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To facilitate understanding and decision making in the food-energy-water (FEW) nexus context, we develop an
integrated technology-environment-economics model (ITEEM) at a watershed scale. ITEEM is built as an inte-
gration of various models, including models for grain processing, drinking water treatment, and wastewater
treatment (technology); a watershed model for hydrology, water quality, crop production, and nutrient cycling
(environment); an economics model assessing total benefit, including non-market valuation of environmental
benefits. Different data techniques are applied to develop suitable surrogates for computer-based models,
including a response matrix method, artificial neural networks, and lookup tables. Empirical equations are
applied to develop models of economics and drinking water treatment. The input-output relationships between
the models are formulated in a unified computational framework. ITEEM, a spatially semi-distributed dynamic
simulation model, can be used to quantify the environmental and socioeconomic impacts of various management

practices, technologies, and policy interventions on FEW systems in the Corn Belt.

1. Introduction

Food-energy-water (FEW) systems in the US Corn Belt are highly
interconnected and sensitive to stresses and threats. Grain production
and subsequent utilization for animal feed, human food, and ethanol
production have pervasive effects on water quantity and quality in
downstream environments both locally (e.g., lakes and rivers with
elevated nitrogen and phosphorus) and nationally (e.g., Hypoxic zone in
the Gulf of Mexico) (US EPA, 2017). Water stress associated with
increased climatic variability is anticipated to increase (Muttiah and
Wurbs, 2002), especially in many mid-sized cities in the Corn Belt that
interact with neighboring agricultural lands, major industrial needs (Li
et al., 2018), and their shared watersheds. Energy demand and overall
costs for wastewater and drinking water treatment have increased, and
this trend is expected to be exacerbated by continued expansion of food
and bioethanol production (Simpson et al., 2008; Twomey et al., 2010).

To deal with these threats to and risks within FEW systems, long-term
efforts have been made to resolve the conflicts between agriculture,
food industry, water supply, and environmental protection. For
example, wastewater treatment and corn ethanol refinery facilities have
begun extracting nutrients from “waste” and process byproducts, which
results in both the reuse of extracted materials as inorganic mineral
fertilizers (e.g. struvite and calcium phytate) and the reduction of
point-source discharge of nutrients to the environment. For example,
recovering phosphorus (P) can conserve a finite resource (e.g. phosphate
rock) (Cordell et al., 2009; Juneja et al., 2019; Margenot et al., 2019);
cost-effective water treatment technologies are adopted to conserve
energy use (Bhatnagar and Sillanpaa, 2011); agricultural best manage-
ment practices (BMPs) reduce nutrient and soil loss from farmland in
upstream watersheds (Lemke et al., 2011; Rao et al., 2009). Researchers
have called for holistic integrated modeling development and assess-
ment for FEW systems at various scales to avoid fragmented status quo
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decision making (Leck et al., 2015; Little et al., 2019). This paper pre-
sents an integrated technology-environment-economics model (ITEEM)
which unites a set of surrogates and empirical models derived from the
various primary models simulating key processes at a watershed scale.
The developed ITEEM is capable of analyzing complex systems and
specific solutions to interconnected problems in FEW systems in Corn
Belt watersheds.

There are several major challenges when integrating models from
different disciplines. First, most physical models are developed using
discipline-specific computer programs or software packages (e.g., SWAT
for hydrologic processes, GPS-X for wastewater treatment), which cau-
ses a barrier for automatic information transfer. Recently, some in-
terfaces have been developed for simple automated data exchange
between two models (Anderson et al., 2018; Xiang et al., 2020). For a
large interdisciplinary integrated model involving agricultural, hydro-
logic, and engineering components developed in various computer
programs (including commercial software), as the case of our study, the
level of complexity can be overwhelming to modelers, and it usually
turns out to be infeasible to directly integrate different models due to
incompatibilities among discipline-specific computer programs (Little
et al., 2019). Second, some engineering design models (e.g., GPS-X for
wastewater treatment, SuperPro Designer for Grain processing) are
proprietary which may impose costs and legal constraints on direct
coupling. Third, inputs and outputs from separate models are likely to
have different temporal and spatial scales with distinct data formats,
which need to be harmonized at the points of interaction between
models (Cai, 2008). Appropriately building the interactions between
various models is a key step to enable information transfer endogenously
within a consistent model. Fourth, complex physical models can be
highly computationally expensive; an affordable computational burden
is especially important if the research of interest will address stochastic
problems (Little et al., 2019). Thus directly integrating many compu-
tationally heavy models is often computationally infeasible.

Researchers have developed various integrated models (Cai, 2008;
Carmichael et al., 2004; Gaddis et al., 2010; Housh et al., 2014). Cai
(2008) shared reflective comments on the advantages and challenges of
holistic modeling (tight coupling of different components in one
consistent model) versus compound modeling approaches (“loose”
coupling of different components via external data exchanges). Holistic
models embed different components into a single consistent optimiza-
tion model, such as hydrologic-economic models (Cai, 2008; Cai et al.,
2003; Harou et al., 2009), hydro-biogeochemical model (Wu et al.,
2016), and “system of systems” models, e.g. a biofuel (biomass and
refinery)-infrastructure-environment model (Housh et al., 2014). Ho-
listic optimization models are usually composed of mathematical
equations including the objective function(s) and constraint function(s).
Other system modeling approaches applied in FEW systems include
agent-based models (Ng et al., 2011), life cycle assessment (Li et al.,
2020), system dynamics (Feng et al., 2016; Gaddis and Voinov, 2010),
etc. However, these system modeling methods have less focus on inte-
grating detailed physical process modeling, but more focus on other
perspectives. For example, agent-based models focus on simulating the
behavior and decision-making of multiple stakeholders, life cycle
assessment focuses on quantifying environmental impacts from cradle to
grave, and system dynamics focuses on modeling the feedbacks among
stock variables and drivers. The degree of process details at which those
system modeling approaches have may not lend themselves to coupling
multiple complex process models in a system of systems.

Little et al. (2019) proposed a generic tiered system of systems
(GTSoS) to upscale physical models from the process level to the system
level via integration while keeping computational tractability and
minimizing the loss of fidelity (Little et al., 2019). Models that are
developed at the process level in various computer programs (or soft-
ware packages) with domain-specific knowledge and data can be
replaced by surrogates (also termed reduced-order models,
meta-models, or emulators), if process models cannot be integrated
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directly due to complexity and incompatibilities among
discipline-specific computer programs. Various data techniques can be
applied for emulating a process model, such as polynomial response
surfaces, artificial neural networks, and supporting vector machine
using numerical samples of inputs and outputs of the primary model
under a systematic sampling strategy (Leperi et al., 2019; Lu and Ric-
ciuto, 2019). Those surrogates typically build statistical relationships
between inputs and outputs of a system modeled by a primary model.
Another type of surrogate is based on hybrid theory and data (also
termed as lower-fidelity physically-based surrogates) (Razavi et al.,
2012). By replacing complex process models with appropriate surro-
gates, one can integrate them into a consistent model, maintaining
reasonable fidelity of the primary process models without causing a
serious computational burden, as most surrogates do not have a rich
internal structure (Carmichael et al., 2004).

Although the GTSoS framework provides a promising direction on
model integration for analyzing a system of systems, the development of
such a framework is challenging. Specific challenges include the selec-
tion of an appropriate mathematical form of a surrogate for a particular
process model, and the integration of the surrogates across multiple
spatial and temporal scales (Cai, 2008). In addition, examples of
real-world problems are needed to demonstrate the effectiveness and
applicability of GTSoS to the various complex system modeling cases.
Here, we explain the methodology used to overcome these challenges in
the construction and execution of ITEEM. Disciplinary-specific process
models are replaced by surrogates, and these surrogates are integrated
within a unified computational software framework to form a holistic
model. ITEEM is demonstrated in a watershed in the Corn Belt to analyze
inter-connected problems of crop production, grain processing, water
and wastewater treatment, and nutrient management, with consider-
ation of technologies, management practices, and policies for multiple
sectors.

