 11— di| < Idi] < 1 + &, and

(¢) \Jd? +d} < |z —zj| < di +d;.

Proof The corollary follows from renormalizing the z; and d; as in part (3) of Theorem 5.3
by dividing each by dy, 1 <i < m. O

Corollary 5.5 Suppose there is a possibly nonstrict hyperbolic code in L™ having m' elements
and angle at least w /2. If m = [m' /2], then there is a strict hyperbolic code having at least
m elements and angle at least /2.

Proof Applying an isometry, suppose we have a nonstrict code S = {wy, ..., w,/} with
angle at least 77/2 such that, in the upper half-space model each w; gives a point z; € R"~!
together with a positive radius d;. Removing at most half the w;, we can replace m’ by m
and assume that all of the constants §; are the same. In other words, all of the half-spaces
7; come from either the interiors U; of the open balls B(z;, d;), or all of them come from
the exterior of its closure of U;. This means that we now satisfy the inequalities in (5.1) of
Lemma 5.2 forall 1 <i, j <m withi = j. Replacing each ?; by U; now produces, via the
last statement of Theorem 5.3, a strict hyperbolic code with m elements, since the union of
all the U; cannot be all of H". o

Corollary 5.6 Suppose that there is a largest positive integer m = m(n) for which the equiv-
alent conditions (1), (2), and (3) in Theorem 5.3 can be satisfied by some choice of h, w;, z;

and d; as i ranges over 0 < i < m. Then m + 1 is the strict hyperbolic kissing number
R, (7t /2). The (nonstrict) hyperbolic kissing number R, (7w /2) satisfies

Ry(70/2) < Ru(m/2) < 2Ry (n/2). (5.3)

6 The upper bound on R, (11/2)

We begin with the following technical estimate.
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Fig.4 Optimizing Lemma 6.1

A

Lemma 6.1 Supposen > 2, 71,22,23 € R, 0 < d| < dy < d3 and that

Jﬁ+ﬁsm—qm¢+@tmmi¢j 6.1)

as in condition (c) of Corollary 5.4 (cf. condition 2(c) of Theorem 5.3). Thenn > 3 and z1, 72
and z3 are not collinear. Let 0 < 01 < 1 be the angle of the triangle (21, 22, z3) at 1. Then
01 > ¢p = arccos(3/4).

Proof Considering the subspace spanned by z1, z2, and z3, we can reduce to the case where
n < 3.1f z1, 72, and z3 are collinear, we can assume n = 2 and z; < 72 < z3 in R*~! = R,
Then (6.1) leads to a contradiction. Therefore after a translation and scaling, we can assume
n =3,z1 = (0,0) = Qis the origin in R2and0 < d; <dp <dz = 1. The input of 22, 23, d;
and d» is now specified by 6 real variables, and we want to maximize the function cos(6;) of
these variables. It is a lengthy but elementary calculus exercise to show that the maximum is
obtained when cos(f1) = 3/4. We list the steps involved here and include complete details
in an appendix.

Regarding di, d» and d3 = 1 as fixed for the moment, let S(di, d2) be the set of
(z1, 22, 23) = (0, 22, z3) that satisfy (6.1). One checks that cos(f;) is a continuous func-
tion on the compact set S(d, d3), so that it attains its maximum at some point (1, 22, 23) =
(0, z2, z3) in S(d1, d»). To prove the lemma it suffices to show that 8; > ¢y.

The main fact we can now use is that since (z1, z2, z3) € S(di, d») maximizes cos(6;),
we cannot move z1, z» and z3 in R? and then translate z; back to 0 in such a way that the
inequalities (6.1) still hold with the same d1, d» and d3 = 1 but with a smaller value for 0.
By considering such moves, we show in the appendix that the maximum value of cos(6)
over all possible choices of 0 < d; < d» < d3 = 1 is attained by the example in Remark 6.2
below. ]

Remark 6.2 An angle of 6] = ¢ can be achieved by setting dy = dp = d3 = 1,n = 3,
z1 = (0,0) e R"! =R?, z3 = (2,0) and z» = (2cos(fp), 2sin(¢p)) = (3/2, ﬁ/Z). Then

lz1—z3| =di+d3 =2=d|+dy = |z1 —z2] and |z — 23| = ,/d22+d32 = /2. See Fig. 4.

