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Decentralized Fictitious Play in Near-Potential
Games With Time-Varying
Communication Networks
Sarper Aydın , Sina Arefizadeh , and Ceyhun Eksin

Abstract—We study the convergence properties of
decentralized fictitious play (DFP) for the class of near-
potential games where the incentives of agents are nearly
aligned with a potential function. In DFP, agents share
information only with their current neighbors in a sequence
of time-varying networks, keep estimates of other agents’
empirical frequencies, and take actions to maximize their
expected utility functions computed with respect to the
estimated empirical frequencies. We show that empirical
frequencies of actions converge to a set of strategies with
potential function values that are larger than the potential
function values obtained by approximate Nash equilibria of
the potential game. This result establishes that DFP has
identical convergence guarantees in near-potential games
as the standard fictitious play in which agents observe the
past actions of all the other agents.

Index Terms—Game theory, autonomous systems, net-
worked control systems, numerical algorithms.

I. INTRODUCTION

AGAME comprises of multiple agents taking actions to
maximize their individual utility functions. Potential

games is a special class of game in which there exists
a common potential function that captures the incentives
of all the agents [1]. Potential games are used to model
behavior of agents in multitude of problems including traffic
routing problems in transportation systems [2], power allo-
cation in cognitive radio [3], task scheduling in robotics [4].
Many distributed game-theoretic learning dynamics, e.g., best
response [1], fictitious play (FP) and its variants, e.g., sam-
pled FP [5], [6], converge to a Nash equilibrium (NE) of
any potential game. Nash equilibrium is an action profile in
which no agent would benefit by unilaterally deviating from.
The convergence of learning dynamics to a NE provides a
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justification for modeling agents as rational in strategic envi-
ronments. That is, we observe individuals behaving rationally
in reality despite lacking the acuteness, because they learned to
act rational over time as they repeatedly interacted with each
other in the same environment. Moreover, in technological
systems, agents (sensors, robots) can be coded to imple-
ment these learning dynamics so that the system performance
improves.

However, individual utility functions may deviate from the
potential function due to unknown parameters, or the inability
of agents to accurately compute the learning rules. Still, we
would expect the learning dynamics to reach close to a Nash
equilibrium of the potential game when such deviations are
small. The class of near-potential games, proposed in [7], [8],
quantifies the magnitude of such deviations under which desir-
able convergence properties continue to hold. Specifically,
agents in a near-potential game have utility functions where
the difference in utility values between any pair of actions
for any agent is close enough to the differences in potential
function values of a potential game, so that FP converges to a
neighborhood of a NE of the potential game. In [8], the size of
the convergence neighborhood is characterized as a function of
the closeness of games for common distributed learning algo-
rithms. Here, we characterize the convergence neighborhood
based on the closeness of the game to a potential game when
agents’ actions follow a decentralized version of FP. Recently,
FP is also shown to converge in stochastic zero-sum [9], [10]
and mean-field games [11].

Agent updates in distributed learning dynamics, e.g., best
response, and FP, rely on information from all the agents. In
FP, agents assume that other agents pick their actions accord-
ing to a stationary distribution that is the empirical frequency
of their past actions [12]. Given this assumption, agents take
actions to maximize their expected utilities computed with
respect to these empirical frequencies. Such a response is not
possible, when agents do not have access to the past actions of
all the other agents, e.g., when agents can only communicate
with a subset of the agents at each step. In such a scenario,
agents can only keep estimates of the empirical frequencies
of the other agents, and take the action that maximizes their
expected utility functions computed with respect to the esti-
mated empirical frequencies. DFP, developed in [4], is one
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such learning algorithm that is fitting to communication over
time-varying networks.

