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Abstract—In this paper, we present a phase retrieval approach
from intensity measurements using a Deep Learning (DL) based
Wirtinger Flow (WF) algorithm for the case where the mea-
surement model is non-linear, and this non-linearity depends on
the unknown signal. In the context of synthetic aperture radar
(SAR), this is relevant to the image reconstruction problem for
the scenario where the Born approximation is no longer valid
which results in multi-scattering effect within the extended target
being imaged. Since we are adopting WF for DL based imaging,
the underlying optimization problem is non-convex. However,
unlike the WF algorithm, the unknown image is estimated from
the measurement intensities in a learned encoding space with
the goal of achieving effective reconstruction performance. The
overall DL network is composed of an encoding network for
determining a suitable initial value in the transformed space,
a recurrent neural network (RNN) that models the steps of a
gradient descent algorithm for an optimization problem, and a
decoding network that can incorporate the generative image prior
and transforms the encoded estimation from the RNN output to
the original image space. Numerical results are included to verify
feasibility of the proposed approach.

I. INTRODUCTION

In recent years, DL has been utilized in a number of SAR
related tasks including image reconstruction, segmentation,
estimation of the unknown parameters of the forward model,
automatic target recognition (ATR) problem [1]–[4] etc. for
the case where the phase information of the received signal is
available. In recent years, there have been significant interest
in the phase retrieval problem which refers to the task of
reconstructing an unknown signal from a set of phaseless
measurements [5]–[7]. In the context of SAR, this is relevant
for the image reconstruction problem for the case when
the phases of the reflected signal are unavailable, or they
significantly deviate from the correct values due to random
fluctuations in the sensor locations, variations in transmission
signal speed etc.

A number of different algorithms have been proposed in
the literature for the phase retrieval problem which can be
broadly categorized into two groups. In the first category, by
algebraic manipulation, phase retrieval is performed by convex
optimization, either through lifting and convex relaxation [8]–
[10], or by the PhaseMax approach [11], [12] without lifting.
For the second category, the unknown signal is estimated via

non-convex optimization in the original unknown space, and it
includes alternative minimization [13], [14], and WF [5] and
its many variants [15]–[19]. Out of these methods, WF and its
variants are the most prominent since they offer convergence
guarantee alongside better scaling property and computational
complexity compared to most of the convex optimization based
techniques. These algorithms are characterized by two major
stages: a sophisticated initialization stage and an iterative
update stage for estimating the unknown.

Previous implementations of WF algorithm for radar appli-
cations focused mainly on the interferometric imaging prob-
lem. This is due to the fact that the cross-correlation of the
measurements from a pair of receivers has the characteristic
generalized Wirtinger flow [6] measurement model in the
frequency domain. In [20], this approach has been applied
for the multi-static passive radar imaging problem with Born
approximation for the case when knowledge about only the
transmitter look direction is available. In [21], a deterministic
lifted forward model is designed for interferometric multi-
static radar in terms of limits on pixel spacing and sample
complexity for exact image reconstruction. In [22], generalized
WF approach was applied for simultaneous reconstruction of
unknown image and target polarization states from passive
interferometric measurements. In this paper on the other
hand, we are assuming complete knowledge of the transmitter
location, and instead consider the effect of phase errors in
the measurements and the multiple scattering effect within the
target begin imaged.

An iterative image reconstruction approach for the measure-
ment model with a single transmitter and multiple receivers
and target multiple scattering scenario is presented in [23]
that simultaneously recovers the unknown image vector and
the unknown phase of measurement. A total variation (TV)
regularization, non-negativity of the image vector components
and unit magnitude elements of the unknown phase vector
are incorporated as well to limit the solution space for
faster convergence. However, an all zero initial value for
the unknown is not rigorously justified and has room to be
improved upon along with the arbitrarily selection of the
learning rate. For the same measurement scenario but with
the measurement phases available, a DL based approach is



proposed in [24], where starting with an approximate inversion
via back-projection, a deep network is applied for further
refinement. Another notable DL based imaging method for this
scenario include [25] where a plug-and-play (PnP) approach
is employed for implementing DL based projection steps.

In this paper, we propose an approach that combines
a learned non-linear initialization step with the generative
prior [26]–[29] based phase retrieval approach in order to
achieve effective reconstruction from the phaseless measure-
ments. The goal of the learning phase is to find an appropriate
non-linear transformation from the spectral initialization [5]
output, which is employed in the WF algorithm, to an en-
coded domain with reduced dimensionality. Once an estimated
solution is found in the encoded space, it is applied to a DL
based decoding network and the solution in the original image
domain is determined.

