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Abstract— We consider autonomous agents communicating
over a random communication network that is subject to
failures. Each agent aims to maximize its own utility function
that depends on the actions of other agents and an unknown
state of the environment. Posing this problem as a game, we
study a decentralized fictitious play algorithm with a voluntary
communication protocol (DFP-V) for Nash equilibrium (NE)
computation. In the voluntary communication protocol, each
agent locally manages whom to exchange information with
by assessing the novelty of its information and the potential
effect of its information on others’ assessments of their utility
functions. We show convergence of the algorithm to a pure NE
in finite time for the class of weakly acyclic games. Numerical
experiments demonstrate that the voluntary communication
protocol reduces number of communication attempts signifi-
cantly without hampering performance.

I. INTRODUCTION

From engineering to economics, applications of multi-
agents systems arise in many different fields including, e.g.,
robotics, energy systems and cybersecurity. In these systems,
autonomous agents are given a common objective. Au-
tonomous agents have to rely on information exchanged over
a wireless communication network in order to reach their
objectives. In addition to potential failures and packet drops,
communication costs energy, and uses limited resources, e.g.,
bandwidth and time, in wireless networks. When decentral-
ized operations assume perpetual communication between
agents to guarantee optimal performance, they may incur
unnecessary costs and use of limited resources. The premise
of this paper is that communication needs to managed as an
integral part of the decentralized operation.

Multi-agent systems with common objectives can be mod-
eled as each agent in the system has its own objective whose
value depends on its own action, actions of other agents,
and an unknown state of the environment. Agents want to
maximize their objectives given their beliefs on the state of
the environment. We pose this problem as a game. Joint ac-
tions constitute a Nash equilibrium (NE) action profile when
each agent maximizes its objective given the maximizing
actions of other agents. We consider Nash equilibria as the
optimal operating condition of the multi-agent system given
common beliefs about the state of the environment. Given
the premise above, we design a decentralized game-theoretic
learning algorithm that converges to a NE action profile while
effectively managing communication attempts.
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The decentralized game-theoretic algorithm proposed here
is based on fictitious play (FP) [1]-[3]. In FP, each agent
takes an action that maximizes its expected utility (best re-
sponds) assuming other agents select their actions randomly
from a stationary distribution. Agents assume this stationary
distribution is given by the past empirical frequency of past
actions. Recent works [4]—[7] consider a decentralized form
of the fictitious play (DFP) algorithm, in which agents form
estimates on empirical frequencies of other agents’ actions
by averaging the estimates received from their neighbors
in a communication network. These algorithms are shown
to converge to a NE in weakly acyclic games. However,
they rely on perpetual communication between agents in the
communication network.

In this paper, we design a decentralized communication
protocol for the DFP that allows agents to determine whom
to communicate with and when to cease communication
(Section [M). The communication protocol is based on the
idea that agents do not need to send their selections to
other agents unless they carry new information. In the
context of DFP, we realize this idea by linking novelty of
information and potential effect on others’ evaluations to
two metrics computed respectively as the change in the
empirical frequency caused by the current action, and the
error others make in estimating the agent’s empirical fre-
quency. Our main result (Theorem [)) shows that the DFP-V
algorithm with the threshold-based communication protocol
converges to a pure NE action profile in finite time given
small enough thresholds, if agents’ beliefs about the state
of the environment weakly converges to a common belief.
Numerical experiments demonstrate that the communication
protocol can lower the communication attempts by half while
showing similar convergence properties as the standard DFP
algorithm (Section [IV).

The communication-censoring protocols, similar to the
communication protocol studied here, are common in dis-
tributed optimization algorithms based on, e.g., gradient
descent [8], [9], and ADMM [10]. The key contributions of
the paper are to propose a novel voluntary communication
protocol for the DFP algorithm, a best response type game-
theoretic learning algorithm, and to show its convergence for
random communication networks.

