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Control of Learning in Anticoordination
Network Games

Ceyhun Eksin

Abstract—Many games have undesirable Nash equilibria.
In such games, a designer’s goal is to avoid “bad”
equilibria. In this article, we focus on which players to
control and how to control them so that the emerging
outcome of learning dynamics is desirable. In particular,
we consider best-response-type learning dynamics for an
anticoordination network game. The designer’s goal is to
achieve maximum anticoordination with the fewest humber
of players to control at each round. Our analysis shows
that despite the incentive to anticoordinate with neighbors,
selfish agents may fail to do so. Accordingly, we relate
optimal policies for obtaining maximum anticoordination to
the set of Nash equilibria. Noting the combinatorial problem
of optimally selecting players in benchmark networks, we
develop suboptimal solutions via solving a minimum
vertex-cover problem, and by greedily selecting players
based on their potential to induce cascading effects.
Numerical experiments on random networks show that
the cascade-based greedy algorithm can lower the control
effort significantly compared to random public advertising
policies. Moreover, its control effort is no more than twice
the optimal control effort in the worst case.

Index Terms—Game theory, networked control systems,
network security.

[. INTRODUCTION

EVELOPING methods that achieve globally optimal be-

havior while conforming with the computational and in-
formational limitations of the players is of interest, given the
ubiquity of noncooperative interactions that arise among actors
in networked systems, e.g., epidemics [1]; energy [2], [3]; secu-
rity [4]; communication [5]; or autonomous systems [6]. Game
theoretic learning algorithms are tractable decentralized mod-
els for noncooperative decision-making in networked systems.
These algorithms accounting for local information access [7] and
coupled action spaces [8] guarantee convergence to individually
rational behavior, i.e., a Nash equilibrium (NE) action, in certain
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classes of games, e.g., aggregative [9], [10]; potential [11]; and
convex [12]. However, a NE, while being optimal from the per-
spective of selfish individuals, can be inefficient and undesired at
the system level. A canonical example of this is the tragedy of the
commons which describes the phenomenon of selfish learning
behavior leading to the worst possible outcome for the entire
population [13]. Given the possibility of emergence of undesired
outcomes, there is a need to develop incentive mechanisms in
order to achieve system-wide desired outcomes.

The major challenge in attaining globally desired outcomes in
networked systems is that individuals are selfish, heterogeneous,
and their actions are coupled while the centralized incentive
resources are costly. In this article, we formulate this challenge as
the control of decentralized learning dynamics. That is, players
selfishly follow some game-theoretic learning dynamics while
a centralized authority aims to direct the emergent behavior
toward a desired outcome. The two main issues we address with
this formulation are i) the selection of which players to control,
and ii) what control policy to implement given the selected
players.

This challenge is addressed in the literature by characterizing
the inefficiency of Nash equilibria [14], by designing payoffs
prior to the start of the game to induce efficient Nash equilib-
ria [15], or by developing control mechanisms [16]-[23]. Our
approach falls into the last category of controlling players to
guide the learning dynamics toward desirable outcomes. In this
category, [16] and [17] show a public advertising scheme which
improves the efficiency of the emergent outcome for players
that act according to best-response dynamics and occasionally
listen to the advertised behavior in party affiliation or cut games.
An alternative model designs dynamic control incentives that
affect every players’ payoffs to which players best respond [19].
Uniform and targeted reward policies that induce coordination
among players acting according to best-response dynamics in
a network coordination game are developed in [20]. When the
goal is to minimize efficiency, [23] studies malicious attacks
that strategically perturb player learning dynamics in a network
coordination game. We depart from these studies in two ways:
1) our goal is to maximize anticoordination instead of social
welfare, and 2) we consider which players to control and how
to control them.

In particular, we focus on controlling a subset of the players
in an anticoordination network game. The aim is to promote
maximum anticoordination (MAC)—when all players differen-
tiate their actions from their neighbors. Players belong to one
of two possible types. We assume there is a preferred selfish
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action for each player in the absence of any neighboring players
in the network. That is, a player’s payoff decreases as more of
its neighbors, belonging to the opposite type, take the preferred
action (see Section II). Such payoff dependencies can be used
to model individual behavior during the spread of an epidemic
in a population where the individual types are healthy and
sick, the actions represent the level of precautionary measures
taken, and payoffs capture the risk of disease transmission to
healthy from sick individuals with the preferred action as, not
taking any measures [24]. Other examples include modeling
individual opinions in a politically polarized environment where
players would like to differentiate their actions from players
in opposing views [25], or modeling two competing species in
an environment [26]. In these games, two neighboring players
anticoordinate when at least one of the players do not take the
selfish action, e.g., a player in each link takes a precautionary
measure during an epidemic.

We formulate the minimum player control for anticoordina-
tion (MPCAC) problem as a mixed integer program where the
decision variables include which players to control, and how to
control them (see Section III). We assume players that are not
controlled, follow best-response-type learning dynamics [27]
(see Section III-A). We consider static and dynamic control
policies. In static MPCAC, a selected subset of players’ de-
cisions are fixed for the entire learning horizon. In dynamic
MPCAC, the control policy can temporally influence player
decisions. We find a feasible policy, based on a minimum vertex
covering of a reduced bipartite network, that upper bounds the
optimal dynamic MPCAC control policy (see Theor. 1) and is
computationally tractable—it can be solved by a linear program.
In general, this policy is suboptimal if there exist ways to cause
cascades of anticoordination among multihop neighbors via
the learning dynamics by only controlling a few players. We
present optimal policies on simple networks of arbitrary size
(see Section IV). Some of the optimal policies use cascades
to achieve anticoordination which exemplify the suboptimality
of the vertex cover-based control policy. For general networks,
we propose a greedy algorithm that finds a feasible solution by
sequentially selecting the player to control. We propose various
selection criteria including random selection, and selection with
respect to the potential of the player to induce cascades of anti-
coordination (see Section V). We note that the random selection
is akin to the public advertising model considered in [16], [17],
and [36]. Cascade potential-based selection outperforms other
selection criteria in numerical experiments (see Section VI).
We show the greedy algorithm with cascade potential-based
selection criterion is likely to match the optimal static control
effort in the majority of the cases.'

[I. ANTICOORDINATION NETWORK GAMES

A game consists of a population of players A':={1,...,n}. Each
player ¢ € A selects an action a; € A; in order to maximize

LOur prior work [28] considers the static MPCAC formulation for the same
anticoordination network game and individual learning rules. This article gen-
eralizes the static formulation to dynamic MPCAC providing analytical and
numerical results that compare the optimal static and dynamic policies with the
proposed greedy algorithms.

Fig. 1. Network game with binary types on line and star networks.

its utility function w;(-) : IljcnrA; — R. We assume that each
player is in one of two possible types s; € {0, 1}. Accordingly,
the population is divided into two disjoint sets Sy and S;. Only
the actions of neighbors that have the opposite type can affect a
player’s utility function. For instance, if a player ¢ belongs to Sy,
then its utility depends on actions of its neighbors in S;. We can
capture the payoff dependence of players using a bipartite graph
G = (So,S1,ER) (see Fig. 1). We define the neighborhood of
playerias N; :={j e N : (1,7) € Ep}.

