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A B S T R A C T   

To facilitate understanding and decision making in the food-energy-water (FEW) nexus context, we develop an 
integrated technology-environment-economics model (ITEEM) at a watershed scale. ITEEM is built as an inte
gration of various models, including models for grain processing, drinking water treatment, and wastewater 
treatment (technology); a watershed model for hydrology, water quality, crop production, and nutrient cycling 
(environment); an economics model assessing total benefit, including non-market valuation of environmental 
benefits. Different data techniques are applied to develop suitable surrogates for computer-based models, 
including a response matrix method, artificial neural networks, and lookup tables. Empirical equations are 
applied to develop models of economics and drinking water treatment. The input-output relationships between 
the models are formulated in a unified computational framework. ITEEM, a spatially semi-distributed dynamic 
simulation model, can be used to quantify the environmental and socioeconomic impacts of various management 
practices, technologies, and policy interventions on FEW systems in the Corn Belt.   

1. Introduction 

Food-energy-water (FEW) systems in the US Corn Belt are highly 
interconnected and sensitive to stresses and threats. Grain production 
and subsequent utilization for animal feed, human food, and ethanol 
production have pervasive effects on water quantity and quality in 
downstream environments both locally (e.g., lakes and rivers with 
elevated nitrogen and phosphorus) and nationally (e.g., Hypoxic zone in 
the Gulf of Mexico) (US EPA, 2017). Water stress associated with 
increased climatic variability is anticipated to increase (Muttiah and 
Wurbs, 2002), especially in many mid-sized cities in the Corn Belt that 
interact with neighboring agricultural lands, major industrial needs (Li 
et al., 2018), and their shared watersheds. Energy demand and overall 
costs for wastewater and drinking water treatment have increased, and 
this trend is expected to be exacerbated by continued expansion of food 
and bioethanol production (Simpson et al., 2008; Twomey et al., 2010). 

To deal with these threats to and risks within FEW systems, long-term 
efforts have been made to resolve the conflicts between agriculture, 
food industry, water supply, and environmental protection. For 
example, wastewater treatment and corn ethanol refinery facilities have 
begun extracting nutrients from “waste” and process byproducts, which 
results in both the reuse of extracted materials as inorganic mineral 
fertilizers (e.g. struvite and calcium phytate) and the reduction of 
point-source discharge of nutrients to the environment. For example, 
recovering phosphorus (P) can conserve a finite resource (e.g. phosphate 
rock) (Cordell et al., 2009; Juneja et al., 2019; Margenot et al., 2019); 
cost-effective water treatment technologies are adopted to conserve 
energy use (Bhatnagar and Sillanpää, 2011); agricultural best manage
ment practices (BMPs) reduce nutrient and soil loss from farmland in 
upstream watersheds (Lemke et al., 2011; Rao et al., 2009). Researchers 
have called for holistic integrated modeling development and assess
ment for FEW systems at various scales to avoid fragmented status quo 
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decision making (Leck et al., 2015; Little et al., 2019). This paper pre
sents an integrated technology-environment-economics model (ITEEM) 
which unites a set of surrogates and empirical models derived from the 
various primary models simulating key processes at a watershed scale. 
The developed ITEEM is capable of analyzing complex systems and 
specific solutions to interconnected problems in FEW systems in Corn 
Belt watersheds. 

There are several major challenges when integrating models from 
different disciplines. First, most physical models are developed using 
discipline-specific computer programs or software packages (e.g., SWAT 
for hydrologic processes, GPS-X for wastewater treatment), which cau
ses a barrier for automatic information transfer. Recently, some in
terfaces have been developed for simple automated data exchange 
between two models (Anderson et al., 2018; Xiang et al., 2020). For a 
large interdisciplinary integrated model involving agricultural, hydro
logic, and engineering components developed in various computer 
programs (including commercial software), as the case of our study, the 
level of complexity can be overwhelming to modelers, and it usually 
turns out to be infeasible to directly integrate different models due to 
incompatibilities among discipline-specific computer programs (Little 
et al., 2019). Second, some engineering design models (e.g., GPS-X for 
wastewater treatment, SuperPro Designer for Grain processing) are 
proprietary which may impose costs and legal constraints on direct 
coupling. Third, inputs and outputs from separate models are likely to 
have different temporal and spatial scales with distinct data formats, 
which need to be harmonized at the points of interaction between 
models (Cai, 2008). Appropriately building the interactions between 
various models is a key step to enable information transfer endogenously 
within a consistent model. Fourth, complex physical models can be 
highly computationally expensive; an affordable computational burden 
is especially important if the research of interest will address stochastic 
problems (Little et al., 2019). Thus directly integrating many compu
tationally heavy models is often computationally infeasible. 

Researchers have developed various integrated models (Cai, 2008; 
Carmichael et al., 2004; Gaddis et al., 2010; Housh et al., 2014). Cai 
(2008) shared reflective comments on the advantages and challenges of 
holistic modeling (tight coupling of different components in one 
consistent model) versus compound modeling approaches (“loose” 
coupling of different components via external data exchanges). Holistic 
models embed different components into a single consistent optimiza
tion model, such as hydrologic-economic models (Cai, 2008; Cai et al., 
2003; Harou et al., 2009), hydro-biogeochemical model (Wu et al., 
2016), and “system of systems” models, e.g. a biofuel (biomass and 
refinery)-infrastructure-environment model (Housh et al., 2014). Ho
listic optimization models are usually composed of mathematical 
equations including the objective function(s) and constraint function(s). 
Other system modeling approaches applied in FEW systems include 
agent-based models (Ng et al., 2011), life cycle assessment (Li et al., 
2020), system dynamics (Feng et al., 2016; Gaddis and Voinov, 2010), 
etc. However, these system modeling methods have less focus on inte
grating detailed physical process modeling, but more focus on other 
perspectives. For example, agent-based models focus on simulating the 
behavior and decision-making of multiple stakeholders, life cycle 
assessment focuses on quantifying environmental impacts from cradle to 
grave, and system dynamics focuses on modeling the feedbacks among 
stock variables and drivers. The degree of process details at which those 
system modeling approaches have may not lend themselves to coupling 
multiple complex process models in a system of systems. 

Little et al. (2019) proposed a generic tiered system of systems 
(GTSoS) to upscale physical models from the process level to the system 
level via integration while keeping computational tractability and 
minimizing the loss of fidelity (Little et al., 2019). Models that are 
developed at the process level in various computer programs (or soft
ware packages) with domain-specific knowledge and data can be 
replaced by surrogates (also termed reduced-order models, 
meta-models, or emulators), if process models cannot be integrated 

directly due to complexity and incompatibilities among 
discipline-specific computer programs. Various data techniques can be 
applied for emulating a process model, such as polynomial response 
surfaces, artificial neural networks, and supporting vector machine 
using numerical samples of inputs and outputs of the primary model 
under a systematic sampling strategy (Leperi et al., 2019; Lu and Ric
ciuto, 2019). Those surrogates typically build statistical relationships 
between inputs and outputs of a system modeled by a primary model. 
Another type of surrogate is based on hybrid theory and data (also 
termed as lower-fidelity physically-based surrogates) (Razavi et al., 
2012). By replacing complex process models with appropriate surro
gates, one can integrate them into a consistent model, maintaining 
reasonable fidelity of the primary process models without causing a 
serious computational burden, as most surrogates do not have a rich 
internal structure (Carmichael et al., 2004). 

Although the GTSoS framework provides a promising direction on 
model integration for analyzing a system of systems, the development of 
such a framework is challenging. Specific challenges include the selec
tion of an appropriate mathematical form of a surrogate for a particular 
process model, and the integration of the surrogates across multiple 
spatial and temporal scales (Cai, 2008). In addition, examples of 
real-world problems are needed to demonstrate the effectiveness and 
applicability of GTSoS to the various complex system modeling cases. 
Here, we explain the methodology used to overcome these challenges in 
the construction and execution of ITEEM. Disciplinary-specific process 
models are replaced by surrogates, and these surrogates are integrated 
within a unified computational software framework to form a holistic 
model. ITEEM is demonstrated in a watershed in the Corn Belt to analyze 
inter-connected problems of crop production, grain processing, water 
and wastewater treatment, and nutrient management, with consider
ation of technologies, management practices, and policies for multiple 
sectors. 