We now prove the following, which implies the upper bound in (4.2) of Theorem 4.6 as
well as all the bounds in (4.1) via Corollary 5.6.

Corollary 6.3 Supposezy,...,zm € R Yandd,, ..., d, > 0 satisfy condition (c) of Corol-
lary 5.4, so that /di2 —I—djz. <lzi—zjl <di+djforalli # j. Thenm < K,_1(¢o) + 1. In
particular, the number m(n) from Corollary 5.6 satisfies m(n) < K,_1(¢o) + 2.

Proof Without loss of generality, we can order z1, ..., z,;, sothatd; <d, forall 1 <i <m.
By condition (c), the points z; are all distinct. Therefore, for 1 < i < m the points

& = (zi —z21)/1zi — z1]
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lie on the unit sphere S"2in R"~!. Lemma 6.1 shows that forall | <i < Jj < m, the angle
between the rays from the origin to &; and to &; must be at least ¢9. Therefore &, ..., &y,
must form a spherical code with angular separation at least ¢p, som — 1 < K, _1(¢p). Then
the number m (n) from Corollary 5.6 is the number of points zg, 21, . . . , Z» for which there
are dy, ..., dy as in Theorem 5.3, so we conclude m(n) <m + 1 < K,,_1(¢g) + 2. O

7 The lower bound on R, (11/2)

Let0 < ¢ < t < 7 be any choice of constants such that ﬁsin(¢/2) = sin(t/2) and define
m = K,_1(¢, 7). We can therefore find a spherical code S = {z1, . .., 2, } on the unit sphere
S"=2 in R"~! such that the angular separation ¢ (z;, z j) between the rays from the origin to
z; and to z; satisfies ¢ < ¢(z;,z;) < T forall i # j. Therefore,

4sin®(¢/2) = 2 — 2cos(¢) < |zi — z;|* = 2 — 2c08(¢ (zi, 7;)) < 4sin(t/2).

It follows that if we let d; = \/zsin(¢/2) =sin(r/2) forallk =1, ..., m, then

VA +d} <lzi—zjl <di +d;

for all i # j, as in condition (c) of Corollary 5.4. Theorem 5.3 now says that there are
h,wi, ..., w, € N(X)r for which the statements in condition (1) of Theorem 5.3 hold for
1 <i,j < m. Part (2) of Theorem 5.3 now says {wy, ..., wy} is a strict hyperbolic code
with angle at least 77 /2. Therefore Definition 3.5 gives that

m= Ky_1(¢,7) < Ry (7w/2).

This is the first part of the lower bound (4.2) in Theorem 4.6.
To show the other lower bound in (4.2) of Theorem 4.6, it will suffice to show that when
¢o = arccos(3/4), we have

Kn—12¢0)/2 < Kn—1(¢, 7)
for some ¢ and t as above. Let ¢ = 2¢pp = 1.445...and v = 7w — ¢pg = 2.418..., s0
0 < ¢ <t <. We then have

2sin(¢/2) = 2sin’(¢g) = 2(1 — cos’(¢p)) = 2(1 —9/16) = 7/8
cos(po) +1 3/4+1
2 2

Thus v2 sin(¢/2) = sin(t/2) since both of these numbers are positive.

Recall that if z and w are points on the unit sphere S*~!, ¢ (z, w) is the angle between the
rays z and w from the origin to z and to w, respectively. By the definition of £ = K,,_1 (2¢0),
we can find a spherical code §" = {r1, ..., r¢} on S"=2 such that

¢(ri.rj) =2¢0 if i#j. (7.1)

For each i, consider the open cone C(—r;) of points z € S"=2 such that ¢(—r;, z) < ¢o. If
there were two distinct points r; and r4 in S"N C(-r;), then