2. Research problem and FEW systems characterization in Corn
Belt watersheds

2.1. Research problem

FEW systems are usually highly interconnected crossing multiple
sectors.in many regions. For the Corn Belt watersheds, FEW systems are
sensitive to stresses and threats with respect to food production, and
increasing biomass production, and energy supply and demand, which
pose impacts on water quality, water supply, energy demand and cost,
resources conservation, and economic growth and financial stability.
These interconnected components of FEW systems are depicted in Fig. 1.
Managing phosphorus (P) within these systems has proven especially
challenging over the last 40 years due to the so-called “phosphorus
paradox”. On the one hand, phosphorus is an essential nutrient for plant
growth, and correspondingly, copious applications of phosphorus fer-
tilizer have been critical to meeting demand for food, livestock feed, and
biofuel (Jarvie et al., 2015). However, on the other hand, phosphorus
fertilizer applied in agricultural fields is at risk of being transported into
water bodies where, in excess, it contributes to water quality degrada-
tion, namely, toxic algae blooms (Bennett et al., 2001; Carpenter, 2008).
Efforts to navigate these conflicting objectives have been undermined by
long-lasting stores of P in fields and streams (i.e. P legacy) which create
time-lags between changed agricultural practices and their impact on
water quality or crop yields (Jarvie et al., 2017; Powers et al., 2016;
Sharpley et al., 2013). Developing technologies for P removal and re-
covery from waste streams with feasible costs are important given that
these interventions play unique and under-emphasized roles within the
FEW nexus regarding water pollution, resource recovery, and agricul-
ture production, as shown in Fig. 1.

Traditionally, various management options are evaluated and
implemented within individual systems (F, E, or W) or processes at local
scales. Nutrient pollution in a Corn Belt watershed typically comes from
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Fig. 1. FEW systems in a Corn-Belt watershed with phosphorus (P) recovery as a key technology.

a combination of identifiable pollution discharges (i.e. point sources,
such as wastewater treatment plants) and diffuse pollution (i.e. non-
point sources, such as agricultural runoff). Grain processing also indi-
rectly contributes to nonpoint source P pollution by concentrating P in
coproducts (corn gluten feed, CGF, and dried distillers grains with sol-
ubles, DDGS) to the extent that they exceed livestock dietary re-
quirements, leading to pollution by P-enriched manure in livestock
feedlots (Nahm, 2002). Studies have shown the P concentration in CGF
and DDGS (two commonly used ingredients for cattle and poultry diets)
can be reduced by recovering P from light steepwater (wet milling plant)
and thin stillage (dry grind plant), for potential use as a fertilizer (Juneja
et al, 2019, 2020). Drinking water treatment is considered as a
local-scale process that takes raw water from lakes that could have up-
stream point and nonpoint sources of nitrate and sediment.

Traditional approaches usually use separate disciplinary-specific
models and ignore or do not fully consider the impact of the FEW
nexus relations that exist at certain spatial scales. Such approaches
cannot capture the interconnected influence of measures taken across
the interdependent systems. To address this general deficit in the Corn
Belt and other regions, a seamless integrated technology-environment-
economics model (ITEEM) is developed to assess the tradeoffs and
synergies within FEW systems in the Corn Belt.

2.2. Primary models for different components of FEW systems

Components of FEW systems shown in Fig. 1 are modeled by various
computer-based programs and empirical relationships on data and
knowledge in individual disciplinary domains. Specifically, the Soil and
Water Assessment Tool (SWAT), a semi-distributed and physically-based

watershed management model (Jayakrishnan et al., 2005), is used to
simulate water quality, quantity, and crop yield based on different land
uses and BMPs in a Corn Belt watershed. The wastewater treatment
(WWT) is modeled in GPS-X (Hydromantis Environmental Software
Solutions, Inc.) with advanced mathematical modeling, optimization,
and management of wastewater treatment processes. Grain processing
(GP) is modeled in Superpro Designer (Intelligen Inc.) to evaluate the
potential of P recovery from corn coproducts with existing
physical-chemical and enzymatic technology. SWAT, WWT, and GP
models involve detailed processes characterized by biological, chemical,
and physical principles. The drinking water treatment (DWT) model is
empirical and driven by historical plant data for energy requirement and
cost according to influent nitrate and sediment concentrations. In
addition to the physical component of FEW systems, we also develop an
economic model that represents the human dimension of the FEW sys-
tems. The economic model is semi-theoretical and empirical, based on
choice experiments evaluating the relationships between water quality
improvements and farmers’ or the public willingness to pay that is
assessed using survey data. Details on the development of each primary
model are provided in the Supplementary Information (SI), Section 1.

3. Development of ITEEM

Via multi-disciplinary teamwork, three process models (SWAT,
WWT, and GP) and empirical (DWT) or theoretical-empirical models
(Economics) are first established at the process level (the lower part of
Fig. 2). Then the components of ITEEM are developed in the form of
surrogates or empirical relationships, which are coupled by integrating
input and output relationships crossing temporal and spatial scales at
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Fig. 2. A tiered modeling framework for ITEEM. The modeling framework starts from establishing disciplinary-specific primary models at the process level and
upscales the primary models to the system level, which captures complex interactions between technological, environmental, and economics components. Note:
SWAT = Soil and Water Assessment Tool; GP = Grain processing; WWT = Wastewater treatment.

the interaction points between the components at the system level (the
upper part of Fig. 2). Such a hierarchical structure allows modelers to
drill down to the process level and access details for better interpreting
results simulated at the system level. All components of the ITEEM are
coded in the same programming platform, Python.

The interaction between the technology (T), environment (En), and
economics (Ec) at the system level of ITEEM are shown in the upper part
of Fig. 2. The technology is composed of BMPs simulated in SWAT and
engineering technologies simulated in WWT and GP components. The
relationships between T-Ec include capital, operation, and maintenance
costs for P extraction and the cost savings from a) changing farm man-
agement practices to use P recovered from biorefineries as crop fertil-
izer; b) introducing cover crops with no-till, etc. The relationships
between En-Ec include a) non-market benefit as a measure of the value
to the population of an improvement in water quality and a measure of
people’s preferences for alternative ways of achieving lower P pollution
levels; b) water treatment and water supply cost due to extra nutrient
discharge. The relationships between T-En include a) P removal from
grain coproducts and hence “downstream” reductions of P in manure
and feedlot runoff; b) nonpoint source change of P, nitrate, and sediment
loads in rivers and to lakes; c¢) point-source nutrient discharge reduction;
d) mined P offset with P recovered from biorefineries and wastewater
treatment plant.

3.1. Selection of model forms for components of ITEEM

As discussed before, it is challenging to select appropriate model
forms for different model components (Razavi et al., 2012). As there are
no well-defined standards for selecting model forms, we select an
appropriate model form for each component based on the model avail-
ability (i.e., if a process model is available for a specific component),
complexity and attributes of existing models, and data availability. A
decision tree used for selecting model forms is presented in Fig. 3. In
general, we start by examining if a component (either physical or eco-
nomic) can be represented by a set of empirical equations for the pur-
pose of our study, especially for those components for which primary
computer-based models are not available or do not have external sour-
ces to develop a computer-based model. In the current study, the eco-
nomics and drinking water treatment (DWT) components fall within this

category. Empirical equations are directly modularized in Python to
represent such components.