2. Research problem and FEW systems characterization in Corn 
Belt watersheds 

2.1. Research problem 

FEW systems are usually highly interconnected crossing multiple 
sectors.in many regions. For the Corn Belt watersheds, FEW systems are 
sensitive to stresses and threats with respect to food production, and 
increasing biomass production, and energy supply and demand, which 
pose impacts on water quality, water supply, energy demand and cost, 
resources conservation, and economic growth and financial stability. 
These interconnected components of FEW systems are depicted in Fig. 1. 
Managing phosphorus (P) within these systems has proven especially 
challenging over the last 40 years due to the so-called “phosphorus 
paradox”. On the one hand, phosphorus is an essential nutrient for plant 
growth, and correspondingly, copious applications of phosphorus fer
tilizer have been critical to meeting demand for food, livestock feed, and 
biofuel (Jarvie et al., 2015). However, on the other hand, phosphorus 
fertilizer applied in agricultural fields is at risk of being transported into 
water bodies where, in excess, it contributes to water quality degrada
tion, namely, toxic algae blooms (Bennett et al., 2001; Carpenter, 2008). 
Efforts to navigate these conflicting objectives have been undermined by 
long-lasting stores of P in fields and streams (i.e. P legacy) which create 
time-lags between changed agricultural practices and their impact on 
water quality or crop yields (Jarvie et al., 2017; Powers et al., 2016; 
Sharpley et al., 2013). Developing technologies for P removal and re
covery from waste streams with feasible costs are important given that 
these interventions play unique and under-emphasized roles within the 
FEW nexus regarding water pollution, resource recovery, and agricul
ture production, as shown in Fig. 1. 

Traditionally, various management options are evaluated and 
implemented within individual systems (F, E, or W) or processes at local 
scales. Nutrient pollution in a Corn Belt watershed typically comes from 
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a combination of identifiable pollution discharges (i.e. point sources, 
such as wastewater treatment plants) and diffuse pollution (i.e. non- 
point sources, such as agricultural runoff). Grain processing also indi
rectly contributes to nonpoint source P pollution by concentrating P in 
coproducts (corn gluten feed, CGF, and dried distillers grains with sol
ubles, DDGS) to the extent that they exceed livestock dietary re
quirements, leading to pollution by P-enriched manure in livestock 
feedlots (Nahm, 2002). Studies have shown the P concentration in CGF 
and DDGS (two commonly used ingredients for cattle and poultry diets) 
can be reduced by recovering P from light steepwater (wet milling plant) 
and thin stillage (dry grind plant), for potential use as a fertilizer (Juneja 
et al, 2019, 2020). Drinking water treatment is considered as a 
local-scale process that takes raw water from lakes that could have up
stream point and nonpoint sources of nitrate and sediment. 

Traditional approaches usually use separate disciplinary-specific 
models and ignore or do not fully consider the impact of the FEW 
nexus relations that exist at certain spatial scales. Such approaches 
cannot capture the interconnected influence of measures taken across 
the interdependent systems. To address this general deficit in the Corn 
Belt and other regions, a seamless integrated technology-environment- 
economics model (ITEEM) is developed to assess the tradeoffs and 
synergies within FEW systems in the Corn Belt. 

2.2. Primary models for different components of FEW systems 

Components of FEW systems shown in Fig. 1 are modeled by various 
computer-based programs and empirical relationships on data and 
knowledge in individual disciplinary domains. Specifically, the Soil and 
Water Assessment Tool (SWAT), a semi-distributed and physically-based 

watershed management model (Jayakrishnan et al., 2005), is used to 
simulate water quality, quantity, and crop yield based on different land 
uses and BMPs in a Corn Belt watershed. The wastewater treatment 
(WWT) is modeled in GPS-X (Hydromantis Environmental Software 
Solutions, Inc.) with advanced mathematical modeling, optimization, 
and management of wastewater treatment processes. Grain processing 
(GP) is modeled in Superpro Designer (Intelligen Inc.) to evaluate the 
potential of P recovery from corn coproducts with existing 
physical-chemical and enzymatic technology. SWAT, WWT, and GP 
models involve detailed processes characterized by biological, chemical, 
and physical principles. The drinking water treatment (DWT) model is 
empirical and driven by historical plant data for energy requirement and 
cost according to influent nitrate and sediment concentrations. In 
addition to the physical component of FEW systems, we also develop an 
economic model that represents the human dimension of the FEW sys
tems. The economic model is semi-theoretical and empirical, based on 
choice experiments evaluating the relationships between water quality 
improvements and farmers’ or the public willingness to pay that is 
assessed using survey data. Details on the development of each primary 
model are provided in the Supplementary Information (SI), Section 1. 

3. Development of ITEEM 

Via multi-disciplinary teamwork, three process models (SWAT, 
WWT, and GP) and empirical (DWT) or theoretical-empirical models 
(Economics) are first established at the process level (the lower part of 
Fig. 2). Then the components of ITEEM are developed in the form of 
surrogates or empirical relationships, which are coupled by integrating 
input and output relationships crossing temporal and spatial scales at 

Fig. 1. FEW systems in a Corn-Belt watershed with phosphorus (P) recovery as a key technology.  
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the interaction points between the components at the system level (the 
upper part of Fig. 2). Such a hierarchical structure allows modelers to 
drill down to the process level and access details for better interpreting 
results simulated at the system level. All components of the ITEEM are 
coded in the same programming platform, Python. 

The interaction between the technology (T), environment (En), and 
economics (Ec) at the system level of ITEEM are shown in the upper part 
of Fig. 2. The technology is composed of BMPs simulated in SWAT and 
engineering technologies simulated in WWT and GP components. The 
relationships between T-Ec include capital, operation, and maintenance 
costs for P extraction and the cost savings from a) changing farm man
agement practices to use P recovered from biorefineries as crop fertil
izer; b) introducing cover crops with no-till, etc. The relationships 
between En–Ec include a) non-market benefit as a measure of the value 
to the population of an improvement in water quality and a measure of 
people’s preferences for alternative ways of achieving lower P pollution 
levels; b) water treatment and water supply cost due to extra nutrient 
discharge. The relationships between T-En include a) P removal from 
grain coproducts and hence “downstream” reductions of P in manure 
and feedlot runoff; b) nonpoint source change of P, nitrate, and sediment 
loads in rivers and to lakes; c) point-source nutrient discharge reduction; 
d) mined P offset with P recovered from biorefineries and wastewater 
treatment plant. 

3.1. Selection of model forms for components of ITEEM 

As discussed before, it is challenging to select appropriate model 
forms for different model components (Razavi et al., 2012). As there are 
no well-defined standards for selecting model forms, we select an 
appropriate model form for each component based on the model avail
ability (i.e., if a process model is available for a specific component), 
complexity and attributes of existing models, and data availability. A 
decision tree used for selecting model forms is presented in Fig. 3. In 
general, we start by examining if a component (either physical or eco
nomic) can be represented by a set of empirical equations for the pur
pose of our study, especially for those components for which primary 
computer-based models are not available or do not have external sour
ces to develop a computer-based model. In the current study, the eco
nomics and drinking water treatment (DWT) components fall within this 

category. Empirical equations are directly modularized in Python to 
represent such components. 