Given the bipartite network Gp, the network game
with binary types can be represented by the tuple I' =
{N7 A, Gp, {U'L}ZGN}

The premise of an anticoordination game is that a player
benefits if its opponents yield. Similarly, in an anticoordination
network game, a player benefits if its neighbors in the opposing
type yield. We assume player ¢ can take actions between zero
and one, i.e., A; = [0, 1] for all i € N The utility function

wi(az,an,) =a; | 1= (co(l —8;) +c18;) Z a; (1)
JEN;

with ¢y > 0,and c¢; > 0 as constants, captures the preferences of
players to differentiate their actions from their neighbors. Here,
ay;, are the actions of player ¢’s neighbors. Action a; = 1 max-
imizes the utility if the term inside the parentheses is positive.
Otherwise, action a; = 0 maximizes the utility. The constant
1 inside the parentheses means that the preferred action is 1
regardless of a player’s type. The term that is subtracted from one
captures the decrease in the preference of the player to choose
action 1. That is, as player ¢’s neighbors increase their action,
the benefit of ¢ from choosing the preferred action decreases.
This decrease depends on the type of the player. If the player’s
typeis 0 (1),i.e., s; = 0 (= 1), then the decrease is proportional
to ¢g (Cl).

Below we provide examples for the anticoordination network
game I" with payoffs as in (1).

Example 1 (Disease spread on networks): Players want
to avoid disease transmission [24]. Each player is either healthy
(s; = 0) or sick (s; = 1). The network G is a contact network
with each edge representing a chance of disease transmission
between a healthy and a sick player. The action space captures
the social distancing level of a player with action a; = 0 repre-
senting self-isolation and action a; = 1 representing resuming
normal activity. Actions between 0 and 1 represent different
levels of disease prevention measures, €.g., covering cough, or
washing hands often. Resuming normal activity is the preferred
action. However, if both players at the two ends of an edge take
action 1, then there is a chance of disease transmission. Ac-
cordingly, the constant ¢ captures a healthy player’s sensitivity
for avoiding a risky interaction. The constant c¢; captures a sick
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player’s sensitivity to avoid disease transmission to one of its
healthy neighbors.

Example 2 (Political polarization): Players want to dif-
ferentiate their actions from those with opposing beliefs [25].
The network represents the social interactions among players in
opposing beliefs (Sp and Sp). Action 1 represents a monetary
choice or support for a cause that is individually desirable in the
absence of partisanship. A player’s tendency to take the preferred
action (action 1) reduces as it has more neighbors that take
action 1. That is, a player can opt-out from individual benefits
or societal impact to express partisan preferences. Constants cg
and c; capture the inclination of players in beliefs 0 and 1 to
differentiate themselves from those with opposing beliefs.

Example 3 (Hawk—Dove network game): Two species (Sy
and S7) face off in an ecological environment. At each interac-
tion players decide to be hawkish (a; = 1) or dovish (a; = 0). A
hawk move gets the highest reward if its neighboring competitors
play dove. If both interacting players play dove, they miss the
opportunity to overcome their competitor. If both interacting
players are hawkish, they challenge each other and face costs.
The constants cg and c; represent the costs species 0 and 1
incur, respectively, when they act hawkish against a hawkish
competitor.

Remark 1: The anticoordination network game with pay-
offs in (1) has similar incentives as network games known as
party affiliation or cut games [16], [29], [30]. In cut games,
a player incurs a cost of 1 for each neighbor it agrees with.
Besides the above examples, the motivation for studying cut
games stem from resource allocation in wireless communication
settings where players that transmit over the same channel incur
collisions [31]. Unlike the payoff in (1), players are indifferent
between two actions if they have no neighbors in cut games.
The payoft in (1) primes players to take action 1 unless enough
neighbors take action 1. Moreover, in (1), two neighboring
players do not incur a penalty if both players choose action 0,
while in cut games no such distinction is made between actions.
That is, players incur a cost if they agree regardless of the action.
Having a symmetric edge weight of 1 implies the cut games are
potential games [32], while the game in (1) is not necessarily a
potential game unless ¢y = ¢;. An important feature of potential
games is that best response dynamics converge to a pure NE,
which in our case is not guaranteed but can be shown to be also
true—see Remarks 3 and 4.

[ll. MAXIMUM ANTICOORDINATION PROBLEM

Selfish behavior may result in failure of anticoordination, i.e.,
both players that form a link take action 1. Our goal is to find
the fewest number of players to control so that anticoordination
happens at every link.

We define the edge between players (i,7) € Ep as inactive
if a; x a; =0, with a; € {0,1} and a; € {0,1}. The edge is
active if it is not inactive, i.e., a; x a; > 0. We obtain MAC
when all edges are inactive. We denote the set of action profiles
that induce MAC on a graph G as

M(G) :={a € A: (i,j) is inactive forall (¢,7) € E}. (2)

An equilibrium action profile a¢* of the game need not be in the
set M (G). Hence, to ensure MAG, it is necessary to externally
control players’ actions.

We consider the control of players that follow local learning
dynamics. A local learning algorithm ®(a") assumes agents
repeatedly take actions and observe others’ actions yielding a
sequence of action profiles (a°,a, ... ) starting from an initial
action profile a°. We will make use of the notation

®p(a®) :=a* 3)

to denote the resulting action profile after k iterations.

A control profile is an infinite sequence of subsets of players:
X ={x% X! ...} with X' C N forallt > 0. We let 2! = 1
if playeri € X*, and 2! = 0 otherwise. Furthermore, we denote
6t € {0, 1} as the forced action of player i at time ¢t > 0 if i €
X', For convention, and without loss of generality, we say 6! = 0
ifi ¢ X, We write A = (6°,81,...) for the sequence of forced
action profiles. With the control profile &X', the action profile
trajectory, with initial action profile 3° is written

ey’ X, A) = (a’,al,..) @)
where a® obey the following dynamics for t = 0, 1,. . .:

al = (1 —ab)yl + 26! foralli € N

at:(aﬁ,...,a;) 5)
Yt = @4 (a).

Note @ (a’) is the uncontrolled action at time ¢ + 1 by (3) given
the controlled action profile a' at time ¢. We will refer to the pair
(X, A) as a control policy.

After the following remark, we describe the players’ best-
response-type learning dynamics.

Remark 2: An underlying goal is to achieve efficiency mea-
sured by the social welfare, e.g., sum of players’ payoffs. The
premise for using efficiency as a metric is that an action profile
that maximizes social welfare would be desired by the society as
a whole. Note that the social welfare maximizing action profile
here need not eliminate all active links, e.g., cases with very
small ¢y and ¢; would have all players taking action 1 as the NE
and as the efficient action profile. In settings, e.g., epidemics, or
wireless communications, a social welfare maximizing action
profile that does not eliminate any active links may be undesired.
In such scenarios, counting the number of (active) links that fail
anticoordination may be a better measure of efficiency. Along
these lines, MAC represents the goal to eliminate all active
links.?

