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1. Introduction

The development of Arakelov theory has benefited from a close study of applications
to classical questions. The proofs of the conjectures of Mordell and Lang are famous
examples. We study in this paper the distribution of norms of two kinds of classical
objects. The first consists of the Petersson norms of modular forms with integral Fourier
coefficients and increasing weight for SLo(Z). The second consists of the distribution of
sup norms of polynomials with integer coefficients on compact subsets of the complex
plane. More generally, we consider the sup norms of rational functions with prescribed
poles on adelic subsets of curves over number fields. These subjects are linked by the fact
that they both concern the successive minima of the norms of global sections of increasing
powers of metrized line bundles on arithmetic surfaces. We treat both subjects in this
paper because there is a substantial overlap in the underlying theory needed to study
them.

Finding successive minima of norms of global sections of powers of metrized line
bundles has a long history in Arakelov theory. The arithmetic Hilbert-Samuel theorem [1,
12] concerns the existence of sections with small norm. In [6], Chen developed a theory of
convergence for distributions associated to the successive minima of sequences of lattices.
He applied this theory to show the existence of limiting distributions associated to the
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successive minima of norms of sections of increasing powers of line bundles with smooth
metrics on arithmetic varieties. For our applications we need to work with some particular
metrics which are not smooth, using work on such metrics developed by Bost [4] and
Kiihn [14]. In the case of Petersson norms of cusp forms, this leads to a new phenomenon
not appearing in the work of Chen. Namely, the limiting distribution associated to the
successive minima of norms as the weight of the cusp forms increases does not have
compact support.

One consequence of our results has to do with congruences between modular forms. We
show that most of the small successive minima of the Petersson norms of cusp forms with
integral Fourier coefficients arise from non-trivial congruences between Hecke eigenforms.
To see why congruences lead to small Petersson norms, suppose f; and fy are distinct
normalized Hecke eigencuspforms, so that the first coefficient in each of their Fourier
expansions at infinity is 1. A non-trivial congruence between these forms amounts to the
statement that g = (f1 — f2)/m has integral Fourier coefficients for some integer m > 1.
In this case, g will often have smaller Petersson norm than either f; or fy. More general
congruences involving several eigenforms are involved in the precise statements of our
results in Definition 3.2.1 and Theorem 3.2.2(iii).

Classical arithmetic capacity theory was motivated by the problem of finding whether
there is a non-zero polynomial with integer coefficients which has sup norm less than one
on a given subset of the complex plane. The generalization of this problem to arbitrary
curves involves studying global sections of powers of lines bundles which have particular
Green’s metrics. Classical capacity theory produces an upper bound for the minimal such
sup norm which is not sharp in general. We develop in this paper an approach via local
Chebyshev constants for obtaining better bounds over schemes of arbitrary dimension,
and we obtain additional information on successive minima. This leads to new results
about classical questions.

For instance, suppose E is a compact subset of the complex plane which is invariant
under complex conjugation. Let m(n, E) be the minimal sup norm over E of a non-
zero polynomial with integer coefficients and degree n. Since m(¢ + n, E) < m(¢{, E) -
m(n, E), the classical Fekete Lemma [6, p. 10] shows M (E) = lim,, o, m(n, E)*/™ exists.
A classical result of Fekete [10] is that M (E) < y/7(E) when v(E) is the transfinite
diameter of F and v(E) < 1. (Szego later proved that v(E) is the capacity of F; see [23]
and [18,19]). Our work on local Chebyshev constants provides more precise information
about M (E). As an example, suppose F is the closed disk of radius 1/2 centered at 1/2.
Then v(F) = 1/2, and we will use the machinery of §4 to show

0.64 < M(E) < 0.67 < v/7(E) = .707...

(see Example 4.3.2).

The Chebyshev method is useful for showing that in some cases, the successive minima
are almost all equal. In this case, one says the associated metrized bundles are asymp-
totically semi-stable, and the limiting measure associated to successive minima is the
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Dirac measure supported on 0. We will show that this situation arises from adelic sub-
sets of curves which have capacity one. Motivated by work of Serre on the distribution of
eigenvalues of Frobenius on abelian varieties, we will also study the distribution of zeros
of sections of small norm with respect to capacity theoretic metrics. We will show that
in the case of adelic sets of capacity one, one can find sections of approximately minimal
norm whose zeros tend toward the associated equilibrium distribution while avoiding
any prescribed finite set of points.

A careful reader will notice that the classical questions we study involving Petersson
norms of cusp forms and the capacities of adelic sets lead to considering particular metrics
on line bundles. While some of our results could be generalized to other metrics, we prefer
to focus on the cases at hand. Similarly, we focus on the Petersson norms of cusp forms
for SLo(Z) rather than on developing in this paper generalizations to arbitrary modular
forms on reductive groups. Such generalizations are naturally of interest. However, in
this paper we are concerned with demonstrating the possibility of obtaining explicit
results. For example, we will show that the limiting measure associated to Petersson inner
products of cusp forms for SLs(Z) has support bounded above by 27 + 6(1 — log(12)) =
—2.62625 . ... We hope a detailed analysis of the SLy(Z) case will motivate future research
on more general modular forms.

This paper is organized in the following way.

In §2 we begin by recalling various kind of slopes associated to an hermitian adelic
vector bundle over a number field. The example of primary interest is provided by the
global sections of an ample metrized line bundle on an arithmetic variety. The naive adelic
slopes associated to such sections s arise from a height A(s) recalled in Definition 2.1.1.
Here A(s) is the negative of the natural logarithmic norm of s. For this reason, the
successive minima of norms of sections correspond to successive maxima of heights. We
recall in §2 some results of Chen [6] concerning various kinds of successive maxima of
heights associated to the global sections of metrized line bundles.

In §3 we consider slopes associated to lattices of cusp forms f of increasing weight for
SLy(Z) which have integral g-expansions. We begin by recalling work of Kithn and Bost
concerning the interpretation of Petersson norms of such cusp forms via Arakelov theory.
When the g.c.d. of the Fourier coefficients is one, the height A(f) of f is simply one half
the negative of the logarithm of the Petersson norm of f. A key issue is that the adelic
metrics which arise on the line bundle L appropriate to this application are singular at
infinity. Thus one cannot apply Chen’s work directly. Instead we consider forms which
vanish to at least prescribed orders at infinity, and then let these orders tend to 0. An
interesting conclusion in our main result, Theorem 3.2.2, is that the probability measure
v which results in limit of large weights has support bounded above but not bounded
below. In Definition 3.2.1 we define a nonzero cusp form f to not arise from a congruence
between Hecke eigenforms if when we write f as a linear combination ), ¢; f; of distinct
normalized eigenforms f;, the ¢; are algebraic integers divisible in the ring of all algebraic
integers by the g.c.d. of the Fourier coefficients of f. We will show that Petersson norms
of such f are very large and contribute a vanishingly small proportion of successive
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minima as the weight tends to infinity. The measure v thus has to do with non-trivial
congruences between eigenforms which give rise to forms with integral ¢ expansions
having much smaller Petersson norms.

In §4 we will apply the theory of Okunkov bodies to study successive maxima of
heights for X of any dimension. We introduce local and global Chebyshev transforms
which are maps from the Okounkov body of X to the real numbers. The global Chebyshev
transform is the sum of the local ones. We prove in Corollary 4.1.0.1 that, if the global
Chebyshev transform is a constant function, the limit distribution v is a Dirac measure.
We compute explicitly the local Chebyshev transforms in some particular cases when X
is a projective space. The main strength of this technique is that in some cases one can
compute explicitly the limit distributions of the successive maxima associated to heights.

In §5 we study the distribution of zeros of those sections of powers of a metrized
line bundle which have at least a prescribed height, i.e. those sections whose norms are
small in the corresponding way. We begin with an example in §5.1 which suggests that
sections of “small” norm may have to have at least some of their zeros at particular
points, the remaining zeros being variable. To formulate this precisely we recall a result
of Serre concerning the decomposition into atomic and diffuse parts of limits of measures
in the weak topology on the space of positive Radon measures. The connection of this
theory to zeros of cusp forms of small Petersson norms is discussed in Remark 3.2.3 and
Question 5.2.3.

In §6 we consider applications to adelic capacity theory. This has to do with the
possible sup norms of rational functions on adelic subsets of curves. We will apply work
of Rumely to show that in the case of capacity metrics associated to adelic sets of capacity
one, the associated metrized bundles are asymptotically semi-stable, and the measure
v is the Dirac measure supported at 0. We will also study the locations of the zeros of
sections which arise in this case using the work in §5.
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2. Semistability, successive maxima, slopes and prior results
2.1. Measures associated to successive maxima a la Chen

Let E = (E,(]| - |lo)») be an hermitian adelic vector bundle of rank r = rank(E) > 0
over a number field K of degree d over Q (see [11], Definition 3.1).

Definition 2.1.1. We consider three sequences of slopes for E:
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i. The (unnormalized) Harder-Narasimhan-Grayson-Stuhler slopes (X,)7_, =
(M(E))r_,, as defined in [11], Definition 5.10. One has

ZA = deg(E) = rA(E),

where d/eTg(E) is the adelic degree of E ([11], Definition 4.1), and A\(E) = %ge\g(E) is
the slope of E.
ii. The naive adelic successive maxima (X\;)7_; = (\;(E))?_, of E, where \;(E) is the

largest real number \ such that the set =" of elements of E satisfying
= kylog sl > A, (2.1)

generates a K-vector space of dimension at least i. Here, k, is defined as follows, for
each valuation of v of K. When v is finite of residual characteristic p, if K, is the
completion of K at v, k, is the degree of K, over Q,. When v is real k, = 1, and
when v is complex k, = 2.

iii. The adelic successive maxima (\,)7_; = (X;(E))i_; of E (see [11], Definition 5.19):
the number X;(E) is the supremum of the quantities — Y, k,logr,, where (r,),
ranges over all families of positive real numbers such that the set of elements s € F
satisfying

Vo, |Isllo < 1o,
generates a K-vector space of dimension at least <.

By [11], Theorem 5.20, one has

Z X(E) = deg(E) + O (rlog(2r)).

Since the same holds for the slopes (X\;(E))i_,, the inequalities X;(E) > \;(E) > N,(E)
ensure that the same estimate also holds for the slopes (\;(E))’_,. From this one deduce
the following:

Proposition 2.1.2. Let (En)n21 be a sequence of hermitian adelic vector bundles of ranks

(rn)n>1 over K, such that logr,, = o(n). Assume that the sequence of probability mea-
sures

g, = 01%,(E)
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weakly converges to some probability measure v with compact support on R. Then the
sequence

Tn
! 0

VEn - 7'_ Z %A?L(Fn)7
" i=1

weakly converges to v.

Proof. Since smooth functions are dense within the space of continuous functions having
compact support, it will suffice to show that for every smooth function i with compact

- L (i) ()

converges to 0 as n tends to infinity. By the mean value theorem,

support,

17 llo <"
o0

D Xi(Bn) = Mi(En)l

|en‘ <
nry,

The discussion preceding the statement of the proposition shows
> N (ER) = M(En) =Y Xi(En) = > Xi(En) = O(ry log(2ry)).
i=1 i=1 i=1

This gives

len| = O(log(2r,)/n) = o(1)
as claimed. 0O

Let X be a projective variety of dimension d over a number field K, and let L be an
ample line bundle on X, endowed with a continuous adelic metric (|- |z, )y, in the sense
of [27]. We assume that for all but a finite number of places, the metrics (|- |1,,)» come
from a single integral model of (X, L) over Of. The K-vector space H°(X, L®") is an
adelic vector bundle, in the sense of [11], if equipped with the family of norms

Isllpen = sup [s(x)|F7.
zeX(C,)

Even if the adelic vector bundle H°(X, L®") is not hermitian, one can still define its
Tn

naive adelic successive maxima (X; )i, = (M (H?(X, L®™)))!»,. The following theorem
follows from work of Chen in [6, Th. 3.4.3, Th. 4.1.2, Th. 4.18].
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Theorem 2.1.3. (Chen) Suppose the metrics |- | are smooth for archimedean v. Under
the above hypotheses, the sequence of probability measures

Tn

1
Vo =— 01y,
T’I’L- n s
=1

converges weakly to a compactly supported probability measure v on R.