Given the DFP dynamics, we show that if the empirical
frequencies are far from any equilibrium, i.e., are outside
the set of approximate ε-Nash equilibria of the near-potential
game where the constant ε depends on the closeness of games,
then the potential function value of the close potential game
increases at every action update (Lemma 2). We note that the
set of approximate ε-Nash equilibria represents strategies in
which an agent’s incentive to deviate is not larger than ε.
Leveraging this result, we show that the empirical frequencies
converge to a set of mixed strategies (a distribution over the
actions) with potential function values larger than the lowest
potential function value obtained by strategies in the set of
ε-Nash equilibria (Theorem 1 and Corollary 1). The close-
ness conditions required and the bounds established in these
results are identical to the ones for FP dynamics shown in [8].
That is, DFP has the same convergence guarantees as FP in
near-potential games, despite the fact that agents communi-
cate only with a subset of the agents at each step. We validate
our results in a target assignment problem in which agents are
uncertain about the target locations. Numerical experiments
show convergence of actions to a NE of the game in which
target locations are known, when the near-potential game is
close enough to the original game, i.e., when the uncertainty
is small.

II. NEAR-POTENTIAL GAMES

A game consists of N agents represented by the set N :=
{1, . . . ,N}. Each agent i ∈ N selects an action ai over
a finite set of actions Ai to maximize its utility (payoff)
ui : Ai × A−i → R where A−i := ∏

j∈N \{i} Aj. We use the
standard game-theoretic notation −i to denote the set of all
agents except agent i. A game � is a tuple of agents N , action
space AN := ∏

i∈N Ai, and utility functions ui(·) for i ∈ N .
Next, we define the class of potential games [1].

Definition 1 (Potential Games): A game � is a potential
game, if there exists a function u : AN → R such that the
following relation holds

u(a′
i, a−i)− u(ai, a−i) = ui(a

′
i, a−i)− ui(ai, a−i) (1)

for any a′
i ∈ Ai, ai ∈ Ai and a−i ∈ A−i, and i ∈ N . The

corresponding function u : AN → R is called the potential
function of the game �.
The potential function (u(·)) captures the difference in indi-
vidual payoffs as a result of unilateral deviation in action
for every agent. The existence of a potential function assures
the existence of a NE in potential games. Furthermore, every
maximizer of the potential function is a NE of the potential
game [5]. The potential game is bounded if there exists a pos-
itive finite number M < ∞ such that |u(a)| ≤ M for any
a ∈ AN .

In order to define the class of near-potential games, we
define a notion of closeness between games.

Definition 2 (Maximum Pairwise Difference): Let � =
(N , {Ai, ui}i∈N ) and �̂ = (N , {Ai, ûi}i∈N ) be two games
with the same set of agents N and action sets {Ai}i∈N , and

utilities {ui}i∈N and {ûi}i∈N . Further, let d�
(a′

i,a)
:= ui(a′

i, a−i)−
ui(ai, a−i) be a difference in utility of an agent i by unilat-
eral change to an action a′

i ∈ Ai, given joint action profile
a = (ai, a−i) ∈ AN in the game �. Then, the maximum
pairwise difference d(�, �̂) between the games � and �̂ is
defined as

d(�, �̂) := max
i∈N , a′

i∈Ai, a∈AN
|d�
(a′

i,a)
− d�̂

(a′
i,a)

|. (2)

The maximum pairwise difference (MPD), introduced by [8],
defines the distance between two games based on the dif-
ference in agent payoffs resulting from unilateral changes to
agent actions. A near-potential game is a game that is close
to a potential game in terms of MPD.

Definition 3 (Near-Potential Games): A game � is a δ

near-potential game if there exists a potential game �̂ within
a MPD of δ ∈ R

+, i.e., d(�, �̂) ≤ δ.
The class of near potential games relaxes the condition

of potential games in (1) similar to ordinal, weighted, or
best-response potential games. In this letter, we consider
decentralized learning dynamics in δ near-potential games. The
closest potential game to a game �, and the smallest δ value for
� can be found by solving a convex optimization problem [7].
Here, we assume a potential function u(·) and the associated
MPD value δ are given.

III. DECENTRALIZED FICTITIOUS PLAY

Fictitious play is a game-theoretic learning mechanism in
which each agent repeatedly takes an action to maximize
its payoff based on the estimates of other agents’ strategies.
Agent i forms an estimate of agent j’s strategy by keeping an
empirical frequency of its past actions.