For the components for which computer-based models (i.e., SWAT,
WWT, and GP) exist, distinct surrogate forms are chosen according to
the particularities of each case. First, if there are sufficient simulation
data determined by the number of inputs and outputs of a computer-
based model, a machine learning model (e.g., artificial neural
network, ANN) can be used to surrogate a complex and nonlinear pro-
cess model, such as the case for the WWT component of ITEEM. Note
that the sample size of the simulation data varies case by case and is
dependent on model complexity (Davis et al., 2018); sufficient simula-
tion data support the development of a surrogate model with desirable
and stable performance. Second, if a computer-based model has a large
number of inputs and simulate copious spatial and temporal outputs, it
becomes more challenging to obtain sufficient simulation data for
training traditional surrogate models (e.g., ANNs, SVM). The challenge
arises from two perspectives: 1) the process of generating sufficient
SWAT simulations for such a spatially-distributed dynamic model is
computationally expensive itself; 2) the process of training ANN and
SVM with such high dimension inputs and outputs takes up computer
memory and numerous calculations, thus are prone to crash. Although
machine learning has also been applied to approximate complex hy-
drological models (Cai et al., 2015; Zhang et al., 2009), the number of
inputs and outputs in their SWAT are usually relatively low (only several
or dozens of inputs and outputs at most), thus requiring fewer simulation
data (only thousands of simulations at most). For our case, we aim at
developing a surrogate model that can reasonably replicate SWAT
simulations, including temporal and spatial heterogeneity, while vary-
ing a large number of inputs (e.g., BMP applications at each of the
subwatersheds). Since neither ANN nor SVM with limited model simu-
lations (e.g., less than 100 model runs) could be effective in generating
such a spatially-distributed and dynamic surrogate for copious inputs
and outputs, we choose a response matrix (RM) method as a surrogate
model to produce spatially-distributed dynamic outputs of SWAT, which
we show is appropriate in this study. The RM method estimates water,
sediment, and nutrient yields from landscapes with partial adoption of
management practices by interpolating between simulation results
when those practices are applied to all or none of the landscape. The
loading of nitrate, total P, sediment, and streamflow in each channel
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reach is then the sum of all upstream landscape loads. Due to its
simplicity and effectiveness, the RM method has been widely used in
different areas, such as groundwater management models and water-
shed models (Gorelick, 1983; Housh et al., 2014). The details of the
mathematical definitions adopted to implement the RM method are
provided in Section 3.1.1.

Third, if advanced surrogates (e.g., ANNs, SVM, RM method) are not
appropriate due to data limitation and the characteristics of a computer-
based model, as the case of the GP component, we look for another
surrogate form too. The data limitation arises that although Superpro
Designer can generate sufficient samples via its built-in Monte Carlo
simulator, the simulator does not provide outputs with the degree of
detail needed for calculating the amount of P flow recovered from
process streams. The characteristics of the GP model refers to the fact
that, unlike the SWAT that simulates spatial and temporal variables, the
GP model generates steady-state operation outputs which are only
determined by the plant capacity. For this case, lookup tables, a most
basic form of surrogates, are created to determine GP simulation outputs
under a set of plant capacities reflecting a common range of commercial
grain processing plants. All data in the lookup tables are directly derived
from the high-fidelity computer-based model.

3.2. Interactions between components of the ITEEM

After selecting a model form for each of the ITEEM components, the
next challenge is to couple the surrogates whose inputs and outputs have
distinct spatial and temporal scales. This is a common challenge for
integrating multiple components within a consistent model, while each
case may have its unique complexity when coupling spatially and
temporally varied data and processes across components. Cohesive
spatial and temporal scales are chosen for ITEEM to couple point source
nutrient loadings from WWT with nonpoint source loadings simulated
with SWAT. The temporal scale of SWAT outputs can be daily, monthly,
or annual, and the spatial scale can be by hydrological response units
(HRUs), subwatersheds, or the entire watershed. In contrast, the steady-
state WWT model operates at the weekly, bi-weekly, or monthly scale
and discharges to a specific point in a watershed. Given such inconsis-
tent spatial and temporal scales, we couple SWAT and WWT models at
the monthly scale; to match the spatial scale, we couple SWAT and WWT
models at the subwatershed scale (12-digit Hydrologic Unit Code). This
reduces hundreds of HRUs to dozens of subwatersheds. Point source
nutrient loadings are added as inflows to the channel reach in the sub-
watershed where WWT plants are located. More details about coupling
over temporal and spatial scales are provided in mathematical formu-
lations (Section 3.3.1.1.).
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Fig. 4 illustrates the multiple interacting feedback loops among the
components in ITEEM. SWAT has the most interactions with other
components. The inputs to SWAT include BMP (e.g., tillage, P fertilizer
rates, grassed waterways/riparian buffers, etc.) land allocations at the
subwatershed level. The simulated nitrate and sediment from SWAT are
inputs to the DWT model to estimate the required treatment cost and
energy consumption to purify drinking water. SWAT also simulates corn
and soybean yields, which are inputs to the GP model that simulates the
amount of recovered P (rP). The resulting amount of phytin-based fer-
tilizer produced from rP is then simulated as a substitute that displaces
mined P fertilizer. Besides, the P recovery from corn grain byproducts
(CGF, DDGS) causes a reduction of P content in livestock diets, leading
to reduced manure P content and ultimately reduced P runoff from
feedlots. The selection of a wastewater treatment technology also has
implications for P recovery, nutrient discharge, and cost. The four WWT
alternatives are:1) activated sludge, 2) activated sludge with chemical
precipitation, 3) a modified 5-stage Bardenpho process with enhanced
biological phosphorus removal (EBPR), and 4) a modified 5-stage Bar-
denpho EBPR process with struvite (a form of P) recovery (EBPR_StR)).

Replacing mined P with an rP product (i.e. struvite from WWT or
phytin from GP) is an additional agricultural BMP within ITEEM. Via
techno-economic analysis, the costs (e.g., capital, operation, labor, and
maintenance costs) for the WWT, GP, and DWT technologies and prac-
tices are first calculated as total present value and then converted into
equivalent annualized cost (EAC), expressed as “$ per year”, and their
associated energy requirements are also calculated. The other two eco-
nomic components of ITEEM include: 1) linking water quality levels to
public willingness-to-pay (WTP) and farmers’ willingness-to-accept
(WTA) payment to adopt new conservation practices, and 2) calcu-
lating the total net benefit accounting for engineering technologies, farm
management practices, and non-market environmental benefit. Beyond
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the interactions between these components, ITEEM as a whole is driven
by the climate, market price of crops and rP fertilizer products, policy
regulations on maximum contaminant level (MCL) for nitrate in drink-
ing water and wastewater nutrient effluent limits, and technology op-
tions proposed for WWT and GP components.

3.3. Overview of components in the ITEEM

The basic overview of each surrogate and empirical model in ITEEM
are provided in this section. Detailed mathematical formulations of each
modeling component are provided in SI Section 2.

3.3.1. Response matrix (RM) for SWAT

SWAT simulates water quality (i.e., nitrate, total phosphorus, and
sediment yield), water quantity (i.e., streamflow), and crop yield (i.e.,
corn, soybean, corn silage, perennial grass) for each hydrologic response
unit (the smallest spatially homogeneous unit in SWAT) and aggregates
to the subwatershed scale. The computational time for running SWAT
can be expensive, from minutes to hours, depending on temporal and
spatial scales, and the number of simulations. The RM method has been
used previously to approximate the impacts of different crop allocations
on simulated water and nutrient yield from landscapes (Housh et al.,
2014). To apply the RM method, SWAT-simulated water, sediment,
nutrient and crop yields under various scenarios of complete BMP
adoption are stored in a set of response matrices. This initial simulation
may require large computational efforts. However, the resulting RM can
efficiently handle a large set of decision variables (i.e., the land area of
BMP adoption in each subwatershed) involved in watershed manage-
ment. It is worth noting that the traditional RM method only estimates
the landscape loss (e.g., nonpoint source nutrient and sediment
contributing to rivers) (See detailed calculations in SI Section 2.1.1). In
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this work, we extend the traditional RM to further account for
point-source pollution, reservoir trapping, and in-stream processes so
that in-stream loading can be accurately estimated.