II. MULTI-AGENT SYSTEMS IN TIME-VARYING RANDOM
NETWORKS WITH INCOMPLETE INFORMATION

A multi-agent system consists of a set of agents denoted
with N = {1,2,--- , N}. Each agent i € A\ selects an action
a; to maximize its utility function u;(a;, a—;, 6) where index



notation —¢ to represent the set of agents other than ¢ € N,
and a_;, = {a; : j € —i}, and 0 is the unknown state
of the environment. We assume each agent i € N chooses
among the same set of K actions, i.e., a; € A; := A =
{ei1,...,ex} where ey, is a unit vector whose k*" element
is 1 and other indices are 0. a; = e, indicates that agent @
selects action k. The set of possible states of the environment
is given by O, and the associated Borel o—algebra is B(©).
Given these definitions, the utility function is defined as u; :
AN x © — R where AV := T[], A is the set of possible
action profiles.

We assume agent ¢ € N has a belief 11; on the state of the
environment, that is defined as a probability measure p;(0) €
[0,1],for all # C © and 6 € B(©). The expected utility of
u; with respect to belief yu;, for all ¢ € N, is provided below,
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Assuming the beliefs converge to the same common belief
1 over the state of the environment, (see Assumption E]) we
can model the multi-agent system as a game defined using
the tuple I := (N, {A, u; }ien). A Nash equilibrium (NE) of
the game I is a joint (mixed) action profile ¢ € AN (A) such
that no agent can have an increment in its utility function u;
with mixed action o;, given others’ actions o_;.

Definition 1 (Nash Equilibrium) The joint (mixed) action
profile o* = (0},0*,) € AN(A) is a Nash equilibrium of
the game T if and only if for all i € N

forall o; € A(A). (2)
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A pure NE strategy profile o* is a NE o* = (0F,0%,) €
AN(A), that puts weight 1 on an action profile a =
((Zi, a,i) c AN

As mentioned above, agents can determine the equilibrium
action profiles in (2)), if they have access to actions of
other agents and have the same belief on the state of the
environment. However, these assumptions are not realistic
in a multi-agent networked system, when communication is
random and agents’ beliefs about the state of the environment
is different and evolving.

In the following, we first describe the random communi-
cation network model and then the decentralized algorithm.

Communication network.

Given communication attempts are subject to failures, we
model the probability of existence of a communication link
¢;j(t) between agent i € N and agent j € '\ {i} at time
t € N* as a conditioned Bernoulli random variable,

¢i;(t) ~ Bernoulli(p;; (1)), 3)

where 0 < €com < pi;(t) < 11is the probability of successful
communication. This probability is time-varying, and can
differ among pairs of agents since several factors such as
interference and distance may affect the success of each
point-to-point communication.

Given the communication network, agents repeatedly take
actions, attempt to send information to agents of their choice,
and update beliefs on the state of the environment and on
information received from other agents.

A. Decentralized Fictitious Play with Voluntary Communi-
cation

In (centralized) FP algorithm, it is assumed that agents re-
peatedly select actions according to a stationary distribution
that is determined by the histogram of their past actions. The
histogram, i.e., the empirical frequency f;(t), is as follows,

fi(t) = (1 = p) fi(t = 1) + pa;(t), “4)

where a;(t) € A is the selection of agent i at time ¢t € NT
and p € (0,1) is a fading memory constant assessing
the importance of current actions. FP algorithm is a best-
response algorithm, where agents maximize their expected
utilities with respect to the given empirical frequencies.
However, in the decentralized setting, agents do not have
immediate access to others’ histograms. Rather, each agent
¢ must form its own estimates using information received.

