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Abstract—Wireless local area networks (WLANs) are a key
component of the telecommunications infrastructure in our soci-
ety. While many solutions have been produced to improve their
downlink throughput, the techniques for enhancing their uplink
throughput remain limited. The stagnation can be attributed
to the lack of fine-grained inter-node synchronization due to
the hardware limitation of most devices. In this paper, we
present an uplink distributed multiple-input-and-multiple-output
scheme (termed UD-MIMO) for WLANSs to enable concurrent
uplink transmission in the absence of fine-grained inter-node
synchronization. The enabling technique behind UD-MIMO is a
practical solution to decoding uplink packets from asynchronous
users. UD-MIMO makes it possible for WLANSs to significantly
improve their uplink throughput while not requiring tight inter-
node synchronization. We have built a prototype of UD-MIMO
on a wireless testbed and demonstrate its compatibility with
commercial off-the-shelf Atheros 802.11 client devices (with
modified Linux driver). Our experimental results show that, for
a WLAN with 8 APs in a conference room, UD-MIMO offers
3.4x throughput compared to interference-avoidance approach.

I. INTRODUCTION

The proliferation of wireless devices under the driving
forces from emerging concepts such as smart cities, intelligent
transportation systems, and the Internet of Things has led to
unprecedented demands for wireless services. Cisco predicts
that the wireless demands would double in the next two years
and reach 120 exabytes per month by 2021 [1]. As a key
component of the telecommunications infrastructure in our
society, wireless local area networks (WLANs) carry even
more data traffic for mobile devices than cellular networks.
The predicament facing WLANS is that the increase of their
capacity cannot catch up the growth of wireless demands. Such
a predicament becomes particularly daunting in dense wireless
environments such as conference rooms, football stadiums,
cinemas, and airports.

A straightforward idea to increase the capacity of WLANs
is to deploy more access points (APs) to enrich the service
resources for users. This approach, however, does not work in
dense wireless environments. The capacity of existing WLANSs
does not scale with the number of APs. This is because the
existing WLANSs use carrier sense multiple access (CSMA)
protocol to manage the interference. Such an interference-
avoidance protocol only allows one AP to access the spectrum
in a collision domain, no matter how many APs are deployed
in this area. Another idea to increase the capacity of WLANSs
is to enhance AP’s capability [2]. Given the advancement of
multiple-input-multiple-output (MIMO) technology in the past
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Fig. 1: Illustrating distributed MIMO in a WLAN.

decades [3], it is common nowadays that a commercial AP
(Wi-Fi router) is equipped with multiple antennas. However,
the advancement of individual AP cannot fundamentally solve
the network capacity problem because the number of antennas
on an AP is limited by its physical size.

Distributed MIMO has been widely regarded as a promising
technique to improve the capacity of WLANSs. Given the fact
that APs are connected via high-speed Ethernet cables in
some scenarios, all the APs can jointly process the signals
from/to multiple users. With a proper design, the APs can
serve many users simultaneously instead of being limited by
their co-channel interference. Consider the WLAN in Fig. 1
for example. If the network uses CSMA-based interference-
avoidance technique, only one AP can access the spectrum
at a time. In contrast, if the APs are jointly processing the
signals, then the WLAN resembles a 4x4 multi-user MIMO
(MU-MIMO) system, making it possible for the APs to serve
the four users simultaneously.

While the throughput gain of distributed MIMO is attractive,
the realization of distributed MIMO in practical WLANS is
challenging. The challenge lies in the clock/time synchroniza-
tion among the network devices (AP and STAs). Despite the
APs being connected via Ethernet cables, those connections
are suitable for data packet transmission, but not suitable
for clock/time synchronization. As such, synchronizing the
network devices for distributed MIMO is not a trivial problem.
Although some system papers have studied the synchroniza-
tion issues to enable distributed MIMO for WLANSs, most
of them are focused on downlink transmission (see, e.g.,
[4, 5, 6, 7]). Very limited progress has been made so far
in the design of a practical distributed MIMO scheme for
concurrent uplink transmission. One may argue that most
traffic in WLANS is carried by downlink, and thus the uplink
capacity is not demanding. This may not be true in the
next decades, given the increasing popularity of cloud-based




applications that require frequent data transmission from user
devices to cloud [8].

In this paper, we present UD-MIMO, an uplink distributed
MIMO scheme for WLANs. We consider a WLAN as shown
in Fig. 1 and focus on the scenario of busy wireless environ-
ments such as conference rooms, enterprises, hotels, shopping
malls, and airports. We assume that multiple users send their
packets to the APs simultaneously. Upon reception of the
mixed signals, the APs send the received signals to an AP
processor via Ethernet connection, which typically has high
speed and low latency. At the AP processor, a signal detection
technique is employed to decode the data packets. In such a
network, if the devices are perfectly synchronized, then UD-
MIMO would be identical to MU-MIMO, and conventional
multi-user detection (MUD) methods such as zero-forcing
(ZF) and minimum mean square error (MMSE) would be
able to decode signals at the AP processor. But in reality,
the network devices are driven by independent oscillators.
Consequently, they are neither time-aligned nor frequency-
synchronized, making the signal detection problem particularly
challenging.