First, the point-source loading of nitrate and TP simulated from the
WWT component (see Section 3.3.2) is added to the subwatershed where
WWT plants are located. Second, modifications of the traditional RM
method are also required to account for the trapping of sediment and
nutrients in reservoirs. Third, in-stream processes such as nutrient
cycling (e.g. settling and microbial uptake/respiration) and sediment
deposition must be considered in order to estimate the final in-stream
loading. For the special case of sediment, SWAT-simulated loads are
strongly controlled by in-stream deposition and degradation. These in-
stream sediment processes cannot be effectively accommodated for by
an affine function land area allocation. Therefore, we instead assume
that all streams carry their full, flow-limited sediment capacity, calcu-
lated similarly to the simplified version of the Bagnold sediment stream
equation which is an option within SWAT (though another, better-
performing option is applied in our SWAT simulations); where the
simplified Bagnold equation of SWAT determines sediment-carrying
capacity according to flow velocity, we estimate the capacity accord-
ing to volumetric flow rate (Bagnold, 1977). That is, whenever incoming
sediment loads exceed the flow-determined capacity for sediment,
sediment is deposited. When capacity exceeds incoming load, sediment
is eroded from the streambed. Detailed calculations of those modifica-
tions can be found in SI Section 2.1.2. Unlike streamflow, sediment, and
nutrients that are dependent on its spatial reach network and in-stream
processes, the total watershed crop production is simply the sum of that
in each subwatershed (SI Section 2.1.3).

3.3.2. Artificial neural networks for WWT

WWT plants in the Corn Belt can contribute considerable point
source nutrient loading (nitrate-N, TP) due to combined sewerage from
stormwater, domestic, and high-strength industrial (especially from
biorefineries) wastewater. The WWT component of ITEEM includes four
wastewater treatment plant design alternatives to treat the combined
influent. The four alternatives include: 1) activated sludge (AS), 2)
activated sludge with chemical precipitation (ASCP) to reduce effluent P
concentrations from the WWT plant, 3) a modified 5-stage Bardenpho
process with enhanced biological phosphorus removal (EBPR), 4) and a
modified 5-stage Bardenpho EBPR process with struvite (magnesium
ammonium phosphate) recovery (EBPR_StR). We include the impact of
stormwater that causes highly variable treatment performance during
the process development using GPS-X software. Detailed descriptions of
process development for each treatment alternative are provided in SI
Section 1.2.

As the wastewater treatment involves complex and nonlinear phys-
ical and biological processes, advanced data-driven techniques can be
applied to predict treatment performance under fluctuations of in-
fluents. Artificial neural networks (ANNs) have been widely applied in
various fields to capture nonlinear, complex relationships between in-
puts and outputs. For a generic ANN, a vector of input data (x) can be
mapped to a vector of output data (y), i.e., y = fann(x), where fann(x)
represents a function of neural networks. In this study, four feed-forward
back-propagation ANNs are applied to surrogate the four WWT alter-
natives (i.e., AS, ASCP, EBPR, EBPR_StR). Once plant layouts of the four
WWT alternatives are designed and optimized, we simulate stochastic
influent conditions and run process simulations for each WWT design
alternative, to account for WWT performance variability. Each treat-
ment alternative is simulated 10,000 times in the original high-fidelity
model using the GPS-X software and the dataset is split 60%, 20%,
20% into training, validation, and test datasets. Details of ANNSs training
are provided in SI Section 2.2.

After successfully training ANNSs for the four treatment alternatives,
the next step is to predict the effluents under stochastic conditions of
influent using ANNs. To be consistent with the temporal scale of the
SWAT component and reduce the computational time, we simulated
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monthly loading from the WWT, assuming each month is run as a steady
state. For each month, the total inflow (domestic and industrial waste-
water + rainwater) is determined using historical data while the
chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total
phosphorus (TP)are randomly sampled 1000 times from their fitted
historical distributions. Since SWAT simulations provide deterministic
monthly values, the monthly mean values of effluent loadings from the
1000 simulations are calculated and added into the subwatershed where
the WWT is located. This is a key step to integrate point source and
nonpoint source pollutant loadings from the different components. The
techno-economic analysis of the four treatment alternatives is conducted
using a combination of modeling and calculations. Specifically, the
capital costs (e.g., construction) and fixed operational costs (e.g., labor,
maintenance) are calculated in CapdetWorks, a proprietary software
compatible with GPS-X for estimating fixed costs (capital, labor, main-
tenance cost) for WWT models. Operational costs that vary with influent
characteristics are calculated with process design and cost estimate
equations from the US Environmental Protection Agency (Harris et al.,
1982).

3.3.3. Lookup tables for grain processing

Two grain processing (GP) models (i.e., corn wet milling and corn
dry grind) are developed in SuperPro Designer (Intelligen, Inc.), which
contains rigorous reactor modules for mechanical and chemical engi-
neering of corn grain processing (Juneja et al, 2019, 2020) and details of
process development are provided in SI Section 1.3. Since SuperPro
Designer is commercially programmed and cannot be directly connected
with the other ITEEM components, we develop lookup tables that store
results simulated from SuperPro Designer. The lookup tables contain
two plant layouts for each plant capacity. The capital cost, operational
cost, energy and water use, and P content of CGF and DDGS are simu-
lated for each plant capacity. In both wet milling and dry grind corn
processing models, two plant layouts are simulated: 1) status quo grain
processing without P recovery; and 2) alternative technology that pro-
cesses grain and recovers P as P complex, which can be further purified
as phytin (a calcium magnesium salt of phytic acid). Calculations of cost
and energy use are provided in SI Section 2.3.

3.3.4. Empirical equations for DWT

The DWT model is developed based on operational data from a
drinking water treatment plant located in the Corn Belt. The cost data
include fixed and variable costs for the nitrate removal facility (NRF).
The fixed cost includes management overhead, labor cost for operation
and maintenance, depreciation cost, and NRF energy cost. Note that the
daily energy consumption in NRF is assumed constant as detailed data
are unavailable. The variable cost includes the use of sodium chloride as
the regenerant chemical for ion-exchange resins and alum and polymer
for turbidity treatment. The consumption of sodium chloride is depen-
dent on the nitrate level in the untreated water entering the DWT plant.
The consumption of alum and polymer is dependent on the sediment
concentration in the raw water entering the DWT plant. The costs do not
include the total cost in the main treatment facility as the purpose of the
DWT component is to estimate costs and energy requirements associated
with excess nitrate and sediment treatment only.

The nitrate-N (NO3-N) and sediment loadings and streamflow esti-
mated from SWAT in the subwatershed where the DWT plant is located
are inputs to the DWT plant component. The decision to operate the NRF
is based on daily NO3-N concentration in the untreated water entering
the DWT plant. The NRF will operate on any day where the influent
NOs-N concentration exceeds the threshold of 8.0 NO3-N mg/L, based
on the current maximum contaminant level (MCL) of 10 mg/L; that is,
we assume the operation threshold nitrate concentration to operate the
NRF is 80% of the MCL. Calculations of cost and energy use for nitrate
and sediment treatment are provided in SI 2.4.
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3.3.5. Theoretical-empirical equations for economics

3.3.5.1. Non-market valuation for water quality improvement. Choice
Experiments (CEs) are conducted to elicit the general public’s WTP for
water quality improvements and farmers’ WTA payment to change
management practices. CEs are a widely used non-market valuation
method in which respondents are asked to select the most preferred
alternative in a hypothetical decision-making situation while varying
the levels of different attributes of interest (Louviere et al., 2000). We
utilize fractional factorial designs to allocate attribute levels (i.e. cost,
recreational options, attainment of nutrient loss reduction goals) to each
alternative — a single combination of attribute levels — and choice sets
(a combination of different alternatives to choose from). The responses
to the CEs are analyzed using statistical methods based on Random
Utility Theory (RUT). The utility of an individual survey respondent n
from alterative a (Upn,) includes systematic (V,q) and stochastic (enq)
components with Ung = Vag+ €na =B Xna + €na- Vector X, , contains
attribute levels faced by individual n in alternative a and f is a vector of
coefficients estimated corresponding to the attributes. Because the
non-market valuation study is not yet complete, this study uses a pub-
lished WTP estimate from a related study (Parthum and Ando, 2020) to
demonstrate how the choice experiment results will be used in the
ITEEM.