Indeed, replacing the L>°-norms at archimedean places by L?-norms with respect to a
fixed volume form only changes the normalized successive maxima %Ai,n by the negligible

%) by Gromov’s Lemma. So one is left with a sequence of hermitian adelic

amount O (
vector bundles over K which satisfies the hypotheses of Proposition 2.1.2 by Theorem

4.1.8 of [6].

Remark 2.1.4. In the next section we will deal with the case in which d = 1 and the
metrics at infinity have logarithmic singularities in the sense of Kiihn in [14, Def. 3.1].
We will do this using explicit computations to apply the results of Chen on various quasi-
filtered graded algebras on which Theorem 2.1.3 is based. We show in particular that
when there are logarithmic singularities, it is possible that the limit measure described
in Theorem 2.1.3 exists but does not have bounded support.

3. Modular forms and Petersson norms

In §3.1 we recall some work of Bost [4] and Kiithn [14] concerning the interpretation
of holomorphic modular forms of weight 12k for SLy(Z) as sections of the k' power of
a particular metrized line bundle on P for k > 1. We then study in §3.2 the successive
maxima {\; x}¥_, associated to the lattice S1ax (T, Z) of cusp forms of weight 12k with
integral Fourier coefficients with respect to the Petersson inner product.

3.1. Modular forms as sections of a metrized line bundle

Let H be the upper half plane and let I' = PSL(2,Z) be the modular group. Then
X = I'\(H U P}Q)) has a natural structure as a Riemann surface. The classical j
function of z € H has expansion

1 > )
Jj(z) = -+ 744 + Z anq" in q=e’",
q n=1

The map z — j(z) defines an isomorphism X — P{.
The volume form of the hyperbolic metric on H is

_dzNdy idz/\d%
Y2 21Im(2)?

(3.1)
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This form has singularities at the cusp and at the elliptic fixed points of I, as described

in [14, §4.2].
Define
A)=q [ =g =q+ > bug" (3.2)
n=1 n>1

to be the normalized cusp form of weight 12 for I'. Let S;o be the unique cusp of X, so
that S;o is associated with the orbit of P1(Q) under T'.
Suppose k is a positive integer. In [14, Def. 4.6] the line bundle

Migk(T)oo = Ox(Sic)®*

is defined to be the line bundle of modular forms of weight 12k with respect to T
This is shown to be compatible with the usual classical definition of modular forms. In
particular, there is an isomorphism

Myop(T) = H°(X, Ox (Sine)®") (3.3)

between the space Mior(T') of classical modular forms f = f(z) of weight 12k and
HO(X,0x(Si00)®*) which sends f to the element f/AF of the function field C(5) of X
over C.

The Petersson metric | |o on Migx(I') is defined in [14, Def. 4.8] by

[f1%(2) = 1f(2)[* (47 Tm(2))"* (3.4)

if f is a meromorphic section of M12x(T") . It is shown in [14, Prop. 4.9] that this metric
is logarithmically singular with respect to the cusp and elliptic fixed points of X. See
[14, pp. 227-228] for the reason that the factor 47 is used on the right side of (3.4)

As in [14, §4.11], we define an integral model of X to be

X = Proj(Z[Zo, 74))
with Zy and Z; corresponding to the global sections j-A and A of the ample line bundle
Mi3(I')s. The point S;o defines a section S;o, of X = P, — Spec(Z). We extend
M35 (T) o to the line bundle

Mi2i(T) = Ox(Sioe)®*
on X. This model then gives natural metrics | |, at all non-archimedean places v for

the induced line bundle M2, (I")g on the general fiber Xg = Q ®z X. When v is the
infinite place of Q, we let | |, be the Petersson metric | |s.
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Proposition 3.1.1. The global sections H°(X, Mi2(T)) are identified with the Z-lattice
of all modular forms f of weight 12k with respect to T' which have integral q-expansions
at Siso. These are the sections f of H°(Xg, M12x(T')q) such that for all finite places v
of Q one has

Mo ()0 = SUPzexg ()| flu(2) < 1. (3.5)

If f is not in B - HO(X, M12x(T)) for any integer B > 1 then
H.f||/\/l12k(1")7lu =1 for all finite w.

The sublattice S121(T, Z) of all cusp forms in H°(X, My2(T)) has corank 1 and rank k.
If f € S12x(T',Z), the L? Hermitian norm at the infinite place v = oo of f is the usual
Petersson norm

dxd
112 oo perm = / P (ulz) = / FPEm) @ (36)
X(C) X(C)

associated to f, where u(z) is the volume form of the hyperbolic metric given in (3.1).

Proof. The first statement is a consequence of the fact that the ¢ expansions of j and
A have integral coeflicients and begin with 1/¢ and ¢, respectively. The statements
concerning finite places v is just the definition of the metrics at such places which are
associated to integral models of line bundles. The rank of H°(X, M12x(T)) over Z is
the dimension over C of H(X, M12:(I)s) = H*(X, Ox(Sis)®*), which equals k + 1
by Riemann Roch. The last statement concerning cusp forms is the definition of the
Petersson norm when this is normalized as in (3.4). O

Remark 3.1.2. Since the sections (j*~*A*)F_, form an integral basis of H(X, M2, (T)),
the norm || - || vy, (r),0 is given at non archimedean places by

k
PN
I Z;aw A" Mygr ()0 = orgfgk laglo.

In particular, for any f in H°(X, Mi2;(T))q,, the norm || f|| sy, ()0 belongs to the
valuation semigroup |Q,|-

3.2. Successive mazima and modular forms

To state our main result we need a definition.

Definition 3.2.1. A non-zero form f € S12x(I', Z) does not arise from a congruence be-
tween eigenforms if when we write f as a finite linear combination ", ¢; f; of distinct
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normalized eigenforms f;, the ¢; are algebraic integers divisible in the ring of all algebraic
integers by the g.c.d. of the Fourier coefficients of f.

This terminology arises from the fact that if the ¢; are integral but the last requirement
in the definition fails, there is a non-trivial congruence modulo the g.c.d. of the Fourier
coefficients of f between the forms f;.

Theorem 3.2.2. Let {)\iylgk}le be the naive adelic successive maxima associated to
Si01(T, Z) in Definition 2.1.1() with respect to the L? Hermitian norm defined by the

Petersson norm in (5.6).

1. The sequence of probability measures

Vig2k =

k
z : 6% Ai 12k
=1

| =

converges weakly as k — oo to a probability measure v.

1. The support of the measure v is bounded above by 2w +6(1—log(12)) = —2.62625.. ..
The support of v is not bounded below.

iii. As k — oo, the proportion of successive maxima which are produced by f € Sy2x(T, Z)
which do not arise from a congruence between eigenforms goes to 0.

This result shows that in Remark 2.1.4, the limit measure need not have compact
support when the metrics involved are allowed to have mild singularities. We will prove
in §3.3 more quantitative results about the successive maxima A; 195 in this Theorem.

Remark 3.2.3. Consider the divisors zer(f) of complex zeros of elements f of S =
Uks0 S12k(T, Z). Recall that each such zer(f) = erPl(C) mgx defines a Dirac measure
wu(zer(f)) = ﬁ(f) > n Medy. It follows from work of Holowinsky and Soundararajan
[13, Remark 2] and Rudnick [17] that as f ranges over any sequence of non-zero Hecke
eigencusp forms of weights going to infinity, the corresponding Dirac measures p(zer(f))
converge weakly to the measure % u when g is the the standard area form in (3.1). How-
ever, due to part (iii) of Theorem 3.2.2; we cannot conclude from this much information
about the measures associated to the zeros of forms with large height. For a discus-
sion of the latter measures, see §5.1 and §5.2. It would be interesting to know whether
cusp forms with integral g-expansions which have small Petersson norms must vanish at
particular points in the upper half plane.

3.8. Petersson norms and Fourier expansions

We begin with a well known argument for bounding Petersson norms from below.
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Lemma 3.3.1. Suppose that 0 # f =77 | anq™ € S12x(I',C). Let N = ordso(f). Then
1 < N <k, and the L?> Hermitian norm at the infinite place v = oo of f in (3.6) has
the property that

dxdy
10t satrroeerm = [ 1Py 2 2

X(C)

—4mn (12k )
Z Z |an|*4me Toizh—1

—47 N (12k B 2)

2
= lan " dme™ N e

(3.7)

Proof. Since the a, are in C, we have f(q) = >~ a,q". For a fixed y > 1 we have (as
in [22, p. 786]) that

1/2 1/2
[ 1t s iPas= [ s@Fai
—1/2 —1/2
2
~1/2 n,m=1
1/2
— Z Al / 27ri((n7m)a:+(n+m)iy)dx
n,m=1 ~1/2
= lan|?e (3.8)
n=1

The standard fundamental domain for the action of SL2(Z) on H contains the set T =
{z=2+1y:-1/2<x<1/2 and y > 1}. Therefore

/ (2 12k dwd@/ /If )12kd$dy
y?

o0

y/lib

4’/T 12k2|a ‘2/ 47rny 12k— 2dy (39)

y=1

r=1/2
/ x—i—zy | d.%‘(47'(')12k 12k— Qdy
—-1/2
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For all constants ¢ # 0 and all integers ¢ > 0, one has the indefinite integral

ZJ(I

—cy, L _ —c
/6 Yyldy = —e Y- ZC]H (3.10)

as one sees by differentiating the right side. Setting ¢ = 47n and ¢ = 12k — 2 and then
integrating the left hand side from y = 1 to oo gives

©0 12k—2

_ _ 12k — 2)! _ (12k — 2)!

47rny 12k— 2d 4mn ( > 4mn 3.11
/ . g Arny i (2k—2- 7)1 = ¢ (et G4

Substituting this back into (3.9) gives the claimed inequalities. O
3.4. Bounds on successive mazrima

The following result will be used later to analyze the support of limit measures asso-
ciated to successive maxima.

Theorem 3.4.1. The rank of Siox (T, Z) over Z is k, and Sy2(T,Z) has {AFj*=¢:1 <
¢ <k} as a basis over Z. Suppose 0 # f =3 ang" € S12k(L, Z). Let ordoo(f) be the
smallest n such that an, # 0. Then 1/k < ordeo(f)/k < 1. Let A(f) be the logarithmic
height of f with respect to the metrics of Proposition 5.1.1. Let ¢ : Rsg — R be the
monotonically increasing function defined by

0(c) = 2mc + 6(log(c) + 1 — log(12)).
1. For € > 0, there are only finitely many k and f for which

A(f)/k = Llordeo(f)/k) = €

up to replacing f by non-zero rational multiple of itself (which does not change A\(f)
or orde(f)).

it. Suppose ro > £(1) = 2w + 6(1 — log(12)) = —2.62625.... Then for all sufficiently
large k and oll f € S19x(T, Z) one has A\(f)/k < ro.

iti. Suppose 1 > ¢ > 0 and € > 0. For all sufficiently large k, there are at least ck succes-
sive mazxima A; 12k among the total of k successive mazima associated to Sy2x(T', Z)
for which

Ai
22’“ < l(c) +e.

One has lim,_,q+ £(c) = —oc.
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Proof. By Proposition 3.1.1, S2x(I", Z) has corank 1 in H°(X, Mj2,(T")). The rank of
HO(X, My3;,(T)) is k+1, s0 Sy21 (T, Z) has rank k. The form A¥ %~ lies in Syox (T, Z) for
0 <4 < k, and its first non-zero term in its Fourier expansion at oo is ¢*. Hence the set
of these forms is a Z-basis for Syar(T',Z), and 1 < ordo(f) < k for 0 # f € S12x(T, Z).