Qrj, rg) < @(=ri,rj) +¢(=ri,rq) < 2¢o,

which contradicts (7.1). Therefore there is at most point point of the form r; in §' N C(—r;),
and if such an r; exists, r; is the unique point in §’ N C(—r;). Throwing away at most half

sin?(1/2) = sin®(7/2 — ¢ /2) = cos>(¢o/2) = =17/8.
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of the points in §” we then arrive at a spherical code S = {z1,...,z¢} with £/ > £/2 =
K, —1(2¢0)/2 such that S N C(—z;) = @ for all i. If j # i, then the angle ¢(z;, z;) can be
at most 7w — ¢y, since z; does not lie in C(—z;). We therefore have ¢ = 2¢9 < ¢(z;,z;) <
T — ¢o = v, which shows that K,,_1(2¢0)/2 < K,—1(¢, 7). This finishes the proof of the
lower bound in (4.2) of Theorem 4.6.

8 The proofs of Theorems 1.6 and 4.4

Theorem 1.6 is equivalent to the following result.

Theorem 8.1 Suppose F is a set of irreducible curves C on X such that C* < 0 and there
is no connected effective nef divisor with positive self-intersection of the form pCi 4+ qC»
with0 < p,q € Z and C1, Co € F. Then the set {[C] : C € F} is a strict hyperbolic code
of angle at least 7 /2.

Proof Recall from Lemma 4.3 that the elements [C] are all distinct in Num(X). Let A be
an ample effective divisor on X. Then I([A], [C]) > O for C € F, where I denotes the
intersection pairing. Therefore 1 = [A]/+/I(A, A) is an element of the hyperbolic space
L(X) associated with the intersection pairing on R ®7 Num(X), and it does not lie in any
of the geodesic half-spaces

H([C]) = {q € L(X) : I(q,[C]) =0},
hence
7= |J H(C)
CeF
is not all of L(X).

Suppose that 7 is not a strict hyperbolic code with angle at least 77 /2. Then we have that
O([C1], [C2]) < m/2 for some distinct elements Cq, C; of F, and Lemma 3.3 shows that
there are 0 < a, b € R such that

I(a[C1] + b[C2], a[Cy] + b[C2]) = aa® + 2Bab + yb* > 0,
where
a=I(C],[Ci]) <0
y =1([C2],[C2]) <0
B=1I1(Ci],[C2]) = 0.

Therefore 8 > 0 and 82 > «y. There will be positive integers p and ¢ such that
0<-y/B<pl/qg<—Bla

Then I([C1], p[Ci]+4¢l[Ci]) = pa+Bq > Oand I([C2], p[Ci]+qlC2]) = pB+qy > 0.1t
is then clear that pC + ¢ C3 is an effective connected nef divisor of positive self-intersection,
contradicting the hypothesis of Theorem 8.1. This proves the theorem. O

Remark 8.2 The referee noticed that one can also give the following simple argument for the
last part of the proof of Theorem 8.1. Our setup implies that the quadratic form «a?+28ab+
yb? does not take positive values on the first quadratic in R?. Then any positive value can
be obtained with a, b of the same sign, since «, ¥ < 0 and B > 0, hence the form takes no
positive values at all. This implies that 82 < «y, which gives cos 6 < 0.
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As in the statement of Theorem 4.4, let 7 (X) be the set of all irreducible curves C on X
for which C2 = I(C, C) < 0 and g(C) < b1(X)/4, and set

S(X)={[C]:C eT}CR®zNum(X).

We must show that S(X) is a strict hyperbolic code in L(X) with angle at least /2. We
suppose throughout this section that this is not the case, and we will derive a contradiction.

Theorem 8.1 implies there is an effective connected nef divisor of positive self-intersection
on X of the form pC; 4 ¢C; in which Cy and C; are elements of 7 (X) and 0 < p,q € Z.
We will prove the following result below:

Theorem 8.3 Suppose that E is a connected effective nef divisor on a smooth projective
geometrically integral surface X over a field k with positive self-intersection . Let E* be the
normalization of the reduction |E| of E. Let J(E®) be the direct sum of the Jacobians of
the irreducible components of E®. Then the natural morphism from J (EF) to the Albanese
variety Alb(X) of X is surjective.

Before giving the proof, we note how it implies Theorem 4.4.If E = pCj+¢C; as above,
we obtain a surjection

J(E®) = J(CP) @ J(C5) —> Alb(X).