Rest of the paper is organized as follows: in Section II, we
present the relevant notations and details of the measurement
model for the SAR image reconstruction task; in Section III,
we briefly summarize the steps of the WF algorithm; in Sec-
tion IV, we elaborate on the iterative DL based reconstruction
approach for the inverse and the forward problem; in Sec-
tion V, we present the overall deep network; in Section VI, we
present example numerical reconstruction output; and finally,
Section VII includes our conclusion.

II. PROBLEM STATEMENT

Let x and x denote the position vectors in R3 and R2,
respectively, and x1, x2 and x3 are the components of x along
the three dimensions. If φ(x) ∈ R denotes the height at x, the
location of a point on the ground topography at x is denoted
by x = [x1, x2, φ(x)]. The speed of the electromagnetic
wave in the homogeneous background medium and inside the
heterogeneous scattering medium at x are denoted by cb and
c(x), respectively. Scattering potential V (x) is the reciprocal
of the perturbation in the background wave speed caused
by the scattering object, and it is related to cb and c(x) as

c2(x) =
(

1
c2b

+ V (x)
)−1

. ρ(x) is a function of x, and it is
defined such that V (x) = ρ(x)δ(x3 − φ(x)).

For simplicity, we restrict our proposed image reconstruc-
tion approach to the passive bi-static and multi-static SAR
for which the fixed transmitter location and the transmission
signal is fully known. Modifications required for extending our
approach to the mono-static SAR operation with the changing
transmitter locations is quite straight-forward.

Suppose G(x,y, ω) and S(x, ω) are the Fourier transforma-
tions of the Green’s function and the source wave, respectively,
and KT (x, ω) models the transmission antenna beampattern.
For the homogeneous background with constant speed cb,

G(x,y, ω) is defined as G(x,y, ω) = e
−i ω

cb
|x−y|

4π|x−y| . Suppose the
transmission antenna is located at γT ∈ R3 and it transmits a
signal with center frequency ωc. S(x, ω) is approximated as
S(x, ω) ≈ P (ω)δ(x − γT ), and the incident field U in(x, ω)
can be expressed as

U in(x, ω) = G(x,γT , ω)KT (γT , ω)P (ω). (1)

The scattered field Usc(x, ω) and the total field U(x, ω)
are related as U(x, ω) = U in(x, ω) + Usc(x, ω). Since the
Born approximation is not valid, unknown total wave U(x, ω)
is required to be estimated. Using the background Green’s
function, Usc(x, ω) can be expressed in the integral format as

Usc(x, ω) = ω2

∫
G(x,y, ω)KR(y, ω)V (y)U(y, ω)dy,

(2)

which is commonly referred to as the Lippman-Schwinger
equation and it captures the non-linearity in the measurement
model. The KR(x, ω) term in (2) is associated with the
receiving antenna beampattern. For simplicity, we consider
both KT and KR to be equal to 1.

Suppose the heterogeneous target being imaged is confined
within a set of position vectors denoted by Ω. Similarly, the
receiver locations at γR(s) ∈ R3 for s ∈ {1, · · · , S}, and the
transmitter location γT form the set Γ. For this setting,

U(x, ω) = U in(x, ω) + ω2

∫
Ω

G(x,y, ω)ρ(y)U(y, ω)dy,

(3)

where x ∈ Ω. The scattered wave at the sth receiver location
with phase error eiθ(s,ω) relates to U(x, ω) and ρ(x) as

d(s, ω)

≈ eiθ(s,ω)ω2

∫
Ω

G(γR(s),y, ω)ρ(y)U(y, ω)dy. (4)

To circumvent the adversarial effect of phase error on the
imaging output, we only consider the intensity values of the
measurements and denote this by d̂(s, ω), i.e.,

d̂(s, ω) = |d(s, ω)|2. (5)

Suppose the region Ω is composed of N discrete points at
{xn}Nn=1. From (1), (3), (4) and (5), the discretized version
of the phaseless data model is described by the following set
of equations:

u = uin + H(u� ρ1), (6)
c = G(u� ρ1), (7)

d = diag(c)Hc. (8)

Component-wise product of two vectors or matrices is de-
noted by �. We use ωk for k ∈ {1, · · · ,K} to denote the
fast-time frequencies and the total number of measurements
M = SK. Incident wave vector uin ∈ CNK is fully
known, and it is composed of its corresponding function
values at the N locations in Ω and repeated for each of
the K frequencies as uin =

[
gT1 · · · gTK

]T
where gk ∈

CN =
[
U in(x1, ωk) · · · U in(xN , ωk)

]T
. Similarly, the

fully known matrices H ∈ CNK×NK and G ∈ CM×NK are
related to the Green’s function of the background medium



transmission. H is a block diagonal matrix with square ma-
trices Hk ∈ CN×N for k ∈ {1, · · · ,K} along its diagonal
while the remaining elements equal to zeros. Hk is defined as

Hk = ω2
k

G(x1,x1, ωk) · · · G(x1,xN , ωk)
...