One natural approach to solving the signal detection prob-
lem is by designing a sophisticated protocol to synchronize
the network devices. This approach, however, has two issues.
First, the time synchronization among stations (STAs, a.k.a.
user devices) is not easy to achieve. In order for the APs to
decode the packets, the time misalignment of STAs’ trans-
missions should be less than the cyclic prefix (CP) of an
orthogonal frequency division multiplexing (OFDM) symbol,
which is 800 ns in 802.11 networks. Given STAs’ mobility,
achieving such a fine-grained time synchronization among all
the STAs will incur a large amount of airtime overhead. This
issue was reflected by IEEE 802.11ac standard [9], which
supports downlink MU-MIMO but does not supports uplink
MU-MIMO. Second, the time and frequency synchronizations
of STA-side transmissions require hardware modification of
the user devices. Doing so will make UD-MIMO not com-
patible with already-existing 802.11 devices. For these two
reasons, synchronizing the STAs for uplink transmissions is
not a good approach to pursue.

We, therefore, explore an alternative approach: Instead of
synchronizing the STAs, we live with their asynchrony and
tackle the issue on the AP side. Specifically, we develop a
new MUD method that can decode the asynchronous data
packets from multiple STAs. Through sophisticated signal
processing functions, the new MUD method can decode the
data packet from each STA by treating the packets from
other STAs as interference. As such, it does not require
synchronization among the STAs. This new MUD method
not only removes the need for hardware modification of user
devices, it also eliminates the huge airtime overhead induced
by synchronization protocols.

We have built a prototype of UD-MIMO and evaluated
its performance on two wireless testbeds: (i) The APs are
custom-built using USRP devices, and the STAs are com-
mercial Atheros 802.11 dongles with modified drivers. (ii)

Both APs and STAs are custom-built using USRP devices.
Based on our experimental results, we have the following
observations: (i) UD-MIMO is compatible with commercial
off-the-shelf Atheros 802.11 devices (with modified Linux
driver). (ii) For a WLAN with 8 APs deployed in a con-
ference room, UD-MIMO offers 3.4x uplink throughput
compared to CSMA-based interference-avoidance approach.
Meanwhile, UD-MIMO achieves more than 82% throughput
of MU-MIMO, where all the APs and STAs are perfectly
synchronized via external clocks.

II. RELATED WORK

Synchronization in Distributed MIMO: [4, 5, 6] are the
most relevant papers to this work. In [4], a scheme called
JMB (or MegaMIMO) was proposed to enable downlink dis-
tributed MIMO in WLAN:S. Its main efforts focus on realizing
phase and time synchronizations among independent APs so
that a joint beamforming technique can be used to enable
downlink MU-MIMO transmission. A similar idea called
Airsync was proposed in [5] to address timing and carrier
phase synchronizations for distributed downlink MU-MIMO
transmission. One may wonder if the schemes proposed in [4]
and [5] can be used to enable UD-MIMO as well. Actually, it
cannot. Because doing so will require hardware modification
of 802.11 client devices. In contrast, UD-MIMO not only
maintains compatibility with 802.11 devices but also reduces
the overhead (see Fig. 2 in this paper and Fig. 3 in [4]).

In [6], a layering protocol called Chorus was proposed to
achieve network-wide clock and time synchronization for LTE
systems. However, Chorus relies on extra radio resource blocks
and new hardware to update frequency shift and phase errors.
It is therefore considered an expensive solution. Apparently,
UD-MIMO takes a completely different approach.
Synchronization in Wireless Networks: A large body of
work (see, e.g., [10, 11, 12, 13, 14, 15]) studied time and
frequency synchronizations in wireless networks. For example,
[10] proposed a distributed architecture called SourceSync to
exploit the diversity of transmitters. Particularly, a specific
protocol was proposed to meet the requirements of time
synchronization on the transmitter side. Since SourceSync was
dedicatedly devised for exploiting diversity, it cannot apply
to distributed MIMO for spatial multiplexing. [11] analyzed
the time and frequency synchronizations in large-sized dense
wireless networks. However, these results cannot directly be
applied to distributed MIMO systems, either because they
are limited to theoretical analysis or because they entail an
overwhelmingly large amount of overhead.

Performance of Distributed MIMO: [16] presented Sign-
post, a scalable MU-MIMO scheme without CSI feedback.
[7] presented NEMOX, a hierarchical network architecture to
achieve the scalability of distributed MIMO. [17] studied the
performance of different precoding techniques in downlink
distributed MIMO systems. However, these efforts focused
on the practical realization of distributed MIMO but did not
take into account the synchronization issues. Our work is
orthogonal to this research line and complements these efforts.