The logarithmic height of f with respect to the metrics || ||, we have defined on
L = M9, (T) for each place v of Q is

A(f) == log|| £l L.o-

By the product formula, multiplying f by a non-zero rational number does not change
A(f). We now replace f by a rational multiple of itself without changing A(f) to be able
to assume f € Syax (T, Z) is not in B - My (T, Z) for any integer B > 1.

Proposition 3.1.1 shows ||f|lL, = 1 for each finite v, while if v = vy is the infinite
place,

dxd
12, = / )Py (3.12)
X(C)

is the Petersson norm. Since f has integral Fourier coefficients, we find from (3.7) of
Lemma 3.3.1 that

27(7) = ~log( [ |f<z>|2<4wy>12k%>
X(C)

(12k — 2)!

S —10g(47T€747rN W)

= —log(4m) + 47N — log((12k — 2)!) + (12k — 1)log(N). (3.13)
Suppose N = ck for some constant c. Since log(N) > 0, (3.13) gives

A(f) < _ log(4m) 4 A — log((12k — 2)!)

2 P . ™ 3 + (12 — 1/k) - (log(c) + log(k))
< dme+ log(12k — 113 +log(12k) log(11€2k:)! +12- (log(c) + log(k))
< 4me + 2log(12k)/k — 12(log(12) — 1) + 12log(c) (3.14)

since log((12k)!) > 12klog(12k) — 12k. We conclude from (3.14) that

A

% —{(c) <log(12k)/k (3.15)
when ¢(c) = 2mc+ 6(log(c) + 1 —log(12)). Thus (3.15) implies that if % —l(c) >e>0
then % is bounded above by a function of e. For each fixed k, we have ¢ = N/k > 1/k
so {(c) is bounded below. Thus A(f)/k — £(c) > € > 0 implies the Petersson norm
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of f is bounded from above. So there are only finitely many possibilities for f up to
multiplication by a non-zero rational number, as claimed in part (i) of Theorem 3.4.1.

Part (ii) of Theorem 3.4.1 now follows from part (i).

To prove part (iii), suppose 1 < j < k. By part (i), if M(k,j) is the submodule of
forms f € S19k(T',Z) for which ordo(f) > 7, the corank of M (k,j) in Si2x(T,Z) is j.
So at least j successive maxima of S12x(I', Z) do not arise from forms in M (k, 7). If f is
not in M (k, j), then (3.15) shows

< U(orduss (F)/k) + log(12k) /k < £(j/k) + log(12k)/k

since ¢(c) is monotonically increasing with c. Therefore at least j of the successive maxima
{ i 12k }F_ | associated to Syax (T, Z) satisfy the bound

Ai 12k
k

< ((j/k) + log(12k) /k

Since £(c) — —oo as ¢ = j/k — 0T and log(12k)/k — 0 as k — oo, this proves part (iii)
of Theorem 3.4.1. O

Lemma 3.4.2. There exists a constant C > 0 such that for any element f of S12x(T, Z)
vanishing with order at most N at infinity, we have

N
A(f) < 6klog (k) + Ck.
Proof. By Lemma 3.3.1 and by Stirling’s formula, we have

) Ok (12k)12k
HfHMmk(F),OO,he”‘m >e " N2k

hence the result by taking logarithms and multiplying by —1. O

Lemma 3.4.3. There exists a constant ¢ > 0 such that for any integers k, £ with 1 < <k,
we have

14
MAF*=) > 6k log (E) — ck.
Proof. Since AFj*~* has integral g-expansion and unit leading coefficient, we have

k k-t
||A ] ||M12k(r),1) = 13

for any finite place v. In particular, we have

/\(Akjk_z) = log HAkjk_eHMml«(F)’OO’hm"m'
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Let

F={z=a+iy: -1/2<x<1/2,2% +3y* > 1}

309

(3.16)

be the closure of the standard fundamental domain for the action of SLy(Z) on H. There

)
is a constant ¢ > 1 such that for any z = z + iy in F, we have |A(z)| < ce 2™ and

|7(2)] < ce®™. We thus have

e . _ dxdy
JAR TR 0y comerm = / AG)PHIP ()
F

S
4k: 2@/674772.1; 12k@
2
Y
0

< dmwc*t(12k — 1)1 12k

12k
()"

hence the result by taking the logarithms of both sides of this inequality. O

Lemma 3.4.4. Let (A )5, be the successive mazima of Siox(T', Q). We have

Ak j—1
—— =61 1——— 1
k =6 og( ? ) +O(1),
where the implicit constant in O(1) is absolute.

Proof. The inequality

%2 log(l—jT>+O()

follows from Lemma 3.4.3 by wusing the j linearly independent

sections

(AF55=8) i 11<e<k. We now prove the converse inequality. Let s1,...,s; be linearly in-

dependent elements of S12,(I", Q) such that A(s;) > \; ; for any i. By Proposition 3.1.1,

we can multiply the s;’s by appropriate non zero rational numbers to be able to assume

that

||Si||M12k(F)7v =1

for any finite place v and for any i. Therefore

A(si) = —10g [I5i [ My, (1) .00, herm -



310 T. Chinburg et al. / Journal of Number Theory 228 (2021) 294-341

The linear subspace of S12x(T, Q) consisting of forms vanishing at oo to order at least
k — 7+ 2 has dimension j — 1, and therefore can not possibly contain all s;’s. Thus there
exists an index ¢ such that s; vanishes at oo to some order N < k—j+1. By Lemma 3.4.2
we have

% < A(;Z') < 6log (%) +0(1) < 6log <1 - T) +0(1)

which completes the proof. O

Lemma 3.4.5. There exists constants ¢y, ca > 0 such that for any element f of S121(T, R),
the quantity || f{| m,op (r),00,sup = SUPzex(c) | floo(2) satisfies the inequalities

CleHMlzk(F),oo herm = Hf”Mle (T"),00,5up = c2k2 log(3k)||f||M12k(F) oo,herm (3-17)

Proof. One can take ¢; = Vol(X(C))~ 2, and we therefore focus on the second inequality.
The existence of a ¢y for which (3.17) holds for a fixed k follows from the fact that non-
degenerate norms on a finite dimensional real vector space are comparable. So it is
enough to show that a co exists for all sufficiently large k.

Let f be an element of S12;(T",Z) and let F' be as in (3.16). Since |f|(2) tends to
0 as the imaginary part of z € F goes to infinity, there exists a point zg = x¢ + iy
of F such that || f| amyse(r),00,sup 1S equal to |fleo(20). Writing f(2) = >°07 | ang™ with

g = 2™ we obtain

)l <3 lagle>mme,

n>1

and then the Cauchy-Schwarz inequality yields

4mn
PP < (Y a2 Sy | | o nteretmnamw

n>1 n>1

2
Hf”/\/llgk(l"),oo,herm Z n12k71647rn(17y0)

= 4n(12k — 2)! ’ (3.18)

n>1

where the last inequality follows from Lemma 3.3.1.
Let us first assume that yo > klog(3k). There is a positive integer ko such that if
k > ky and n > 1 then

(12k — 1) log(n) + 8mn < 4wk log(3k)(n — 1) + 87 < 4dmwyo(n — 1) + 8.

This implies

n12k—1€47\'n(1—y0) < e—47'ry0+87'r€—47rn.
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Therefore we can increase ko, if need be, so that if yo > klog(3k) we will have for k > ko
that

)12k

(47Ty0 12k 2 Z nl?k 1 47-rn 1—yo) < (47Ty0)12k€—47ry0+87r _ €g(y0’k)

where g(yo, k) = 12klog(4myo) — 4myo + 8m. Using yo > klog(3k) and k > ko we find
that g(yo, k) < 0 for kg sufficiently large. We thus obtain from (3.18) that

||f||.2/\/112k(r),oo,sup = |f|go(zo) = |f(20>|2(47ry0)12k < ||f‘|?\/l12k(f‘),oo,herm‘

It remains to handle the case yo < klog(3k) and k sufficiently large. We first claim
that there exists a real number R such that 0 < R < 1/4 and for any z in F, the
projection from the disc D(z, R) = {w € C : |z — w| < R} to X(C) is at most three
to one. By a standard compactness argument, there exists a real number R €]0, 1] such
that this property holds for any z in F' with imaginary part at most 2 because the inertia
groups in PSL2(Z) of points of F' have order at most three. It will therefore suffice to
show that the projection D(z,1/4) — X(C) is injective if z € F' has Im(z) > 2. If this
is not true, there is a w € D(z,1/4) such that w # w' = (aw +b)/(cw + d) € D(z,1/4)

for some <Lcl g) € SLy(Z). Then Im(w’) = Im(w)/|cw + d|*> > 1 and Im(w) > 1 so we

have to have ¢ = 0. But then w’ — w is an integer, so w,w’ € D(z,1/4) forces w = w/,
contrary to hypothesis.
Let R, = k~'R. Then Ry, < 1/4 < /3/2 < yq since 2 is in F. We have

R3S (20) (4o ) 2* < (dmryo)2" / (=) Pdudy,

D(Z(],Rk)
12k
Yo 2 dxdy
< 790
- (yO -R )1%_2 / |f|OO(Z) 192
D(z0,Rk)
Yo

2
Wl|f“/\412k(f‘),o@,herm’

where the second inequality follows from y > yo — R > 0 for y = Im(z) and z €
D(zy, Ry;). We therefore obtain for sufficiently large k that

||f‘|3\/112k(1"),oo,sup - |f|§o(750) < C4k2y8||f||3\/112k(1")7oo7herm7

for some absolute constant ¢4 > 0. Since yo < klog(3k), this yields

Hf”MlNc(F) 00,s5up = 04 k2 IOg(gk)HfHMlzk (T),00,herm-

1
We thus obtain the claimed inequality with ¢ = max(1,¢Z). O
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Lemma 3.4.6. There exists a real number ¢ such that for any elements f1, fo of S12x, (T, R)
and S12k, (T', R) respectively, we have

£ F2ll Mya 1y (D00 herm < €7FIFEEDF o 0 oo smerm | 2 Mysey (0).00, herms
where (k) = 21log(k) + loglog(3k) + ¢

Proof. Let c¢1,cy be as in Lemma 3.4.5. We have

||f1f2||M12(k1+k2)(F),oo,herm
< 6;1||f1f2||M12(k1+k2)(F),oo,sup
< C;1||f1||M12k1(F) o0 Gu;DHfQHMlzkz(F),oo sup

< ¢ '3k 1og(3k ) k3 10g(3k2) || f1ll Myan, (1),00,herm |2 Mya, (1) 00, herm:

and the result follows with ¢ =log(cz) — §log(c1). O
3.5. Modified logarithmic heights

To apply Chen’s work in [6] on the distribution of successive maxima, we will need
some estimates for the behavior of a modification of the logarithmic height of cusp forms.

The vector space V' = Sj2;(T', Q) has a filtration defined by letting V, for a € R
be the Q-span of all 0 # f € Sy91(T', Q) for which A(f) > a. Lemma 3.3.1 shows that
Vo = {0} if a is sufficiently large. Following Chen in [6, p. 15, eq. (2)], we define a
modified logarithmic height by

Mf)=sup{aeR: feV,} (3.19)
The proof of [6, Prop. 1.2.3] now shows A(f) has the following properties:

Lemma 3.5.1. Suppose f and g # —f are non-zero elements of S121(I", Q).