For the components for which computer-based models (i.e., SWAT, 
WWT, and GP) exist, distinct surrogate forms are chosen according to 
the particularities of each case. First, if there are sufficient simulation 
data determined by the number of inputs and outputs of a computer- 
based model, a machine learning model (e.g., artificial neural 
network, ANN) can be used to surrogate a complex and nonlinear pro
cess model, such as the case for the WWT component of ITEEM. Note 
that the sample size of the simulation data varies case by case and is 
dependent on model complexity (Davis et al., 2018); sufficient simula
tion data support the development of a surrogate model with desirable 
and stable performance. Second, if a computer-based model has a large 
number of inputs and simulate copious spatial and temporal outputs, it 
becomes more challenging to obtain sufficient simulation data for 
training traditional surrogate models (e.g., ANNs, SVM). The challenge 
arises from two perspectives: 1) the process of generating sufficient 
SWAT simulations for such a spatially-distributed dynamic model is 
computationally expensive itself; 2) the process of training ANN and 
SVM with such high dimension inputs and outputs takes up computer 
memory and numerous calculations, thus are prone to crash. Although 
machine learning has also been applied to approximate complex hy
drological models (Cai et al., 2015; Zhang et al., 2009), the number of 
inputs and outputs in their SWAT are usually relatively low (only several 
or dozens of inputs and outputs at most), thus requiring fewer simulation 
data (only thousands of simulations at most). For our case, we aim at 
developing a surrogate model that can reasonably replicate SWAT 
simulations, including temporal and spatial heterogeneity, while vary
ing a large number of inputs (e.g., BMP applications at each of the 
subwatersheds). Since neither ANN nor SVM with limited model simu
lations (e.g., less than 100 model runs) could be effective in generating 
such a spatially-distributed and dynamic surrogate for copious inputs 
and outputs, we choose a response matrix (RM) method as a surrogate 
model to produce spatially-distributed dynamic outputs of SWAT, which 
we show is appropriate in this study. The RM method estimates water, 
sediment, and nutrient yields from landscapes with partial adoption of 
management practices by interpolating between simulation results 
when those practices are applied to all or none of the landscape. The 
loading of nitrate, total P, sediment, and streamflow in each channel 

Fig. 2. A tiered modeling framework for ITEEM. The modeling framework starts from establishing disciplinary-specific primary models at the process level and 
upscales the primary models to the system level, which captures complex interactions between technological, environmental, and economics components. Note: 
SWAT = Soil and Water Assessment Tool; GP = Grain processing; WWT = Wastewater treatment. 
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reach is then the sum of all upstream landscape loads. Due to its 
simplicity and effectiveness, the RM method has been widely used in 
different areas, such as groundwater management models and water
shed models (Gorelick, 1983; Housh et al., 2014). The details of the 
mathematical definitions adopted to implement the RM method are 
provided in Section 3.1.1. 

Third, if advanced surrogates (e.g., ANNs, SVM, RM method) are not 
appropriate due to data limitation and the characteristics of a computer- 
based model, as the case of the GP component, we look for another 
surrogate form too. The data limitation arises that although Superpro 
Designer can generate sufficient samples via its built-in Monte Carlo 
simulator, the simulator does not provide outputs with the degree of 
detail needed for calculating the amount of P flow recovered from 
process streams. The characteristics of the GP model refers to the fact 
that, unlike the SWAT that simulates spatial and temporal variables, the 
GP model generates steady-state operation outputs which are only 
determined by the plant capacity. For this case, lookup tables, a most 
basic form of surrogates, are created to determine GP simulation outputs 
under a set of plant capacities reflecting a common range of commercial 
grain processing plants. All data in the lookup tables are directly derived 
from the high-fidelity computer-based model. 

3.2. Interactions between components of the ITEEM 

After selecting a model form for each of the ITEEM components, the 
next challenge is to couple the surrogates whose inputs and outputs have 
distinct spatial and temporal scales. This is a common challenge for 
integrating multiple components within a consistent model, while each 
case may have its unique complexity when coupling spatially and 
temporally varied data and processes across components. Cohesive 
spatial and temporal scales are chosen for ITEEM to couple point source 
nutrient loadings from WWT with nonpoint source loadings simulated 
with SWAT. The temporal scale of SWAT outputs can be daily, monthly, 
or annual, and the spatial scale can be by hydrological response units 
(HRUs), subwatersheds, or the entire watershed. In contrast, the steady- 
state WWT model operates at the weekly, bi-weekly, or monthly scale 
and discharges to a specific point in a watershed. Given such inconsis
tent spatial and temporal scales, we couple SWAT and WWT models at 
the monthly scale; to match the spatial scale, we couple SWAT and WWT 
models at the subwatershed scale (12-digit Hydrologic Unit Code). This 
reduces hundreds of HRUs to dozens of subwatersheds. Point source 
nutrient loadings are added as inflows to the channel reach in the sub
watershed where WWT plants are located. More details about coupling 
over temporal and spatial scales are provided in mathematical formu
lations (Section 3.3.1.1.). 

Fig. 3. Decision tree for selecting appropriate forms of surrogates or empirical models in the ITEEM. Primary modes are decided by each group. Note: WWT =
Wastewater treatment; ANNs = artificial neural networks; SWAT = Soil & Water Assessment Tool. 
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Fig. 4 illustrates the multiple interacting feedback loops among the 
components in ITEEM. SWAT has the most interactions with other 
components. The inputs to SWAT include BMP (e.g., tillage, P fertilizer 
rates, grassed waterways/riparian buffers, etc.) land allocations at the 
subwatershed level. The simulated nitrate and sediment from SWAT are 
inputs to the DWT model to estimate the required treatment cost and 
energy consumption to purify drinking water. SWAT also simulates corn 
and soybean yields, which are inputs to the GP model that simulates the 
amount of recovered P (rP). The resulting amount of phytin-based fer
tilizer produced from rP is then simulated as a substitute that displaces 
mined P fertilizer. Besides, the P recovery from corn grain byproducts 
(CGF, DDGS) causes a reduction of P content in livestock diets, leading 
to reduced manure P content and ultimately reduced P runoff from 
feedlots. The selection of a wastewater treatment technology also has 
implications for P recovery, nutrient discharge, and cost. The four WWT 
alternatives are:1) activated sludge, 2) activated sludge with chemical 
precipitation, 3) a modified 5-stage Bardenpho process with enhanced 
biological phosphorus removal (EBPR), and 4) a modified 5-stage Bar
denpho EBPR process with struvite (a form of P) recovery (EBPR_StR)). 

Replacing mined P with an rP product (i.e. struvite from WWT or 
phytin from GP) is an additional agricultural BMP within ITEEM. Via 
techno-economic analysis, the costs (e.g., capital, operation, labor, and 
maintenance costs) for the WWT, GP, and DWT technologies and prac
tices are first calculated as total present value and then converted into 
equivalent annualized cost (EAC), expressed as “$ per year”, and their 
associated energy requirements are also calculated. The other two eco
nomic components of ITEEM include: 1) linking water quality levels to 
public willingness-to-pay (WTP) and farmers’ willingness-to-accept 
(WTA) payment to adopt new conservation practices, and 2) calcu
lating the total net benefit accounting for engineering technologies, farm 
management practices, and non-market environmental benefit. Beyond 

the interactions between these components, ITEEM as a whole is driven 
by the climate, market price of crops and rP fertilizer products, policy 
regulations on maximum contaminant level (MCL) for nitrate in drink
ing water and wastewater nutrient effluent limits, and technology op
tions proposed for WWT and GP components. 

3.3. Overview of components in the ITEEM 

The basic overview of each surrogate and empirical model in ITEEM 
are provided in this section. Detailed mathematical formulations of each 
modeling component are provided in SI Section 2. 

3.3.1. Response matrix (RM) for SWAT 
SWAT simulates water quality (i.e., nitrate, total phosphorus, and 

sediment yield), water quantity (i.e., streamflow), and crop yield (i.e., 
corn, soybean, corn silage, perennial grass) for each hydrologic response 
unit (the smallest spatially homogeneous unit in SWAT) and aggregates 
to the subwatershed scale. The computational time for running SWAT 
can be expensive, from minutes to hours, depending on temporal and 
spatial scales, and the number of simulations. The RM method has been 
used previously to approximate the impacts of different crop allocations 
on simulated water and nutrient yield from landscapes (Housh et al., 
2014). To apply the RM method, SWAT-simulated water, sediment, 
nutrient and crop yields under various scenarios of complete BMP 
adoption are stored in a set of response matrices. This initial simulation 
may require large computational efforts. However, the resulting RM can 
efficiently handle a large set of decision variables (i.e., the land area of 
BMP adoption in each subwatershed) involved in watershed manage
ment. It is worth noting that the traditional RM method only estimates 
the landscape loss (e.g., nonpoint source nutrient and sediment 
contributing to rivers) (See detailed calculations in SI Section 2.1.1). In 

Fig. 4. Interaction of components in the ITEEM. A total of five components are represented as rectangles while the inputs and outputs are shown in ellipses. The 
interactions between different components are evaluated in ITEEM and denoted by solid arrows. The dashed arrow from grain processing to WWT implies an intrinsic 
connection between the two components, but the interaction is not explicitly evaluated in ITEEM due to data unavailability. Note: SWAT = Soil & Water Assessment 
Tool; rP = recovered phosphorus; E = energy demand; WWT = Wastewater treatment. 
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this work, we extend the traditional RM to further account for 
point-source pollution, reservoir trapping, and in-stream processes so 
that in-stream loading can be accurately estimated. 