For simplicity, we assume the action space of agents is com-
mon, i.e., Ai = A where the number of possible actions is
equal to K ∈ N

+, i.e., |A| = K. We let �A be the probabil-
ity space over A. The strategy of agent i is a distribution on
the action space denoted as σi ∈ �A, where σi(ai) ∈ [0, 1]
denotes the probability of selecting action ai ∈ A. We define
the expected utility of agent i as

ui(σi, σ−i) =
∑

a∈AN

ui(ai, a−i)σ (a), (3)

where σ = (σi, σ−i) ∈ �AN is the joint strategy profile.
In standard FP, agents repeatedly take actions in discrete

time steps t = 1, 2, . . . . Each agent determines its next action
ai,t ∈ A to maximize its expected utility assuming other agents
play according to a stationary distribution f−i,t := {fj,t}j∈N \{i}
where fj,t ∈ �A. The stationary distribution fi,t ∈ �A
is computed using the past empirical frequency of actions,
fi,t = 1

t

∑t
τ=1 σi,τ , which can equivalently be written as

fi,t = t − 1

t
fi,t−1 + 1

t
1ai,t . (4)

where 1ai,t is a K × 1 vector that is all zeros except a one
in the element corresponding to the action taken. The recur-
sive form above allows each agent i to compute the empirical
frequencies of other agents j ∈ N \ i by only keeping the past
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Algorithm 1 DFP for Agent i

1: Input: Local estimates υ i
−i0 and networks {Gt}t≥1.

2: for t = 1, 2, · · · do
3: Share local copies {υ i

j,t}j∈N with l ∈ Ni,t

4: Update local copies υ i
j,t (5).

5: Determine action ai,t (6) and update fi,t (4).
6: end for

empirical frequencies {fj,t−1}j∈N \i in memory and observing
their current actions {σj,t}j∈N \i.

Here, we consider a scenario in which agents communicate
over a time-varying network Gt = (N , Et), where Et represents
the edge set. In this setting, agent i can only communicate
with its neighbors Ni,t := {j : (i, j) ∈ Et} at time step t. Thus, it
cannot compute the empirical frequency of all the other agents
using (4). Instead, we replace the actual empirical frequencies
fj,t ∈ �A with a local copy υ i

j,t ∈ �A. The local copy υ i
j,t

is the estimate of agent j’s empirical frequency at time t kept
at agent i. We let agent i’s local copy of its own empirical
frequency be equal to its empirical frequency, υ i

i,t = fi,t. In
each step, agent i updates its local estimate by using the local
copies shared by its neighbors,

υ i
j,t =

∑

l∈N
wi

jl,tυ
l
j,t, (5)

where wi
jl,t ≥ 0 is the weight that agent i puts on agent l’s

estimate of agent j’s empirical frequency at time t.
In DFP, each agent takes an action that maximizes its

expected utility (best-respond) computed using its estimates
of others’ empirical frequencies υ i−i,t := {υ i

j,t−1}j∈N \i,

ai,t ∈ arg max
ai∈A

ui(ai, υ
i−i,t). (6)

An outline of DFP is given in Algorithm 1.

IV. CONVERGENCE OF DFP IN NEAR-POTENTIAL

GAMES

A. Game Theoretic Preliminaries

Given a game � := {N ,AN, {ui}i∈N }, a NE is a strategy
profile such that no agent can individually increase its utility
by deviating to another strategy. Given a strategy profile σ ∗,
when there exists a profitable deviation for an agent but the
increase in utility from this deviation is no more than ε ≥ 0,
the strategy profile σ ∗ is said to be an approximate NE.