(rf) = M({) forr € @ — {0}. )
(f +9) > min(A(£). Alg), with cquality if A(f) # Mg)

> >/l

Lemma 3.5.2. Let ¢ be as in Lemma 3.4.6. For any elements f1, fa of Sia2x, (T, Q) and
S12k, (T, Q) respectively, we have

A(frf2) = M) + Mfz) = (ky) — (ks). (3.20)

Proof. Let us write f; = >, gi,;, where A(g; ;) > A(f:). For any ji,j2 and any non-
archimedean place v, we have
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191,71 92,2 | Myagi, 0y )0 = 190,51 | s, (0),01192,52 | My aiey (1),
and by Lemma 3.4.6, we also have
191,71 92,2 | My 2k, 419 (T) 00, herm
S e¢(k1)+1ll(k2) ||gl,j1 HM12k1 (T"),00,herm ||92,j2 ||M12k2 (T"),00,herm-
This implies
)\(gl1jlg27j2) > A(glvjl) + )‘(927j2) - 1/)(/‘?1) - ¢(k2)
> M) +Af2) = (k) — (k)

hence the result, since fifo = Zjl,jz 91,j192,5.- O
3.6. Cusp forms vanishing to increasing orders at infinity

We study in this section the successive maxima of heights associated to cusp forms
f € S12x(T, Z) for which orde(f) is at least a certain positive constant times k.

Lemma 3.6.1. Suppose k,L € Z, k > 0 and L > 1. Define B(0,L) = Z, and if k > 1
let B(12k, L) be the Z-lattice of all f € S125(T',Z) for which ords(f) > k/L. Then
B(12k, L) is the free Z-module with basis {A*j*=¢ . k/L < ¢ < k}. One has

k(1 —1/L) < rankz (B(12k, L)) = k+ 1 — [k/L] < k(1 —1/L) + 1 (3.21)

Proof. This is clear from the fact that if & > 1, A*j** lies in Sy (T, Z) and its first
non-zero term in its Fourier expansion at oo is ¢. O

Lemma 3.6.2. Fiz an integer L > 1. Let {/\iylgk@}fill*[k/m be the naive successive
mazxima associated in Definition 2.1.1(ii) to B(12k, L) with respect to the L*> Hermitian
norm defined by the Petersson norm. The sequence of probability measures

1 k+1—[k/L]

e T . Py ) ; O e A

(3.22)

converges weakly as k — oo to a probability measure v 1, having compact support.

Proof. For integers r in the range 0 < r < L, let Br(r) = @©;2,B(12(¢L + r), L). If
r = 0, then 12(¢L + r)/L = 12q¢ is an integer for all ¢ > 0 and Bp(0) is a graded
algebra. It follows from Lemma 3.6.1 that the subgroup B(12¢L,L) - B(12¢'L, L) of
B(12(q + ¢')L, L) generated by all products of elements of B(12¢L, L) and B(12¢'L, L)
is equal to B(12(q¢ 4+ ¢’)L, L). The work in §3.5 now shows that Br(0) is integral and
1-quasifiltered in the sense of [6, Def. 3.2.1] with respect to the modified logarithmic
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heights A on the summands of By, (0), where ¢ is the function from Lemma 3.5.2. We
now observe that A; 12,7 is the it" successive maxima associated to the modified height
A, since Ai12k,1 is the largest real number a such that the vector space spanned by all
f € B(12k, L) with A(f) > a has dimension at least i. Lemma 3.4.2 shows that there is
an upper bound independent of ¢ on Anaq(B(12¢L, L))/(12¢L) when a0 (B(12¢L, L))
is the maximal value of A on B(12¢L, L). One can now apply [6, Thm. 3.4.3] to conclude
that

Voo, = qlirglo V12qL,L (3.23)

exists and has compact support when vygy, 1, is defined as in (3.22).

Suppose now that 0 < r < L. When k = ¢L+r and 0 < g € Z, B(12k, L) has Z-basis
b(12k, L) = {AFj*=* . k/L < ¢ < k}. Here k/L = (¢L+r)/L = q+r/Land 0 < r/L < 1,
so k/L < ¢ <kisthe same as ¢+ 1 < ¢ < k = gL + r. We have

(AL—er—r—l) . (Akjk—é) _ AL(q+1)jL(q+1)—é—1 (324)
since k = qL + r, where 0 # AF~7j27""1 € Si5p,_,y(I, Z). Taking the description of
bases for B(12k, L) and B(12(q + 1)L, L) in Lemma 3.6.1 into account, we see from

(3.24) that multiplication by (AZ~"jL="=1) defines an injective homomorphism from
B(12k,L) to B(12(¢ + 1)L, L). The dimension of the cokernel of this homomorphism is

(g+1)L+1—(g+1)—(k+1—(¢g+1)=L-r
which is bounded independently of ¢q. From Lemma 3.5.2, we have

A(f - APTTET S X(F) 4+ MAFTT T + e log (k)
> M(f) + ez log(k) (3.25)

for all 0 # f € B(12k, L) where the constants ¢; and ¢y depend only on L. It follows
that for any bounded increasing continuous function f : R — R, one has

Via(gitr),L(f) < via@gnyn,n(f) +o(1)

where 0(1) — 0 as ¢ — oco. Hence

lim sup v12(q4r),L (f) < Voo, (f)-
q—r o0

From (3.24) we also have

(Akjk—é—l) — AquLq—é . (Arjr—l) (326)
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In a similar way, this shows that multiplication by A"j"~! € Si5,.(I',Z) defines an
injection from B(12Lq, L) to B(12k, L). The dimension of the cokernel of this injection
is r — 1, which is bounded independently of ¢q. By arguments similar to the one above,
we obtain from (3.26) that

liqrgg.}f Vlg(qL+,-),L(f) > Voo,L(f)'

This completes the proof of Lemma 3.6.2. 0O
3.7. Proof of parts (i) and (ii) of Theorem 3.2.2

In order to prove the weak convergence of the vy, stated in part (i) of the Proposition,
we will use the limit measures (Voo,r)r introduced in Lemma 3.6.2. The Lipschitz norm
of a bounded Lipschitz function h : R — R is defined to be

h(z) —h
|h|Lip = sup |h(z)| + sup M
¢ ety [T =Y

Lemma 3.7.1. For every pair of positive real constants € and M there is a constant
Lo = Lo(e, M) for which the following is true. Let h : R — R be a bounded Lipschitz
function with Lipschitz norm |h|pi, < M. Suppose L > Lo(e,M). Then there exists
ko = ko(L,e, h) such that for any k > kg, we have

|12k (h) — viok,n(h)| < €.

Proof. Let k > L > 2 be integers, and let ¥’ = k + 1 — [k/L] be the rank of B(12k, L).
We denote by (Ajr)i<j<k and (\jk,1)1<j<k the successive maxima of Si2x(I', Z) and
B(12k, L) respectively. Let us write

vi2k(h) — vi2k,0.(h) = Sy + Sz + S5 + S, (3.27)

where we have set
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For 57, we have the simple estimate

\Sﬂs% Y, M<

k'<j<k

M
=

A similar estimate holds for Sy:

k—Fk M
J<K!

In order to estimate S3, we first notice that an argument similar to the proof of
Lemma 3.4.4 yields

AJ% =0 <| log(1 — %)l + 1) = O(log(3L)).

Thus there exists an absolute constant ¢; such that

)\'kL Sclk‘log 3L). 3.28
7.k,
This implies
M k—K c1 M log(3L)
|S5] < T Z v INjk,n| < A= e 7 .
J<k’

It remains to estimate S;. The inclusion homomorphism of B(12k, L) into Sy2x(T, Z)
preserves slopes, hence \j 1, < Aj; for any j < k’. We therefore have

M
|S2] < 73 > Nk =Nk

J<K
M B\ 2
=72 Z Njk | =M <E) viak, 1 (id)
J<K’
M . k ¢1 M log(3L)
< 72 ];/ Nk | = Mg, (id) + (E + I)T. (3.29)

Consider the injective homomorphism Si9x (I, Z) — B(12(k + s), L) induced by mul-

tiplication by A?®, where s = Luj > 1. This is an isomorphism because the rank of

L—1
BO2(k + s), L) is
E'=k+s+1—[(k+s)/L] =k =rankz(S12x (I, Z)) (3.30)

The set of successive maxima of B(12(k + s), L) is (Aj k+s,1)1<j<k- Lemma 3.4.6 yields
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A(A%g) = Ag) + sA(A) — (k) — sp(1)

for any non zero element g of Sy9; (T, Z). Correspondingly, we have
Njkts,L = Nk + SAA) —ap(k) — s1p(1),

for any 7 < k. We thus have

R STUPRE SR VIO R TURLE 1)

k2
J<k! J<K

From (3.28) we have

1 k— K log(3L)
72 Z jktsr] < = 5—ci(k + 5)log(3L) < a1
K <j<k

for some absolute constant ¢y, since s = =1 | and k' = k + 1 — [k/L]. Applying this
to (3.31) gives

1 1 log(3L) k' (¢(k 1) — sA(A
S Ak S gy Y Mk + o B R+ AR)

J<K' i<k
Here

K (k) + sy(1) — sA(A))
k2

c
<&
L

for an absolute constant ¢z and k > L log(3L). Combining this with (3.29) gives

|Sa| < M (vi2(kts),0(id) — vigk,£(id)) + %7
for some absolute constant cy4.

The sequence (v12g,1(id)); is convergent by Lemma 3.6.2. Using this together with
our estimates, we see that given e, M > 0 we can find an Ly = Lo(e, M) such that for any
L > Lo(e, M) there is a ko(L, e, M) such that [S;| < § fori =1,2,3,4if k > ko(L,e, M).
Now (3.27) completes the proof. O

Corollary 3.7.2. Let h be a bounded Lipschitz function from R to R. Then the sequences
(v12k(h))k and (Voo,r.(h)) L are convergent and have the same limit.

Proof. Let € > 0 be a positive real number. Let Lo = Lo(e, h) be as in Lemma 3.7.1. For
any L > Lo, we have

limsup v12x(h) < Voo, (h) + €,

k—o0
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and
liminf v195(h) > veo,r.(h) — €.
k—o0

In particular, we have

lim sup vy9x (k) < liminf vy9x(h) + 2e.
k—o0 k—o0

Since ¢ is arbitrary small, this yields the convergence of the sequence k — vior(h).

Moreover, for any L > Ly we have

[Voo,r(R) — lim vqax(h)| <,
k—o0
hence the convergence of the sequence (Voo (h))r to the limit limy_oo v12x(h). O

There exists a finite Borel measure v on R such that for any continuous function h
with compact support,

l/(h) = lim Vlgk(h) = lim lim Vlgk’L(h). (332)
k—o0 L—00 k—o0

A limit of a weakly convergent sequence of probability measures on R might not be a

probability measure. However, it is true in our case that the weak limit v is a probability

measure. Indeed, we have the following result, which shows that the sets of measures

{v12i }x and {p12k, 1 }x>1 are uniformly tight.

Lemma 3.7.3. The equalities (3.32) hold for every bounded continuous function h. In
particular, v is a probability measure, and the sequences of probability measures {Voo .} 1.
and {via i converge weakly to v.

Proof. Tt is sufficient to prove that (3.32) holds for any bounded Lipschitz function on
R. Let h : R — R be such a function. Let a,b > 0 be real numbers such that the supports
of the measures (v12x)r and (v12x,1) are all contained in the interval |—oo, b], and let
X : R = [0,1] be a continuous function with compact support, whose restriction to the
interval [—a, b] is equal to 1. Lemma 3.4.4 implies that we have

vi2k,1(]—00, —a]) < ce” 801

for all kK > L > 1, where ¢ is an absolute constant. The same estimate holds as well for
the measure v. In particular, we have

12k, () = v12k,(xh)| = 126, (1 = X)R)| < c|[h]|sce™ 5.