A. Progressive Decentralized Learning Dynamics

We assume players repeatedly play the anticoordination net-
work game {N, A,Gp, {u;}icn} taking actions af € A; at

2In [33], we show the effectiveness of inducing good behavior in an epidemics
scenario. Specifically, a disease propagates over a network changing the state of
nodes at each step. The policy-maker wants to eliminate as many active (risky)
links as possible by selecting a given number of players (budget) at each step.
The results show the effectiveness of the approach compared to isolation of
players based on standard centrality-based metrics.
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B) cp>1,¢>1 ©) 1> 2¢cy, 3c; > 1> 2¢,
Fig. 2. Algorithm 1’s convergence with respect to different payoff constants (A, B, C) on a 7 player network. Initially, all players are undecided

a? =c¢. (A) At step k = 1, players 1, 3, and 4 update their actions to 1 by (8) given 1 > ¢g, players 5 and 6 also update their action to 1 by (8)
given 1 > 2cq, and players 2 and 7 remain undecided. At step k = 2, player 2 observes previous actions of its neighbors—{a?, a} }—and updates
its action to 0 by (9) given 2¢o > 1. At step k = 3, player 7 observes player 2’s update—a% = 0—and updates its action to 1 by (8) given 1 > 2¢;.
All players are decided, and the action profile is the unique NE of the game. (B) All players remain undecided for all times because no player can
eliminate any action by (8). (C) At step k = 1, players 1, 3, 4, 5, and 6 update to action 1 similar to case (A). At step k = 2, neither player 2 nor
player 1 can eliminate any actions, and both remain undecided. A subset of players are decided while the others remain undecided.

each stage k. Given neighbor action profile ap;, the best-
response action set for player ¢ is defined as

BR;(ay;,) = argmax u;(a;, ay;) (6)
aie[O,l]
=I|1> (Co(l — Si) + clsi) Z a; @)

JEN;

where I(+) is the indicator function. The actions that maximize
the payoffin (1) are in the extremes: a; = 1 ora; = 0, as per (7).
During repeated play, we consider learning dynamics, detailed
in Algorithm 1, in which an agent selects an extreme action if it
is sure that it is the best action under any rational behavior of its
neighbors.

Specifically, each player starts by selecting an arbitrary action
ad € {0,¢,1}, wheree € (0, 1) represents an undecided player’s
action (see Algorithm 1). Player ¢ decides on action 1 (ai»C =1)
as per (8) ifitis the best-response action even when its undecided
neighbors ({j € N : aj x—1 = €}) end up taking action 1. That
is, the ceiling operator makes a worst case scenario assumption
and evaluates the utility from action 1. Player ¢ decides on action
0 (ai-C = 0) as per (9) if it is the best-response action even when
its undecided neighbors ({j € N; : a; z—1 = €}) end up taking
action 0. That is, the floor operator makes a best case scenario
assumption and evaluates the utility from action 1. Note that the
ceil and the floor operators do not alter the actions of neighboring
players whose previous action are 0 or 1. If (8) and (9) do not
hold at step k, player i remains undecided, i.e., a¥ = e. We note
that our results continue to hold when undecided actions are
heterogeneous and time-varying.

Algorithm 1: Local Learning Behavior for Agent <.
1: Input: a) € {0,¢,1};

2: fork=1,2,... do
3: Observe aj‘\’/; L.
4 Update action using
af =1 if {1} = BRy([a%"]) (8)
af =0 if {0} = BR;(|a¥™"])
af =¢, otherwise )
5: end for

Fig. 2 shows the iterations of Algorithm 1 on a 7 player net-
work for different payoff constants. We observe that depending
on the payoff constants (co, c;), the algorithm gives an action
profile where all players are decided (A), all remain undecided
(B), or some are decided and some remain undecided (C). In all
cases, the updates converge after at most £ = 3 steps. Indeed, the
local learning rule is progressive in the sense that once decided,
a player will never change its action or become undecided.
This property leads to convergence of the action profile in at
most n steps where we recall n is the number of players (see
Theorem 2 in Appendix B). The finite time convergence guar-
antee allows efficient evaluation of the objective in the MAC
problem presented in the following section.

Remark 3: In addition to being progressive, the local be-
havior rule eliminates all strictly dominated actions, i.e., actions
that can not be rational—see Definition 3. Thus it guarantees
convergence to the unique NE when the game is dominance
solvable [27][Ch. 2], e.g., see Fig. 2(A). When the game is not
dominance solvable, the local behavior rule converges with a
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subset of the players remaining undecided, e.g., see Fig. 2(B)
and (C). This implies that there are multiple (at least two) Nash
equilibria in this game. For instance, in Fig. 2(B) and (C), if
all undecided players in Sy play action 1 (0) and all undecided
playersin S; play action 0 (1), then we obtain a NE action profile.

Remark 4: Following the above remark’s intuition, we can
guarantee convergence to a NE profile for any payoff constant
values (cg and c1), and any network Gp by adding a random
decision-making step to the local learning rule as follows. In
this new step, we can let a randomly chosen undecided player
select an action {0, 1} after every n steps. Because an undecided
player takes an action, this would potentially bring a cascade of
new decisions via steps (8) and (9) in the following steps. This
additional step would guarantee convergence to a NE action
profile in at most n? steps by the same reasoning in Theorem 2.
Here, our focus is not to find an NE but to achieve MAC via
external control. Thus, we keep the local learning rule as in
Algorithm 1 due to the fact that it allows efficient evaluation of
the MPCAC objective.

B. Static and Dynamic MPCAC

In the first formulation of the MPCAC problem, we seek to
achieve MAC using as few fixed control players as possible. In
this static setting, a static control policy (Xs,0) is specified by
one control set X; C N, and one forced action profile §.

Definition 1 (Static MPCAC):

min  Js(Xs, ) 1= | Xy
X;CN
6;€{0,1},i€ X,
s.t.a” € M(Gg)
X=X, X, )
6t =0; € {0,1} forall i € X,, forallt >0

(a®,al,...) = ®(€, X, A), where & = €l,,.

(10)

The first constraint ensures MAC by time n where all players
must be decided (2). The second and third constraints define
the controlled players and their forced actions for all times,
respectively. The last constraint specifies the controlled learning
dynamics (4). A static control policy (X, ¢) is called feasible if
it satisfies the above constraints.

The optimization problem (10) runs for n time steps to allow
for convergence of Algorithm 1. The following result shows that
any static policy that satisfies the MAC (first) constraint above
at time n will continue to satisfy it for t > n.

Lemma 1: If II, = (X4, ) is a feasible static policy, then
a' = a™ for all t > n.

Proof: Define the game I” among players N\ X where
players connected to X’s have a set of decided neighbors accord-
ing to forced action profile 4. The game I must be dominance
solvable so that Algorithm 1 converges by time n. Thus, if we
continue to apply the forced actions §, no player would change
its decision after time n. |

In static MPCAC, we decide on players to control at the
beginning and set their actions for the entire horizon. The

objective only accounts for the number of players controlled but
not the number of times we control a player. In many situations,
it may be enough to control a player for a finite time to achieve
MAC. For instance, in case (B) in Fig 2, if we set the actions
of players 5-7 to 0 for one time step, the remaining players
(1-4) will take action 1 by (8). If we stop controlling the players
5-7 in the next time step, they will continue to take action O
by (9). Hence, the resultant action profile will achieve maximal
anticoordination. We formulate the dynamic MPCAC problem
that allows for dynamic selection of players to control.
Definition 2 (Dynamic MPCAC):

mand X, A) Z|Xt\+ hm — Z B4
t n+1
st.a’ € M(Gg) forallt >n
(a®,a',...) = ®(EX,A). (11)

The two terms in the penalty function in (11) equally weigh
the control effort per player before convergence and after con-
vergence to MAC. In dynamic MPCAC, we allow for the set
of controlled players to change at each step. Lemma 1 does not
necessarily apply in the dynamic setting. Hence, we explicitly
require that the MAC constraint is maintained for all times after n
in the first constraint. The last constraint specifies the controlled
learning dynamics (4).