First, the point-source loading of nitrate and TP simulated from the 
WWT component (see Section 3.3.2) is added to the subwatershed where 
WWT plants are located. Second, modifications of the traditional RM 
method are also required to account for the trapping of sediment and 
nutrients in reservoirs. Third, in-stream processes such as nutrient 
cycling (e.g. settling and microbial uptake/respiration) and sediment 
deposition must be considered in order to estimate the final in-stream 
loading. For the special case of sediment, SWAT-simulated loads are 
strongly controlled by in-stream deposition and degradation. These in- 
stream sediment processes cannot be effectively accommodated for by 
an affine function land area allocation. Therefore, we instead assume 
that all streams carry their full, flow-limited sediment capacity, calcu
lated similarly to the simplified version of the Bagnold sediment stream 
equation which is an option within SWAT (though another, better- 
performing option is applied in our SWAT simulations); where the 
simplified Bagnold equation of SWAT determines sediment-carrying 
capacity according to flow velocity, we estimate the capacity accord
ing to volumetric flow rate (Bagnold, 1977). That is, whenever incoming 
sediment loads exceed the flow-determined capacity for sediment, 
sediment is deposited. When capacity exceeds incoming load, sediment 
is eroded from the streambed. Detailed calculations of those modifica
tions can be found in SI Section 2.1.2. Unlike streamflow, sediment, and 
nutrients that are dependent on its spatial reach network and in-stream 
processes, the total watershed crop production is simply the sum of that 
in each subwatershed (SI Section 2.1.3). 

3.3.2. Artificial neural networks for WWT 
WWT plants in the Corn Belt can contribute considerable point 

source nutrient loading (nitrate-N, TP) due to combined sewerage from 
stormwater, domestic, and high-strength industrial (especially from 
biorefineries) wastewater. The WWT component of ITEEM includes four 
wastewater treatment plant design alternatives to treat the combined 
influent. The four alternatives include: 1) activated sludge (AS), 2) 
activated sludge with chemical precipitation (ASCP) to reduce effluent P 
concentrations from the WWT plant, 3) a modified 5-stage Bardenpho 
process with enhanced biological phosphorus removal (EBPR), 4) and a 
modified 5-stage Bardenpho EBPR process with struvite (magnesium 
ammonium phosphate) recovery (EBPR_StR). We include the impact of 
stormwater that causes highly variable treatment performance during 
the process development using GPS-X software. Detailed descriptions of 
process development for each treatment alternative are provided in SI 
Section 1.2. 

As the wastewater treatment involves complex and nonlinear phys
ical and biological processes, advanced data-driven techniques can be 
applied to predict treatment performance under fluctuations of in
fluents. Artificial neural networks (ANNs) have been widely applied in 
various fields to capture nonlinear, complex relationships between in
puts and outputs. For a generic ANN, a vector of input data (x) can be 
mapped to a vector of output data (y), i.e., y = fANN(x), where fANN(x)

represents a function of neural networks. In this study, four feed-forward 
back-propagation ANNs are applied to surrogate the four WWT alter
natives (i.e., AS, ASCP, EBPR, EBPR_StR). Once plant layouts of the four 
WWT alternatives are designed and optimized, we simulate stochastic 
influent conditions and run process simulations for each WWT design 
alternative, to account for WWT performance variability. Each treat
ment alternative is simulated 10,000 times in the original high-fidelity 
model using the GPS-X software and the dataset is split 60%, 20%, 
20% into training, validation, and test datasets. Details of ANNs training 
are provided in SI Section 2.2. 

After successfully training ANNs for the four treatment alternatives, 
the next step is to predict the effluents under stochastic conditions of 
influent using ANNs. To be consistent with the temporal scale of the 
SWAT component and reduce the computational time, we simulated 

monthly loading from the WWT, assuming each month is run as a steady 
state. For each month, the total inflow (domestic and industrial waste
water + rainwater) is determined using historical data while the 
chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total 
phosphorus (TP)are randomly sampled 1000 times from their fitted 
historical distributions. Since SWAT simulations provide deterministic 
monthly values, the monthly mean values of effluent loadings from the 
1000 simulations are calculated and added into the subwatershed where 
the WWT is located. This is a key step to integrate point source and 
nonpoint source pollutant loadings from the different components. The 
techno-economic analysis of the four treatment alternatives is conducted 
using a combination of modeling and calculations. Specifically, the 
capital costs (e.g., construction) and fixed operational costs (e.g., labor, 
maintenance) are calculated in CapdetWorks, a proprietary software 
compatible with GPS-X for estimating fixed costs (capital, labor, main
tenance cost) for WWT models. Operational costs that vary with influent 
characteristics are calculated with process design and cost estimate 
equations from the US Environmental Protection Agency (Harris et al., 
1982). 

3.3.3. Lookup tables for grain processing 
Two grain processing (GP) models (i.e., corn wet milling and corn 

dry grind) are developed in SuperPro Designer (Intelligen, Inc.), which 
contains rigorous reactor modules for mechanical and chemical engi
neering of corn grain processing (Juneja et al, 2019, 2020) and details of 
process development are provided in SI Section 1.3. Since SuperPro 
Designer is commercially programmed and cannot be directly connected 
with the other ITEEM components, we develop lookup tables that store 
results simulated from SuperPro Designer. The lookup tables contain 
two plant layouts for each plant capacity. The capital cost, operational 
cost, energy and water use, and P content of CGF and DDGS are simu
lated for each plant capacity. In both wet milling and dry grind corn 
processing models, two plant layouts are simulated: 1) status quo grain 
processing without P recovery; and 2) alternative technology that pro
cesses grain and recovers P as P complex, which can be further purified 
as phytin (a calcium magnesium salt of phytic acid). Calculations of cost 
and energy use are provided in SI Section 2.3. 

3.3.4. Empirical equations for DWT 
The DWT model is developed based on operational data from a 

drinking water treatment plant located in the Corn Belt. The cost data 
include fixed and variable costs for the nitrate removal facility (NRF). 
The fixed cost includes management overhead, labor cost for operation 
and maintenance, depreciation cost, and NRF energy cost. Note that the 
daily energy consumption in NRF is assumed constant as detailed data 
are unavailable. The variable cost includes the use of sodium chloride as 
the regenerant chemical for ion-exchange resins and alum and polymer 
for turbidity treatment. The consumption of sodium chloride is depen
dent on the nitrate level in the untreated water entering the DWT plant. 
The consumption of alum and polymer is dependent on the sediment 
concentration in the raw water entering the DWT plant. The costs do not 
include the total cost in the main treatment facility as the purpose of the 
DWT component is to estimate costs and energy requirements associated 
with excess nitrate and sediment treatment only. 