Letting k, and then L, tend to infinity, we obtain by Corollary 3.7.2 that
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_a
6.

| lim 125, (h) — v(xh)| < cf|h]|oce
k—o0
Since we also have
lv(h) — v(xh)| < cl|hlloce 8,
this yields
lv(h) — lim viox(R)| < 2¢||hl|sce™ 5.
k— o0

Letting a tend to infinity, we obtain that the common limit of the sequences (v121(h))k
and (Veo,r.(h))r is v(h), hence the result. O

Part (i) of Theorem 3.2.2 is shown by Corollary 3.7.2. Part (ii) of this Theorem
concerns the support of v now follows directly from this and Theorem 3.4.1.

3.8. Proof of part (i) of Theorem 3.2.2

We suppose 0 # f € S12x(T', Z) and that f does not arise from a congruence between
eigenforms, in the sense of Definition 3.2.1. We will develop an upper bound on A(f).
We have A(f) = A(f/m) when m is the g.c.d. in Z of the Fourier coefficients of f. In
view of Definition 3.2.1 we can replace f by f/m in order to be able to assume that

f= Z ci fi (3.33)

in which the ¢; are non-zero algebraic algebraic integers and the f; are distinct normalized
Hecke eigenforms in Sy25 (T, C). The Fourier coefficients of each f; are algebraic integers.
Since f is fixed by Gal(Q/Q), the terms on the right side of (3.33) break into orbits under
Gal(Q/Q) in the following sense. If o € Gal(Q/Q) and f; is given, then o(f;) = f; and
¢; = o(c;) for a unique j.

Since the g.c.d. of the Fourier coefficients of f is now 1, we have

2M(f) = —1log((f, ) (3.34)

where (f, f) is the Petersson norm. The Petersson inner product (f;, f;) is 0 if ¢ is not j
since then f; and f; have distinct Hecke eigenvalues and the Petersson inner product is
Hermitian with respect to Hecke operators. So

(f. f) = Z_ lcil*(fi, £:)- (3.35)

Since each 0 # ¢; is by assumption an algebraic integer, and we have shown that every
Galois conjugate of c; arises as c; for some j, we conclude there must be an ¢ for which
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lei] > 1. Thus (3.35) gives

(£, 1) = (fis i) (3.36)

Recall now that since f; is a normalized eigenform, f; = >~ | a,¢™ has a; = 1. So
N =1 in Lemma 3.3.1. Combining Lemma 3.3.1 with (3.34), (3.35) and (3.36) gives

2M(f) = —log({f. f)) < —log({fi, fi)) < —log(4me™ "7 (12k — 2)!) (3.37)

It follows that A(f)/k is bounded above by —clog(k) for some constant c. Since the
measure v in part (i) of Theorem 3.4.1 is a probability measure on the real line, it
follows that as k — oo the proportion of successive maxima arising from f of the above
kind among all the successive maxima associated to Syox(I', Z) must go to 0.

4. Chebyshev transforms
4.1. Overview

Let X be a projective variety of arbitrary dimension d over a number field K, and
let L be a metrized line bundle on X. We will assume that L is big, in the sense that
dimg HO(X, L®™) > ¢ m? for some ¢ > 0 and all m >> 0. In this section we will develop
a Chebyshev transform method for obtaining an upper bound on the height A(s) defined
n (2.1). We need lower bounds on the sup norms |sl|, as v varies. We obtain such lower
bounds by considering the behavior of s near a regular point x € X (K). Consider the
first non-vanishing coefficient a = a(s,x) in a suitably defined Taylor expansion of s at
2. This a lies in K. The product formula shows there is some place v where |al, is not
too close to 0. At this v we will obtain a lower bound for |s||, which leads to a useful
lower bound for A(s).

To illustrate the details involved in this method, let us first consider the case d = 1,
so that X is a curve. Choosing a local parameter ¢ for the local ring Ox , and a local
trivialization o, of the stalk L,, we find that s has a local expansion at x given by

se=( > ant") 0o,
n=ord(s)

where a, € K and agq,(s) 7 0. Here the a,, depend on the choice of o, but ord;(s)
does not.
The integer o = ord,(s) lies in the interval [0, deg(L)]. To bound

As) == — Z ky log ||s]|v
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x,0,t

from above, we define the local Chebyshev constant ¢}, () to be the supremum over

all non-zero sections s of L with ord,(s) = « of

|aordw s ‘
- IOg ||8||1) + lOg |a’0rdz(s)|v = 10g ﬁ (41)
This may be studied by v-adic analysis. We obtain an upper bound
A(s) <D koep (@) = ¢ (@) (4.2)

if s is a section of L vanishing to order a at x, since ), k,1og |aoed, (s)lv = 0 by the
product formula.

The function ¢§* : [0,deg(L)] — R defined by a — ¢}*(a) is a global Chebyshev
transform. Since we know that o lands in [0,deg(L)] for all s, we obtain finally a bound
of the form

AMs) < sup ().
0<a<deg(L)

We now generalize the above approach to regular varieties X of arbitrary dimension
d over K using Okounkov bodies. Following Witt-Nystrom [16] and Yuan [25], we take a

regular point € X (K), and t1,...,tq € Ox 4 a system of parameters of the regular local
ring Ox , which identifies the completion Oy , to the ring of power series K{[t1,. .., ¢4]]

in d variables over K. We also choose a local trivializgtion o € L, of L around =x.
S on gk
Any section s € HO(X,L®") hasa germ at z in L, = L%"®0y , Ox,z = Ox 0",
which can be uniquely written as a power series

- E ant® | o®,
aeNd

with a, € K. Here we have set t* = ¢7" ...t5". The order of vanishing of s at x is defined
by the formula

ord, +(s) = min{a € N¢ | aq # 0},

where the minimum is taken with respect to the lexicographic order on N¢: this does
not depend on o. Likewise, we define the leading coefficient of s at x as

leady »¢(s) = ord, (s) 7 0-

This depends in general on the choices of ¢t and o.
One strategy for upper bounding the height A(s) of a section s is to apply the product
formula
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1= H llead . ».¢(s)|F",

v

and to give an upper bound of |lead, ,¢(s)|, in terms of ||s| pen ,, which is a problem
of local nature; namely it only depends on the v-adic metric on L. This motivates the
introduction of the local quantities

lead
FEota) =  sup Lol
SEH"(X,L), ]

ordg ¢ (s)=a

7

Lv

where o belongs to the finite set ord, ;(H°(X,L) \ {0}) and H°(X,L), = K, ®k
HO(X, L). Tt is shown in [25] that the quantity

]_ n
ci’f;’t(a) = lim flogFm’”® ), (4.3)

n—oo N L®™ v

where (), is a sequence such that a,, € ord, (H°(X,L®")\ {0}), and such that La,
converges to «, is well-defined for any « in the interior of the closure A, ;(L) of the set

U Sorduo(HO(X,157)\ {0)).

n>1

The set A, ;(L) is a convex body in R¢: this is the Okounkov body of L, which depends
on the choice of t = ({1, ..., tq). For example, if X is a curve then A, ;(L) is the interval
[0,deg(L)]. Also, if (X, L) = (P&, O(1)), then A, 4(L) is a d-dimensional simplex, as can
be seen be reducing to the case in which z is the origin of A% and ¢ is the vector of
standard coordinate functions of A% .

The concave function

czit fa € Am,;(L) — cz’f;’t(a) ER

is called the local Chebyshev transform of L at x. The domain Am;(L) of ¢z, , does not

depend on the metric on L, but ¢§'%" itself does.

Example 4.1.1. Consider the particular case (X, L) = (Pg,O(1)), with the line bundle
metric

|s(z0, 1)l

max(|x0|v, 7’171|:171|1))’

[s([zo s 1])|Lw =

for some r, € |K}|,. The maximum modulus principle if v is archimedean, and a direct
computation otherwise, shows that

[sllenn = sup |s(L, 2)lo.

|2]o=Ts
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Let us consider the regular point « = [1 : 0] with a local parameter ¢ = f(—(l), and a local

trivialization o = Xy. We have

®n |$(1 O)‘U
Fro Ha) = sup T
peme 5€Qu[Xo,X1lna IXTsll Lm0
with
HXfLSHL@",v = Sup |Za5(1vz)|’v = Tg‘HS”L@"*O‘,vv
Zlv="Tv
®
so that Fzgg)""’:’t(a) equals r; . In particular, we have

cgz’f;’t(a) = —alogr,
for a € [0,1] = A, 4 (L).

We now define the global Chebyshev transform as the sum
C%t — Z kvc?’(’:,t,
v

which still depends on ¢, but not on the choice of the local trivialization ¢ any more.
While this global Chebyshev transform breaks down into a sum of local components, it
allows to control global invariants, such as the heights of nonzero sections:

Proposition 4.1.2. The height of a nonzero global section s of L™ satisfies

As)<n sup & (B).
BEAL(L)

Proof. If a section s € H(X,L®") \ {0} vanishes at order « at x, we claim that

®n ot 1

lleady ot (8)]y < ngn7,u’t(a)||s||L®n7v < "Ly (na)||s||L®n’v. (4.4)

The first inequality is clear, while the second one follows from the convergence of the limit
n

in (4.3) on considering powers of the sections of L®" which go into defining F}', a).

Raising the inequalities in (4.4) to the power k,, and taking the product over all places

v yields

kv _ncPt(La)—A(s)
L®",’U =€ L " b

1 =[] lleady o.e(s)[E < e G T] Ils|

it . c,t
so that A(s) < nep'(La) < nsupgn oy cr (B). O
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Likewise, a theorem of Yuan [25] ensures that under the hypotheses of Theorem 2.1.3,
the mean value of c”i’t computes the expectation of the limit distribution v appearing in
Theorem 2.1.3:

m / ¢ (@)da = / wdv.

Aqg (L) R

In particular, if ci’t is a constant function, then by the preceding proposition, the left
hand side is an upper bound for the support of v, so that the expectation of v is an
upper bound for its support. This proves:

Corollary 4.1.0.1. If the global Chebyshev transform csz’t is a constant function, then the
limit distribution v is a Dirac measure supported at one point.

Intuitively, the limit distribution v is expected to be completely described by caLC’t
when the zeroes of sections of large height concentrate at the point x. Since this is not
the case in general (see for instance the introductory paragraph of Section 5), we should
obtain better results by considering

sup leads, 0.t (s)|v

s€H®(X,L), Isllz,0
ordg, t(s)=ai,...,ords, (s)=a,

)

where x1,...,x, are distinct rational regular points (with a choice of local parameters
at each of these points).

4.2. Computation of Chebyshev local transforms at archimedean places: the L? method

Here we assume for simplicity that X is a curve, i.e. d = 1, so that A, (L) = [0, D]
where D = deg(L), and we focus on a particular archimedean place v. We choose a
volume form dV on X (C,), so that H(X, L®"), is endowed with the hermitian norm

I e = [ Is@)lFon AV (z).
X(Cy)

One can show using Gromov’s lemma (see [25, Lemma 2.7] and [24, Prop. 2.13]) that
the Chebyshev local transform ci’t(a) can be computed using

n lead,, yon +(S)]o

P (o) = sup fead, pon 1($)l

L®™ v, herm sEH"(X, L), ||S||L®",v,herm
ordg ¢ (s)=a

@n
instead of F7:7, ‘(). Let us denote by [a] the linear form on H%(X, L®"(—ax)), which
takes a section s to the coefficient of ¢t in its Taylor series expansion around z, so that
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Fm,a®"’,t

L®"7v,herm(a) = sup |[0[]( )|'U

SCHO(X,LE (—az))y |IS|L& v herm

is the operator norm of [a] on the hermitian space H(X, L®*"(—ax)),. In particular, if
(8,a,7); is an orthonormal basis of H(X, L®"(—ax)),, then we have

z,0
FL®",U herm § : | S»T 047]

For a = 0, this equals the value of the n-th Bergman kernel at x, for which precise
asymptotics are known. The case o > 0 is much more elusive in general, but we will see
in the remaining of this section how to handle completely the case of the Fubini-Study
metric, and partlally the case of the capacity metric of a disc on the projective line, by
computing Ff& 0. }tlerm( ) with an explicit orthonormal basis.