Definition 4 (Approximate NE): The strategy profile σ ∗ =
(σ ∗

i , σ
∗−i) ∈ �AN is an ε-Nash equilibrium of the game � for

some ε ≥ 0 if and only if for all i ∈ N
ui(σ

∗
i , σ

∗−i)− ui(σi, σ
∗−i) ≥ −ε, ∀σi ∈ �A. (7)

The strategy profile σ ∗ is called a pure ε-NE if the strategy
selects a single action profile a∗ = (a∗

i , a∗−i) ∈ AN with prob-
ability one. If the ε-NE strategy profile is not pure, then it is
called an ε-mixed NE strategy profile.
We denote the set of ε-Nash equilibria using 	ε . We recover
the definition of a NE when ε = 0 in the above definition.
The set of Nash equilibria is denoted with 	0.

We define the set of strategies that achieve potential function
values no worse than the potential function value of the worst
ε-NE as follows:

Cε := {σ ∈ �AN | u(σ ) ≥ min
y∈	ε

u(y)}. (8)

When there is a unique NE, the above set contains the 	ε .
When there are multiple equilibria in the game �, the set Cε
contains the equilibria, but it may also contain a continuum
of other strategies.

B. Convergence

We make the following set of assumptions for the time-
varying communication network.

Assumption 1: The network G = (N , E∞) is connected,
where E∞ = {(i, j)|(i, j) ∈ Et, for infinitely many t ∈ N}.
This assumption states that starting from any time t0, there
exists a path from agent j to i for any pair of agents i and j
when we consider the edges

⋃
t≥t0 Et.

Assumption 2: There exists a time step TB > 0, such
that for any edge (i, j) ∈ E∞ and t ≥ 1, it holds (i, j) ∈⋃TB−1
τ=0 Et+τ .

This assumption means the edge (i, j) ∈ E∞ also belongs to
the edge set

⋃
t0+TB>t≥t0 Et for any time t0 > 0. Assumptions 1

and 2 are referred to as connectivity and bounded communi-
cation interval, respectively in [13].

Assumption 3: There exists a scalar 0 < η < 1, such that
the following statements hold for all i ∈ N , j ∈ N and t =
1, 2, . . . ,
(i) If l ∈ Ni,t ∪ {i}, then wi

jl,t ≥ η. Otherwise, wi
jl,t = 0,

(ii) wi
ii,t = 1,

(iii)
∑

l∈Ni,t∪{i} wi
jl,t = 1.

Assumption 3(i) makes sure that agents only put posi-
tive weight on their current neighbors’ estimates in (5).
Assumption 3(ii) ensures νi

i,t = fi,t for all t > 0.
Assumption 3(iii) means that if we construct an N×N weights
matrix Wj,t associated with the updates of local estimates on
agent j’s empirical frequecies where [Wj,t]i,l = wi

jl,t, then the
matrix Wj,t has to be row stochastic for all times.

Assumptions 1-3 ensure that local information stored by
agent i ∈ N reaches an agent j ∈ N \ {i} in finite time. Next
result provides a rate for the convergence of the local copies of
empirical frequencies νi

j,t to the actual empirical frequencies
fj,t—see [14] for the proof.

Lemma 1 (Proposition 1, [14]): Suppose Assumptions 1-3
hold. If fj0 = υ i

j,0 holds for all pairs of agents j ∈ N and

i ∈ N , then the local copies {υ i
t }i∈N

t≥0 converge to the empirical
frequencies {ft}t≥0 with rate O(log t/t), i.e., ||υ i

j,t − fj,t|| =
O(log t/t) for all j ∈ N and i ∈ N .
The proof relies on the properties of row stochastic matrices
formed by the weights {wi

jl,t}l∈N . Note that we do not assume
the weights form a doubly stochastic matrix, i.e., Wj,t does not
have to be column stochastic. The column stochasticity would
require agents to coordinate the weights they use to update
their local estimates of agent j’s empirical frequency.

Next, we assume the potential function is bounded.
Assumption 4: The potential function u : �AN → R of the

potential game �̂ is bounded.
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Using the above assumptions, we provide a lower bound for
the change in the expected potential function values between
consecutive time steps.