Let the estimate of agent ¢ on agent j’s empirical fre-
quency in (@) be denoted as f;(t). The estimate f;(t) belongs
to the space of probability distributions on A denoted as
A(A). Then, the expected utility of agent ¢ from taking
action a; € A with respect to its estimates f*,(t) :=
{fi()}jean @y is given as

ui(ag, f2;(t),1i(t)) =

>

a_;EAN-1

wiaiy aiy i (0)f2;(t)(a—s). (5)

We assume agents take actions according to best-response
dynamics with inertia,

w.pr. 1 —e,
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(6)

where € € (0,1). In best-response dynamics with inertia,
agents repeat the action taken at previous time step a;(t —1)
with probability e, or take the action take maximizes their
expected utility with probability 1 —e. We note that agent ¢’s
action selection depends on its estimate of others’ empirical
frequencies f!,(t) but not on f;(t). Next, we describe how
each agent updates estimates of others’ histograms.

Information exchange and estimate updates. At each time
step ¢, agents update their individual empirical frequency
fi(t) in accordance with @). We let fi(t) = fi(t) to
define agent ¢’s estimate of its own empirical frequency.
After updating their own empirical frequencies, agents seek
to exchange with each other. Agent ¢’s update for agent
j € N\ {i} is as follows,

Fitt) = {fj-(t), if ¢ji(t) = 1,

. 7
[t — 1), otherwise, @



where c¢;;(t) is defined in (@). As per (7), each agent can
only update its estimate on agent j’s selection if agent j
is able to transmit its information. We state the voluntary
communication protocol next.

Voluntary communication. Agent ¢ decides whether to com-
municate or not with agent j based on two metrics: (a)
novelty of its information H;;(t) := ||f{(t) — ai(¢)]]; (b)
discrepancy between agent j and agent ¢ in estimating ’s
empirical frequency f!(t). Hij (1) = ||£1(t) — f2 (1)||. Hus(t)
represents the change in the empirical frequency of agent <.
H;;(t) becomes small when agent ¢ repeatedly takes the same
action as per (). H;;(t) is the error that agent j is making
about agent ¢’s empirical frequency. This error is zero when
agent ¢ successfully transmits its empirical frequency as per
the update in (7).

If both novelty and discrepancy conditions are respectively
below predetermined threshold constants 7, € (0, 1), and
n2 € (0,1), ie.,

H“(t) <m and H”(t) < M2, (8)

we let P(c;;(t) = 1) = 0. Condition (§) implies that agent
1 does not attempt to communicate with agent 7 when its
empirical frequency is changing slowly, and agent j has an
accurate estimate of it.

Since, f}(t) is not available to agent 4, agent 7 cannot
locally compute H;;(t).We propose an acknowledgement
protocol that allows agent i to keep track of f/(t). We as-
sume after each successful communication, the receiver agent
7 successfully sends an acknowledgement signal (ACK)
immediately back to the sender agent i.

B. DFP-V Algorithm

The algorithm described in the previous section is a
decentralized fictitious play (DFP) algorithm with voluntary
communication, abbreviated as DFP-V. Algorithm E] outlines
the steps of DFP-V.

Algorithm 1 DFP-V for Agent @
1: Input: The parameters p, €, 11, 7)2.
. Given: f7,(0), f7°(0), u;(0), and a(0) for all i € N.

2
3: fort=1,2,--- do

4:  Select an action a;(t) using (6).
5

6

7

Update f{(t) with the selected action via (@).
Compute H;;(t) and H,;;(t) for all j € N\ {i}.
Transmit empirical frequency f{(t) to j if H;;(t) > m
and H;;(t) > ny for all j € N\ ¢, and then, re-
ceives ACK from agent j if transmission is successful,
c;;(t) =1, and update f7(t) = fi(t) (.
Update {f}(t)}jen using (7).

- Update p;(t).

0: end for

—

At each time ¢, agents take the best-response action with
inertia (Step 4). Then, each agent ¢ updates its estimate (Step
5). Agent ¢ decides whether to communicate with agent j or
not based on the communication metrics (H;;(t) and H;;(t)),

and condition in () (Step 6). Agent i sends the empirical
frequencies, and updates on f;(t) using the ACKs (Step 7).
Next, agent 7 updates f7(t) for all j € A"\ i (Step 8), and its
belief about the environment (Step 9). Here we do not specify
the updates on p;(t) but we will make an assumption about
the convergence of agents’ beliefs to guarantee convergence
of DFP-V in our analysis.