4.3. The L? method in use: the Chebyshev local transform of the capacity metric of a
disc

Let us consider (X(C,),L) = (P1(C,),O(1)), with the line bundle metric

|s(z0, %1)[v

max(|ao|v, 7o [1]0)”

s([zo : z1])|r,0 =

at an archimedean place v, which is the capacity metric associated to a disc of radius
r, in the complex projective line, just as in Example 4.1.1. Contrary to the situation
considered in 4.1.1, we choose the point = [1 : r,] with a local parameter ¢t = )(1*)(77'01;)(07
and a local trivialization o = Xj. Instead of considering a volume form dV as above, we

rather use the distribution dV defined by

/ fav =1 /f (11 : 7oci®])] sin(0)[d0.

P1(Cy)

By approximating this distribution by volume forms, one can check that the correspond-
ing Fren y herm Still computes cy,,,. We now show that we have the formula

n—a«a

. 2
x,o —2a . —4« . + 2«
Fig ot (20)% =472 Z(Q]+2a+1)<‘] ; > .
j=0

Using Stirling’s formula, this will imply the following:

Proposition 4.3.1. With x,0,t as above, the local Chebyshev transform of the capacity
metric associated to a disc of radius r, on the complex projective line, as defined above,
with respect to a point on the boundary of the disc, is given by the formula
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1

1
cz’f;’t(a) = —alog(4r,) + 5(1 + a)log(1 + «) 2(1 —a)log(l — a) — alog(a).

for a € 10,1].

@2t

T
In order to compute 1*"].4@)27L,U7}lelrm

(2ar), let us consider the orthogonal decomposition
Co[Xo, X1lon—2a =V @& V™,

where V* is the space of polynomials s € C,[Xg, X1]2n_24 such that s(Xo, X;) =
+s(ry X1, 7r,Xp). Since any s in V~ satisfies s(1,r,) = 0, we get

Fx,a®2",t
L®27 y herm

s(1, 70w
2a) = sup .
( ) sevV+ H(Xl - TUXO)QQS‘IL‘@?",U,herm

However, the linear map
U:T =T, Y1) € Co[Yo,YVi]n-wo — T(r, XoX1,72 X2 + X}) € VT

is an isomorphism, with

iy
4n

e} Ty : % «
10X = o X0 2 WD) B i = 5 [ 171, 2cos(@)]?]sin(8)]e — 1]*ap
2
" 2 20
—2

by using the substitution y = 2cos(d). There is an explicit orthogonal basis of
C,[Y0, Y1]n—q for this scalar product, given by the Jacobi polynomials

6j n—a—j 1 ;
Jaca (Yo, Y1) = (2¥0 = Y1) —2s ¥ (20 + V) (2% - Yy
J:0¥q

for 0 < 7 < n — a. The explicit formulae

T+ 2
‘I’(Jaca,j)(l’ Tv) = Tgn_2a<_4)] (j +‘ a),
J
H(Xl - TUXO)QQ\II(JaCOéJ)||L®2",v,herm = T12;n4j+a(2j + 20+ 1)7%7

yield
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T < W (Jaca) (17l
Fron herm (200)7 =
2 TG = Kol (o 2oy o
n—o . 2
2
= 472yt Z(2j+2a+1)(‘7+j O‘) :
Jj=0

hence the result.

Example 4.3.2. Let us consider (X, L) = (]P’é, O(1)), with the line bundle metric

|s(z0, %1)[v
)
max(|zo[y, [41],)

s([zo : z1])[1,0 =

for non-archimedean v, and

s(z0, 21w
max(|zoly, 421 — 1],)’

s([zo : 21])|L,0 =

at the archimedean place. We pick the point = [1 : 0], with the parameter ¢t = i—;
Then Proposition 4.3.1 yields

1 1
ci’zt(a) = 5(1 + a)log(l + a) — 5(1 —a)log(l — a) — alog(a),
which attains its maximum log(1++/2) = 0,881 ... at a = % By Proposition 4.1.2 and

by using Example 4.1.1 for the archimedean places, we obtain that any nonzero global
section s of O(n) satisfies

1
—A(s) <log(1++2) <0,89.
n

On the other hand, the section

5= X32X, — X0)®(5X7 —4X, X0 + X2)3(29X ] — 44X Xo +2TX7 X2 - 8X1 X + X)),

of O(50), labeled as s50 in the introductory paragraph of Section 5, satisfies

1
—A(s) > 0,82.
“X(s) >0,

By taking logarithms, we obtain that for large n the smallest supremum norm on the disc
of radius i and center i, of a nonzero polynomial of degree n with integer coefficients is a
quantity between 0, 42" and 0, 44™. The change of variable (X}, X1) = (X2, X1(Xo—X1))
yields that the corresponding quantity for a disc of radius % and center 2 is between

2 2
0,64" and 0, 67"
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4.4. The L? method in use: the Chebyshev local transform of the Fubini-Study-metric

Let us consider the complex projective space (X (C,), L) = (P4(C,),O(1)), with the
Fubini-Study metric

s s = o

|zol2 + ... |zal?

at an archimedean place v. We pick a point # = [zg : -+ : 4] of P4(C,). We have a
natural identification

T,PYC,) = {T € C,[Xo,..., X4 | T(z0,...,24) = 0}.

Let Y7,...,Y41 bealinear basis of C, [ Xy, ..., X4]1, such that Y1, ..., Yy span T,P%4(C,)

under the identification above. The functions ¢; = Yd+1 for j = 1,...,d, then form a

system of local parameters at x, while 0 = Y4 is a local tr1v1a11zat10n of L around z.

d
We proceed as in section 4.3, using the Fubini-Study volume form dV = d, , where
wrs = 1001og(| Xo|* + -+ + [ Xal?).

Let Uy,...,Ugq+1 be the output of the Gram-Schmidt orthonormalization process ap-
plied to the basis Y7, ..., Yy41. In particular, Uy, ..., Ugs1 form an orthonormal basis of
Cy[Xo,--.,Xad]1, and each coefficient

—1
Vi = <YJ'|UJ' )
is strictly positive. Again, the functions u; = %, for j =1,...,d, form a system of
local parameters at x, and 7 = Ug41 is a local trivialization of L around z. One can

check the formulae

ordy +(s) = ordy 4 (s)
lead, yon () = 77917 lead, ren o (s) if @ = ord, (s) € N,

with g1 =1— 2?21 aj. In particular, we have,

®n
z,0 o, Qd+1 x, T
FL®",U herm( ) T Va+1 FL®" U, herm(a)'

Since the sections U7 ... US*Uy "% = u7", for a; +...aq < n, form an orthog-

onal basis of the hermitian space
CylXos -, Xaln = H(X, L®"),

we have by an elementary computation
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®n

T — g™ poapn—ar— - —aq) -l . Vﬁé n+d 2
L®n,v,herm(a) - || 1 -¥d d+1 ||L®",U7herm - d a ag )
SOy e e ey

where V = % is the volume of P4(C,) with respect to dV. Using Stirling’s formula,
we get the following result:

Proposition 4.4.1. With x,0,t, 3,7 as above, the Chebyshev local transform of the Fubini-
Study metric on the d-dimensional projective space is given by the formula

d+1

z,0 1
CL’,Jt(O‘) = Zai log(v;) + §hd(a)
j=1

on the Okounkov body

Amt(L):{OéGRi|O¢1+...Old§1},

s

where hq is the entropy functional, defined by

d+1 d
1
ha:a€ Ay (L) — jg_l a; log (a—]> where agry =1 — jEZI Q.

5. Measures associated to zeros of sections

5.1. An example

Recall from §2.1 that H°(X, L®")2* denotes the set of sections of L®™ of slope at least
A. In §5 and §6 we will study the zeros of the non-zero elements of U | HO(X, L®™)2*.
To motivate this we first discuss an example.

Let X = IP’(E2 and L = O(1). As in Example 4.3.2, we endow L with the non
archimedean metrics coming from the integral model (P}, O(1)), and the archimedean

metric given in affine coordinates by

|s(2)]
I5(2)l2.00 = max(1, 4z — 1)’
This is the capacity metric associated to the disc of center i and radius i. For the sake
of the computation, we rather use the L? metric on the boundary of this disc, rather
than the supremum norm: this does not affect the asymptotic slopes.

Let s, denote a degree n nonzero integer polynomial of smallest norm. A computation
performed with Magma yields a small list of explicit irreducible integer polynomials
f17 fg, f37 ceey starting with



330 T. Chinburg et al. / Journal of Number Theory 228 (2021) 294-341

fi==z,

fa=2z—-1,

fs =522 —4z+1,

fa =292 — 4423 4 272% — 82+ 1,

such that

ss0 = £/ f3 13 fa,

s100 = £f1° fa f3 fafs fe

sa00 = £ /177 157 3 f1 fs fe I,
sa00 = =17 [ £33 L2 18 S

The polynomials f5, fs, f7, fs have degree 6,8,8 and 2 respectively. Numerically, the
quantity %ord #,(sn) seems to converge to a limit (close to 0,63) as n grows. Similarly,
limy, 00 %ord 7, (sn) appears to exist for higher j. This suggests the existence of a limit
distribution of zeros associated to sections of maximal norm which is discrete.

However, replacing the disc of center i and radius i by the disc of center 0 and radius
1, the corresponding lattices become asymptotically semistable, and one doesn’t expect
such a discreteness result, but rather a uniform distribution of the zeros of small sections
along the boundary of the unit disk.

In §5.2 below we recall some work of Serre in [21] which is useful for quantifying the
intuition that the general case must interpolate between these two situations.

5.2. Measures

Let Z be a compact metrizable topological space. Define C(Z) to be the set of con-
tinuous real valued functions f on Z. A positive Radon measure on Z is an R-linear
R-valued function p on C(Z) such that p(f) > 0if f(z) > 0 for all x € Z. We will
sometimes write fZ f(z)p(zx) or fZ fu for p(f). The weak topology on the space of pos-
itive Radon measures is defined by saying lim, o0 ftn, = f if limy, o0 pin (f) = p(f) for
all f € C(Z). The mass of a measure 4 is the value u(1). The space M(Z) of positive
Radon measures of mass 1 is compact for the weak topology (cf. [21, §1.1]).

Suppose now that X is a smooth projective curve over a global field K. For each
place v of K of X we let C, be the completion of an algebraic closure K, of K,.
If v is archimedean, we let the topological space Z = Z, in the above discussion be
X (C,) = X(C) with the archimedean topology. If v is non-archimedean, we let Z = Z,
be the Berkovich space Xp.,i c, described in [2], which is compact and metrizable by
[5, §1]. There is a canonical inclusion of sets X(C,) C Xperk,c,. For all v we define
M, = M(Z,).
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Let v be an arbitrary place of K and suppose z € X(C,). If v is archimedean, let
0. € M, be the Dirac measure associated to x. If v is non-archimedean, we view x as a
point of Xperr,c, and we again let d, € M, be the associated Dirac measure. Suppose
D =}, ex(c,) M2t is a non-zero effective divisor of X(C,) that is stable under the
action of Aut(C,/K), so that m, = 0 for almost all . We define the Dirac measure of
D to be

1
(D) deg(D) zeXZ:((Cv)

If D is the zero divisor, we let (D) be the zero measure py on Z,.

Let T be a non-empty collection of such D which is closed under taking sums. Note
that T is countable. We define M, (T) to be the closure of {x(D) : D € T} in M, with
respect to the weak topology. The argument of [21, Prop. 1.2.2] shows that M, (T) is
convex and compact. Let I7 be the set of irreducible K-divisors which are components
of some element of T'. Suppose S is a finite subset of I7. If S # I, define M, (T, S) be
the closed convex envelope in M, of the measures {y(D) : D € Iy — S}. If S = Ip define
M, (T, IT) = {uo}- Define

M,(T, ) = Ng M,(T, S), (5.1)

where the intersection is over all finite subsets S of Ir. Then M, (T, o) is a compact,
convex subset of M, if I is infinite, and M, (T, 00) = {uo} if I is finite.
The following Theorem can be proved the same way as [21, Thm. 1.2.11].