Lemma 2: Suppose Assumptions 1-4 hold. Let � be a δ
near-potential game for some δ ≥ 0. The potential function
is given by u(·). We denote the empirical frequency sequence
generated by the DFP algorithm as {ft}t≥1. If the empirical
frequency ft is outside the ε-NE set for ε ≥ 0, then given a
large enough T > 0 we have

u(ft+1)− u(ft) ≥ ε − Nδ

t + 1
− O

(
log t

t2

)

for all t ≥ T. (9)

Proof: Taylor’s expansion of the expected utility yields

u(ft+1)− u(ft) =
N∑

i=1

∑

ai∈A
u(ai, f−i,t)

(
fi,t+1(ai)− fi,t(ai)

)

+ O(||fi,t+1 − fi,t||2), (10)

where fi,t+1(ai) denotes the probability of selecting action
ai ∈ A according to the empirical frequency fi,t+1. Using the
empirical frequency updates (4), we have

u(ft+1)− u(ft)

=
N∑

i=1

∑

ai∈A

1

t + 1
u(ai, f−i,t)

(
1(ai,t=ai) − fi,t(ai)

) + O

(
1

t2

)

(11)

where 1(ai,t=ai) is a K×1 vector with all elements equal to zero
except the element that corresponds to ai. Since u(fi,t, f−i,t) =∑

ai∈Ai
u(ai, f−i,t)fi,t(ai), we have,

u(ft+1)− u(ft)

= 1

t + 1

N∑

i=1

(
u(ai,t, f−i,t)− u(fi,t, f−i,t)

) + O

(
1

t2

)

. (12)

Using d(�, �̂) ≤ δ, the above equality and Definition 2 imply

u(ft+1)− u(ft) ≥ 1

t + 1

N∑

i=1

(ui(ai,t, f−i,t)− ui(fi,t, f−i,t)− δ)

+ O

(
1

t2

)

. (13)

By the contrapositive statement of Lemma 3 and via
Lemma 1, if ft �∈ 	ε , then there exists at least one agent
io ∈ N o ⊆ N where |N o| ≥ 1, whose local estimates υ io−io,t
are outside (ε− O(log t/t))-NE region for large enough t, i.e.,
υ

io−io,t
�∈ 	ε−O(log t/t). Hence, agent i0’s utility value changes

by at least ε − O(log t/t),

uio(aio,t, υ
io−io,t

)− uio(υio,t, υ
io−io,t

) ≥ ε − O

(
log t

t

)

. (14)

Since each agent i ∈ N \ N o best responds to local copies
υ i−i,t,

ui(ai,t, υ
i−i,t)− ui(υi,t, υ

i−i,t) ≥ 0. (15)

Using Lipschitz continuity of the mixed extension of the utility
function and Lemma 1, it holds again for all i ∈ N ,

ui(ai,t, f−i,t)− ui(ai,t, υ
i−i,t) ≥ −O

(
log t

t

)

, (16a)

ui(υi,t, υ
i−i,t)− ui(fi,t, f−i,t) ≥ −O

(
log t

t

)

. (16b)

Therefore, summing the left-hand sides of (16a), (16b),
with (14) or (15) for all agents i ∈ N yields,

N∑

i=1

(ui(ai,t, f−i,t)− ui(fi,t, f−i,t)− δ) ≥ ε − O

(
log t

t

)

. (17)

Thus, when (17) is substituted into (13), we obtain the desired
lower bound in (9).

The result above implies that the potential function values
will improve with each update of the algorithm in the near-
potential game � if the empirical frequencies are outside an
ε-equilibrium for some ε > Nδ and time t is large enough. For
the standard FP, the same improvement relation holds when we
replace O(log(t)/t2) term with O(1/t2)—see [8, Lemma 5.3].
That is, the rate loss O(log(t)) due to the local estimates trail-
ing behind the actual empirical frequencies (Lemma 1) appears
as a slow down in the improvement of potential function values
in (9).

Since the potential function is bounded within the space of
actions, it cannot increase indefinitely which implies that the
sequence will enter a set of strategies with potential function
values comparable to that of approximate Nash equilibria. We
formalize this intuition in the following result.