As is evident from the formulations of static and dynamic
MPCAC and Lemma 1, an optimal static MPCAC policy is a
feasible solution to the dynamic MPCAC. Thus, the average
number of players controlled per time step in the optimal dy-
namic policy is less than the number of players in the optimal
static control policy, i.e., = >°i" | [ X! < |X7| where X is the
optimal set of players to control in a dynamic policy, and X is
the optimal static policy. Hence, we can always use the optimal
solution for static MPCAC to upper bound the penalty in the
dynamic MPCAC. In fact, if the static MPCAC solution reaches
an action profile a™ that is an equilibrium of the game, then the
optimal solution to dynamic MPCAC is upper bounded by | X'].
That is, we do not need to make any control efforts to remain in
M (Gp) because the action profile is also an equilibrium of the
game.

The first constraint of dynamic MPCAC requires that MAC
is satisfied for all £ > n, whether or not control actions are used
to maintain it. This together with the penalization of control
efforts for all times after n gives preference to control policy
solutions, when feasible, that leverage the controlled dynamics
® in (4) in order to achieve MAC. The following result supports
this intuition for dominance solvable games.

Lemma 2: If the game is dominance solvable, the optimal
policy for dynamic MPCAC (I1; = (X, A,)) is either X! = ()
forallt =1,2,... or X! # () for t > n.

The proof (given in the Appendix) relies on whether the
unique NE is in M (Gpg) or not, which then corresponds to an
empty control profile or a nonempty control profile for ¢ > n,
respectively. Note that I' always has a pure NE—see Remark 3.
However, a pure NE that achieves MAC may or may not exist. In
general, if the game I" has (pure) Nash equilibria in M (Gpg), we
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af =1 a3 =1 af=1 af=0 (p3, ..., pl)beanoptimal solution to (12). Define the controlled
@ @ B player set X™ and their actions A™ at time n based on the optimal
solution of the above problem as follows:
G (6 (@) X'={eN" z;=1}U{ie N": 2] =0,a} =€}
ag =0 ag=1 ap =1 ag=1 (13)
) ) ) and
Fig. 3. Assume ¢p = 0.4 and ¢; = 0.4. The game is dominance solv-
able and Algorithm 1 converges to the above action profile with the ; ; Nk
only active link between 3 and 6. That is, N = {1,2,3,6,7,8} and o = 0 foralli € {Z N Ti 1} (14)
&™ = {(3,6)}. The solution to (12) if we disregard the last constraint 1 forallie {i e N":x} =0,al* =€}

is either % = 1 or =, = 1. These solutions violate the last constraint for
players 4 or 5. If we fix p; = 0 for i € {4, 5}, then (12) is infeasible.

would expect control policies that induce convergence to such
Nash equilibria over policies that control players after time n in
order to avoid the second term cost of (11). We formalize this
intuition in the following lemma (proof given in Appendix).

Lemma 3: If there exists a set of Nash equilibria that
achieves MAC, then the optimal solution to dynamic MPCAC
will reach an action profile in this set.

C. Dynamic Policy Based on Minimum Vertex Cover

We relate the dynamic MPCAC problem to a vertex covering
problem on a bipartite network. We define the graph with active
links after Algorithm 1 converges at time 7 as follows. Let G =
(N™,E™) be the graph with vertices composed of players that
remain undecided or take action 1 after Algorithm 1 converges
at step 1, i.e, N := {j € N': a} = {¢,1}}, and with edges
that connect players in N™ in Ep, that is, £" = {(i,j) € €p :
i,7 € N™}. For example, in Fig. 2 case (A), the network G" has
the vertex set N = {1, 3,4,5,6,7}.

A cardinality vertex cover for the graph G = (N, £™) looks
for a minimum cardinality subset of vertices X" C A" such
that each edge has at least one endpoint incident at X" [34].
Given the action profile a”, we consider the following modified
cardinality vertex cover problem with tuning parameter A > 0:

min D ath >, o
ien GENAT
s.t.x € M(G")
ciZ(fa;-’]—xj)zl—pi forallk ¢ N*  (12)
JENK

where ¢; := ¢o(1 — s;) + c18; is player ’s payoff constant. If
the second term in the objective and the last constraint are ex-
cluded, the problem formulation would be the minimum vertex
covering problem in the bipartite network G". If we set p; = 0
for players i ¢ N™, the last constraint makes sure that we select
the players in the vertex covering such that the players i ¢ N
who are decided on action 0, do not change their actions as a
result of the control efforts. In general, the last constraint with
pi = 0 can make (12) infeasible—see Fig. 3 for an example.
However, we note that we can always achieve MAC by solving
the minimum vertex cover problem on the original network Gp.
One of the solutions of this problem is to control all the players
belonging to the type with fewest number of players.

We construct a feasible control policy IT, = {X, A} as fol-
lows. Let X' =0 if t <n. Let x* = (z},...,2}), and p =

For t = n + 1, we define the controlled player set X" *! and
their actions A™*! as follows:

Xt =Lie N a; =1y U{i ¢ N™: pf > 0}

and

5)

§rtt =0 foralli e A" (16)

For t>n+1, we let X*=AX"*! if the action profile
{a?*1, 67 }icn is not a NE of the game. Otherwise, X = ()
fort > n.

Theorem 1: The dynamic control policy IT,, = {X, A} with
control and action sets at time n given by (13)—(14) and for time
t > n+ 1 given by (15)-(16) is a feasible dynamic policy for
the dynamic MPCAC problem in (11).

Proof: Given (13) and (14), (5) gives the controlled action
profile

1—2af ifs "
" { zp ifieN (17

0 0.W.

Given the definition of G™ and A™, we have the controlled
actions a™ satisfy af + a} <1 for any (i,5) € ™, since we
force at least one player in every link of G™ to play action 0.
This means that a™ € M(Gp). Further, all players are decided
satisfying the first constraint in (11).

Next, we show X", A”*! maintains anticoordination with
the controlled action profile a™*!. Consider the set partition

Nt={ieN:y'=1}
U{ieN:y!'=¢a] =1}

U{i e Nyl =¢x; =0} (18)

where y" is the uncontrolled action profile at time n. For the first
two sets in (18), we have aZ-H'l =1 — z} by (15). The last set
of players were controlled to play action 1. At time n, they have
no neighbors that take action 1 in (14). So they continue to take
action 1 using the update (8) even when they are not controlled
any longer. Hence, y/'"™' =1~} for {i € N : a} = e, x} =
0}. This implies that o't = 1 — 2} forall i € N™.