Theorem 5.2.1. Suppose u € M,(T'). There is a unique set of non-negative real numbers
{co} U{cp : D € Ir} such that co + ZDEIT cp =1 and

= Z cp w(D)+v with v € ¢y My(T,00) (5.2)
Delr

where co = 0 if It is finite

In [21], the sum ), cp p(D) is called the atomic part pg of y, and v is called
the diffuse part of pu.

We can apply these notions to the zeros of sections of a metrized line bundle L on X
in the following way.

Definition 5.2.2. Suppose A € R U {—oc}. Let T(L,\) be the set of divisors zer(f) of
zeros associated to non-zero elements f of U, > HO(X, L®™)2A.

Fix a place v of K. It is a natural question whether all the elements of T(L, \)
must contain particular irreducible divisors with at least a certain multiplicity. We can
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approach this question by considering the set M, (T (L, \)) of measures which are limits
of Dirac measures associated to zer(f) as above.

Serre’s Theorem 5.2.1 shows that such limits will have atomic parts and diffuse parts.
The example discussed in §5.1 suggests the following question.

Question 5.2.3. Fix a place v of K. Suppose that for each n > 1, H°(X, L®")Z has non-
zero elements, and f,, € H°(X, L®™)Z* has maximal slope among all such elements. Since
M,(T(L, X)) is compact, there is an infinite subsequence of the measures {u(zer(f,)) tn>1
which has a limit 4 € M, (T (L, \)). For all such limits u, does the atomic part pq: of p
depend only on L? Which measures arise as the diffuse parts of such p?

In Theorems 6.1.3 and 6.1.4 we will show that some particular diffuse measures arise
as limit measures p of the sort in this question.

6. Adelic sets of capacity one
6.1. Statement of results

In this section we assume X is a smooth projective geometrically irreducible curve over
a number field K. Let K be an algebraic closure of K, and let X be a finite Gal(K/K)-
stable subset of X (K). By an adelic subset of X we will mean a product & =[], E,
over all the places v of K of subsets E, of X(K,) — X when K, is an algebraic closure
of K,. As noted in at the beginning of [18, §4.1], subsets of X (K,) are better suited for
global capacity theory than those of X(C,).

We will assume that the E, satisfy the standard hypotheses described in [18, Def.
5.1.3] relative to X. In particular, each E, is algebraically capacitifiable with respect
to X. We will assume each FE, has positive inner capacity vy c (E,) with respect to every

point ¢ € X(K,) — FE, in the sense of [18, p. 134-135, 196].

In [18, Def. 5.1.5], Rumely defined a capacity (€, X) of such an & relative to X.
For each ample effective divisor D = Zce v a¢ ¢ supported on X one has the sectional
capacity S, (&, D) of £ relative to D [7,15]. We will show in Lemma 6.3.1 below that
Rumely’s results in [20] imply that (&, X) is the infimum of SAY(<S'7D)1/deg(’:’)2 as D
ranges over all ample effective divisors supported on X provided v(€, X) > 1.

We will recall in the next section Rumely’s definition in [18] of the Green’s function
G(2,(; E,) € RU{oc} of pairs z,( € X(K,). Define G(z, D; E,) = docexac G(z,G Ey).
We will regard meromorphic sections of powers of L = Ox (D) as elements of the function
field K(X). Then 1 is an element of H%(X, L) with divisor D. Define a v-adic metric on

L via
11|,(2) = exp(—G(2,D; E,)) for z€ X(K,) (6.1)

We will call these the Green’s metrics on L associated to £.
We will show the following result.
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Theorem 6.1.1. Suppose that D is an ample effective divisor with support X such that
Y(E, X) = 5, (£, D)D)’ =1 (6.2)

Give L = Ox (D) the Green’s metrics associated to £, and suppose E,, is compact if v is
archimedean. Let {\,;}.=, be the set of successive mazima of H°(X, L®™). Let v be the

limiting distribution associated to the sets {\, ;/n};~, as n — oco. Then v is the Dirac
measure supported on 0.

Thus lattices associated to metrized line bundles associated to adelic sets of capacity
one are asymptotically semi-stable, in the sense that all of their successive maxima are
approximately equal.

Corollary 6.1.2. Suppose there is a non-constant morphism h : X — P! over K all of
whose poles are at one point ( € X (K). Write P! = A U{oo} and N = deg(h), and

let D = NC = h*(00). Suppose E, = {z € X(K,) : |h(2)], < 1} for all v. Then the

hypotheses of Theorem 6.1.1 hold, so that v is the Dirac measure supported at 0.

Proof. The equality (6.2) in this case is a consequence of Rumely’s pullback formula [18,
Thm. 5.1.14] together with the computation of capacities of adelic disks in P! given in
[18,§5.2]. O

We will discuss zeros of successive maxima in the case described in Corollary 6.1.2.
Identify the morphism h : X — P! of this Corollary with an element of the function
field K (X). Let z be the affine coordinate for P! which has image h under the induced
map K(P!) = K(z) — K(X) of function fields.

Theorem 6.1.3. Let v be an archimedean place of K. Let g be the uniform measure on
the boundary of the unit disk B, = {z € P1(K,) = P}(C) : |z|, = 1}. Then xh~*(uo)
is the equilibrium measure p(E,, D) of E, = E, = h™1(B,) in the sense of [18, p. 214-
215] with respect to the polar divisor D = N of h. The measure u(E,, D) is an element
of NacoMy(T(L, N), 00) where M,(T(L,\),0) is the set of diffuse probability measures
associated by (5.1) and Theorem 5.2.1 to the set T(L, \) of divisors of zeros of non-zero
sections of Up>1HO(X, L®™)2A,

We now state a version of this result for a non-archimedean place v of K. Define E,,
to be the closure of E, = {z € X(K,) : |h(2)], <1} in Xpeprc,- Let h: X — P, be
the minimal regular model of the morphism h : X — P} (see [9]). Let o0 be the section
of P}, — Spec(Ok) defined by the point at infinity. Then h*(35) = N( + J for some
vertical divisor J when ( is the closure in X of the point ¢ € X (K). Let {Y;}{_, be the
set of reduced irreducible components of the special fiber X, of X, and let m; be the
multiplicity of Y; in A),. There is a unique point § € Xpge,i,c, Whose reduction is the

generic point of Y;. Let J; be the delta measure supported on & on Xpe,i.c,, and let

v
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(h*(39),Y;) be the intersection number of h*(30) and Y;. Writing D = N(, we have a
measure

4
p(Fo D) = 5 (0 (), ) (6.3)

on XBerk,Cv .

Theorem 6.1.4. Suppose v is a non-archimedean place of K. The measure u(E,, D) in
(6.3) is a probability measure lying in Nx<oM,(T(L,)\),o0) where M,(T(L,)\),o0) is
the set of diffuse probability measures associated by (5.1) and Theorem 5.2.1 to the set
T(L,\) of divisors of zeros of non-zero sections of Up>1 HO(X, L®™)2*.

Thus under the hypotheses of Theorems 6.1.3 and 6.1.4, to achieve sections that
demonstrate semi-stability, one can use sections whose zeros approach the measures
w(E,, D) while avoiding any prescribed finite set of points. The measure in Theorem 6.1.4
was defined by Chambert-Loir in [5], and we will use his results in the proof.

6.2. Green’s functions in Rumely’s capacity theory

Following [18], let ¢, be the order of the residue field of a finite place v of K. If v
is a real place, let q, = e, while if v is complex let ¢, = e?. Define a v-adic log by
log, (r) = log(r)/log(g,) for 0 < r € R. We let || ||, be the standard absolute value | |,
if v is finite, and we let || |, be the Euclidean absolute value if v is archimedean. The
product formula then becomes

> log, [l - log(gw) = 0
v

for o € K — {0}.

Suppose now that ¢ € X(K,) — E,. In [18, §3 - §4] Rumely defines a real valued
canonical distance function [z, w]¢ of pairs of points z,w € X (K,)—{¢}. He then defines
a Green's function G(z,(; E,) in the following way.

Suppose first that F, is compact. Rumely shows that there is a unique positive Borel

measure (i, = ty(FEy, () supported on E, that minimizes the energy integral

V) == [ logleule (e (w) (6.4
E,xFE,
One then has a conductor potential

up(z,) = - / log, [z, wle (). (6.5)

E,
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This function vanishes at almost all z € E,. One lets

Ve(Ey) —up(z,¢) ifz ¢ E,U{C}
G(z,( Ey) =14 o0 if z=¢ (6.6)
0 if z€ E,

Suppose now that v is a finite place. A PL, domain (see [18, Def. 4.2.6]) is a subset
of the form

Us ={z € X(K,) : [f(2)ly <1} (6.7)

for a non-constant function f(z) € K,(X) having poles only at ¢. Define

ety g [f(@)le i 2 ¢ Uy U{C)
G(z,¢Uy) = ¢ o0 if z=¢ (6.8)
0 if z € U,

Suppose now that v is finite and that E, is an arbitrary algebraically capacitifiable
subset of X (K,) — {¢} in the sense of [18]. In [18, §3 - §4], Rumely shows that there
exists an infinite increasing sequence {E;, ;}¢; of compact subsets of E, and an infinite
decreasing sequence {U, ; };‘;1 of PL¢ domains containing £, with the property that

lim v¢ (B, ;) = v¢(Ey) = lim 5¢(Usy,5) (6.9)

i—00 j—oo

when 7¢(E,) is the local capacity of E, with respect to ¢. It is shown in [18, Thm. 4.4.4]
that the fact that F, is algebraically capacitable implies

lim G(z,(; E, ;) = lim G(z,( Uy ) (6.10)
j—o0

1—00

except for a set A of z of inner capacity zero contained in F,, and the left hand limit
in (6.10) is 0 for all z € E,. By [18, Prop. 4.4.1], G(2,(; E}, ;) is non-increasing with 4,
G(z,(; Uy j) is non-decreasing with j, G(2,( E,, ;) > G(z,(;U, ;) for all i and j. The
convergence in (6.10) is uniform over z in compact subsets of X (K,) — {¢} — A.

We now define

Suppose now that D = } . n¢( an effective divisor of degree deg(D) = > - n¢ > 0.
Let

G(z,D; E,) ch (6.12)
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and

1

Mo (E{;,iv D) = m ; n¢ Ho (E:;,ia C) (6'13)

6.3. Successive mazima for adelic sets of capacity one

The object of this section is to prove Theorem 6.1.1. We must first make a slight
extension of Lemma 4.9 of [8].

Lemma 6.3.1. Suppose v(E,X) > 1. Then v(E,X) is the infimum of S,Y(S,D’)l/deg(D/)2
as D’ ranges over all ample effective divisors supported on X.