Theorem 1: Suppose Assumptions 1-4 hold. Let {ft}t≥1
be the sequence of empirical frequencies generated by
Algorithm 1. Then, for any ε > 0, there exists a time Tε
and δ > 0, such that for all t > Tε , ft ∈ CNδ+ε where CNδ+ε
is defined in (8).

Proof: The proof has two steps. First, we show that the
region 	Nδ+ε′ for some ε > ε′ > 0 is visited infinitely often.
Assume that there exists a long enough time T̂ such that for
t > T̂ , it holds that ft �∈ 	Nδ+ε′ . The difference in poten-
tial function values between consecutive time steps after long
enough time t > T̂ becomes,

u(ft+1)− u(ft) ≥ 1

t + 1

(

Nδ + ε′ − Nδ − O

(
log t

t

))

. (18)

>
ε′

2(t + 1)
> 0. (19)

Further, summing over the consecutive time steps for all t > T̂
provides

lim sup
t→∞

u(ft+1)− u(fT̂) ≥
∞∑

t=T̂+1

ε′

2(t + 1)
. (20)

Since u(·) is bounded (Assumption 4), the left-hand side of
the inequality above has to be finite, while the right-hand side
is not. This contradicts our assumption yielding 	Nδ+ε′ is
infinitely visited by ft for all t > T̂ .

In the second part, we show that if ft ∈ CNδ+ε at a large
enough t, then ft will remain in CNδ+ε . Consider the case that
ft ∈ 	Nδ+ε′ . Observe that ||ft+1 − ft|| = O( 1

t ) as per (4). Thus,
there exists some T ′′ > T̂ and for all t > T ′′ > T̂ such that we
have ft+1 ∈ 	Nδ+ε by Lemma 1 and the Lipschitz continuity
of the mixed extension of the potential function. Next, we
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Fig. 1. DFP in target assignment game with unknown target locations. In the ring network, each agent i �= N shares its information only with agent
i +1, and i = N sends to i = 1. In the star network, there exists a central agent connected to all the other agents. Network weights are set as wi

il,t =
0.75 and wi

jl,t = 0.25/|Ni,t |, ∀j ∈ Ni,t . We generate 20 replications with random initial positions and signals for each network type. Agents’ positions
are sampled from identical and independent normal distributions with mean 0 and variance 0.1 for each axis of the positions. Targets are positioned
around a circle centered at origin with radius 1 with equal distances to each other. (Left) Average estimation error 1

N(N−1)
∑

i∈N
∑

j∈N \{i} ||fit −υ j
it ||

over 20 runs. (Middle) Average distance to Nash equilibrium 1
N

∑
i∈N ||fit − a∗

i || over 20 runs. (Right) Action selections from a single run.

consider the case that ft ∈ CNδ+ε \	Nδ+ε′ . Using (18) and the
definition of CNδ+ε , it holds that

u(ft+1) > u(ft) ≥ min
y∈	Nδ+ε

u(y). (21)

Thus there exists some T ′′ > T̂ such that if ft ∈ CNδ+ε for
t ≥ T ′′, then ft+1 ∈ CNδ+ε .

The following result shows that in the limit empirical
frequencies converge to CNδ .

Corollary 1: Suppose Assumptions 1-4 hold. Let {ft}t≥1 be
generated by Algorithm 1. Then, the empirical frequencies
{ft}t≥0, converge to the set CNδ .

Proof: Consider the set CNδ+1/q for q ∈ Z
+. By Theorem 1,

there exists a time Tq such that for all t > Tq, ft ∈ CNδ+1/q for
any q ∈ Z

+. Lemma 5 states that for any ξ > 0, CNδ+1/q ⊂ Sξ
for some q ∈ Z

+, where Sξ is the ξ > 0 neighborhood of CNδ

(see (26) for a formal definition). Thus, there exists a time Tξ
such that for all t > Tξ , ft ∈ Sξ for any ξ > 0 and some
q ∈ Z

+. From the definition of Sξ , the following holds,

lim sup
t→∞

min
z∈CNδ

||z − ft|| < ξ. (22)

Since, ξ > 0 can be arbitrarily small and ||z− ft|| ≥ 0, we can
conclude that limt→∞ minz∈CNδ ||z − ft|| = 0.