III. UD-MIMO: AN UPLINK DISTRIBUTED MIMO SCHEME

We consider a dense WLAN as shown in Fig. 1, which
comprises M single-antenna APs, IV single-antenna STAs, and
an AP processor. Such a network could be a Wi-Fi network
deployed in conference rooms, shopping malls, or airports.
For this network, we have the following assumptions: (i)
The APs are connected via a high-speed wired connection,
which is only good for exchange data packets but not suitable
for clock synchronization. This is true in reality. (ii) The
STAs in the network could be incumbent 802.11a/g/n/ac user
devices. While their software (firmware and driver) can be
upgraded, their hardware (e.g., PLL circuit and baseband
signal processing at the PHY layer) cannot be upgraded.

The objective of our design is to enable concurrent uplink
transmissions in such a WLAN while preserving its com-
patibility with incumbent 802.11 client devices (STAs). As
the performance of conventional WLANSs is limited by co-
channel interference, the success of UD-MIMO will signif-
icantly improve the network uplink throughput. For ease of
exposition, we consider the network where each device has
a single antenna. In the end, we shall see that UD-MIMO
can also apply to the networks where devices have multiple
antennas.

A. Our Approach

Given that the difference between UD-MIMO and point-to-
point MIMO lies in the synchronizations, an intuitive approach
to enable UD-MIMO is by designing a sophisticated mecha-
nism to achieve the necessary synchronizations on both AP and
STA sides. This approach, however, cannot maintain backward
compatibility with existing 802.11 devices (STAs). This is
because synchronizing the STAs requires the modification of
their hardware. The estimation and compensation of carrier
frequency offsets can only be done through baseband signal
processing modules, which are hard-coded in ASIC chips
and cannot be modified by upgrading the firmware or driver.
Hence, synchronization operations cannot be conducted by
existing 802.11 devices, and such an approach cannot maintain
the backward compatibility of the network infrastructure. We
propose a new approach for UD-MIMO. In our approach, the
APs take full responsibility for addressing the synchronization
issues, and the STAs do not need to perform any synchroniza-
tion operations.

B. UD-MIMO Protocol

Fig. 2 shows the protocol for UD-MIMO transmission. It
comprises the following three steps:

o Step 1: Trigger frame broadcast. The lead AP, which
is designated by the AP processor, broadcasts a trigger
frame (packet). This packet serves the following two
purposes. i) Announcing UD-MIMO transmission: The
trigger packet includes the addresses of the slave APs
and STAs that are involved in this UD-MIMO. Upon
reception of this packet, the slave APs and the STAs
are notified of their participation in the UD-MIMO trans-
mission. ii) Providing reference packet for the slave APs
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STA Uplink data transmission -

: L}
STA [ Uplink data transmission >
- time

Transmission
misalignment

Fig. 2: Proposed protocol for UD-MIMO.
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Fig. 3: An aggregate frame for uplink transmission.

to estimate their carrier frequency offsets: Based on the
received trigger frame from the lead AP, each slave AP
estimates the carrier frequency offset between itself and
the lead AP. The estimated carrier frequency offset is
recorded at the slave AP and will be used in Step 2.

o Step 2: Uplink data transmission. Upon reception of
the trigger frame, the STAs prepare their data packets
and send radio signals into the air simultaneously. More
specifically, each STA uses an aggregate frame format in
Fig. 3 for the uplink data transmission. Note that, since
the STAs operate independently, their transmissions will
not exactly start at the same time. A time misalignment
may exist, as illustrated in Fig. 2. On the AP side,
each AP receives mixed radio signals from the STAs.
Each slave AP compensates the carrier frequency offset
between itself and the lead AP using the frequency offset
value estimated in Step 1. Then, all the APs send their
signal streams to the AP processor.

o Step 3: Acknowledgment (ACK). Upon the decoding
results, the lead AP broadcasts an ACK/NACK packet to
the STAs. The ACK/NACK packet has the information
of which packets from which STAs were not successfully
decoded. Based on this information, each STA prepares
a retransmission, if necessary, in the next round.

A practical consideration is whether the trigger frame from
the lead AP is sufficient for the slave APs to synchronize
their carrier frequency in the time period of uplink data
transmission. To address this concern, we study the stability
of frequency synchronization among the lead and slave APs.
Fig. 4 shows the measured carrier frequency offsets at seven
slave APs and the residual carrier frequency offsets after
the compensation of frequency offsets. It is evident that the
residual carrier frequency offsets are less than 180 Hz in 4 ms.
This accuracy is sufficient for concurrent data transmission.

It is evident that the proposed protocol is simple and has
low airtime overhead. But a big question is yet to be answered:
how can the AP processor decode the data packets from the
STAs? We focus on this question in the next section.
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IV. PACKET DETECTION

At the AP processor, decoding the data packets faces the
following two challenges. First, since the STAs are driven by
independent clocks, their carrier frequencies are not exactly the
same. Consequently, from the APs’ perspective, the received
signals from different STAs have different carrier frequency
offsets, which must be compensated for signal detection. How-
ever, it remains unknown how to handle such heterogeneous
carrier frequency offsets at a MIMO receiver. Second, since
the STAs operate independently, their uplink data packets are
unlikely to be aligned in the time domain. Moreover, for
802.11 devices, the misalignment of data packets is hardly
confined within the duration of OFDM’s CP (800 ns). Such
a time misalignment makes it hard for the AP processor to
decode the data packets.