Proof. This result is shown in [8, Lemma 4.9] if v(€, X') > 1. We now suppose (&, X) =
1, so the Green’s matrix I'(€, X') has val(T'(€, X)) = 0. By [18, Prop. 5.1.8, Prop. 5.1.9],
(&€, X) is a symmetric real matrix with non-negative off diagonal entries that has all
non-positive eigenvalues and at least one eigenvalue equal to 0. Let I be the identity
matrix of the same size as I'(€, X). For all € > 0, the matrix I'c = I'(£,X) — el is
negative definite, symmetric and has non-negative off diagonal entries. We now apply
the arguments of [8, Lemma 4.9] to T'c and let ¢ — 0. Since the space of probability
vectors of a prescribed size is compact, this implies Lemma 6.3.1. O

Lemma 6.3.2. Let | |, be the Green’s metric (6.1) on L, and let | |™ be the resulting
metric on LE™. For f, € HY(X,L®") and z € X(K,) let |f,|2"(2) be the norm with
respect to | |2™ of the image of f, in the fiber of L™ at z. Regarding f, as an element
of the function field K,(X), let f,(z) € K, U {oo} be the value of f, at z. Then

HfUHL@’",v = SuPzEX(?U)lfv‘@m(z) equals Sup(fm Ev) = SUP;cE, |fv(2)|v (614)

Proof. In view of (6.1), the Green’s metric on f,, € H(X, L®") is specified by

log | fu[" (2) = log(|fu(2)]v) + log(|1[;"(2)) = log | fu(2)]s — nG(2, Di Ey).  (6.15)

Suppose first that v is archimedean. We have supposed in this case that E, is compact.
Then log |f,(2)|s — nG(z, D; E,) is a well defined harmonic function on the open set
X(K,)— E, = X(C) — E,, so it achieves its maximum on the boundary of X (K,) — E,.
This boundary lies in E, and G(z,D; E,) = 0 for z € E, by (6.6), so (6.14) holds.
Suppose now that v is non-archimedean. By [18, p. 282, Def. 4.4.12], G(z, D; E,)) is the
supremum of G(z, D;U,) over RL domains U, D F, defined by functions having poles in
X. The fact that (6.14) holds is now a consequence of the formula for G(z, D; U, ) when
U, is a RL-domain in [18, p. 277, eq. (2)] together with the maximum modulus principle
of [18, Thm. 1.4.2]. O

Lemma 6.3.3. There is no section f € H°(X, L®™) that has height \(f) > 0.
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Proof. Suppose f € HY(X,L®") is a section with A(f) = — > kylog||f|lren, > O.
Then f defines a morphism X — P! such that f~!(oco) = D’ is supported on X, since
f is a section of L®" = Ox(nD) and D is supported on X. Write r, = sup(f, E,).
We let & = [], E. be the adelic polydisc of the projective line P! such that each
E! c AY(K,) = PY(K) — {oo} is the disc around the origin with radius r, > 0 with
respect to | |,. By the definition of the r,, we have & C f~1(€’). This and Rumely’s
pullback formula [20, Prop. 4.1] give

Sy(E,D') < Sy (f7HE), D) = S,(E', 00) 18P, (6.16)

By Lemma 6.3.2, A(f) = —>_, kolog| fllren, = —> ,[Kv : Qp]log(r,) and this is
—log(S,(€’,00)) by [20, Prop. 3.1] and [18, p. 339]. Because A(f) > 0 we conclude from
(6.16) that S, (€, D") < 1. Hence S, (€, D')}/des(D)* < 1 This contradicts the hypothesis
n (6.2) because of Lemma 6.3.1. O

Lemma 6.3.4. Suppose € > 0. There is a finite place vo of K and a subset I, of E,,
with the following properties:

1. E,, is capacitifiable with respect to D, and |G(z, D; E;, ) — G(2, D; Ey, )| < € for all
z € X(Cy).

2. The set &' = K, x (1,4, Ev) has capacity Sy(€', D) < S,(€, D) = 1.

3. Let X(s) = — >, kv log||s||Len » be the height of a section s € H(X, L®™) associated
to the Green’s metrics for £, and let N'(s) is the corresponding height for £'. Then
[A(s) = N (s)|/n < kyye€.

4. There is a rational function f € K(X) whose divisor of poles is a positive integral
multiple of D with the following properties: we have sup(f,E,) < 1 for all finite
v # vo, sup(f, B, ) <1 and sup(f, E,) < 1 for all archimedean v.

Proof. Choose a place vy where FE,, is X-trivial in the sense of [18, Def. 5.1.1] By

[18, Prop. 4.4.13], the Green’s function G(z,(;E,,) for any z € X(K,,) and any

¢ € X(Ky) — By, is the infimum of G(z,(; E, ) over compact subsets Ej of E,,.
Furthermore, we have G(z,(; Ey,) < G(2,¢; E,,) for z € X(K,,) — E,, by the compu-
tations in [18, §5.2.B] since we took E,, to be X-trivial. So we can take E; to be a
compact subset of E,, such that the global Green’s matrix I'(X, £) defined in [18, The-
orem 5.1.4] differs from I'(X,E’) by a matrix with positive entries that are arbitrarily
close to 0. Then E; is capacitifiable by [18, Theorem 4.3.4], so (1) holds. The value
of the game defined by T'(X,£’) is larger than that defined by I'(X,£), so we get (2);
see [18, p. 327-328]. The log of the Green’s metric on L at vy associated with E; and
with E,, differs by a constant we can make arbitrarily close to 0, so we get (3) from
(6.1). To prove (4), we first note that hypothesis (6.2) in Theorem 6.1.1 implies the
following. When we write D = >
vector P = (ng/deg(D))zecxr must define an optimum strategy for the game associated

ngx, then n, > 0 for all x and the probability
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to I'(X, ). Furthermore S, (£, D) = 1 says that this optimum strategy achieves value
0. Since TI'(X,E&") — (X, &) has all positive entries, playing P in the game defined by
I'(X,E&’) leads to a positive value. This means that the construction of Rumely in [18,
§6, Corollary 6.2.7] produces a function with the properties in (4). O

Lemma 6.3.5. Let £ be as in Lemma 6.3.. There is a constant c independent of n such
HO(X, L®") has a basis of sections s for which X' (s) > c.

Proof. Let f in part (4) of Lemma 6.3.4 have divisor mD for some m > 0. By Riemann-
Roch, we can find a finite subset {h;};c; of elements of the function field K (X) with
the following properties. The poles of the h; are supported on X = supp(D), and the
height A(h;) of h; with respect to the Green’s metrics associated to &’ is finite. Further,
for all n, the collection of functions {h;f*}jcs0<; contains a basis for H(X, L®") =
H°(X,0x(nD)). Now Lemma 6.3.2 gives

N(hjf') == kylog(sup(h;f', E})) > = kylog(sup(h;, E,)) = X (h;)

because sup(f?, E/) <1 for all i by Lemma 6.3.4. Since there are finitely many h;, this
proves the Lemma. 0O

Remark 6.3.6. Lemma 6.3.5 could be deduced from a result of Zhang in [26, Thm. 4.2]
about arithmetic ampleness by verifying that the capacity theoretic metrics involved
satisfy the hypotheses of this result.

Proof of Theorem 6.1.1. Let ¢ be as in Lemma 6.3.5. Lemmas 6.3.5, 6.3.4 and 6.3.3 imply

that for each € > 0, there is a basis of sections s of H(X, L®") such that when A(s) is
the height function associated to the Green’s metrics coming from &, we have

0> A(s)/n>c¢/n—e.
Letting n — oo and then € — 0 shows that the limiting measure v associated to the
ratios \;/n as \; ranges over the successive maxima of H°(X, L®") is the Dirac measure
supported at 0. O
6.4. Measures associated to zeros of small sections
The object of this subsection is to prove Theorems 6.1.3 and 6.1.4. Accordingly we
suppose there is a morphism h : X — P! such that D = h*(0c0) = N( for some point

¢ € X(K), where N = deg(h). We also suppose

B, ={z e X(K,): |h(z)], <1} = h~Y(B,)
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for all v when
B,={2€K, |z, <1} C PYK,) - {o0}.

Here h*Opi(c0) = Ox(D) and for all n > 0 we have a global section ®,(z) in
HO (P!, Op1(p(n)oo)) when @,,(z) is the n'! cyclotomic polynomial. The set zer(®,,(z))

th roots of unity.

of zeros of ®,,(z) is just the set of all primitive n

We now fix a place v of K. Define B, = B, and E, = E,, if v is archimedean. If v is
non-archimedean, we let B, be the closure of B, in PL_, and we let E, be the closure
of EU in XBeTk,(CU .

Suppose first that v is archimedean. In Theorem 6.1.3 we let g be the uniform measure
on the boundary of the unit disk B, = {z € P}(K,) = P1(C) : |z|, = 1}, and we defined
w(E,, D) to be %hil(ug), where D = N( is the polar divisor of h. By [18, Prop. 4.1.25],
w(Ey, D) is the equilibrium measure of E, with respect to D.

Suppose now that v is non-archimedean. The probability measure u(E,, D) on
Xpgerk,c, described in Theorem 6.1.4 is well defined by [5, §2.3] and the paragraph
following [5, Theorem 3.1].

We claim that for all v,

w(Ey, D) = M Oyer(he (@m (2)) (6.17)

where h*(®am (2)) is a section of HY(X, h*Op1(p(2™) o0)) = H(X, Ox(p(2™)D)) and
Oser(h* (®4m (2)) 18 the Dirac measure associated to the zeros of this section.

Suppose first that v is archimedean and that h : X — P! is the identity map. The
zeros of h*(Pam(2)) are simply all the odd powers of a primitive root of unity of order
2™ Then (6.17) is clear from the fact that in this case, E, = B, is the unit disc about
the origin, so u(E,, D) is the uniform measure on the boundary of the unit disc. For
archimedean v, the case of all h : X — P! satisfying our hypotheses follows from this
and the fact that p(E,, D) = +h™ (1o).

Suppose now that v is non-archimedean. As in Theorem 6.1.4 let h : X — IP’}QK be
the minimal regular model of the finite morphism h : X — P}. We give the line bundle
Opy, p (30) = L on }P’éK the adelic metric associated to the Weil height. Then ]P’(IQK and
the divisors defined by the zeros of ®om (z) have height equal to 0. We give h*L the pull
back of the adelic metric of £. For any cycle Z on X we have from [3, Prop. 3.2.1] that

Hyper(Z) = Hp(h,Z) (6.18)

where H, here is the height before normalization that is defined in [3, §3.1.1]. If Z
is the cycle X = h*P! we have h,h*P! = N - P! by the projection formula so we
conclude Hy«£(X) = 0 Suppose now that Z is a cycle contained in the divisor of zeros of
h*(®gm(2)). Then h, Z is contained in the divisor of zeros of ®om (2), and so Hz(h,Z)) =
0. Thus Hyn+2(Z) = 0 by (6.18). By [3, §3.1.4], the same is now true if we replace Z by
by any cycle contained in the base change of Z by a morphism Spec(Og) — Spec(Ok)



340 T. Chinburg et al. / Journal of Number Theory 228 (2021) 294-341

associated to a finite extension K’ of K. We conclude that the Galois conjugates of any
zero of h*(Pam (2)) have adelic height 0 with respect to the above adelic metric on h* (L),
and this is also the height of & with respect to this metric. So these zeros as m — oo

form a generic sequence of points of X (K,) in the sense of [5, Thm. 3.1]. Now [5, Thm.
3.1] shows that the limit on the right hand side of (6.17) equals the Berkovich measure
described in just before [5, Example 3.2], and this equals the measure p(E,, D) defined
in Theorem 6.1.4. We have now shown (6.17) in all cases.

Consider the normalized height A(h*(®am(2))) of h*(Pam(z)) with respect to the
Green’s metrics on Ox(¢(2™)D) = h*Op1(p(2™)o0) associated to € = [], E,. We
have A(h*(®am(2))) — 0 as m — oo because ®om(z) = (22" — 1)/(z2" " — 1) has
normalized height tending toward 0 with respect to the Green’s metrics on Op1(00)
which are associated to B = [],, By. Since the zero sets of the ®om(z) are disjoint for
different m, for sufficiently large m the zeros of h*(®am(z)) will avoid any prescribed
finite subset of X (K,). Hence the limit measure u(E,, D) in (6.17) has mass 0 at every
point of X(K,), so Theorem 5.2.1 shows u(E,, D) lies in Ny<oM,(T(L,\), o). This
completes the proof of Theorems 6.1.3 and 6.1.4.
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