3.3.5.2. Evaluation of ITEEM total costs and benefits. After estimating
the costs of engineered technologies and agricultural management
practices, the total economic net benefits of the entire system are
calculated for each option. Each option includes a combination of WWT
and bioprocessing technology together with a spatially explicit config-
uration of agricultural practices. Total benefits include the sum of rev-
enue from product sales and non-market benefits associated with water
quality changes, and the total cost is the sum of those incurred for
wastewater and drinking water treatment, grain processing, and agri-
cultural management practice implementation. The total net benefits are
calculated as:

AB = Bwrp + Rip + Rerop + Rop — Cwwr — Cpwr — Cep — Cog (€9)

where AB ($/yr) is the economic total net benefits for a given option.
Bwrp ($/yr) is the monetary measure of public WTP for water quality
improvements. Rp ($/yr) is the revenue generated by selling recovered
P product; Rerp ($/yr1) is crop revenue. Rgp ($/y1) is the revenue from
grain processing products sold. Cywwr ($/y1) is the cost of wastewater
treatment. Cpwr ($/yr) is the cost of drinking water treatment. Cgp
($/yr) is the cost of grain processing plants. Cqy ($/y1) is the total cost of
all agricultural management practices applied a given scenario. All the
terms in Eq. (1) are annualized cash flow that takes factors of the time
value of money and inflation into account. Detailed calculations of terms
in Eq. (1) are provided in SI Section 2.

3.4. Sensitivity analysis of ITEEM

As each of the components contributes uncertainty to ITEEM via
BMPs, environmental engineering technologies and policies, it is
important to investigate how the uncertainties from different compo-
nent models propagate and affect the overall outputs of ITEEM at the
system level. The multiple sources of uncertainties, which can be
correlated, complicate the sensitivity analysis. For a demonstration
purpose, we conduct a simple one-at-a-time (OAT) sensitivity analysis of
key parameters, and leave more complete global sensitivity analysis for
future work, which indeed can be standard-alone study. We use a
sensitivity indicator calculated as below:

Aoutput; / OULPUL; i baseline |

|
Aparameter; / parameter; i paseiine

(2)

1 K
Sensitivity;; =7 X Z |
1
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where Sensitivity;; represents the averaged relative change of parameter i
on output j across different scenarios (k). Aoutputj; is the change of
output j of scenario k from baseline output (output; i paseiinc). Aparameter; i
is the change of parameter i of scenario k from Dbaseline
(parameter;  pasetine)- The multi-dimension outputs of ITEEM are aggre-
gated into four categories: 1) water quality and quantity; 2) energy
consumption of engineering systems; 3) costs and benefits; 4) produc-
tion of crop and recovered P. The key parameters investigated in ITEEM
includes six parameters from SWAT (e.g., runoff curve, water capacity in
the soil, soil evaporation, etc), two parameters (i.e., influent nutrient
strength and inflow) in WWT model, and other parameters (i.e., crop
price, chemical price, utility cost, willingness to pay per household, and
interest rate) related to costs and revenues across various models.
Detailed descriptions and the range of each of these parameters are
provided in SI Table S4.

4. Computational implementation of ITEEM in object-oriented
programming platform

A coherent computational framework is developed to link and
execute models from individual knowledge domains in an orderly
manner. Standards of integrated modeling have been promoted by re-
searchers to produce a useable and low-friction simulation environment,
such as the Community Surface Dynamics Modeling System (CSDMS)
project by Peckham et al., in 2013. The design criteria include but not
limited to support of multiple operating system, use of open-source tools
rather than proprietary software, ease of reusability and maintenance,
etc. We develop ITEEM using the object-oriented programming in Py-
thon, which fits the several standards promoted by CSDMS. An object-
oriented framework connects models as inherited objects where some
models are parent objects for others. There are several advantages for
using an object-oriented framework. First, by inheriting attributes
(variables of an object) and methods (functions of an object), new child
objects can be easily built, which meets CSDMS’ design criterion of code
reusability. Second, creating various methods within the same object
allows distinguishing separate functionalities (e.g., technology cost
versus treatment performance) thus exhibiting a clear structure for the
ease of maintenance. The ITEEM developed in the object-oriented lan-
guage can also be easily converted to a different language using lan-
guage interoperability tool (e.g., Babel) (Peckham et al., 2013). There
are some other features that need to be improved in the future, such as
the support of serial and parallel computation.

The five component models of ITEEM are modularized as five inde-
pendent objects. Note that the five component models of ITEEM are
represented either in not original primary model at the process level;
they are rather their surrogates derived from primary process models or
simplified or empirical models, which are all integrated at the system
level. For example, Class “SWAT()” is simulated by its surrogate model,
the response matrix method. Variables are stored as attributes; functions
are partitioned into various methods within each object. Fig. 5 shows the
implementation and integration of ITEEM described in the unified
modeling language (UML). Routines of data exchange are specified
either in the attributes or inputs of methods in objects. Specific outputs
of interest are obtained by calling specific methods. For example, a
method called “get_loading(“nitrate”)” is defined within the “SWAT”
object to obtain nitrate loading specific to a particular scenario, instead
of calling SWAT to produce all outputs simultaneously. Based on the five
objects that represent the five components, respectively, an overall ob-
ject that integrates the five components is created as an “ITEEM” object
that incorporates attributes (variables) and methods (functions) from all
components into a single entity. Such an entity provides a computa-
tionally efficient model based on a large set of interconnected technol-
ogy, environment, and economic relationships. The detailed
descriptions of attributes and methods are provided in SI Table S3.
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Fig. 5. Unified modeling language description of ITEEM in an object-oriented programming platform. For brevity, only attributes and selected methods are shown in
each class and arguments in methods are not included. Dashed lines between objects represent monthly and point scale data flow; dotted lines represent annual and
point scale data flow; The only solid line from “SWAT” object to “ITEEM” represents a mixture of monthly (e.g., nutrient loadings), annual (e.g., crop yield), and

nonpoint source scale that covers all subwatersheds.

5. Demonstration of ITEEM in the Upper Sangamon River
Watershed, Illinois

We demonstrate ITEEM via a testbed watershed, the Upper Sanga-
mon River Watershed (USRW). Different scenarios are tested to explore
a portfolio of alternative engineering technologies, policies, and BMPs;
the results of the scenarios are compared to a baseline scenario in terms
of multiple FEW systems indicators.

5.1. Study area for a testbed watershed

The USRW, located in central Illinois, USA, is selected as an illus-
trative testbed for its FEW nexus issues, data availability, and existing
modeling studies for this watershed (Fig. 6). Water quality in the USRW
is threatened by both agricultural runoff and municipal and industrial
nutrient discharges. The relatively flat prairie soils in the watershed are
highly productive, extensively underlain by subsurface drainage sys-
tems, and cultivated for maize and soybean production. Within the
watershed, Lake Decatur, created by a dam on the Sangamon River, is
the source of municipal water supply for the City of Decatur and the
Village of Mount Zion (combined population of 79,000) and industrial
water supply for grain processors. The lake has been classified as
impaired because of high nitrate and P concentrations and low dissolved
oxygen. Periodic dredging of sediment has been necessary to maintain
the lake’s storage capacity. The cost of nitrate, P, and sediment delivered
to the lake from agricultural runoff has been born by the water and
wastewater ratepayers in Decatur and Mount Zion. The Sanitary District

of Decatur (SDD) treats stormwater, industrial wastewater, and do-
mestic wastewater. SDD discharges treated effluent to the Sangamon
River downstream of the Lake Decatur dam. The total discharge of SDD
is approximately 600 Mg NO3-N/yr and 582 Mg P/yr, the largest of any
facility in the state of IL, at concentrations typically ranging from 6 to 10
mg NOs-N/L and 5-30 mg P/L. SDD is faced with the challenge of
complying with an impending effluent standard of 1 mg P/L. This is a
major challenge because influent concentrations from the biorefineries,
responsible for approximately 90% of SDD discharge, are more than
twice the typical high range for effective biological P removal. Other
WWT plants discharge in the watershed but their contribution to
nutrient pollution is relatively small (<5% of total point-source TN and
TP).