The nitrate-N (NO3–N) and sediment loadings and streamflow esti
mated from SWAT in the subwatershed where the DWT plant is located 
are inputs to the DWT plant component. The decision to operate the NRF 
is based on daily NO3–N concentration in the untreated water entering 
the DWT plant. The NRF will operate on any day where the influent 
NO3–N concentration exceeds the threshold of 8.0 NO3–N mg/L, based 
on the current maximum contaminant level (MCL) of 10 mg/L; that is, 
we assume the operation threshold nitrate concentration to operate the 
NRF is 80% of the MCL. Calculations of cost and energy use for nitrate 
and sediment treatment are provided in SI 2.4. 
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3.3.5. Theoretical-empirical equations for economics 

3.3.5.1. Non-market valuation for water quality improvement. Choice 
Experiments (CEs) are conducted to elicit the general public’s WTP for 
water quality improvements and farmers’ WTA payment to change 
management practices. CEs are a widely used non-market valuation 
method in which respondents are asked to select the most preferred 
alternative in a hypothetical decision-making situation while varying 
the levels of different attributes of interest (Louviere et al., 2000). We 
utilize fractional factorial designs to allocate attribute levels (i.e. cost, 
recreational options, attainment of nutrient loss reduction goals) to each 
alternative — a single combination of attribute levels — and choice sets 
(a combination of different alternatives to choose from). The responses 
to the CEs are analyzed using statistical methods based on Random 
Utility Theory (RUT). The utility of an individual survey respondent n 
from alterative a (Un,a) includes systematic (Vn,a) and stochastic (εn,a)

components with Un,a = Vn,a + εn,a = βTXn,a + εn,a. Vector Xn,a contains 
attribute levels faced by individual n in alternative a and β is a vector of 
coefficients estimated corresponding to the attributes. Because the 
non-market valuation study is not yet complete, this study uses a pub
lished WTP estimate from a related study (Parthum and Ando, 2020) to 
demonstrate how the choice experiment results will be used in the 
ITEEM. 

3.3.5.2. Evaluation of ITEEM total costs and benefits. After estimating 
the costs of engineered technologies and agricultural management 
practices, the total economic net benefits of the entire system are 
calculated for each option. Each option includes a combination of WWT 
and bioprocessing technology together with a spatially explicit config
uration of agricultural practices. Total benefits include the sum of rev
enue from product sales and non-market benefits associated with water 
quality changes, and the total cost is the sum of those incurred for 
wastewater and drinking water treatment, grain processing, and agri
cultural management practice implementation. The total net benefits are 
calculated as: 

ΔB = BWTP + RrP + Rcrop + RGP − CWWT − CDWT − CGP − Cag (1)  

where ΔB ($/yr) is the economic total net benefits for a given option. 
BWTP ($/yr) is the monetary measure of public WTP for water quality 
improvements. RrP ($/yr) is the revenue generated by selling recovered 
P product; Rcrop ($/yr) is crop revenue. RGP ($/yr) is the revenue from 
grain processing products sold. CWWT ($/yr) is the cost of wastewater 
treatment. CDWT ($/yr) is the cost of drinking water treatment. CGP 
($/yr) is the cost of grain processing plants. Cag ($/yr) is the total cost of 
all agricultural management practices applied a given scenario. All the 
terms in Eq. (1) are annualized cash flow that takes factors of the time 
value of money and inflation into account. Detailed calculations of terms 
in Eq. (1) are provided in SI Section 2. 

3.4. Sensitivity analysis of ITEEM 

As each of the components contributes uncertainty to ITEEM via 
BMPs, environmental engineering technologies and policies, it is 
important to investigate how the uncertainties from different compo
nent models propagate and affect the overall outputs of ITEEM at the 
system level. The multiple sources of uncertainties, which can be 
correlated, complicate the sensitivity analysis. For a demonstration 
purpose, we conduct a simple one-at-a-time (OAT) sensitivity analysis of 
key parameters, and leave more complete global sensitivity analysis for 
future work, which indeed can be standard-alone study. We use a 
sensitivity indicator calculated as below: 

Sensitivityi,j =
1
k

×
∑k

1
|

Δoutputj,k
/

outputj,k,baseline

Δparameteri,k
/

parameteri,k,baseline
| (2)  

where Sensitivityi,j represents the averaged relative change of parameter i 
on output j across different scenarios (k). Δoutputj,k is the change of 
output j of scenario k from baseline output (outputj,k,baseline). Δparameteri,k 

is the change of parameter i of scenario k from baseline 
(parameterj,k,baseline). The multi-dimension outputs of ITEEM are aggre
gated into four categories: 1) water quality and quantity; 2) energy 
consumption of engineering systems; 3) costs and benefits; 4) produc
tion of crop and recovered P. The key parameters investigated in ITEEM 
includes six parameters from SWAT (e.g., runoff curve, water capacity in 
the soil, soil evaporation, etc), two parameters (i.e., influent nutrient 
strength and inflow) in WWT model, and other parameters (i.e., crop 
price, chemical price, utility cost, willingness to pay per household, and 
interest rate) related to costs and revenues across various models. 
Detailed descriptions and the range of each of these parameters are 
provided in SI Table S4. 

4. Computational implementation of ITEEM in object-oriented 
programming platform 

A coherent computational framework is developed to link and 
execute models from individual knowledge domains in an orderly 
manner. Standards of integrated modeling have been promoted by re
searchers to produce a useable and low-friction simulation environment, 
such as the Community Surface Dynamics Modeling System (CSDMS) 
project by Peckham et al., in 2013. The design criteria include but not 
limited to support of multiple operating system, use of open-source tools 
rather than proprietary software, ease of reusability and maintenance, 
etc. We develop ITEEM using the object-oriented programming in Py
thon, which fits the several standards promoted by CSDMS. An object- 
oriented framework connects models as inherited objects where some 
models are parent objects for others. There are several advantages for 
using an object-oriented framework. First, by inheriting attributes 
(variables of an object) and methods (functions of an object), new child 
objects can be easily built, which meets CSDMS’ design criterion of code 
reusability. Second, creating various methods within the same object 
allows distinguishing separate functionalities (e.g., technology cost 
versus treatment performance) thus exhibiting a clear structure for the 
ease of maintenance. The ITEEM developed in the object-oriented lan
guage can also be easily converted to a different language using lan
guage interoperability tool (e.g., Babel) (Peckham et al., 2013). There 
are some other features that need to be improved in the future, such as 
the support of serial and parallel computation. 

The five component models of ITEEM are modularized as five inde
pendent objects. Note that the five component models of ITEEM are 
represented either in not original primary model at the process level; 
they are rather their surrogates derived from primary process models or 
simplified or empirical models, which are all integrated at the system 
level. For example, Class “SWAT()” is simulated by its surrogate model, 
the response matrix method. Variables are stored as attributes; functions 
are partitioned into various methods within each object. Fig. 5 shows the 
implementation and integration of ITEEM described in the unified 
modeling language (UML). Routines of data exchange are specified 
either in the attributes or inputs of methods in objects. Specific outputs 
of interest are obtained by calling specific methods. For example, a 
method called “get_loading(“nitrate”)” is defined within the “SWAT” 
object to obtain nitrate loading specific to a particular scenario, instead 
of calling SWAT to produce all outputs simultaneously. Based on the five 
objects that represent the five components, respectively, an overall ob
ject that integrates the five components is created as an “ITEEM” object 
that incorporates attributes (variables) and methods (functions) from all 
components into a single entity. Such an entity provides a computa
tionally efficient model based on a large set of interconnected technol
ogy, environment, and economic relationships. The detailed 
descriptions of attributes and methods are provided in SI Table S3. 
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5. Demonstration of ITEEM in the Upper Sangamon River 
Watershed, Illinois 

We demonstrate ITEEM via a testbed watershed, the Upper Sanga
mon River Watershed (USRW). Different scenarios are tested to explore 
a portfolio of alternative engineering technologies, policies, and BMPs; 
the results of the scenarios are compared to a baseline scenario in terms 
of multiple FEW systems indicators. 