A. Overview

To address the STA-side asynchrony issue, we propose a
new packet detection method for the AP processor. This new
detection method lives with the STA-side asynchrony and tack-
les the asynchrony issue through baseband signal processing
on the AP side (i.e., at the AP processor). Fig. 5 shows the
schematic diagram. The AP processor continuously receives
the signal streams from the APs. From the signal streams,
it extracts N signal frames, each of which corresponds to a
packet from one STA. Then, it decodes each of the N signal
frames separately, as illustrated in Fig. 5.

Consider one of the N signal frames, for example. Suppose
that it corresponds to the data packet from STA ¢. We note
that this signal frame includes not only the desired signal
from STA ¢ but also the undesired signals (interference) from
other STAs. To decode this signal frame, the AP processor
first performs carrier frequency correction. This module will
estimate and compensate the carrier frequency offset between
STA ¢ and the APs (assuming the APs have been perfectly
synchronized in Step 1 of our protocol). Then, the AP pro-
cessor converts the signal to the frequency domain for signal
detection. When performing signal detection, the AP processor
treats the signals from other STAs (all the STAs except STA ¢)
as unknown interference and constructs spatial filters to cancel
the interference and equalize the channel distortion.
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frequency F cancellation and )
M correction T signal recovery

Signal stream
from AP 1 1
Frame

|
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Fig. 5: The schematic diagram of our packet detection method.
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B. Frame Extraction

To extract signal frames from the signal streams, the AP
processor employs cross-correlation. Specifically, the AP pro-
cessor correlates each signal stream with a local copy of
L-LTF. If the normalized correlation value is greater than a
predefined correlation threshold (e.g., 0.4), then it is regarded
as the start of a signal frame. Fig. 6 illustrates the extraction
procedure when the network has one STA, and Fig. 7 illustrates
the correlation peaks when the network has three STAs. When
there are multiple correlation peaks, their corresponding signal
frames are matched in order at each AP (see Fig. 7 as an
example).

It is worth pointing out that the cross-correlation is con-
ducted in the presence of interference and noise. The corre-
lation value is therefore dependent on the strength of inter-
ference and the noise power. Hence, the correlation threshold
should be meticulously chosen. A small threshold may lead
to a false positive, and a large threshold may lead to a false
negative. In our experiments, we set the threshold to 0.4 and
find that it works well for the following two reasons: (i)
Cross-correlation itself is resilient to interference. L-LTF has
160 samples and appears to be robust against interference.
(i1) False negatives are acceptable for packet detection. A
small correlation value (below the threshold) indicates that
the desired signal is weak and the interference is strong. The
exclusion of this stream will actually improve the performance
of packet detection, provided that the spatial DoF is sufficient
for packet detection.

C. Carrier Frequency Correction

Referring to Fig. 5, let us consider one of the N signal
frames. Suppose it corresponds to the data packet from STA 3.
To decode this signal frame, the AP processor first performs
carrier frequency correction. In the presence of inter-user
(inter-STA) interference, conventional methods do not work
because they are susceptible to interference. To tackle this
issue, we propose a new method, which comprises two steps:



(i) signal projection, and (ii) CP-based correlation. Denote
y(n) € CM*1 1 < n < N,, as the time-domain signal
frame, where Ng is the number of samples in a frame. We
first compute the eigenvectors as follows:

N,
[u d =eig () y(n)y(n)") (1)
n=1
where eig(-) is eigendecomposition operator, (-)" is the Her-

mitian transpose operator, u € CM*M js the eigenvectors,
and d € CM*M s diagonal matrix of eigenvalues. Then,
we project the signals into the eigenvector space by letting
y(n) = uMy(n), where §(n) € C®*! and 1 < n < N,. Each
row of ¥(n) can be used to estimate the carrier frequency
offset, and we should pick up the best one (the one with
highest signal-to-interference ratio). To do so, we perform
the cross correlation again on each row of ¥(n) and choose
the one with the maximum cross correlation value for carrier
frequency offset estimation. Denote ,,(n) as the row of ¥(n)
that has the maximum cross correlation value. Denote éi as the
estimated phase offset per sample between the APs and STA
i. Then we have 6; = (1/64) arg (Y_,,cc Tm (n)Jm (n+64)*),
where arg(-) is the angle of a complex number, (-)* is complex
conjugate operator, C is the set of samples in the CP of all
OFDM symbols, and 64 is the distance between CP and its
original copy in OFDM symbol.

After obtaining 6;, we then compensate the carrier fre-
quency offset by letting y(n) = y(n)-e/"%, 1 < n < N,. The
resultant signal frame y(n) is then sent to the FFT module,
as shown in Fig. 5.