The three corn grain processing facilities located in the USRW have
combined processing capacity of 8.1 million tonnes of corn per year. In
addition, one major dairy feedlot produces an estimated 9400 metric
tonnes of manure per year from around 3100 milking cows. The status
quo P content of manure is assumed to be 9.5 g/kg dry fecal matter. If P
can be recovered from grain processing plant waste streams, the P
concentrations in manure can be reduced to 6.3 g P/kg dry manure (see
Section 3.3.3).

5.2. Scenario analysis

ITEEM enables us to quantify the impacts of various nutrient man-
agement strategies, technologies, and policies that could enhance the
beneficial synergies of FEW systems in the Corn Belt. To illustrate the use
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Fig. 6. Map of testbed Upper Sangamon River Watershed in Illinois.

of ITEEM, we simulate and compare four scenarios of agricultural
management practices, engineering technologies, and drinking water
standards. The baseline scenario consists of the status quo agricultural
management practices, WWT technology WWT (i.e., activated sludge
without rP), and GP technology (wet-milling and dry-grind corn pro-
cessing without rP), and current MCL policy governing nitrate in
drinking water (i.e., 10 NO3-N mg/L). The scenario definitions are
provided in Table 1.

5.3. Results and discussion

5.3.1. Surrogate model performance

Reducing complex process models into simpler surrogates almost
inevitably introduces new uncertainty. Therefore, it is imperative to
ensure acceptable performance for the various surrogates used in
ITEEM, compared to the original high-fidelity models. Here we evaluate
the performance of three surrogate models, i.e., RM for SWAT, ANNs for
WWT, and lookup tables for GP. For DWT and Economics components,
they are already developed as empirical or theoretical-empirical equa-
tions at the process level and there are no additional surrogates applied
to upscale them to the system level. The primary component models (e.

Table 1
Descriptions of alternative scenarios for ITEEM demonstration.

g., SWAT, WWT, GP) have been developed in different software pack-
ages (Juneja et al, 2019, 2020), which however is not the focus of this
study. In fact, some software packages, such as WWT, have consensus
models that have been validated and used in engineering design.
Traditionally, the RM method is used for landscape loss estimates
(Housh et al., 2014). In this work, we extended the RM to account for
reservoir trapping, point-source loading, and some in-stream processes
(authors who are interested the details of the modified RM, please
contact the corresponding author). We chose two widely-used good-
ness-of-fit measures to assess the performance of the RM method:
percent bias (P-bias) and Nash-Sutcliffe efficiency (NSE) (Moriasi et al.,
2007). The ideal value of P-bias is zero, indicating no long-term over-
estimation or underestimation, with positive values indicating over-
estimation and negative values underestimation. NSE varies from
negative infinity to one, one indicating a perfect match between the RM
results and SWAT results and with values less than zero indicating that
model prediction is less accurate than using the mean of observed data.
To test the performance of the RM method, we select a combination
of five BMPs with randomly assigned agricultural land area, compare the
results using the RM method versus SWAT, and present detailed results
of one realization in Fig. 7. Details regarding the five selected BMPs can

Scenario number Agricultural management practices” WWT? Grain Processing (GP) Regulation on drinking water (NO3—N)
SO (baseline) noCC_CT_Ored_36%FS AS no P recovery 10 mg/L
S1 noCC_RTF_15red_36%FS ASCP P recovery 10 mg/L
S2 noCC_RTF_15red_36%FS EBPR P recovery 5 mg/L
S3 CC_RTF_30red_50%FS EBPR_StR P recovery 10 mg/L
Note:

@ Each agricultural management practice has four components: 1) cover crop practice, 2) tillage practice; 3) fertilizer rate; 4) waterways/buffers.For cover crop
practice: noCC = no cover crop applied; CC = a winter cover crop after corn.For tillage practices: CT = conventional tillage in Fall, reduced tillage in Spring (baseline);
RTF = reduced tillage in Fall and Spring.For fertilizer rate: Ored = no reduction from baseline 207 kg diammonium phosphate (DAP); 15red = 15% reduction from
baseline; 30red = 30% fertilizer reduction from baseline. For waterways/buffers: 36% FS = 36% of agricultural land are installed with filter strips (baseline); 50%FS =

50% of agricultural land are installed with filter strips.

b Wastewater treatment (WWT) has four alternative technologies: 1) activated sludge (AS); 2) activated sludge with chemical precipitation (ASCP); 3) modified
Bardenpho enhanced biological phosphorus removal (EBPR); 4) Modified Bardenpho Enhanced Biological Phosphorus Removal with struvite recovery (EBPR_StR).
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Fig. 7. Simulated results from response matrix and SWAT for the baseline: (a) streamflow, (b) sediment, (c) nitrate, (d) total phosphorus (TP).

be found in SI Table S5, and the spatial agricultural land area allocations
for the realization demonstrated in Fig. 7 can be found in SI Table S6.
The RM method almost perfectly predicts streamflow and nitrate loads,
as evidenced by both P-bias (nearly 0%) and NSE (nearly 1) in Fig. 7a
and c. This is because nitrate loading and streamflow are minimally
influenced by in-stream processes in the study watershed. Streamflow
and nitrate load at the watershed outlet are very similar to the sum of the
loads from individual subbasins minus a constant percentage trapped by
the reservoir. The RM method also predicts the total phosphorus (TP)
and sediment loading with high accuracy in general (P-bias = —4.9%
and NSE = 0.911 for TP, P-bias = 3.35% and NSE = 0.968 for sediment).
For TP, major discrepancies between the RM method and SWAT simu-
lation are observed during the low streamflow periods (e.g.,
2012-2013). This discrepancy arises because the RM method accounts
for in-stream P settling and biological P uptake/respiration by applying
a constant percent reduction to TP loss from the landscape (11 percent).
The constant percent reduction corresponds to some representative
travel time for water through the channel network. When water spends
more time within the local channel network, the impact of the in-stream
processes grows, and accordingly, the SWAT simulation shows the
stream acting as a stronger P sink than does the RM method.

As discussed above, sediment is predicted by applying a simplified
Bagnold equation to the RM estimates for streamflow (Fig. 7b). We apply
streamflow constrained equations to estimate the in-stream sediment
loading. The flow-constrained method performs better than simply
summing up the landscape losses of sediment. This is because, in this
tested watershed, sediment transport in streams is controlled by
streamflow, not landscape sediment loss. To test the robustness of the
performance of the RM method, we run 10 realizations. The perfor-
mance of the RM method remains stable, as shown by the detailed re-
sults of 10 realizations in SI Table S7. Overall, the RM method in ITEEM
performs satisfactorily as a surrogate for SWAT across an explicitly
spatial and temporal scale. However, future efforts should be devoted to
incorporating a more realistic depiction of sediment deposition and
degradation processes.

The ANNs exhibit satisfactory performance in surrogating the

11

complex process-based wastewater treatment model (WWT). Using the
simulation data from each of the four WWT alternatives, the ANNs
shows high prediction accuracy for all outputs (MSE < 0.001 and R-
squared >0.95 as shown in SI Fig. S7). Detailed data of MSE and R-
squared for each output in each WWT alternative are provided in SI
Table S8. Note that among the outputs predicted by the ANNs, the total
nitrate and phosphorus loading from WWT is coupled with the RM
method to account for total nutrient loading for the watershed. For the
GP model surrogated by lookup tables, all data stored in lookup tables
are directly from the simulation results in the high-fidelity model. We
assume that each GP plant is operated at steady-state and at its plant
capacity, and the simulation data are extracted directly from lookup
tables. Therefore, there is no additional uncertainty introduced to this
surrogate model.