The above corollary states that the joint empirical
frequencies converge to a set of strategies that have poten-
tial values larger than the worst potential value obtained by
an approximate NE strategy. Note that it also implies conver-
gence of DFP to a NE in exact potential games, i.e., when
δ = 0, capturing the convergence results in [4], [15].

Remark 1: While our results show that the empirical
frequencies {ft}t≥1 generated by DFP will be on par with
potential function values of Nδ-NE strategies of the poten-
tial game (CNδ), it is not clear whether the sequence {ft}t≥1
would remain within the neighborhood of a single Nash equi-
librium or visit neighborhoods of multiple Nash equilibria that
belong to the set CNδ . For standard FP, the sequence {ft}t≥1
converges to a neighborhood of a single NE given that any two
Nash equilibria of the game are far enough from each other—
see [8, Th. 5.2]. We conjecture that {ft}t≥1 in DFP will also
converge to a neighborhood of a single NE under the same
assumption.

V. NUMERICAL EXPERIMENTS

We consider a target assignment problem with N = 5
autonomous agents with the objective to cover all K = 5 tar-
gets using minimum effort. We represent this objective with
the following utility function

ui(ai = k, a−i) =
∑

ai∈A ai1a−ik=0
∑

ai∈A aidik
, (23)

where k ∈ A, and 1a−ik=0 ∈ {0, 1} is a binary value that it is
equal to 1 if none of the other agents j ∈ N \{i} select target k,
and otherwise it is equal to 0. The distance vector of agent i is
di = [di1, . . . , dik, . . . , diK] ∈ R

K+, where dik = ||θi−θk|| is the
distance between position vectors of agent i, θi ∈ R

2 and target
k, θk ∈ R

2 in a 2D plane. According to the utility function
above, agent i only receives a positive payoff by selecting
target k, if no other agent selects the target k. In this case, the
payoff agent i receives is inversely proportional to the distance
of the agent to the target selected. Hence, no agent has more
utility by changing its target, if other agents cover remaining
targets. The payoff function ensures that any action profile that
is one-to-one assignment between agents and targets is a NE.

The target positions are unknown. Each agent receives pri-
vate signals ϑ i

kt at each time step t about the position of each
target k. The private signals ϑ i

t = [ϑ i
1, . . . , ϑ

i
K]T for each agent

i come from a multivariate normal distribution with mean
θ = [θ1, . . . , θK]T and covariance matrix σ I, where σ = 0.5
and I ∈ R

K×K is the identity matrix. We assume agents receive
signals up until time τ = 10. At time τ , agent i’s point esti-
mate of target k’s position is given by θ̂k = (1/τ)

∑τ
t=1 ϑ

i
t .

Final time Tf is set to 50. If the beliefs and distances were
identical, the game with payoffs in (23) is a potential game.
The existence of different beliefs and different distances to
targets creates a near-potential game.

The final joint action profile aTf is equal to a pure NE a∗
in all of the replications for both network types validating
Theorem 1 and Corollary 1. Fig. 1(Left) verifies the con-
vergence rate O(log t/t) of estimation error as it goes to 0.
Fig. 1(Middle) shows the average rate of convergence of the
empirical frequencies to a NE of the target assignment game.
Agents learn each others’ empirical frequencies faster in the
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star network. Fig. 1(Right) shows that around Tf /2 = 25
agents reach a NE.

VI. CONCLUSION

We studied the convergence properties of DFP in near-
potential games when the communication network is time-
varying. We showed empirical frequencies of actions converge
to a set of strategies with potential function values that are
large enough compared to approximate Nash equilibria. These
results established that convergence properties of DFP are
identical to that of FP in near-potential games.

APPENDIX

Lemma 3: Let (σ ′, σ ′′) ∈ �AN ×�AN be strategies such
that ||σ ′−σ ′′|| ≤ ξ , for a small enough ξ > 0. If σ ′ ∈ 	α , then
σ ′′ ∈ 	α+β , where 	α and 	α+β are α−NE and α + β−NE
sets with respect to the order given α ≥ 0 and β ≥ 0.