Next, consider the following partition of the set of players not
belonging to N'™:

NA\NT = z’¢j\/”:a?=0,cz‘2([am_x;‘)<l

JEN;

Ui ¢N™al =0,¢; 3 ([a)] —a})>1p.(19)
JEN;
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Note that all the players in the first set in (19) are controlled to
play action 0 in (15), that is, a?*l = Obecause {i ¢ N : a} =
0,¢i Y jen; ([a}] —a5) <1} = {i ¢ N : p; > 0} by the last
constraint in (12). For the second set in (19), all players continue
to select action 0 by (9). This implies that a;”'l = (0fori ¢ N".

Combining the two arguments, we have a?“ = a;' where
al is given in (17). Hence, the controlled action profile a™*! €
M(Gg). Suppose, a™*! is a NE action profile, then a"*! =
®1(a™T1) and no further control effort is necessary. Otherwise,
we have y" 2 = & (a"*!) = &1 (a™) = y" ! where y"*! and
y"™ 12 are the uncontrolled action profiles at time n + 1 and n +
2, respectively. Since, Xt = X"+, At = A"+l fort >n + 1,
we have that ¢"*2 = ¢"*1. By induction, the control policy II,,
is feasible. u

Theorem 1 shows that the MPCAC problems can be upper
bounded by solving the minimum vertex cover on the reduced
bipartite graph G™. Further, if we set the tuning parameter > = 0,
then the integer program in (12) has an exact linear programming
relaxation due to total unimodularity of bipartite networks [35,
Ch. 3]. Hence, we can obtain a feasible policy efficiently by
solving (12) with penalty term . = 0. Then, including all players
that have positive p; in the control set ({7 ¢ N™ : pi > 0}). The
following corollary presents a scenario in which II,, optimal.

Corollary 1: The policy II, defined in Theorem 1 is an
optimal policy if all players eliminate their actions in one time
step in Algorithm 1.

The proof given in the appendix relies on showing that when
all players eliminate their actions, the optimization problem in
(12) reduces to solving the minimum cardinality vertex cover
for the entire network G. This case happens only when c¢; is
smaller than the inverse of the maximum degree of the network
(ci|N;| < 1 for all + € N). The control policy IL, is an upper
bound in general because it does not make use of cascades, i.e.,
use the learning dynamics to make multiple hop links inactive,
by controlling a subset of players. Instead, it directly eliminates
all remaining active links. As we show in numerical examples
in Section VI, the policy II, tends to perform well when ¢y is
small and ¢; is large, or when ¢ is large and ¢; is small. In the
following section, we present optimal policies for benchmark
networks that exemplify the optimal use of cascades to eliminate
active links.

IV. OPTIMAL SOLUTIONS FOR BENCHMARK NETWORKS
A. Star Network

Consider a star network of n players with player 1 in the
center. Without loss of generality we assume s; = land j € S
for j ¢ {1}—see Fig. 1.

Proposition 1: The optimal dynamic MPCAC solutions for
the star network are as follows.

a)If1 > ¢pand 1 > ¢;(n — 1), then

Xt =g, ift<n
Xt={1},8 =0if t > n.

The resulting optimal costis C* = 1.
b)Ifl <c¢pandl > ¢y(n —1),0orl > ¢pand1 < ¢1(n — 1),
then X* = & for all ¢. The resulting optimal cost is C* = 0.

o)Ifl <cpand 1 < ¢y(n— 1), then X1 = {1}.

Xt={1},8t =0if t =0,1
{Xt =g if ¢t > 1.
The resulting optimal cost is C* = 2/n.

Proof: In cases (a) and (b), the game is dominance solv-
able. Further, the algorithm converges in ¢t < 2 steps. Lemma 2
together with Theorem 1 gives the optimal policies (a) and (b),
respectively. In case (c), the game is not dominance solvable and
there exists two Nash equilibria belonging to M (Gg): (a1 =
0,{a; = 1};+1) and (a1 = 1,{a; = 0},%1). By Lemma 3, the
optimal policy will induce the dynamics to converge to one of
these configurations. Either of these equilibria can be achieved
through a dynamic policy that targets only the center node for
two time steps, which gives the optimal cost 2/n. For instance,
we set 89 = 0 so that fringe players select a} = 1. We continue
with §1 = 0, so that the center node’s unforced action is 0 by
(9). We lift the control for all £ > 2, by which time the players
are in equilibrium and MAC is achieved. This policy is optimal
because there cannot be a policy that achieves a smaller objective
value than 2/n and achieve MAC. [ |

The above analysis exemplifies the three uncontrolled action
profiles (3) that can arise in a star network: (a) all players decide
but MAC is not satisfied; (b) MAC is satisfied; (c) all players
remain undecided. In case (a), we control the center player to
induce MAC. In case (b), no control is necessary. In case (c),
we control the center player to trigger decisions for the fringe
players.

B. Line Network

We consider a line network in which the neighborhood of
player i € N'\ {1,n} is given by N; ={i — 1,7+ 1}. The
players at the endpoints have neighbor sets A7 = {2}, NV, =
{n — 1}. The type configuration alternates between types 0 and
1: 7€ Sy for i odd, and i € Sp for 7 even. We will also refer
to the subsets S234, S&ver for m € {0,1} to denote every odd
(even) player from the set S, along the line. In the following,
we consider all possible payoff cases for the line network.

Proposition 2: Depending on the utility constants ¢y and
c1, the optimal control policy ({X*} > 0, A) for the dynamic
MPCAC problem on a line network with n odd is given as

a) If 1 > 2¢p and 1 > 2¢q, then

Xti=g ift<n
Xt:Sl,{éf}ieg:O lftZ’/l

which gives the optimal cost C* = |n/2].
b) If1 > 2c¢pand 2¢; > 1 > ¢y, then X* = & forall t > 0.
c) If1 >2cpandc; > 1, then X' = @ forallt > 0.
d) If2co > 1> cpand2¢; > 1> ¢y, then

At =8gven 5t, =0 ift=0,1
Xt=g ift>1

which gives the optimal cost C* = 2|n/4] /n.
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e) Ifcg > 1and 2¢; > 1 > cq, then

{Xﬁ_ﬁhﬁ_&

Xt=g

ift=0,1
ift>1

for any ¢ € V. This gives the optimal cost C* = 2/n.
f) Suppose ¢y > 1 and ¢; > 1. Then

Xt _ S(e)zven7636t =1
Xt=o

ift=0,1
ift>1

gives the optimal cost C* = 2[(n — 1)/4]/n.

The optimal control policies vary depending on the payoff
constants. If all players decide to play action 1 as a result of
the learning process, then we solve a minimum vertex covering
problem along the lines of Theorem 1, and the players selected
have to be controlled for all times ¢ > n—case (a) in all of the
propositions in this section. If the game is dominance solvable
and all links are inactive in the equilibrium action profile, the
optimal policy is the empty set—see 1(b), 2(b,c). If a subset of
players remain undecided as a result of the learning algorithm
and all links between decided players are inactive, an optimal
policy can be found by leveraging Lemma 3. In the benchmark
examples, these policies required controlling a subset of the
players for two time steps, causing the undecided players in
the other type to decide in the first step and the controlled
players to consolidate their decisions in the second time step.
Consequently, we can control a smaller subset of players and
leverage the learning dynamics to create cascades of decision-
making—see cases (d—f) in Proposition 2. In the latter scenarios,
the policy suggested by Theorem 1 is an upper bound of the
optimal policy. The optimal static policies are similar to the
dynamic MPCAC policies presented here.