D. Interference Cancellation and Signal Recovery

Problem Formulation: After correcting the carrier frequency
offset, the FFT module in Fig. 5 converts the signal frame
from the time domain to the frequency domain. We let Y; (I, k)
denote the output signals from the FFT module, where j €

{1,2,---, M} is the index of received signal streams (APs),
I €{1,2,---,L} is the index of OFDM symbols, and k €
{1,2,---, K} is the index of OFDM subcarriers. Assume that

the signals in a frame experience block channel fading. Then,
the signal transfer function can be written as:

Y;(1,k) = Hyi( + > Hyw (k)X (L k) + W;(1, k),
’EN R v
desired 51gnal noise
unknown interference
2

where H;(k) is the channel between AP j and STA i, X; (I, k)
is the original signal from STA i, X; (I, k) is the interfering
signal from STA 4/, and N is the set of STAs.

For the transfer function in (2), we have the following
three remarks. First, this transfer function requires carrier
frequency synchronization between STA ¢ and the APs. But
it does not require phase synchronization between STAs and
APs. Actually, the phase offset between STA ¢ and AP j is
considered as a part of H;;(k). Second, X;(l, k) in (2) is the
original signal transmitted by STA 4. But X; (I, k) is not the

STAi’s
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Fig. 8: (a) Transmitted signal and interference at STAs. (b) Re-
ceived signal and interference at the APs.
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Fig. 9: Tlustrating set Q(k) for filter construction.

original signal transmitted by STA ¢’ € N'/{i}. This is because
X (1, k) is completely distorted by the carrier frequency offset
and time misalignment between STA ¢’ and the APs. It is
considered unknown interference in this transfer function.
Third, since X,/ (I, k) is an unknown interfering signal, it is
hard to estimate the channel H;/ (k). This is the core challenge
in signal recovery.

Our Detection Method: Based on (2), if we know all the
channels, then we can construct a spatial filter G(k) =
(G (), Ga(k), -+, Gar (k)] so that Y70, G (k) Hyi(k) = 1
and Z]Ai1 G,(k)H iy (k) = 0, ¢/ € N/{i}. Such a spatial
filter can cancel the interference and recover the desired signal.
This method is actually the well-known zero-forcing MIMO
detector. By taking into account the effect of noise, the zero-
forcing detector can be elevated to an MMSE detector.

Now the question is how to construct the spatial filter G (k)
in the absence of channel knowledge. To address this question,
we propose a training-based method. Consider the signal
frame transmission from STA ¢ to the APs. As illustrated in
Fig. 8(a), we assume that (i) STA ¢’s preamble is interfered by
unknown signals from other STAs; and (ii) STA ¢’s preamble
is independent of its interference. Then, we focus on the
received signal frame at the AP processor, which is illustrated
in Fig. 8(b). The signal frame is composed of two parts:
interfered preamble and interfered data. Since the preamble
is known at the AP processor a priori, we use the interfered
preamble in Fig. 8(b) as the training sequence to construct the
spatial filter for data detection. Specifically, we construct the
spatial filter as follows:

[ZYlk

(LK) €Q(K) (Lk

[ZYlk ],

NeQ(k) 3)

where []* is Moore-Penrose inverse (pseudo-inverse).
Y (l,k) € CM*1 s the frequency-domain signal vector, i.e.,
Y, k)= [Yi(l,k),Ya(l, k), -, Yar(l,k)]T. Q(k) is a set of
reference symbols in the preamble. Q(k) can be empirically
set. In our experiments, we let Q(k) = {1<I < 4,k — 1<k'<
k+ 1}, as shown in Fig. 9.

After constructing the spatial filter, we then use it to estimate
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Fig. 10: (a) Transmission misalignment is greater than the time
duration of preamble. (b) Transmission misalignment is less
than the time duration of CP (guard interval).

the original signal by:

M
Xil k) = Gy(k)"Y5(0, k), 4)

j=1

where X; (1, k) is the estimated signal from STA i and G (k)
is the jth entry in vector (filter) G(k).

Discussions: We have the following two remarks on the
proposed packet detection method. First, the proposed method
does not require channel knowledge to decode the packet,
as evidenced by (3) and (4). Instead, it uses the interfered
preamble as the training sequence to construct a filter, which
is then used to cancel the interference and equalize the channel
distortion for signal recovery. Second, the proposed detection
method is a heuristic. We will resort to experiments to evaluate
its performance. As we will see in Section VI-A, this detection
method yields surprisingly superior performance. With this
detection method, the performance of UD-MIMO is close to
that of MU-MIMO in all tested scenarios.

V. COMPATIBILITY WITH 802.11 CLIENT DEVICES

In this section, we first point out the practical issues when
UD-MIMO works with incumbent off-the-shelf Wi-Fi client
devices and then propose a solution to these issues.
Practical Issues: UD-MIMO heavily relies on the new packet
detection method to tame the asynchrony among the STAs.
However, the packet detection method was proposed under the
following two assumptions: (i) Referring to Fig. 8(a), STA
i’s preamble is interfered by the signals from other STAs.
(ii) Referring to Fig. 8(a) again, STA ¢’s preamble is linearly
independent of the interfering signals from other STAs. To see
why these two assumptions are mandatory, let us consider the
examples in Fig. 10.