5.1. Study area for a testbed watershed 

The USRW, located in central Illinois, USA, is selected as an illus
trative testbed for its FEW nexus issues, data availability, and existing 
modeling studies for this watershed (Fig. 6). Water quality in the USRW 
is threatened by both agricultural runoff and municipal and industrial 
nutrient discharges. The relatively flat prairie soils in the watershed are 
highly productive, extensively underlain by subsurface drainage sys
tems, and cultivated for maize and soybean production. Within the 
watershed, Lake Decatur, created by a dam on the Sangamon River, is 
the source of municipal water supply for the City of Decatur and the 
Village of Mount Zion (combined population of 79,000) and industrial 
water supply for grain processors. The lake has been classified as 
impaired because of high nitrate and P concentrations and low dissolved 
oxygen. Periodic dredging of sediment has been necessary to maintain 
the lake’s storage capacity. The cost of nitrate, P, and sediment delivered 
to the lake from agricultural runoff has been born by the water and 
wastewater ratepayers in Decatur and Mount Zion. The Sanitary District 

of Decatur (SDD) treats stormwater, industrial wastewater, and do
mestic wastewater. SDD discharges treated effluent to the Sangamon 
River downstream of the Lake Decatur dam. The total discharge of SDD 
is approximately 600 Mg NO3–N/yr and 582 Mg P/yr, the largest of any 
facility in the state of IL, at concentrations typically ranging from 6 to 10 
mg NO3–N/L and 5–30 mg P/L. SDD is faced with the challenge of 
complying with an impending effluent standard of 1 mg P/L. This is a 
major challenge because influent concentrations from the biorefineries, 
responsible for approximately 90% of SDD discharge, are more than 
twice the typical high range for effective biological P removal. Other 
WWT plants discharge in the watershed but their contribution to 
nutrient pollution is relatively small (<5% of total point-source TN and 
TP). 

The three corn grain processing facilities located in the USRW have 
combined processing capacity of 8.1 million tonnes of corn per year. In 
addition, one major dairy feedlot produces an estimated 9400 metric 
tonnes of manure per year from around 3100 milking cows. The status 
quo P content of manure is assumed to be 9.5 g/kg dry fecal matter. If P 
can be recovered from grain processing plant waste streams, the P 
concentrations in manure can be reduced to 6.3 g P/kg dry manure (see 
Section 3.3.3). 

5.2. Scenario analysis 

ITEEM enables us to quantify the impacts of various nutrient man
agement strategies, technologies, and policies that could enhance the 
beneficial synergies of FEW systems in the Corn Belt. To illustrate the use 

Fig. 5. Unified modeling language description of ITEEM in an object-oriented programming platform. For brevity, only attributes and selected methods are shown in 
each class and arguments in methods are not included. Dashed lines between objects represent monthly and point scale data flow; dotted lines represent annual and 
point scale data flow; The only solid line from “SWAT” object to “ITEEM” represents a mixture of monthly (e.g., nutrient loadings), annual (e.g., crop yield), and 
nonpoint source scale that covers all subwatersheds. 
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of ITEEM, we simulate and compare four scenarios of agricultural 
management practices, engineering technologies, and drinking water 
standards. The baseline scenario consists of the status quo agricultural 
management practices, WWT technology WWT (i.e., activated sludge 
without rP), and GP technology (wet-milling and dry-grind corn pro
cessing without rP), and current MCL policy governing nitrate in 
drinking water (i.e., 10 NO3–N mg/L). The scenario definitions are 
provided in Table 1. 

5.3. Results and discussion 

5.3.1. Surrogate model performance 
Reducing complex process models into simpler surrogates almost 

inevitably introduces new uncertainty. Therefore, it is imperative to 
ensure acceptable performance for the various surrogates used in 
ITEEM, compared to the original high-fidelity models. Here we evaluate 
the performance of three surrogate models, i.e., RM for SWAT, ANNs for 
WWT, and lookup tables for GP. For DWT and Economics components, 
they are already developed as empirical or theoretical-empirical equa
tions at the process level and there are no additional surrogates applied 
to upscale them to the system level. The primary component models (e. 

g., SWAT, WWT, GP) have been developed in different software pack
ages (Juneja et al, 2019, 2020), which however is not the focus of this 
study. In fact, some software packages, such as WWT, have consensus 
models that have been validated and used in engineering design. 

Traditionally, the RM method is used for landscape loss estimates 
(Housh et al., 2014). In this work, we extended the RM to account for 
reservoir trapping, point-source loading, and some in-stream processes 
(authors who are interested the details of the modified RM, please 
contact the corresponding author). We chose two widely-used good
ness-of-fit measures to assess the performance of the RM method: 
percent bias (P-bias) and Nash-Sutcliffe efficiency (NSE) (Moriasi et al., 
2007). The ideal value of P-bias is zero, indicating no long-term over
estimation or underestimation, with positive values indicating over
estimation and negative values underestimation. NSE varies from 
negative infinity to one, one indicating a perfect match between the RM 
results and SWAT results and with values less than zero indicating that 
model prediction is less accurate than using the mean of observed data. 

To test the performance of the RM method, we select a combination 
of five BMPs with randomly assigned agricultural land area, compare the 
results using the RM method versus SWAT, and present detailed results 
of one realization in Fig. 7. Details regarding the five selected BMPs can 

Fig. 6. Map of testbed Upper Sangamon River Watershed in Illinois.  

Table 1 
Descriptions of alternative scenarios for ITEEM demonstration.  

Scenario number Agricultural management practicesa WWTb Grain Processing (GP) Regulation on drinking water (NO3–N) 

S0 (baseline) noCC_CT_0red_36%FS AS no P recovery 10 mg/L 
S1 noCC_RTF_15red_36%FS ASCP P recovery 10 mg/L 
S2 noCC_RTF_15red_36%FS EBPR P recovery 5 mg/L 
S3 CC_RTF_30red_50%FS EBPR_StR P recovery 10 mg/L 

Note: 
a Each agricultural management practice has four components: 1) cover crop practice, 2) tillage practice; 3) fertilizer rate; 4) waterways/buffers.For cover crop 

practice: noCC = no cover crop applied; CC = a winter cover crop after corn.For tillage practices: CT = conventional tillage in Fall, reduced tillage in Spring (baseline); 
RTF = reduced tillage in Fall and Spring.For fertilizer rate: 0red = no reduction from baseline 207 kg diammonium phosphate (DAP); 15red = 15% reduction from 
baseline; 30red = 30% fertilizer reduction from baseline. For waterways/buffers: 36% FS = 36% of agricultural land are installed with filter strips (baseline); 50%FS =
50% of agricultural land are installed with filter strips. 

b Wastewater treatment (WWT) has four alternative technologies: 1) activated sludge (AS); 2) activated sludge with chemical precipitation (ASCP); 3) modified 
Bardenpho enhanced biological phosphorus removal (EBPR); 4) Modified Bardenpho Enhanced Biological Phosphorus Removal with struvite recovery (EBPR_StR). 
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be found in SI Table S5, and the spatial agricultural land area allocations 
for the realization demonstrated in Fig. 7 can be found in SI Table S6. 
The RM method almost perfectly predicts streamflow and nitrate loads, 
as evidenced by both P-bias (nearly 0%) and NSE (nearly 1) in Fig. 7a 
and c. This is because nitrate loading and streamflow are minimally 
influenced by in-stream processes in the study watershed. Streamflow 
and nitrate load at the watershed outlet are very similar to the sum of the 
loads from individual subbasins minus a constant percentage trapped by 
the reservoir. The RM method also predicts the total phosphorus (TP) 
and sediment loading with high accuracy in general (P-bias = −4.9% 
and NSE = 0.911 for TP, P-bias = 3.35% and NSE = 0.968 for sediment). 
For TP, major discrepancies between the RM method and SWAT simu
lation are observed during the low streamflow periods (e.g., 
2012–2013). This discrepancy arises because the RM method accounts 
for in-stream P settling and biological P uptake/respiration by applying 
a constant percent reduction to TP loss from the landscape (11 percent). 
The constant percent reduction corresponds to some representative 
travel time for water through the channel network. When water spends 
more time within the local channel network, the impact of the in-stream 
processes grows, and accordingly, the SWAT simulation shows the 
stream acting as a stronger P sink than does the RM method. 

As discussed above, sediment is predicted by applying a simplified 
Bagnold equation to the RM estimates for streamflow (Fig. 7b). We apply 
streamflow constrained equations to estimate the in-stream sediment 
loading. The flow-constrained method performs better than simply 
summing up the landscape losses of sediment. This is because, in this 
tested watershed, sediment transport in streams is controlled by 
streamflow, not landscape sediment loss. To test the robustness of the 
performance of the RM method, we run 10 realizations. The perfor
mance of the RM method remains stable, as shown by the detailed re
sults of 10 realizations in SI Table S7. Overall, the RM method in ITEEM 
performs satisfactorily as a surrogate for SWAT across an explicitly 
spatial and temporal scale. However, future efforts should be devoted to 
incorporating a more realistic depiction of sediment deposition and 
degradation processes. 