DFP-V algorithm generalizes the DFP algorithm proposed
in [11] by including a voluntary communication protocol. In
DFP, agents utilize a deterministic communication network
structure, and assume repeated communication without fail-
ures. The voluntary communication protocol in DFP-V is
based on the premise that agents do not need to transmit
their information if they have no new information for the
receiver. In order to assess whether an agent needs the
information available at sender agent ¢, agent ¢ needs to
keep track of the estimates at the potential receivers. Here,
this assessment is made possible by an acknowledgement
procedure. Assessment of information needs of others dis-
tinguishes the voluntary communication protocol from recent
communication censoring based protocols used in distributed
optimization [8], [9].

III. CONVERGENCE ANALYSIS

Here we show convergence of the action profiles under
DFP-V to a pure NE of the game in finite time for particular
class of games, called weakly acyclic games [12]. Below, we
define weakly acyclic games.

Definition 2 (Weakly acyclic Games) A game I" is weakly
acyclic if from any joint action profile a = (a;,a_;), there
exists a best-response path to a pure NE a* = (af,a*,).

The existence of a best-response path implies that a (finite)
sequence of best-response updates will converge to a pure
NE. In our analysis, we make use of the following set of
assumptions.

Assumption 1 There exists a probability measure [i such
that agent i’s measure on the environment 1;(t) converges
weakly to [i for all i € N, i.e., ju;(t) = [i.

Note that in Algorithm I} we were agnostic to the specifics of
the update mechanisms for p;(t). This assumption requires
that agents need to eventually agree on their estimates about
the environment.

Assumption 2 Agent j € N\ {i} can acknowledge if the
information is successfully transmitted from the sender agent
i, whenever c;;(t) = 1.

The above assumption makes sure that acknowledgements
are received by the sender agent. This is a critical assump-
tion for agents to keep track of others’ estimates about
their empirical frequency. Given the assumption agents can
compute the communication metric H;;(¢). Further, usage of
acknowledgement procedure does not burden agents’ limited



resources compared to the situation without voluntary com-
munication scheme. Since, each agent sends their empirical
frequencies with the complexity at least O(|.A4;|), while the
acknowledgement signal is just O(1). In addition, because
of the 1-bit acknowledgement signal is cheap, it is not
demanding to make sure the ACK signal is sent without
failure.

Next assumption states that the estimates are measurable
with respect to the observations of the agents.

Assumption 3 Let u(t) = (uu(t), pat). -+ i (1))
be a vector of measures by agents at time t.
Then, {Fi}i>0 is defined as a filtration with

Foi= oa(s)}oy, LF()} oy {u(s)Yiy). The estimate
fj(t) of agent i for agent j’s strategy is measurable with
respect to F;.

Next two assumptions impose certain restrictions on the
utility functions.

Assumption 4 For any pure NE action profile a* € AN of
the game T, it holds that,
{a}} = argmax u;(a;,a* ;, ). )
a; E.A
This assumption assures that an agent cannot be indifferent
between any two actions if other agents take actions in
accordance with a pure NE action profile.

Assumption 5 The utility functions u; for all i € N are
equicontinuous.

The equicontinuity of the utility function guarantees that if
the estimates f?,(t) € AN~1(A) converge to pure strategies
a_; € AN~ and measures p(t) converge to ji, the gap
between values of utility functions |u;(a;, f2,(t), ui(t)) —
u;i(a;,a—;(t), )| goes to 0.