5.3.2. Suitability of surrogate modeling and applicability of surrogate-based
model coupling

As introduced in Section 3.1, we develop surrogate models for
complex process models first and then couple the surrogates (along
empirical models for water supply and economic analysis) to formulate
ITEEM. The surrogate-based model coupling method is suitable only if
the following conditions exist. First, if primary process models cannot be
integrated directly with compatibilities among discipline-specific com-
puter programs, as discussed by Little et al. (2019). Second, the coupled
primary process models are not computationally tractable, especially it
is difficult if not possible to use the coupled models for decision analysis,
e.g., being coupled with an optimization algorithm (e.g., genetic algo-
rithm) to find optimal solutions.

While surrogate modeling has also been applied to acting as emu-
lators and approximate uncertainty quantification in many domains
(Alemazkoor and Meidani, 2020; Razavi et al., 2012; Wu et al., 2014),
the difference between surrogate modeling and surrogate-based model
coupling should be noted. Surrogate modeling assesses a surrogate to
one single high-fidelity simulation model and uses it for certain
modeling purposes; surrogate-based model coupling assesses the joint
application of multiple surrogate models derived from multiple process
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simulation models in a consistent modeling framework. Various other
model coupling methods have been applied to couple complex process
models together, such as wrapper model, scripting, and model trans-
lation. Those methods couple high-fidelity models directly and thus
have higher accuracy. For instance, Anderson et al. (2018) integrated
DSSAT (a crop simulation model) and GREET (a simulation model for
energy use and emissions for various vehicles) models via their appli-
cation programming interfaces (APIs) to simulate the inter-relationships
between crop production and environmental impacts of biofuel pro-
duction (Anderson et al., 2018). However, not all software developers
provide APIs, especially for commercial software packages. Xiang et al.
(2020) integrated DSSAT with MODFLOW (a groundwater simulation
model) by writing scripts for external controls on both models in a batch
mode in Python. Model translation constructs different individual
models from scratch in a common platform. However, this method can
only be feasible for simple simulation models as it requires rewriting all
equations included in the primary simulation models (Malard et al.,
2017). There is not a single model coupling method that is deemed to be
better than others under all cases. Users should consider their strengths
and weaknesses for particular applications. For FEW systems analysis
present in this study, with appropriate simplifications as described
above, our surrogate-based model coupling approach can deliver a
computational tractable integrated model at the system level.

5.3.3. Tradeoffs and limitations of surrogate-based integration design
choices

Various spatial and temporal scales exist in different component
models. For example, the temporal scales can be daily, monthly, and
annual; the spatial scales can be a point, watersheds (small and large)
and river basin for different component models. Our integration design
choices on selecting targeted spatial and temporal scales and their
interaction points are driven by decision-making requirements for the
model, as well as technical considerations. One of our study purposes is
to evaluate solutions based on BMPs and environmental engineering
technologies for combined point and non-point source nutrient man-
agement. We chose a monthly temporal scale for both point source and
non-point source simulation, which is usually sufficient to maintain
nutrient mass balance. For water quality related decision-making, the
daily raw nitrate level is important and thus the DWT model uses a daily
time scaler. Correspondingly, we use the results of SWAT at a daily scale
to estimate the daily raw nitrate at the sub-watershed where the DWT
locates.

Technically there is a typical tradeoff between the modeling accu-
racy and computational requirement in the choices of temporal and
spatial scales and the aggregation level for the integrated model. In
particular, the DWT is modeled at a point scale, where a treatment plant
takes raw water from a storage or a river segment within the study
watershed. It would be is ideal to have the nitrate concentration at a
finer spatial scale because of the spatial variance of the nitrate con-
centration. However, SWAT only simulates the in-stream loads of nu-
trients at a sub-watershed level, and the average nitrate concentration in
the sub-watershed is taken for the simulation. For WWT, the effluent of
point-source nutrients is dynamic and impacted by domestic influent
fluctuations, as well as wet weather. However, dynamic modeling of
WWT over a long-term period is challenging due to the lack of detailed
knowledge of influent wastewater characteristics and of the rainfall
translation to plant influent and operation changes. Eventually, we use a
steady-state approach to simulate monthly point source nutrients. Such
a temporal aggregation from nearly real-time to monthly scale limits the
capability of the WWT model in simulating peak stormwater demand
caused by an extreme rainfall event. To rigorously quantify the tradeoffs
between accuracy and computational time due to different choices of
spatial and temporal scales would be an interesting investigation. We do
not explicitly quantify such tradeoffs in this paper as we focus more on
developing an integrated model that tightly couples process-based and
empirical models at the same platform that can be used to test
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hypotheses and generate insights for watershed nutrient management.

5.3.4. Tradeoffs among food, energy, water, and economics

To demonstrate how ITEEM can be applied to explore tradeoffs
among multiple metrics of FEW systems, outputs from the three alter-
natives and the baseline are simulated using the method “run_ITEEM()”.
To facilitate tradeoff evaluation, we normalize the performance of each
metric indicator from 1 to 3, with 1 indicating the worst and 3 indicating
the best among all scenarios, as shown in Fig. 8a. The minimum and
maximum indicator values are provided in Fig. 8b. Compared to Sce-
narios 1-3, the Baseline Scenario has the lowest overall performance for
water quality and quantity indicators, but the best overall performance
on energy consumption, cost of technologies (GP and WWT), and crop
production. The result arises because all three alternatives introduce
best agricultural management practices, upgrade the existing technol-
ogy to recover P, and advance point-source P removal.

The non-market benefits represent the estimated willingness-to-pay
of general public living in upstream of Decatur reservoir for increases
in likelihood of achieving the nutrient reduction target (45% by 2045) in
Illinois based on the study of Parthum and Ando (2020). Their study
estimates that each household located upstream of the reservoir would
be willing to pay $0.95 per year to increase the likelihood of meeting the
nutrient target by one percentage point. Using the estimate, we simplify
the non-market benefits under each scenario as: $0.95/household/year
multiplied by 113,700 (approximate number of households in the up-
stream of the reservoir), and then multiplied by the extent to which a
scenario attains the 45% target for Nitrate-N or TP (e.g., if a scenario
reduces TP by 45%, then this value is 100). The values in Fig. 8 are the
sum of benefits derived from reduced nitrate and TP loads. According to
this formulation, the three alternatives generate environmental benefits
ranging from 3.0 to 8.1 million dollars/yr. However, those environ-
mental benefits are not enough to offset the associated costs to upgrade
treatment technologies and adopt new agricultural BMPs. As evidenced
in Fig. 8a, the baseline scenario provides greater total benefits than do
the three alternative scenarios. Note that the non-market benefits will be
updated based on our choice experiment results and the results might
change considerably.

Among the three alternative scenarios, Scenario 3 has the best nitrate
reduction and second-best TP reduction due to the adoption of cover
crops and the choice of Modified Bardenpho Enhanced Biological
Phosphorus Removal with struvite recovery (EBPR_StR) for WWT. The
nitrate reduction in Scenario 3 also results in decreased energy con-
sumption and cost associated with nitrate removal at the DWT. Sce-
narios 1-3 reduce the DAP fertilizer application rate by 15%, 15%, and
30%, respectively, but the impact on corn yield is relatively negligible.
This could be because either the baseline is currently over-applying DAP
fertilizer or there is enough P accumulated from prior years to make up
the gap in crop demand for P. Overall, the three alternatives illustrate
the tradeoffs between reduced nutrient loading, energy demand, and
cost for alternative technologies.