In Fig. 10(a), the transmission misalignment of the two
STAs is greater than the time duration of the preamble. In
this case, STA 1’s first frame cannot be decoded at the AP
processor. This is because its preamble is not interfered by the
signal from STA 2. As a result, the spatial filter constructed
based on this preamble cannot cancel the interference from
STA 2. For STA 1’s second frame, it can be decoded at the
AP processor because its preamble is interfered by the signal
from STA 2. In contrast, for STA 2’s two frames, both of them
can be decoded at the AP processor because their preambles
are interfered by the signal from STA 1.

In Fig. 10(b), the transmission misalignment of the two
STAs is less than the time duration of CP (guard interval).

Data | Preamble |

Data | 3

Dummy packet—|
STA 1 Preamblel
-Dummy packet
STA 2 Preamblel

|
|
|
| |

Dummy packet:

- -
Transmission

misalignment

Fig. 11: Insert a different-length dummy packet at each STA
to enable UD-MIMO transmission.

In this case, all of the four frames (two for STA 1 and two
for STA 2) cannot be decoded at the AP processor. This is
because their preambles are interfered by the same interfer-
ence. From the AP processor’s perspective, it has no way to
differentiate the signal from STA 1 and that from STA 2. The
spatial filter constructed based on the interfered preamble can
neither cancel interference nor equalize the channel distortion.
Therefore, all four frames cannot be decoded.

Such cases are likely to occur in practice. In Wi-Fi networks,
the preamble is 16 microseconds, and the CP is 0.8 microsec-
onds for long guard interval option and 0.4 microseconds for
short guard interval option. Suppose that the synchronization
error achieved by the timing synchronization function (TSF)
specified in IEEE 802.11 is uniformly distributed in [0, 20]
microseconds [18]. Then, the probability of case 1 is about
20%, and the probability of case 2 is 4% (or 2% for short
guard interval option). Collectively, the probability of these
two cases is 24%. Therefore, properly handling these two cases
is imperative towards the real application of UD-MIMO.
Our Solution: To fulfill those two assumptions in the presence
of STAs’ transmission misalignment, our solution is simple.
We insert a dummy packet at the beginning of uplink transmis-
sion at each STA, as illustrated in Fig. 11. By properly setting
the length of the dummy packet, the preamble of each data
packet will meet those two requirements. To determine the
length of the dummy packet at each STA, let us again assume
that the transmission misalignment is within 20 microseconds
[18]. Then, we set the length of the dummy packet at STA ¢
to 7t OFDM symbols (1 < ¢ < N), including both preamble
and data.

For the proposed solution, three remarks are in order.

Remark 1: To fulfill those two assumptions, the preambles
from different STAs can partially overlap with each other. For
example, the L-STF from one STA can overlap with the L-STF
from another STA. In such a case, the AP processor can still
decode the packets. Taking this fact into consideration may
help reduce the length of dummy packets at the STAs.

Remark 2: Apparently, the proposed solution entails ad-
ditional airtime overhead to enable UD-MIMO transmission.
Further, the overhead slightly increases with the number of
STAs. This issue can be alleviated by aggregating more
packets (signal frames) in the uplink transmission. Since the
channel coherence time is long enough in WLANS, an aggre-
gate frame can accommodate hundreds of OFDM symbols.
Then, the amortized overhead is acceptable in practice.



Remark 3: Since the dummy packet is a normal packet,
no hardware modification is needed to insert the dummy
packet for a commercial Wi-Fi client device. Rather, it can be
implemented through modifying a Wi-Fi device’s driver. The
length of the dummy packet can be specified in the trigger
frame by the lead AP. On the AP side, the AP processor will
automatically drop the dummy packet, either because it cannot
be decoded or it does not have necessary MAC information. In
either case, the dummy packet will not affect the upper-layer
applications.

VI. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the
performance of UD-MIMO on the two wireless testbeds.

A. Implementation and Experimental Setup

We have built two testbeds to evaluate the performance of
UD-MIMO in real wireless environments.

802.11 Wi-Fi Dongle Testbed: The purpose of this testbed
is to validate the practicality of UD-MIMO as well as its
compatibility with commercial off-the-shelf Wi-Fi devices.

For the STAs, we use Wi-Fi dongles (Alfa AWUSO36NHA
Wireless USB Adapters), which are built on Qualcomm
Atheros AR9271 chipset [19] and support IEEE 802.11b/g/n.
We modify its firmware (modwifi-ath9k—-htc in [20]) to
disable carrier sense, RTS/CTS, ACK, set SIFS/AIFS to zero,
and insert a dummy packet for UD-MIMO. For simplicity,
we fix the MCS index to 2, which corresponds to QPSK
modulation, 3/4 coding rate, and 18 Mbps data rate. While
we use this specific modulation and coding scheme (MCS),
UD-MIMO works with other MCS as well. We set channel
bandwidth to 20 MHz and guard interval (OFDM CP) to 800
ns. The transmit power is fixed to 17 dBm, and the carrier
frequency is set to 2.427 GHz (channel 4).