Since Alb(X) has dimension b1 (X)/4 and J (Cl.tt ) has dimension the geometric genus g(C;),
we see that g(Cy) + g(Cz) > b1(X)/2. However, we supposed that every curve C € 7 (X)
has g(C) < b1(X)/4, and this contradiction proves Theorem 4.4. This also completes the
proof of Theorem 1.6.

Proof of Theorem 8.3 1t suffices to prove the theorem for the base change of E and X to an
algebraic closure of k. We assume for the rest of the proof that k is algebraically closed.

Let f be the pullback morphism from the Picard variety Pic’"¢¢(X) of X to the direct
sum Pic®7¢ (E®) of the Picard varieties of the irreducible components of E*. By duality, it
will be enough to show that Ker(f) is a finite group scheme. We suppose in what follows
that Ker( f) is not finite and we will derive a contradiction.

Since Ker( f) is a subgroup scheme of an abelian variety, it is an extension of an abelian
variety B of positive dimension by a finite group scheme. Let £ be a prime different from the
characteristic of k. Then the £-adic Tate module 7; (Ker( f)) is isomorphic to T;(B), and it is
a positive rank submodule of Ty (Pic®¢4(X)). The pullback morphism from 7, (Ker(f)) =
To(B) to Ty(Pic® ¢ (E?)) is trivial.

We know from the étale Lefschetz theorem that the morphism

T E] x) —> 7(X, x)

of étale fundamental groups at a geometric point x in the support of | E| is surjective, since
E is connected, nef, and effective. Results of this kind go back to Grothendieck in [6]; see
Bost [3, §2] for an excellent discussion, particularly Prop. 2.3. This means that

Hom(7{'(X, x), Z/€") —> Hom(r{\(|E|, x), Z/")

is injective for all n. Since k is algebraically closed, Z/€" is isomorphic to the group scheme
Jen of (™ roots of unity. Hence the Kummer sequence shows that

Hom(r{'(X, x), Z/£") = Pic(X)[£"] —> Hom(x(|E|, x). Z/£") = Pic(|E|)[£"]

is injective for all n.
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Taking inverse limits over n we see that the pullback homomorphism
Ty (Pic(X)) — Te(Pic(|EY))

is injective. On the other hand, T;(B) < T¢(Pic(X)) maps to 0 in T} (Pic"¢d (E?Y), so the
pullback of line bundles must induce an injection

£:Ty(B) — U = Ker (Tg(Pic(|E|)) — Tg(Pico’”d(Eﬁ)> ) (8.1)

We will derive our contradiction from this statement.

All of the above schemes are defined over finitely generated algebras over Z. By increasing
£, if necessary, we can find a specialization of all of the above schemes over a finite field
k’ of characteristic p not equal to £ so that it will suffice to show the map & in (8.1) is not
injective for k an algebraic closure of k’.

We now analyze U using the map 7 : E* — |E| coming from the fact that E? is the
normalization of | E|. We have an exact sequence of sheaves of groups in the étale topology
of |E| given by

] — Gm,|E| — ”*Gm,Eﬁ —V —1

in which V has support of dimension 0. Since 7 is finite, when we take the étale cohomology
of this sequence, we find that U is a quotient of

M =1lim H(k @y |E|, V)[£"],
n

where HO(k @ |E|, V)[£"] is the £" torsion in the HO(k Q' |E|, V).

Recall that £ is prime to the residue characteristic of the finite field k" over which we are
working. There is a filtration of H Ok @ |E|, V) by Gal(k/k’)-stable submodules such that
each graded quotient is isomorphic to either k* or the additive group k™. Therefore, if ® is
the arithmetic Frobenius of Gal(k/k’), then the eigenvalues of ® on M are all equal to the
order #k' of k. This implies that the eigenvalues of ® on U equal #k'.