Proof: To define an approximate ε−NE set, let ψ : �AN →
R be a function as follows,

ψ(σ) = − max
i∈N , ai∈A

(ui(ai, σ−i)− ui(σi, σ−i)). (24)

Then, it holds that a strategy profile σ = (σi, σ−i) is an ε−NE,
if and only if ψ(σ) ≥ −ε. By Lipschitz continuity of expected
the utility function (3), the difference ui(ai, σ−i)− ui(σi, σ−i)

is Lipschitz continuous. Using the fact that ψ(σ) is defined
as maximum over finite set of such differences, ψ(σ) is also
Lipschitz continuous. Hence, there exists a Lipschitz constant
Lψ ∈ R

+ such that for any ||σ ′ − σ ′′|| ≤ ξ ≤ β/Lψ , it holds,
|ψ(σ ′)−ψ(σ ′′)| ≤ β. Thus, by the definitions of ψ : �AN →
R and ε−NE in (7), if σ ′ ∈ 	α , then σ ′′ ∈ 	α+β .

We use the notion of an upper semi-continuous correspon-
dence in the next set of results.

Definition 5 (Upper Semi-continuous Correspondence): A
correspondence h : X ⇒ Y is upper semi-continuous, if one
of the following statements hold,

• For any x̄ ∈ X and any open neighborhood V of h(x̄),
there exists a neighborhood U of x̄, such that h(x) ⊂ V ,
and h(x) is a compact set for all x ∈ U.

• Y is compact, and the set, i.e., its graph, {(x, y)|x ∈ X, y ∈
h(x)} is closed.

Lemma 4: Let h : R ⇒ �AN be the correspondence
representing the set of α-NE strategies, i.e.,

h(α) = 	α = {σ ∈ �AN |ψ(σ) ≥ −α} (25)

where ψ is defined in (24). Then, the correspondence h : R ⇒
�AN is upper semi-continuous.

Proof: Since ψ is a (Lipschitz) continuous function from
Lemma 3, the set h(α) is closed by [8]. As a result, the graph
of the correspondence h is closed. Hence, 	α is compact as
	α ⊆ �AN is bounded, which satisfies Definition 5.

Lemma 5: Let CNδ and CNδ+1/q for q ∈ Z
+ be the closed

sets defined as in (8). Further, we define the set Sξ for ξ > 0
as follows,

Sξ := {σ ∈ �AN | min
y∈CNδ

||σ − y|| < ξ}. (26)

Then, for any ξ > 0 and for some q ∈ Z
+, it holds that

CNδ+1/q ⊂ Sξ .
Proof: Using the properties of upper semi-continuity

(Definition 5), there exists ζ > 0 such that the set {σ ∈
�AN |u(σ ) ≥ miny∈	Nδ u(y)−ζ } is a subset of ξ -neighborhood
of the set CNδ , i.e., {σ ∈ �AN | u(σ ) ≥ miny∈	Nδ u(y)− ζ } ⊆
Sξ . Next, since the correspondence h (25) is upper semi-
continuous by Lemma 4, for any ξ ′ > 0 there exists a large
enough q such that 	Nδ+1/q is contained in ξ ′ neighborhood
of 	Nδ . That is, for any ξ ′ > 0, for any point z ∈ 	Nδ+1/q,
there exists y ∈ 	Nδ such that ||z− y|| ≤ ξ ′. Given that poten-
tial function u is Lipschitz continuous with Lipschitz constant
L, and defining ζ/L ≥ ξ ′ > 0, the following holds for large
enough q,

min
z∈	Nδ+1/q

u(z) ≥ min
y∈	Nδ

u(y)− ζ. (27)

Hence, for any z ∈ CNδ+1/q, the inequality (27) is satisfied.
Thus, for large enough q and any z ∈ CNδ+1/q, it also holds
z ∈ Sξ and CNδ+1/q ⊂ Sξ .
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