For the APs, we implement them using a set of USRP N210
devices [21]. Each USRP N210 device is connected to a D-
Link SmartPro Switch via 1Gbps Ethernet RJ45 Cord, and
the switch is connected to a computer via 10Gbps SFP+ DAC
Cable. A software suite is developed using C++ and deployed
at the computer to implement the protocol (see Fig. 2) and
process the baseband signals. The output of our software
suite is estimated signals from the STAs. Post-processing
modules (e.g., deinterleaving, channel decoding, descrambling,
and decryption) are not implemented.

USRP Testbed: The purpose of this testbed is to quantify
the performance gap between UD-MIMO and MU-MIMO in
the same scenarios. In this testbed, both APs and STAs are
custom-built using USRP N210 devices. As such, we have full
control for both APs and STAs. To measure the performance
of MU-MIMO, we synchronize both APs and STAs using
external clocks (Ettus’ Octoclock CDA-2990G [22]). For ease
of experimentation, we set the sampling rate to 5 Msps. Other
parameters are the same as the 802.11 testbed.

Experimental Setup: Fig. 12 shows our experimental setup
in a large conference room, where 8 APs and N STAs are
deployed. The 8 APs are placed at the locations marked by
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Fig. 12: A conference room for UD-MIMO evaluation.
TABLE I: EVM specification in IEEE 802.11ac standards [9].

EVM (dB) ((inf -5) [[-5 -10) |[-10 -13) [[-13 -16) [[-16 -19) [[-19 -22) [[-22 -25) |[-25 -27) [[-27 -30) [[-30 -32) | [-32 -inf)

Modulation | N/A |BPSK | QPSK | QPSK [16QAM [16QAM [64QAM [64QAM [64QAM P356QAM 56QAM

Coding rate | N/A 172 172 3/4 172 3/4 2/3 3/4 516 3/4 516

~(EVM) 0 0.5 1 1.5 2 3 4 4.5 5 6 20/3

solid boxes, and one of them is selected as lead AP. The 8
APs are connected to a computer via a 1/10 Gbps Ethernet
switch. A set of spots (small circles in the figure) are marked
out for the possible locations for the N STAs.

B. Comparison Baseline and Performance Metrics

Comparison Baseline: We use MU-MIMO as the comparison
baseline to evaluate the performance of UD-MIMO. MU-
MIMO serves as an upper bound for UD-MIMO. We quantify
the performance gap between UD-MIMO and MU-MIMO. In
MU-MIMO, all APs are synchronized via external clocks, and
all STAs are synchronized via external clocks.

Performance Metrics: We consider two metrics. The first
one is error vector mafnitude (EVM), which is defined by:

w2
EVM (dB) = 10log,, %

signal at STA and X is the estimated signal at AP. The
second one is data rate, which is calculated by r = % X
b x v(EVM) Mbps, where 48 is the number of subcarriers
used for payload in an OFDM symbol, 80 is the length of
one OFDM symbol (including CP), b is the signal sampling
rate (in Msps), and v(EVM) is the average number of bits
carried by one symbol and its values are given in Table I. In
our experiments, we use b = 20 for the 802.11 testbed and

b = 5 for the USRP testbed.

), where X is the original

C. 802.11 Wi-Fi Dongle Testbed

On this testbed, we measure the uplink data rate per STA in
two schemes: CSMA (interference avoidance) and UD-MIMO.
CSMA: In conventional Wi-Fi networks, only one Wi-Fi
dongle can be allowed to communicate with one AP in a time
slot. As such, we consider four dongles in four different time
slots. In the ith time slot, dongle ¢ placed at location d; sends
data packet to the lead AP, 1 <1 < 4.

Since each time slot has only one active dongle, there is
no interference in this case. Fig. 13 plots the demodulated
signal at the lead AP in the four time slots. Specifically, the
measured EVMs for the four dongles are —18.7 dB, —21.9 dB,
—26.5 dB, —20.4 dB, respectively. We then extrapolate the
data rate based on the measured EVM values. Since each
dongle uses one-fourth of time resources for data transmission,
the data rate should be divided by four in the calculation.
Therefore, the calculated data rate is 6.0 Mbps for dongle 1,
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Fig. 15: Performance of the CSMA (interference-free) scheme.

9.0 Mbps for dongle 2, 13.5 Mbps for dongle 3, 9.0 Mbps
for dongle 4. Collectively, the total throughput achieved by
CSMA is 37.5 Mbps.

UD-MIMO: Using UD-MIMO, we let the 8 APs serve 4 Wi-
Fi dongles simultaneously in the uplink. The 4 dongles are
placed at dy, ds, ds3, and d4 in Fig. 12. The received signals
at the 8 APs are jointly decoded at the computer. Fig. 14
shows the constellation of the decoded signals. As shown in
the figure, the measured EVMs are —19.7 dB, —16.1 dB,
—18.4 dB, and—21.4 dB, respectively. The calculated data
rates are 36 Mbps, 24 Mbps, 24 Mbps, and 36 Mbps, re-
spectively. Collectively, the total uplink throughput achieved
by UD-MIMO is 120 Mbps.