V. SUBOPTIMAL ALGORITHMS FOR GENERAL NETWORKS

For general bipartite network topologies, it is challenging to
solve exactly for the MPCAC (both static and dynamic) solution.
We devise an algorithm that selects at each iteration one player
to control according to a greedy approach. The algorithm results
in a subset of control agents X that ensures MAC, but may not
be the optimal MPCAC solution.

Given a network game {N,A,Gp,{u;}licy}, we define
player i’s active neighbor set given action profile a € A as

Ni(a):={j e Ni:a; €{e1}}.
The active edge set of the network in action profile a is
E(a):={(1,7) € Ep : ai,a; € {¢,1}}.

At each iteration k, the greedy algorithm selects the player 7},
that, upon holding its action fixed at a;; = d; € {0, 1}, results
in the most number of active edges eliminated by the time the
system dynamics converge. We call the number of such links
eliminated from choosing any player ¢ in the action profile a the
cascade potential of player ¢

CPi(a,d;) = € (a)| — [E"(Pnla, {i}i>0, {di}e=0))]-

The process repeats, incrementally building up the player con-
trol set X', until all active edges are eliminated from the network.

Algorithm 2: A Greedy Algorithm for MPCAC.

1: Input: a® = ¢ foralli e N; X(0) = @:0 = 0,;

k<« 0;
while o* ¢ M (Gp) do
3: Allow dynamics to run until convergence
a* T = @, (0¥, {X (k) }i0, {0}120)
4: Store convergence time
tr < min{t < n: By (a*, X(k),0)
=, (", X(k:),é)}
5: Selection criterion

i € argmax CP;(a""1 ;)
i:af+1€{e,1}
616{071}

(ik, 6i; ) < rand

6: Update control set
X(k+1) « X(k)Uij

7 k< k+1
8: end while
9: X+ X(k)

If multiple players satisfy the maximum cascade potential
criterion in step 5, ties are broken by random selection. The
looping condition makes sure that we select players to control
until no links remain active. We also consider a few variants of
the above algorithm by replacing the selection criterion in step
5) by

a) i} + rand(i € argmaxiza?e{ﬁl}|M*(ak)|)
57’k < 0 (max degree)

b) i} « rand({i : (4,5) € E*(a**1) for some j})
Si;_ < 0 (rand)

¢) i}, < rand(i € argmax; 5, CP;(a",6;) +
Sy 1T £ ak) (CP2)

d) Here, replace Algorithm 2 after Initialize with

a+ ®,(a)
X =VC(E(a))

where VC is the minimum vertex cover scheme detailed
in (15) of the resulting active network after the first
convergence of the dynamics.

In a), a player with the maximum number of active neighbor-
ing links is selected to play action 0. We denote this the “max
degree” variant. In b), one player connected to the active network
is selected uniformly at random with forced action 0. This
algorithm is called “rand.” We note that the “rand” algorithm
can be thought of as an advertising model, where a random
player with active links becomes receptive to the advice from
the designer. A similar advertising model, proposed in [16] and
[17] for party affiliation and cut games, is a “minimally invasive”
designer policy that does not require information about the
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learning dynamics and network structure. A variant of cascade
potential, “CP2,” is described in c¢), which selects the node that
has the highest cascade potential in addition to inducing the
most amount of players to change their action (see Remark 5
for motivation). In d), we select the control set as the minimum
vertex cover as specified in (15) of Theorem 1. Note that in
variants “max degree,” “rand,” and “VC,” the forced actions are
always 6; = 0, since it guarantees active edges to be eliminated
(immediate neighbors). In the CP-based algorithms, Si can either
be 0 or 1, depending on which results in the most “cascaded”
active links broken.

Proposition 3: For all variants of Algorithm 2, a resulting
control set (X', ) is a feasible static control policy of MPCAC.
A feasible dynamic policy (X', A) is also produced by imple-
menting control on the players 7y, in the order they were selected,
and holding a;, = 0 for all times

v k-1 k
Xt _ ‘X:(k)’ for Zm:O tm S 1< Zm:O tm
X, fort >kt

At:& forallt >0

with 321 (¢, = 0.

Proof: Consider the static policy (X, 4). By the definition
of Algorithm 2, step 1 at the last iteration k£ ensures MAC, where
the control set used is X (k) = X. That is, ®,(a*, X (k),0) €
M (Gg).1tis also true that ®,, (¢, X' (k), §) gives the same action
profile because the players in X were iteratively selected to
eliminate all active links. If active links appeared as a result
of a selection, these links are ensured to be eliminated in a
subsequent iteration of the algorithm. Hence, ()3 , B ) is a feasible
static MPCAC solution.

The policy (X*, A) is a feasible dynamic MPCAC solution
because it simply mimics the iterations of Algorithm 2. |

Remark 5: In practice, Algorithm 2 (CP variant, as written)
will find the optimal static solution to the star network. For the
line network, it finds the optimal static solution in cases (b-¢)
of Proposition 2, and in cases (a,f) with some probability. In
case (a), this is due to the possibility that the algorithm can
select two players with different types along the line, which
causes redundancies in control because the vertex cover S is
the optimal control choice by Corollary 1. In case (f), the cascade
potential of selecting any player is two, as long as that player
is not an endpoint. Algorithm 2 may sometimes select a player
one node from an endpoint. However, selecting a player two
nodes from an endpoint would cover more ground — it results in
the same cascade potential in addition to forcing the endpoint
player to decide. This is the motivation behind introducing the
CP2 variant. CP2 variant chooses the player two nodes from
an endpoint with certainty because it causes the same number
of cascaded links, but induces more players to change their
decision.

VI. NUMERICAL EXPERIMENTS

We consider a random bipartite network of size n by assigning
half of the players to Sy, and the other half S; (assuming n is
even). A link (4, j) between i € Sy and j € Sy is present with
independent probability pg € (0, 1).

In Fig. 4, the control effort for three variants of Algorithm 2
is mapped over varying values of ¢y, ¢1. The quantity |1/co] is
the largest number of neighbors not playing action 0 a player in
S can still have to play action 1 as a dominant action. Similarly,
[1/c1] is the largest number of neighbors not playing action 0
for an S; node. As both c;* and ¢; ' increase, more control is
necessary because more nodes will be playing dominant action 1.
For ¢, low and c;! high, no control effort is necessary to
achieve MAC because S7 nodes will play dominant action 1,
and Sp nodes in turn will choose dominant action 0. That is, a
pure NE that satisfies MAC exists. With both ¢, ', ¢;* low, no
nodes can initially decide. Hence, a large control effort is needed
to cause the remaining nodes to play action 1.

In Fig. 5, we plot the performance of Algorithm 2 (CP1) and
its variants by measuring the control effort | X'|/n, the fraction
of players selected. In the left panel (|1/¢co| = |[1/c1] = 0),
no players decide without external control, i.e., they all remain
undecided without an intervention. The number of active links
per person (total active links divided by n) is ~ 0.7. Here,
the CP-based algorithms perform significantly better than other
variants because forcing d; = 1 will cause all neighbors to play
action 0. Max degree and VC perform similar. In the center
panel (|1/co] = |1/c1| = 2), a player has a strictly dominant
action 1 if two or less neighbors do not play action 0. The number
of active links in G" per person (total active links after Algo-
rithm 1 divided by n) is /&~ 0.5. The performance of the CP-based
algorithms slightly worsen, while the variants slightly improve.
In both left and center, the constants for anticoordination is the
same for both types of players.