5.3.5. Sensitivity analysis of ITEEM

We conduct the sensitivity analysis for key parameters, including six
parameters from SWAT, two parameters from the WWT, and the other
eight parameters of benefits and costs (see Fig. 9 for the list of the pa-
rameters). Note that the WW nutrient parameter in the WWT model
varies the influent COD, TKN, and TP altogether (Details provided in SI
Table S4). The heatmap (Fig. 9) shows the sensitivity results with pa-
rameters listed horizontally and multi-dimensional outputs listed
vertically under the four scenarios (baseline + three alternatives in
Table 1) investigated in this study. We consider a change of +20% as
upper and lower bound for most key parameters, except for the interest
rate and willingness to pay per household. As mentioned earlier, the
sensitivity results of the key parameters are scenario dependent. Values
in the heatmap represent the change to an output responding to one unit
change of a parameter. For example, the sensitivity of parameter
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(b)
. Worst Best .
BISTG (score=1) (score=3) Pl
Nitrate load 8.07E+06  5.60E+06 kg/yr
TP load 8.28E+05  1.78E+05 kg/yr
Sediment load 3.16E+04  2.85E+04 ton/yr
Streamflow 9.84E+08  1.07E+09 m3/yr
Energy DWT 8.42E+00  2.61E+00 TJ/yr
Energy GP 3.51E+03  3.50E+03 TJ/yr
Energy WWT 5.22E+01  3.86E+01 Tl/yr
Cost_ DWT 4.56E+05  3.13E+05 S/yr
Cost WWT 2.23E+07  1.91E+07 S$/yr
Profit_crop 2.13E+08  2.51E+08 S/yr
Profit_GP 2.696E+08 2.70E+08 S/yr
Benefit WTP 0.00E+00  8.12E+06  S/yr
Total_benefit 4.70E+08  5.02E+08  S/yr
rP_P_complex 0.00E+00  4.71E+07 S/yr
rP_struvite 0.00E+00  1.28E+06  $/yr
Corn production 1.69E+09  1.71E+09 kg/yr
Soybean production ~ 4.99E+08  5.11E+08 kg/yr

Fig. 8. Tradeoffs between the multiple-dimension indicators of FEW systems. Each colored line represents one scenario described in Table 1. The multiple-dimension
indicators are aggregated into four groups: 1) water quality and quantity; 2) energy consumption of engineering systems; 3) cost and benefits; 4) crop and rP
production. Note: DWT = Drinking water treatment; GP = Grain processing; WWT = Wastewater treatment; WTP = Willingness to pay; rP = recovered phosphorus.

(SWAT runoff curve) on the output (nitrate load) is 2.1, as shown in the
top left corner of the heatmap, meaning that a 1% change of the runoff
curve value from the baseline can cause a 2.1% change of nitrate load at
the outlet.

It is found that the six SWAT parameters have the most significant
impacts on water quality (i.e., nutrient and sediment load) and quantity
(i.e., streamflow) and crop production. The uncertainty from those pa-
rameters further propagates into crop revenue, the willingness to pay
(WTP), and the total net benefit. The total net benefit is also significantly
impacted by the market prices of products (e.g., starch and ethanol)
from grain processing plants and the cost of feedstock (e.g., corn sold for
grain processing), as the profit from GP has a large contribution to the
total net benefit. In contrast, the prices of chemicals, rP, and utility (e.g.,
electricity and natural gas) have negligible impacts across the outputs.

The two parameters from the WWT model are evaluated with the
four treatment alternatives (AS for baseline, ASCP for S1, EBPR _acetate
for S2, and EBPR_StR for S3), corresponding to the four scenarios pro-
vided in Table 1. The influent nutrient strength (WW nutrient) and
inflow of wastewater (WW inflow) have a noticeable impact on the
energy use of WWT, the amount of recovered struvite, and the WTP,
which demonstrates that the uncertainty of influent characteristics from
the WWT model can have a significant impact at the system level out-
puts. However, we also have two interesting observations. 1) parameters
from the WWT model do not have a significant impact on TP load at the
outlet (Fig. 9), despite the fact the point source P is the leading
contributor to the total TP load for the testbed watershed. 2) parameters
are sensitive on the outputs (point source only) of individual WWT
treatment alternatives. For example, the sensitivity of WW influent for
the four treatment alternatives is 1.38 for point source nitrate and 0.87
for point source TP (details provided in SI Table S9). However, the
sensitivity of WW nutrient is decreased when integrated at the system
level (point + nonpoint sources) with sensitivity being 0.03 for nitrate
and 0.25 for TP (details provided in SI Table S9). Both observations can
be attributed to the fact that our local sensitivity analysis is scenario-
dependent; for the cases of ASCP, EBPR, and EBPR StR, the point
source nutrients are significantly reduced and are not the leading TP
contributor anymore. Therefore, for the scenarios with ASCP, EBPR, and
EBPR _StR, the parameter changes on WWT model will not have sensitive
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impact on total TP load, which ultimately decreases its sensitivity on TP
load at the system level.

6. Conclusions and future research

Addressing large-scale environmental sustainability challenges re-
quires integrated analysis of complex inter-relationships within FEW
systems. This paper presents the development of an integrated
technology-environment-economics model (ITEEM) for typical water-
sheds in the Corn Belt. We use various data techniques to convert
complex models simulating physical & engineering processes and so-
cioeconomic relationships into computationally tractable surrogates and
link these surrogates via input-output relationships within a consistent
computer-based modeling platform. The procedures for developing
ITEEM for a case study watershed (Upper Sangamon River Watershed,
USRW) can be applied to other watersheds in the Corn Belt, with
required data and model preparation as shown for the USRW.

Based on our experience developing ITEEM with a team including
researchers from hydrology and water resources system analysis, envi-
ronmental engineering, environmental economics, and sociology, we
reflect on steps for selecting surrogate models, i.e., which type of data-
driven surrogates is most suitable for a particular physical and process
model based on data and model availability, as well as the purpose of the
integrated model. In this study, we applied the response matrix method
and artificial neural networks, respectively, to create surrogates for
SWAT and WWT. A detailed process model for DWT is not available for
our project, therefore we adopted empirical equations for the DWT
component. The lookup table method used for the GP component is
simple but sufficient since GP can be assumed to operate at steady state
and is only impacted by the size of plant capacity. The economics
component is formulated with equations that include non-market
valuation estimates and overall economic net benefits. In our one-at-a-
time sensitivity analysis, we show to what extent the uncertainty of
selected key parameters in the component models can impact the out-
puts of ITEEM; we identify some critical parameters that are worthy of
further investigation. Future work should adopt a global sensitivity
analysis considering the correlation of the uncertainties from different
component models, as well as the uncertainty due to future climate
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Fig. 9. Sensitivity analysis results of ITEEM outputs (vertical axis) with key parameters (horizontal axis) from component models. All outputs are annual average
with the unit provided in Fig. 8b. Note: WWT = Wastewater treatment; DWT = Drinking water treatment; GP = Grain processing; WTP = Willingness to pay; rP =

recovered phosphorus.

change.

ITEEM enables testing hypotheses for FEW systems analysis and
exploring solutions to resolve inter-connected FEW problems. For
example, one hypothesis to test is that the most economically efficient
way to improve water quality in Corn Belt watersheds should be to
jointly employ a combination of agricultural land management practices
and P recovery from co-products generated by grain biorefinery facilities
or wastewater treatment. It is noted that ITEEM is designed for evalu-
ating long-term strategic planning for FEW systems in the Corn Belt but
not for evaluating short-term events, such as extreme rainfall events that
can cause peak stormwater flow that affects both point and non-point
pollution. Future work will be conducted to evaluate FEW system
resilience under a set of stress and disturbance scenarios. Last but not the
least, ITEEM will be coupled with a multi-objective optimization algo-
rithm to search for optimal technologies and policies.

Data and code availability

The data and codes are available from the corresponding author
upon request.
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