Observations: Based on the above experimental results, we
have the following observations. First, UD-MIMO can serve
multiple commercial off-the-shelf Wi-Fi client devices si-
multaneously in real wireless environments. This indicates
that UD-MIMO is compatible with incumbent Wi-Fi client
devices. Second, compared to conventional CSMA-based Wi-
Fi networks, UD-MIMO can improve uplink throughput sig-
nificantly. For the above case (8 APs and 4 dongles), UD-
MIMO offers 3.2x throughput gain compared to CSMA.

D. USRP Testbed

On the USRP testbed, we measure the performance of
UD-MIMO and MU-MIMO in the same scenarios and quan-
tify their performance gap.

CSMA: This is an interference-free case. The interference is
avoided in the time domain by assigning different STAs into
different time slots. The STAs send their packets to the lead
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Fig. 16: Measured EVM of the demodulated uplink signal
from each of the N STAs.
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Fig. 17: The data rate achieved by each of the N STAs.

AP using a round-robin scheduler. We measure the EVM of
the decoded signal for each STA at the lead AP. Fig. 15(a)
plots the distribution of our measured EVM when the STA is
placed throughout all the locations (small circles) in Fig. 12.
Fig. 15(b) plots the distribution of our calculated data rate.
Since the AP serves a single STA in each time slot, the average
uplink throughput achieved by CSMA is 9.3 Mbps.
UD-MIMO versus MU-MIMO: In UD-MIMO, we let the
8 APs serve N STAs simultaneously in the uplink, where
1 < N <6. In each instance, we place the N STAs at NV
different locations (the small circles) in Fig. 12. At the com-
puter, we measure the EVM of demodulated uplink signal from
each of the N STAs. We then repeat the same measurements
for MU-MIMO, for which we synchronize the 8 APs using
an external clock (10 MHz reference signal and 1 PPS) and
synchronize the N STAs using another external clock.

Fig. 16 plots the distribution of our measured EVM when
UD-MIMO and MU-MIMO are used. In UD-MIMO, the
average EVM of the demodulated uplink signals is —28.1 dB
when the APs serve one STA, —24.5 dB when the APs serve
two STAs, —20.4 dB when the APs serve three STAs, —18.3
dB when the APs serve four STAs, —17.2 dB when the APs
serve five STAs, and —14.3 dB when the APs serve six STAs.
Moreover, as shown in the figure, the EVM gap of UD-MIMO
and MU-MIMO is only about 2.0 dB. This means that
UD-MIMO successfully resolves the synchronization issues
in distributed WLANS.

We extrapolate the measured EVM to each STA’s data
rate (with b = 5 Msps). Fig. 17 presents the calculated
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data rate. The staircase shape of the curves is caused by the
modulation and coding scheme (MCS), which yields a discrete
data rate in nature. When UD-MIMO is used, the average
data rate per STA is 15.0 Mbps when the APs serve one
STA, 12.4 Mbps when the APs serve two STAs, 8.7 Mbps
when the APs serve three STAs, 7.0 Mbps when the APs
serve four STAs, 6.2 Mbps when the APs serve five STAs,
and 3.7 Mbps when the APs serve six STAs. Accordingly, the
total uplink throughput achieved by UD-MIMO is 15.0 Mbps
when N = 1, 24.8 Mbps when N = 2, 26.2 Mbps when
N = 3, 28.0 Mbps when N = 4, 31.0 Mbps when N = 5,
and 22.1 Mbps when N = 6.

Throughput Comparison: Finally, we compare the total
uplink throughput achieved by CSMA, UD-MIMO, and MU-
MIMO. For CSMA, since it serves one STA at a time, the
total uplink throughput is the average of all STAs’ data rates.
For UD-MIMO and MU-MIMO, since it serves N STAs si-
multaneously, the total uplink throughput is the multiplication
of N and the average of per-STA data rate. Fig. 18 presents
the comparison of the total uplink throughput achieved by the
three techniques. It is evident that, in each case, the throughput
of UD-MIMO is much higher than that of CSMA and close to
that of MU-MIMO. On average of the six cases, UD-MIMO
achieves 3.4x throughput compared to CSMA and achieves
82% throughput of MU-MIMO. One may notice that the
throughput of all three techniques decreases when the number
of STAs increases from 5 to 6. This is because the sixth STA
brings significant co-channel interference to the existing 5
STAs. The significant increase of co-channel interference can
be attributed to the ill-conditioned MIMO channel between the
6 STAs and the 8 APs.

VII. CONCLUSION

In this paper, we presented UD-MIMO, a practical uplink
distributed MIMO scheme for WLANs. UD-MIMO enables
concurrent data transmissions from multiple STAs to multiple
APs. UD-MIMO is compatible with commercial off-the-shelf
802.11 devices (with modified driver). The enabler behind UD-
MIMO is a new signal detection method, which can decode
concurrent data packets from asynchronous STAs. We have
built a prototype of UD-MIMO on two wireless testbeds and
demonstrated its compatibility with Qualcomm Atheros 802.11
devices. Our experimental results show that UD-MIMO offers
3.4x throughput compared to the CSMA-based interference-
avoidance approach. Our experimental results also show that
UD-MIMO achieves 82% throughput of MU-MIMO.
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