The ANNs exhibit satisfactory performance in surrogating the 

complex process-based wastewater treatment model (WWT). Using the 
simulation data from each of the four WWT alternatives, the ANNs 
shows high prediction accuracy for all outputs (MSE < 0.001 and R- 
squared >0.95 as shown in SI Fig. S7). Detailed data of MSE and R- 
squared for each output in each WWT alternative are provided in SI 
Table S8. Note that among the outputs predicted by the ANNs, the total 
nitrate and phosphorus loading from WWT is coupled with the RM 
method to account for total nutrient loading for the watershed. For the 
GP model surrogated by lookup tables, all data stored in lookup tables 
are directly from the simulation results in the high-fidelity model. We 
assume that each GP plant is operated at steady-state and at its plant 
capacity, and the simulation data are extracted directly from lookup 
tables. Therefore, there is no additional uncertainty introduced to this 
surrogate model. 

5.3.2. Suitability of surrogate modeling and applicability of surrogate-based 
model coupling 

As introduced in Section 3.1, we develop surrogate models for 
complex process models first and then couple the surrogates (along 
empirical models for water supply and economic analysis) to formulate 
ITEEM. The surrogate-based model coupling method is suitable only if 
the following conditions exist. First, if primary process models cannot be 
integrated directly with compatibilities among discipline-specific com
puter programs, as discussed by Little et al. (2019). Second, the coupled 
primary process models are not computationally tractable, especially it 
is difficult if not possible to use the coupled models for decision analysis, 
e.g., being coupled with an optimization algorithm (e.g., genetic algo
rithm) to find optimal solutions. 

While surrogate modeling has also been applied to acting as emu
lators and approximate uncertainty quantification in many domains 
(Alemazkoor and Meidani, 2020; Razavi et al., 2012; Wu et al., 2014), 
the difference between surrogate modeling and surrogate-based model 
coupling should be noted. Surrogate modeling assesses a surrogate to 
one single high-fidelity simulation model and uses it for certain 
modeling purposes; surrogate-based model coupling assesses the joint 
application of multiple surrogate models derived from multiple process 

Fig. 7. Simulated results from response matrix and SWAT for the baseline: (a) streamflow, (b) sediment, (c) nitrate, (d) total phosphorus (TP).  
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simulation models in a consistent modeling framework. Various other 
model coupling methods have been applied to couple complex process 
models together, such as wrapper model, scripting, and model trans
lation. Those methods couple high-fidelity models directly and thus 
have higher accuracy. For instance, Anderson et al. (2018) integrated 
DSSAT (a crop simulation model) and GREET (a simulation model for 
energy use and emissions for various vehicles) models via their appli
cation programming interfaces (APIs) to simulate the inter-relationships 
between crop production and environmental impacts of biofuel pro
duction (Anderson et al., 2018). However, not all software developers 
provide APIs, especially for commercial software packages. Xiang et al. 
(2020) integrated DSSAT with MODFLOW (a groundwater simulation 
model) by writing scripts for external controls on both models in a batch 
mode in Python. Model translation constructs different individual 
models from scratch in a common platform. However, this method can 
only be feasible for simple simulation models as it requires rewriting all 
equations included in the primary simulation models (Malard et al., 
2017). There is not a single model coupling method that is deemed to be 
better than others under all cases. Users should consider their strengths 
and weaknesses for particular applications. For FEW systems analysis 
present in this study, with appropriate simplifications as described 
above, our surrogate-based model coupling approach can deliver a 
computational tractable integrated model at the system level. 

5.3.3. Tradeoffs and limitations of surrogate-based integration design 
choices 

Various spatial and temporal scales exist in different component 
models. For example, the temporal scales can be daily, monthly, and 
annual; the spatial scales can be a point, watersheds (small and large) 
and river basin for different component models. Our integration design 
choices on selecting targeted spatial and temporal scales and their 
interaction points are driven by decision-making requirements for the 
model, as well as technical considerations. One of our study purposes is 
to evaluate solutions based on BMPs and environmental engineering 
technologies for combined point and non-point source nutrient man
agement. We chose a monthly temporal scale for both point source and 
non-point source simulation, which is usually sufficient to maintain 
nutrient mass balance. For water quality related decision-making, the 
daily raw nitrate level is important and thus the DWT model uses a daily 
time scaler. Correspondingly, we use the results of SWAT at a daily scale 
to estimate the daily raw nitrate at the sub-watershed where the DWT 
locates. 

Technically there is a typical tradeoff between the modeling accu
racy and computational requirement in the choices of temporal and 
spatial scales and the aggregation level for the integrated model. In 
particular, the DWT is modeled at a point scale, where a treatment plant 
takes raw water from a storage or a river segment within the study 
watershed. It would be is ideal to have the nitrate concentration at a 
finer spatial scale because of the spatial variance of the nitrate con
centration. However, SWAT only simulates the in-stream loads of nu
trients at a sub-watershed level, and the average nitrate concentration in 
the sub-watershed is taken for the simulation. For WWT, the effluent of 
point-source nutrients is dynamic and impacted by domestic influent 
fluctuations, as well as wet weather. However, dynamic modeling of 
WWT over a long-term period is challenging due to the lack of detailed 
knowledge of influent wastewater characteristics and of the rainfall 
translation to plant influent and operation changes. Eventually, we use a 
steady-state approach to simulate monthly point source nutrients. Such 
a temporal aggregation from nearly real-time to monthly scale limits the 
capability of the WWT model in simulating peak stormwater demand 
caused by an extreme rainfall event. To rigorously quantify the tradeoffs 
between accuracy and computational time due to different choices of 
spatial and temporal scales would be an interesting investigation. We do 
not explicitly quantify such tradeoffs in this paper as we focus more on 
developing an integrated model that tightly couples process-based and 
empirical models at the same platform that can be used to test 

hypotheses and generate insights for watershed nutrient management. 

5.3.4. Tradeoffs among food, energy, water, and economics 
To demonstrate how ITEEM can be applied to explore tradeoffs 

among multiple metrics of FEW systems, outputs from the three alter
natives and the baseline are simulated using the method “run_ITEEM()”. 
To facilitate tradeoff evaluation, we normalize the performance of each 
metric indicator from 1 to 3, with 1 indicating the worst and 3 indicating 
the best among all scenarios, as shown in Fig. 8a. The minimum and 
maximum indicator values are provided in Fig. 8b. Compared to Sce
narios 1–3, the Baseline Scenario has the lowest overall performance for 
water quality and quantity indicators, but the best overall performance 
on energy consumption, cost of technologies (GP and WWT), and crop 
production. The result arises because all three alternatives introduce 
best agricultural management practices, upgrade the existing technol
ogy to recover P, and advance point-source P removal. 

The non-market benefits represent the estimated willingness-to-pay 
of general public living in upstream of Decatur reservoir for increases 
in likelihood of achieving the nutrient reduction target (45% by 2045) in 
Illinois based on the study of Parthum and Ando (2020). Their study 
estimates that each household located upstream of the reservoir would 
be willing to pay $0.95 per year to increase the likelihood of meeting the 
nutrient target by one percentage point. Using the estimate, we simplify 
the non-market benefits under each scenario as: $0.95/household/year 
multiplied by 113,700 (approximate number of households in the up
stream of the reservoir), and then multiplied by the extent to which a 
scenario attains the 45% target for Nitrate-N or TP (e.g., if a scenario 
reduces TP by 45%, then this value is 100). The values in Fig. 8 are the 
sum of benefits derived from reduced nitrate and TP loads. According to 
this formulation, the three alternatives generate environmental benefits 
ranging from 3.0 to 8.1 million dollars/yr. However, those environ
mental benefits are not enough to offset the associated costs to upgrade 
treatment technologies and adopt new agricultural BMPs. As evidenced 
in Fig. 8a, the baseline scenario provides greater total benefits than do 
the three alternative scenarios. Note that the non-market benefits will be 
updated based on our choice experiment results and the results might 
change considerably. 