The main convergence result (Theorem [I) relies on two
key lemmas: Lemma [5| and Lemma [6] Lemma [5] makes sure
that the action profile under DFP-V stays at a pure NE
when it is reached with positive probability. Lemma [6] shows
that there exists a positive probability of transitioning to a
pure NE before agents cease communication. Next we state
technical Lemmas that are used to prove Lemma [35]

Lemma 1 (positive probability of repetition and commu-
nication) Suppose Assumption [3| holds and condition in
is not true for all (i,7) € N x N\ {j}. Let E} be the event
is defined follows ,

Ei(t)={a(s) =a,c;;(t +T) =1,

forall se {t,t+1,--- ,t+T}}, (10)

where a(s) is a joint action profile at time s and c;;(t)
is the realization of Bernoulli random variable determining
communication link between i and j. Then, the probability
of the event Ey(t) conditioned on F(t) is bounded below by
a positive constant € (T),

P(EL ()| Fe, Bijt+T) =1) > e (T). an

Proof: The proof follows from the fact that due to inertia,
the probability of repetition of actions in finite 7' time is
always positive. Further, there is a positive probability of
communication (at least p;;(t) > €.om) before condition (8)
is satisfied. Thus the probability of action repetitions and

o N(N=1
communication is at least ¢; = VT e (N1, ]

Lemma 2 Let the empirical frequencies { f;(t) }1>0 and esti-
mates of empirical frequencies { f;(t)}:>o follow the update
rule in DFP-V. Suppose Assumption |2| holds and the event
E1(t) defined in (I0) happened. Then, for any & > 0, there
exists a T > Ty € Ny, it holds || fi(t +T) — ex|| < & for
all i e Noand ||f] (t +T) — ex|| < & forall j € N\ {i}.

Proof: Proof is given in the proof to Lemma 6 in [13]. Note
that Lemma 6 in [13] is a more general statement because
the update is a specific case of the estimate updates used
in [13]. [ |

Lemma 3 Suppose Assumptions hold, and the event
Ey(t) defined in happened. Then, for t > t, the utility
function u; for all i € N defined by (1) satisfies the
inequality below,

lui(ai, fo(E+T), wi(t) — uilas, a—s, p)] < &

Proof: The proof follows by combining the results from
Lemma 9 [11] and Lemmal ] and by using the equicontinuity
property. ]

(12)

Lemma 4 Suppose Assumptions hold, and the event
E(t) defined in happened. Then for t > t, there
exists constants & > 0 and & > 0 such that after T >
Ty consecutive stages, it holds argmax, c 4 ui(a;, f*;(t +
T),pus(t+T)) C argmax,, ¢ 4 ui(as,a—;,p) for all i € N.

Proof: The proof follows by using the same steps used in
proving Lemma 3 in [13]. [ ]

Lemma {4 establishes that as the estimates f%(¢) converges
to actions by repetition and communication, DFP-V mimics
behaviours of a centralized best response updates. Next we
state that agents remain at a pure NE, once reached and they
are able to communicate their actions to each other.

Lemma 5 (absorption property) Suppose Assumption
hold. Let a* € AN be a pure NE action profile. Further
suppose starting from time t >, the event F;(t) defined in
happened, with a(s) = a*,for all s € {t,t+1,--- ,t+
T}, ie. a pure NE action profile is repeated T steps and
then all pairs of agents communicate at time t + 1. Then,
a(s) =a* = (aj,a3,--- ,aly) holds, for all s > t.

Proof: By Lemma [4] after repeated actions and successful
communication, it holds that argmax, ¢4 u;(a;, f;(t +
T),us(t+T)) C argmax, ¢ 4 ui(a;,a—i, i). Since, a(s) =
a* and by Assumption {4} the set of optimal actions given

others’ actions a*; reduces to argmax, 4 u;(as, f*;(t +



T), pus(t +T)) = argmax, ¢ 4 ui(a;,a—;, 1) = {a;}, which
is a singleton. Thus, by definition of pure NE (Definition
[1), joint action profile stays at the pure NE, ie., a(s) =
a*, forall s >t+T. [ |

Lemma [3] proves that if a NE action profile is repeated
consecutively sufficiently long enough, agents will not tran-
sition to another joint action profile. The next result indicates
that there is a positive probability to reach a NE action profile
with small enough communication threshold constants.