On the other hand Ty (B) is the Tate module of an abelian variety B over k’, so the
eigenvalues of ® on T, (B) have absolute value the square root of #k’ by the Weil conjectures.
It follows from this that &€ cannot be injective, since T, (B) has positive rank. This contradiction
completes the proof. O

Remark 8.4 We note that one can prove Theorem 8.3 using only the classical Lefschetz
theorem when k£ = C, as the maps

T(E) — mi(E) — m(X)

are surjective. Our proof adapts this idea to arbitrary characteristic.

Acknowledgements The first author would like to thank the IHES, IMPA, and the University of Leiden for
their support during the writing of this paper.

9 Appendix: A calculus exercise

In this appendix we complete the proof of Lemma 6.1, whose notation we now assume. As
in that proof, we begin by fixing 0 < d; < d» < d3 = 1. Let 0 = (0, 0) be the origin in
R2Z = R"! and let S(d;, d») be the set of triples (z1, z2, z3) = (0, 22, z3) wWith 22, 23 € R2
that satisfy (6.1). Then (6.1) implies that |21 — z2| = |z2|, |z1 — z3| = |z3|, and |z2 — z3| are
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bounded above and below by positive constants. It follows that S(d, d») is compact. The
law of cosines gives
|21 — 2217 + |21 — z31% — |22 — z3)?

cos(fy) = , ©.DH
2|z — 22l - |21 — 23]

where the denominator on the right is bounded away from 0. Thus cos(#;) is a continuous
function on S(d, d»), so it attains its maximum. We now assume this maximum occurs at
(z1, 22, 23) = (0, 22, z3). As noted in Sect. 6, to prove Lemma 6.1 it will suffice to show that
01 > ¢o.

Let 6, and 3 be the angles at z> and at z3 between the sides of the triangle with vertices
at z1, z2, 23, respectively. Since we observed in Sect. 6 that (6.1) implies that z1, z2, and z3
are not collinear, all of 61, 8, and 63 lie in the open interval (0, 7). Suppose 63 > /2. Then
(6.1) gives

(dr +d2)* > |21 — 2
> |21 — 3>+ |22 — 23> (since 63 > 7/2)
> d? +d}+d3+ds. (9.2)
This gives
2dydy > 2d3 = 2.

However, di < d» < d3 = 1, so this is only possible if d] = d» = d3 = 1 and if all
of the inequalities in (9.2) are equalities. Hence (z1, z2, z3) = (0, z2, z3) is a right triangle

with side lengths |21 — 22| = |z2| = di +d2 = 2, |21 — 23| = /d? +d7 = V/2, and

|z — z3] = ,/dzz + d? = /2. This means that 01 = /4 > ¢o in this case, as claimed.

As noted in Sect. 6, the main fact we can now apply is that since (21, 22, z3) € S(d1, d>)
minimizes 0}, we cannot move z, z» and z3 in R? and then translate z; back to 0 in such a
way that the inequalities (6.1) still hold with the same dy, d> and d3 = 1 but a smaller value
for 0.

We may assume that z3 is a point on the positive real axis by rotating both z» and z3 around
z1 = 0. Since 0 < 0; < ¢pg < 7/2, the point z; now lies in the upper right quadrant. Let C
be the circle of radius |z; — z2| = |z2| around z, in R2. Suppose that

lz1 — 23| < di + ds. 9.3)

Let 75 = z2 and 2§ = z3. We now move z; = 0 to a point 7} on C; that lies in the upper
left quadrant and is very close to z. The only side length which changes is then |z — z3],
which becomes |z} — z3| > |z1 — z3| since z; = z3 lies on the positive part of the real line.
Since |z1 — z3| < di + d3, all of the inequalities in (6.1) will hold with the same dy, da, d3
when we replace (z1, 22, 23) by (2], 25, 25) = (2}, 22, z3) if Z] is a point on C that lies in
the upper left quadrant and is close enough to z;. We now show that the angle 6] between
the sides meeting at z’1 of the triangle (z’l, 2’2, z’3) satisfies 9{ < 61. This will contradict the
minimality of 6; and show that (9.3) cannot hold.