In the right panel (|1/co] =2,[1/c1]| = 1), the constants
are no longer symmetric, and &7 players are more sensitive
to having active links than Sy players. In this scheme, the
number of active links in G™ per person (total active links after
Algorithm 1 divided by n) is & 0.3. Correspondingly, we ob-
serve that the control effort needed is less for all proposed meth-
ods. In comparison to left and center, the VC variant performs
worse than “rand,” suggesting that the vertex covering scheme
can in some cases be inefficient as a control policy. Indeed,
“rand” achieves a control effort similar to max degree. This is
because of the fact that at each selection step (Step 5 in Algorithm
2), the active link degree distribution of players with active links
is close to being regular. Thus, randomization among them does
not lead to a large inefficiency in control efforts. Overall, the
CP-based algorithms outperform all other variants due to their
exploitation of “cascades” by using the dynamics ® to eliminate
active links.

Recalling the advertising model interpretation of the “rand”
[16], [17], it is worth comparing its performance to a CP-based
algorithm. We can interpret the control effort in “rand” as the
probability of a person accepting the advice from a communi-
cation campaign. This probability needs to be larger than 0.5 in
left and center panels, while it is close to 0.3 in the right panel
in Fig. 5. In comparison, CP-based algorithms require less than
half of the control effort needed in “rand.” The reduction in
control effort is due to the additional information used by the
designer in CP-based algorithms. In CP1, the designer needs
to simulate forward the learning algorithm assuming it knows
both the learning rules and the network structure. In contrast, the
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Fig. 4. Control effort |.X|/n used by Algorithm 2 (center) and two variants (left and right) on 20-node random bipartite networks, with pp = 0.3

(expected degree of 3). Each payoff constant co, ¢; takes ten different values such that |1/co| ranges from 0 to 10. Each value in the grid results
from averaging the resulting control effort from 1000 independent realizations of the network.
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Fraction of nodes |-X’|/n (control effort) to achieve MAC versus size of the network among the five variants of Algorithm 2. Three cases

of payoff constants are presented. The network is a bipartite network of size n, ranging from n = 10 to 70 with +5 increments. Each node is
independently randomly chosen type 0 or 1 with equal probability, and the link (7, j), i € So j € S1, is drawn with probability 6/n, to achieve an
expected degree of 3. The CP-based algorithms outperform the other variants.

“rand” policy only advertises good behavior, in this case taking
action 0. Thus, we can think of the gap between the control
efforts of “rand” and CP1 as the value of knowing the network
structure and learning dynamics.

A. Suboptimality of Greedy Algorithm

Given that CP-based algorithms are better than other proposed
selection criteria, we numerically analyze CP1’s suboptimal-
ity with respect to the static optimal control policy in Fig. 6
for the payoff constant values corresponding to left and right
panels in Fig. 5. Fig. 6 shows the ratio of the control effort in
CP1 with respect to the optimal static control effort [optimal
solution to (10)]. We observe that when the payoff constants
are symmetric (co = ¢1), CP1 performs worse compared to the
asymmetric constant values case—the optimality ratio is the
same when |1/¢o] = |1/¢1] = 2. The underlying reason for
the performance decline is based on the fact that the number of
players with the same maximum cascade potential increases with
symmetry in constant values. In the case of a tie in the cascade
potential of players, the CP1 randomly chooses a player among
the ones in a tie possibly starting the cascade from a suboptimal
player. We observed a similar case appear in the line network
cases (a) and (f)—see Remark 5. When the payoff constants are
not the same (blue), the largest optimality ratio is equal to 1.5.
Overall, the CP-based algorithms find the optimal static policy in

Optimality ratio

10 12 14 16 18 20
Network size

Fig. 6. Optimality gap of greedy CP1 algorithm. The network is a
random bipartite network of size n, ranging from n = 10 to 20 with
+2 increments. We consider 50 repetitions given n. Optimality ratio is
computed by taking the maximum (worst) ratio between |X| (number
of players in the control set from Algorithm 2) and |X*| among all
repetitions.

more than 40 of the 50 repetitions for all cases except for n = 20,
|1/co] = |1/c1] = 0 where the optimal is found in 36 out of 50.

VIl. CONCLUSION

We considered the control of learning processes in a pop-
ulation to influence the emergent outcome in the context of
anticoordination network games. With the goal to promote MAC
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with minimum effort, we developed computationally tractable
methods that determine when to control which players, and how
to control them. A greedy algorithm that sequentially selected
players according to their influence in promoting anticoordi-
nation in the future performed well in random networks with
arbitrary population sizes.

APPENDIX
A. Game Theoretic Preliminaries

We consider the NE solution concept as a rational action
profile. A NE a™E € [0, 1]™ is an action profile that satisfies

ui(al®, a\F) > wi(a;,al’) a; €[0,1],i € N (20)

In other words, the individuals best-respond to the NE actions
of other individuals—see (6) for the definition.

We can equivalently represent the NE definition in (20) by
using the best response definition

NP = BRi(af/F) foralli e NV. (21)

The notion of strictly dominated is defined in the following.

Definition 3 (Strictly dominated action): An action a; €

[0, 1] is strictly dominated if and only if there exists an action
al; € [0,1] such that

wi(ay,an,) > ui(a;,ay,) forallay, € Ay,.  (22)

If an action q; is strictly dominated then there exists a more
preferable action a} for any circumstance. From (21), a strictly
dominated action cannot be rational .

In the game I', we can iteratively remove the strictly domi-
nated actions. This process is called the iterated elimination of
strictly dominated strategies, defined below.

Definition 4 (lterated elimination): Set the initial set of
actions A? = [0, 1] for all i, and for any k € N let

AF = {a; € AV
a; is not strictly dominated by any ay;, € Aﬁle}.

We denote the set of player ¢’s actions that survive the iterated
elimination by A := (7, A¥. If A is a singleton (has a
single element) for all i € N, then the game is dominance
solvable, and has a unique NE given by the action profile that
survives the iterated elimination process.

B. Convergence of the Local Learning Algorithm

The following theorem states that Algorithm 1 eliminates all
strictly dominated actions in finite number of steps.

Theorem 2: Assume all players are undecided, i.e., a) = ¢
fori € N. Algorithm 1 converges in at most n iterations, that is,
no player changes its action after the nth update. If all players
are decided, i.e., a? = {0, 1} for all i € N, the resultant action
profile a™ is a NE. Otherwise, if a player i« € N is undecided,
then there does not exist a; € A; that can be strictly dominated.

Proof: We prove by induction the equivalence to the iterated
elimination of strictly dominated strategies (Definition 4).

Given a® = €, [al.] = 1)v,|. If BR;(1)y;)) = 1, then it is
best to play action 1 against all possible actions of neighboring

players by BR;(ay;) > BRi([a’jgl]) given in (7). Hence, all
actions in [0, 1) are strictly dominated by a} = 1 by (22). For
BR;(1)y,]) = 0, players remain undecided.