Lemma 6 (positive probability of absorption) Suppose

Assumptions hold. Let a(t) be the joint action profile
at time t and fi(t) be agent i’s estimate on all agents
at time t. At time t > t, we define the following event

Jor all (i, j) € N x N\ {j},

Es(t) ={a(s) = a",¢j(s+T) =1,
forall se{s,5+1,--- ,5+T}
for somes € {t,t+1,--- ;t+ K(Th +T2)}}

where a* is a pure NE and c;;(t) is the realization of
Bernoulli random variable determining communication link
between 1 and j. There exists nn > 0 and 12 > 0 small
enough such that the transition probability P(Es(t)|F(t)) >
€(Ty), is bounded below by €(T1) > 0 and always positive
forallt eT.

Proof: The case a(t) = a*, is trivially satisfied by inertia in
best response (6). For the case a(t) # a*, see that as long as
the thresholds H;;(t) and H;;(t) are not satisfied, commu-
nication between agents continues with at least probability
€com > 0. Then, suppose that the event £ (¢) happened. The
probability of this repetition and communication is at least
€1(T) by Lemma

Since a(t) # a*, there is at least one agent that can
improve because of the existence of a best-response improve-
ment path. Suppose a(t) is repeated T' > Ty stages where
T is defined in Lemma [d] By Lemma [] with sufficiently
small 7; and 7, it holds that argmax, c 4 u;i(a;, f*;(t +
T), pi(t +T)) C argmax, ¢ 4 ui(ai, a_;, p). That is, agent
1 can select a best-response action. The probability that only
one agent improves its action and the others stay at the same
action is given by €5 := (1 — ¢)e’V 1. Once agent i* takes
the best response action at time ¢t + 7, either a(t +7T) = a*
ora(t+T) # a*. If a(t + T) = a*, then the probability
of absorption is satisfied by Lemma [I] Indeed after the
final improvement, the probability of absorption is given by
€4 = €Y1 This is the probability that the action profile is
repeated again for 7" > T steps and agent ¢* communicated
its empirical frequency to all agents at time ¢ 4 27".

If a(t + T) # a*, we need to continue the path of
improvement for at most finite X € NT number of steps
as per the definition of weakly acyclic games. In order for
the next improvement to happen, all agents need to repeat
their actions for the next 7" steps, and agent +* communicates
successfully with all agents at time ¢+27'. The probability of

this event happening is €3 = eV(T=DeN—1. Thus, we have

]P’(Eg(t)l]‘-(t)) bounded below by E(Tth) = 61(6263)K64.
|

Lemma 6] states that DFP-V can follow finite-best response
path with positive probability. To show this, Lemma ] utilizes
property of inertia and the communication protocol defined
by (B). Finally, we state our main convergence theorem.

Theorem 1 Let {a(t) = (a1(t), (a2(t), - ,an(t)) }1>1 and
(F(E) = (FO, F3(E)-  Fi0), - s Fio(#) o be a se-
quence of actions and estimates of each agent i € N
generated by Algorithm DFP-V. If the assumptions in Lemma
[5] hold, then the action sequence {a(t)};>1 converges to a
pure NE a* of the game T, almost surely.

Proof : By Lemma [5| when the joint action profile a(t)
converges to a pure NE a*, it stays at a* forever, i.e., the
action profile is absorbed. Hence, the game is played until
agents agree on pure NE and absorbed in finite time 7 due
to existence of positive probability by Lemma [6] [ ]

IV. NUMERICAL EXPERIMENTS

We assess the effectiveness of DFP-V on a channel inter-
ference game.

A. Channel Interference Game

Channel interference problem arises in communication
systems, due to using the same channel. It is common to
model the problem as a game with channels representing
actions of entities (agents) [14], [15].