Let 65 be the angle between the sides of (z}, z5, z3) meeting at 73 = z3. Since z] lies in
the upper left quadrant and on the same side of the line between z), = z» and z; = z3 as the
origin z; = (0, 0), we have 0 < 0§ < 63 <mw/2. Thus 0 < sin(@é) < sin(#3). The law of
sines now gives

sin(9)) |25 — 251
sin(63) |z} — 25|
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|22 — z3]
lz1 — z2]
sin(6;)

= S0 s)” 9.4

Since sin(#}) < sin(63) we conclude that sin(f]) < sin(6). Since we took 2 to be close to
z1 = (0, 0) on Cy, we can ensure that that 9{ is close to ;. Since 0 < 0] < ¢pg < w/2, we
conclude that 0]’ < 01, contradicting the minimality of 6;. Thus (9.3) is false, so

z1=0=1(0,0) and z3 = (di+d3,0) 9.5

after rotating z3 as above so that it lies on the positive real line.
Now suppose that

A} +d3 < |21 — 2l? < (di + d)%. 9.6)

Recall that z5 is a point in the upper right quadrant, and that we have reduced to the case
in which (9.5) holds. We let z, = z5 and z; = z3. Define C5 to be the circle with center
z3 = (d1 + d3, 0) and radius d; + d», so that C contains z; = 0 by (9.5). Consider points
zj very close to z; on C». The only edge distance that can change on replacing (z1, 22, z3)
by (2}, 25, 25) is |21 — z2|. Since |z} — z5| = |z} — z2| will be close to |21 — 22| = |z2] if 2]
is close to z1, we conclude from (9.6) that all the inequalities in (6.1) will hold if (z1, z2, z3)
is replaced by (z}, 75, z3) = (2}, 22, z3) and z} is any point on C; sufficiently close to z;.

Recall that 8, is the angle at 7z, between the sides of the triangle (z1, z2, z3) adjoining z5.
Let 6 be the corresponding angle for the triangle (2], z5, z3). If z] lies in the upper half plane
and is sufficiently close to zi, it is on the other side of the line between z; and z; = 0 from
z3. It follows that 6 > 65 in this case. We find similarly that 6} < 6, in case z} is a point of
(> that lies in the lower half plane and is sufficiently close to z;. Thus we can in either case
choose a z/l on C; arbitrarily close to z; for which

0< sin(@é) < sin(6y). 9.7
Since |z1 — z3| = di +dz = |z} — z3] and |z — z3| = |z}, — 24, the law of sines gives

sin(0) |25 — 25
sin(0}) |z} — 241
_lz2 = z3]
lz -zl

sin(61)

= Sn @)’ (9.8)

Now (9.7) shows sin(6]) < sin(6). Since 0; will be close to 0; < ¢ < /2 for z close to
z1, we conclude that 9{ < 61, which contradicts the minimality of 8;. Thus the hypothesis
(9.6) must be false, and so

A+ d3 =21 — 2 or |21 — 2 = (d +d»)*. 9.9)

We now apply the law of cosines, together with (9.5) and dg' + d? < |z — z3|? from (6.1).
This gives

lz1 — 22> + 121 — z3* — |22 — z31%
2 z1 — 22| - lz1 — z3]

cos(f1) =
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_la — 2P+ d +d3)* —d; — d?
- 2-)z1 — z2l - (d1 + d3)

(9.10)

where d| < dy <dz = 1.
Suppose first that d7 + d3 = |z1 — z2| in (9.9). Then (9.10) becomes

A +d2+d+1)?—di—1 d 1 1
cos(f)) < L —2 2 = = < —49.11)
2.\ Jdi +d3 - (di+1) \/dlhrdg V1+ (da/dr)? 72(

since 0 < dy < d,. This forces 81 > 7 /4, contradicting 61 < ¢ < 7 /4.
The remaining possibility in (9.9) is that |z; — z2| = d| + d>. Then (9.10) gives

(di +d)* + (di + 1> —d3 - 12
2-(dy+dy)-(di +1)

(i +dy+ Ddy

T (di+dy)-(di+ 1)

1 1
<1+d1+dz>'<1+1/d1>

3
< - 9.12
=g 9.12)
since 0 < d; < d> < d3 = 1. This gives 8] > ¢y = arccos(3/4), which completes the proof

of Lemma 6.1.

cos(01) <
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