Among the three alternative scenarios, Scenario 3 has the best nitrate 
reduction and second-best TP reduction due to the adoption of cover 
crops and the choice of Modified Bardenpho Enhanced Biological 
Phosphorus Removal with struvite recovery (EBPR_StR) for WWT. The 
nitrate reduction in Scenario 3 also results in decreased energy con
sumption and cost associated with nitrate removal at the DWT. Sce
narios 1–3 reduce the DAP fertilizer application rate by 15%, 15%, and 
30%, respectively, but the impact on corn yield is relatively negligible. 
This could be because either the baseline is currently over-applying DAP 
fertilizer or there is enough P accumulated from prior years to make up 
the gap in crop demand for P. Overall, the three alternatives illustrate 
the tradeoffs between reduced nutrient loading, energy demand, and 
cost for alternative technologies. 

5.3.5. Sensitivity analysis of ITEEM 
We conduct the sensitivity analysis for key parameters, including six 

parameters from SWAT, two parameters from the WWT, and the other 
eight parameters of benefits and costs (see Fig. 9 for the list of the pa
rameters). Note that the WW nutrient parameter in the WWT model 
varies the influent COD, TKN, and TP altogether (Details provided in SI 
Table S4). The heatmap (Fig. 9) shows the sensitivity results with pa
rameters listed horizontally and multi-dimensional outputs listed 
vertically under the four scenarios (baseline + three alternatives in 
Table 1) investigated in this study. We consider a change of ±20% as 
upper and lower bound for most key parameters, except for the interest 
rate and willingness to pay per household. As mentioned earlier, the 
sensitivity results of the key parameters are scenario dependent. Values 
in the heatmap represent the change to an output responding to one unit 
change of a parameter. For example, the sensitivity of parameter 
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(SWAT_runoff curve) on the output (nitrate load) is 2.1, as shown in the 
top left corner of the heatmap, meaning that a 1% change of the runoff 
curve value from the baseline can cause a 2.1% change of nitrate load at 
the outlet. 

It is found that the six SWAT parameters have the most significant 
impacts on water quality (i.e., nutrient and sediment load) and quantity 
(i.e., streamflow) and crop production. The uncertainty from those pa
rameters further propagates into crop revenue, the willingness to pay 
(WTP), and the total net benefit. The total net benefit is also significantly 
impacted by the market prices of products (e.g., starch and ethanol) 
from grain processing plants and the cost of feedstock (e.g., corn sold for 
grain processing), as the profit from GP has a large contribution to the 
total net benefit. In contrast, the prices of chemicals, rP, and utility (e.g., 
electricity and natural gas) have negligible impacts across the outputs. 

The two parameters from the WWT model are evaluated with the 
four treatment alternatives (AS for baseline, ASCP for S1, EBPR_acetate 
for S2, and EBPR_StR for S3), corresponding to the four scenarios pro
vided in Table 1. The influent nutrient strength (WW nutrient) and 
inflow of wastewater (WW inflow) have a noticeable impact on the 
energy use of WWT, the amount of recovered struvite, and the WTP, 
which demonstrates that the uncertainty of influent characteristics from 
the WWT model can have a significant impact at the system level out
puts. However, we also have two interesting observations. 1) parameters 
from the WWT model do not have a significant impact on TP load at the 
outlet (Fig. 9), despite the fact the point source P is the leading 
contributor to the total TP load for the testbed watershed. 2) parameters 
are sensitive on the outputs (point source only) of individual WWT 
treatment alternatives. For example, the sensitivity of WW influent for 
the four treatment alternatives is 1.38 for point source nitrate and 0.87 
for point source TP (details provided in SI Table S9). However, the 
sensitivity of WW nutrient is decreased when integrated at the system 
level (point + nonpoint sources) with sensitivity being 0.03 for nitrate 
and 0.25 for TP (details provided in SI Table S9). Both observations can 
be attributed to the fact that our local sensitivity analysis is scenario- 
dependent; for the cases of ASCP, EBPR, and EBPR_StR, the point 
source nutrients are significantly reduced and are not the leading TP 
contributor anymore. Therefore, for the scenarios with ASCP, EBPR, and 
EBPR_StR, the parameter changes on WWT model will not have sensitive 

impact on total TP load, which ultimately decreases its sensitivity on TP 
load at the system level. 

6. Conclusions and future research 

Addressing large-scale environmental sustainability challenges re
quires integrated analysis of complex inter-relationships within FEW 
systems. This paper presents the development of an integrated 
technology-environment-economics model (ITEEM) for typical water
sheds in the Corn Belt. We use various data techniques to convert 
complex models simulating physical & engineering processes and so
cioeconomic relationships into computationally tractable surrogates and 
link these surrogates via input-output relationships within a consistent 
computer-based modeling platform. The procedures for developing 
ITEEM for a case study watershed (Upper Sangamon River Watershed, 
USRW) can be applied to other watersheds in the Corn Belt, with 
required data and model preparation as shown for the USRW. 

Based on our experience developing ITEEM with a team including 
researchers from hydrology and water resources system analysis, envi
ronmental engineering, environmental economics, and sociology, we 
reflect on steps for selecting surrogate models, i.e., which type of data- 
driven surrogates is most suitable for a particular physical and process 
model based on data and model availability, as well as the purpose of the 
integrated model. In this study, we applied the response matrix method 
and artificial neural networks, respectively, to create surrogates for 
SWAT and WWT. A detailed process model for DWT is not available for 
our project, therefore we adopted empirical equations for the DWT 
component. The lookup table method used for the GP component is 
simple but sufficient since GP can be assumed to operate at steady state 
and is only impacted by the size of plant capacity. The economics 
component is formulated with equations that include non-market 
valuation estimates and overall economic net benefits. In our one-at-a- 
time sensitivity analysis, we show to what extent the uncertainty of 
selected key parameters in the component models can impact the out
puts of ITEEM; we identify some critical parameters that are worthy of 
further investigation. Future work should adopt a global sensitivity 
analysis considering the correlation of the uncertainties from different 
component models, as well as the uncertainty due to future climate 

Fig. 8. Tradeoffs between the multiple-dimension indicators of FEW systems. Each colored line represents one scenario described in Table 1. The multiple-dimension 
indicators are aggregated into four groups: 1) water quality and quantity; 2) energy consumption of engineering systems; 3) cost and benefits; 4) crop and rP 
production. Note: DWT = Drinking water treatment; GP = Grain processing; WWT = Wastewater treatment; WTP = Willingness to pay; rP = recovered phosphorus. 
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change. 
ITEEM enables testing hypotheses for FEW systems analysis and 

exploring solutions to resolve inter-connected FEW problems. For 
example, one hypothesis to test is that the most economically efficient 
way to improve water quality in Corn Belt watersheds should be to 
jointly employ a combination of agricultural land management practices 
and P recovery from co-products generated by grain biorefinery facilities 
or wastewater treatment. It is noted that ITEEM is designed for evalu
ating long-term strategic planning for FEW systems in the Corn Belt but 
not for evaluating short-term events, such as extreme rainfall events that 
can cause peak stormwater flow that affects both point and non-point 
pollution. Future work will be conducted to evaluate FEW system 
resilience under a set of stress and disturbance scenarios. Last but not the 
least, ITEEM will be coupled with a multi-objective optimization algo
rithm to search for optimal technologies and policies. 

Data and code availability 

The data and codes are available from the corresponding author 
upon request. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work was supported by the US National Science Foundation 
(INFEWS/T1 award number 1739788). We are grateful to industrial, 
governmental, and agricultural stakeholders in Decatur, IL for providing 
valuable data for developing components of the ITEEM. We appreciate 
valuable comments and constructive suggestions from the editors Daniel 
P. Ames and Tatiana Filatova, and three anonymous reviewers, which 
have considerably improved the quality of this work. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envsoft.2021.105083. 

Fig. 9. Sensitivity analysis results of ITEEM outputs (vertical axis) with key parameters (horizontal axis) from component models. All outputs are annual average 
with the unit provided in Fig. 8b. Note: WWT = Wastewater treatment; DWT = Drinking water treatment; GP = Grain processing; WTP = Willingness to pay; rP =
recovered phosphorus. 
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