Assume at time k players that decided af‘l € {0,1} have
eliminated rest of their actions. Define the not strictly dominated
action space of each player i € N as A" 1 = {1} if aF ! =
1, A¥1={0} if a1 =0, and A1 =1[0,1] if o' =
[recall the notation in Definition (4)]. Using BR;(ay;)
BR;([a']) for ay, € Ay ', if BR;([a};']) =1 then a}
1 strictly dominates all a; € A¥~! by (22). Using BR;(a;,)
BR;(|af;']) for ay, € A3 ', if BR;(|a};"]) = 0 then af
0 strictly dominates all a; € A?‘l by (22). Further, we have
BR;( [aj“v:l] ) = lifand only if (8) is true, and BR;( Lajk\,zl ) =
0 if and only if (9) is true. Hence, a* = ®;(a*~1) is an action
profile where decided players eliminate all strictly dominated
actions given the not strictly dominated action space A*~'.
Algorithm 1 is equivalent to Definition 4 by induction.

Given this equivalence, if the game is dominance solvable,
the algorithm converges to the unique NE. Otherwise, all de-
cided players eliminate all of the actions except the action they
selected, and undecided players cannot eliminate any actions
from the their initial action space [0, 1].

Next, we prove convergence in n time steps. Suppose at time
step k given a*~!, there does not exist a player that switches
from being undecided, i.e., af’l = ¢, to being decided, i.e.,
af = {0,1}. That is, if ¥ = a¥~! then a* ™ = aF. Further, if
a player is decided, it cannot change its action because all the
other possible actions are dominated, that is, if a¥ = {0, 1}, then
af“ = a¥. Given these two observations, at least one player has
to switch to being decided at time k£ — 1, in order for at least one
player to become decided at time k given that it was undecided
at time k — 1. There can at most be n instances of switching
from being undecided to being decided which is the case when
the game is dominance solvable. Further there needs to be at
least one switching happening at each time step for the updates
to continue. Hence, the algorithm converges in at most n steps.

|

The proof above relies on showing that Algorithm 2 is a
decentralized version of the iterated elimination of strictly dom-
inated actions as given by Definition 4. The intuition for n step
convergence is that at each step at least one player needs to
eliminate its action using (8) or (9). If no player updates at a time
step, the players stop updating because no new eliminations are
triggered. Therefore, there could at most be n iterations to rule
out n players one player at a time.

IINAVAEN
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C. Proof of Lemma 2

Dominance solvability implies Algorithm 1 converges to a
unique NE aNF defined in (20). This means that a? € {0,1}.
Either a® € M (Gg) or aNF ¢ M(Gg). If the former holds,
then the optimal control profile that minimizes the objective is
the empty set (X! = (). If the latter holds, we need to control a
nonempty set of players to achieve a® € M (Gg). Assume now
the optimal control profile after time n is empty, i.e., X! = () for
t > n. Then because the game is dominance solvable, we have
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a® = @, (a") = aNF ¢ M(Gp) where ®(-) is defined in (3).
Hence, a control profile X! = () for ¢ > n cannot be optimal
because it is not feasible when o is not feasible.

D. Proof of Lemma 3

Suppose the optimal policy II* to dynamic MPCAC in (11)
is such that it does not converge to an equilibrium of the game
a* € M(Gp). This implies at least one player is controlled for
all ¢ > n to maintain MAC. Further, at least one player must be
controlled at time n to satisfy the MAC constraint. Combining
the cost for control before and after time n, J(IT*) > 1/n + 1.

If there exists an equilibrium a* € M (Gg), then Algorithm 1
cannot converge to an action profile a™ with a link satisfying
(4,7) € Ep where af +aj > 1, because it would imply the
equilibrium action profile a* is strictly dominated by an action
profile, a”. This means that Algorithm 1 can only eliminate
possibly active links. Hence, the worst case scenario in terms of
cost of control is when all players remain undecided as a result of
Algorithm 1, i.e., ' = €. In this case, a feasible solution is one
where we control the players in one type (X! = Sy or Xt = S)
for two time steps ¢ = 0, 1 with forced actions 0. This causes the
players i ¢ XY to play action 1 by (5) at t = 1. By continuing
at t = 1 with X' = X0, the players i € X! take action 0 by
(5),ie.,al =z}8 =0fori e X', anda} =y} = ®(a") =1
if i €¢ X'. When we set X' = @ for ¢t > 2, players do not
change their actions because the resultant action profile is an
equilibrium. By selecting the type satisfying min{|Sp|, |S1|},
our cost for this control policy is at most 2|n/2]/n < 1, from
(11). This policy is an upper bound on the optimal policy.
Consequently, J4(IT*) > 1/n + 1 cannot be optimal.

E. Proof of Corollary 1

When all players are decided in a single time step, all players
decide on taking action 1 using (8), that is, a = 1,, where 1,, is
the n x 1 vector with all elements equal to one.

Claim 1: X! = ( for t < n.

~ Proof: Suppose there exists an optimal policy 1I such that
X! % () for ¢ < n. Given the controlled action profile at time
tf,iat, we have the uncontrolled action profile at time ¢ 4 1 as
yl“rl =1,. Hence, the y” = 1,,. As a result, a policy where
Xt =0 for t <n and X* = X! for t > n would be feasible
and would incur a smaller cost than the policy 1I by an amount
151t
T2 [ XL [ |

We continue with the proof of Corollary 1. By Claim 1, no
control action is taken until time n, where we have y" = 1,,.
The optimal control policy at time n is given by the following
single time-step optimization:

min |X|

X

st.a;,+a; <1 forall (i,j) € €p
a;=1—x; forallic N

a; € {0,1}. (23)

If we select z; = 1, we must select §; = 0 because a! = 1forall
1. Hence, we have the second constraint from the controlled dy-
namics, (1 — z;)al* + §;z; = 1 — x;. Define the dynamic con-
trol policy X where X'* = () for t < n, and we implement X",
which is the solution to the above optimization problem, for
t>n.

Suppose there exists X that achieves a lower cost than X in
the dynamic MPCAC problem. Given the first constraint above
it is guaranteed that the controlled dynamics ®,, (€, X, A) €
M(Gp). .

By Claim 1, it must be that X* = () for ¢ < n. Note that
there cannot exist a policy at time n such that |X"| < |X"|
because X™ is an optimal solution of (23). If |X"| > |X™"|
then we can use X to obtain a smaller cost (37, |X?| >
St | Xt = |X™|) for the first n time steps. Further, the un-
controlled action profile at time n + 1 is given by y"*! =
®;(a™) = 1,, where controlled action of player ¢ is given by
al' =1 —a for z; € X™. Hence, there cannot exist a con-
trol policy X* such that |X*| < |X?| for t > n by the same
reasoning as above. Combining the above findings, we have
the dynamic MPCAC objective for the control policy X as
LI limpro & S0 X > (1/n 4 1) X7, This is
a contradiction.

Substitutinga; = 1 — z; inthe constrainta; + a; < 1, we get
z; +x; > 1whenx; € {0,1}andz; € {0,1}. Note that g =
E™and N = N givena! = 1. Hence, the last constraint in (12)
does not exist when a™ = 1. This shows that the optimization in
(23) is equivalent to the optimization problem (12) when a™ = 1.
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