Let A be the set of channels. Agents can only select one
channel at each time step ¢. We use Kronecker delta function,

defined as
_JLai(t) = a;(t)
5ij(t) B {O,ai(t) 75 aj(t).

to indicate interference at time t caused by the actions of
(i,7) € N x N\ {j}. Agent i aims to select a channel that
minimizes the total channel interference it experiences given
others’ selections. We express this goal with the following
utility function,

wi(ai(t),ami(t)) = — Y 6;8;(t)
JeN\{i}
where 0;; € R+ denotes the mutual interference constants
between two agents determined by the transmission powers.
If these constants are symmetric, i.e., 6;; = 6;;, the channel
interference game is a potential game [16]. In the following,
we assume {6;;}icnr jear\i are symmetric but unknown.

13)

(14)

B. Numerical Setup

We consider the channel interference game with N = 5
communication nodes and K = 5 channels. We assume
0;j = M where M is uniformly selected from integers
between 10 and 15 for each pair i € N and j € N\ {i}.
Agent 7 learns 0;; by continuously receiving signals drawn
randomly from a normal distribution with mean 6;; and
standard variance 1 for j € AN \ {i}. The connection
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Fig. 1.

cease communication starting from ¢ = 40 on average.

probability p;;(¢) is uniformly sampled between 0.4 and 0.6
at each time step for each pair ¢ and j. The parameters p and
e are selected as 0.3 and 0.1. The voluntary communication
parameters are 1; and 72 are 0.01 and 0.02.

We compare DFP-V with DFP as a benchmark algorithm
with 73 = 0, 72 = 0. We set the final time step as
Ty = 100. Fig. EKLeft) shows average convergence rates
to a pure NE until time 7y = 100. We can conclude that
DFP-V achieves the same convergence rate as DFP despite
the voluntary communication protocol. That is, the voluntary
communication does not adversely affect the convergence to
a pure NE. Fig. [[{Middle) shows the total estimation error
of agents due to failures in communication attempts. As
the initial actions are taken, we observe an increase in the
total error as agents begin to select best response actions
and communication attempts fail half the time on average.
After a peak around ¢ = 10, the error gradually drops for
both algorithms, due to agents taking the same action more
often. The error goes to 0 in DFP algorithm. In contrast,
after time around T’ /2 = 50, we see a gradual increase in
DFP-V due to voluntary communication in accordance with
Fig. [T(Right). Fig. [[(Right) shows that agents begin to cease
communication starting at time around 7’ /2 = 50. However,
this increase does not lead to a problem in convergence
to a pure NE, since, agents are taking the best response
actions to the actual actions of each other given their current
estimates. The gradual increase is due to the updates in
empirical frequencies as per @). Fig. [[{Right) also shows
that agents completely cease communication by the final time
Ty while converging to a pure NE in all the runs. The total
communication attempts is almost halved by the voluntary
communication protocol in comparison to DFP.

V. CONCLUSION

We considered a decentralized game-theoretic learning
algorithm, DFP-V, in which agents actively managed whom
to exchange information with. Agents communicated over a
random communication network with links prone to failures.
The communication protocol was a threshold-based rule
that depends on two metrics: novelty of information and
potential effect of local information on other’s expectation of
individual utility function. We considered a communication
acknowledgement protocol so that agents are able to compute
both metrics locally. We showed that DFP-V converges in

Convergence results over 50 replications. (Left) Convergence of empirical frequencies to pure NE % S ien II£E(t) — aZ|| on average.
(Middle) Convergence of estimates m Zz‘e N Zj EN\{i} I fii(t) —

fL] (t)||- (Right) Average attempt per communication link over time. Agents

finite time to an optimal action profile (pure NE) for the
class of weakly acyclic games, which includes the class of
potential games. Numerical results demonstrated advantages
of the voluntary communication protocol in reducing com-
munication attempts, while retaining convergence properties.
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