...
...

G(xN ,x1, ωk) · · · G(xN ,xN , ωk)

 . (9)

G on the other hand is composed of Gk ∈ CS×N for k ∈
{1, · · · ,K} as

G =


G1 0 · · · 0
0 G2 · · · 0
...

... · · ·
...

0 0 · · · GK

 (10)

where 0 is a S ×N matrix of all zeros and

Gk = ω2
k

G(γR(1),x1, ωk) · · · G(γR(1),xN , ωk)
...

...
...

G(γR(S),x1, ωk) · · · G(γR(S),xN , ωk)

 .
(11)

Unknown image vector ρ ∈ RN is defined as ρ =[
ρ(x1) · · · ρ(xN )

]T
and ρ1 ∈ RNK in (6) and (7)

is a column vector defined as ρ1 =
[
ρT · · · ρT

]T
.

Total wave vector u ∈ CNK relates to its corre-
sponding function values at the N locations in Ω as
u =

[
U(x1, ω1) · · · U(xN , ω1) · · · U(xN , ωK)

]T
.

Scattered signal vector c ∈ CM is defined as c =[
d(1, ω1) d(2, ω1) · · · d(S, ωK)

]T
. The vector compris-

ing of the intensity measurements is d ∈ RM where d =î
d̂(1, ω1) d̂(2, ω1) · · · d̂(S, ωK)

ó
. Our goal is to imple-

ment a DL based approach to recover the unknown image
vector ρ from the measured intensity vector d.

III. WF ALGORITHM FOR PHASE RETRIEVAL

WF algorithm for phase retrieval is characterized by the
direct optimization of an un-regularized objective function via
gradient descent approach using a carefully designed initial
estimation [5]. The original algorithm and its variants utilize
the complex Wirtinger derivatives for calculating the gradient
values used in the update steps. A direct adaptation of the WF
algorithm for the phaseless reconstruction problem specified
in Section II considers the following optimization problem:

ρ∗ = argmin
ρ

1

2M

M∑
m=1

[
d(m)− LHmρρ

HLm
]2
, (12)

where LHm ∈ CN denotes the mth measurement vector, and it
is defined as LHm = G(m, :)diag(u).

Since u is unknown, unlike the existing WF based phaseless
recovery methods, the measurement matrix is only partially
known and u needs to be estimated simultaneously with
unknown ρ. We know that the convergence to the correct
unknown for the WF algorithm is guaranteed only if the
forward map satisfies specific condition as shown in [7]. This
condition also implies a sufficiently accurate initial value from

Fig. 1: Network schematic for the proposed DL based recon-
struction approach.

the spectral initialization step. Due to partially known forward
map in our problem, any inaccuracy in the initial value of
the total field adds additional inaccuracy to the initial image
estimation along with the limitation imposed by insufficient
number of measurements.

IV. DL BASED IMAGE RECONSTRUCTION APPROACH

The goal of adapting DL for the SAR image reconstruc-
tion problem in Section II is to utilize datasets composed
of phaseless measurements and corresponding reconstructed
images for improving upon a basic adaptation of the WF
type algorithm. This is done by estimating the unknown in a
suitable DL based transformed space as well as by determining
optimal values of the learning rates for the iterative updates.
We denote the DL based encoding and decoding networks by
G(.) and H(.), respectively. The iterative updates of a gradient
descent approach for minimization in the transformed space
are modelled into an RNN network similarly to the methods
in [1], [3], [4]. Schematic diagram of the overall network
is shown in Figure 1 where y(0) ∈ RNy , y(L) ∈ RNy and
ρ∗ ∈ RN denote the encoded initial value, encoded estimated
value and the decoded original unknown, respectively. Unlike
the case with the Born approximation assumption, we have
to consider both the inverse and the forward problem for the
gradient descent updates.

A. Inverse problem

Since we are solving the inverse problem in the transformed
space, by setting H̃(y) = H(y)H(y)T , we consider the
following optimization problem:

y∗ = argmin
y

1

2M

M∑
m=1

[d(m)− dy(m)]
2
, (13)

where dy(m) = LHmH̃(y)Lm. The term being minimized
in (13) is denoted by J (y), and it is commonly referred
to as the data fitting term that imposes consistency with the
measured intensity values. Gradient descent approach involves
calculating the gradient of J (y) with respect to unknown y
at each iteration step. Output value at the kth step is denoted
by y(k), and it is calculated as

y(k) = y(k−1) −
λk−1
y

‖y(0)‖2
∇yJ (y)|y=y(k−1) , (14)

where λk−1
y ∈ R+ is a positive-valued constant referred to

as the learning rate. The gradient of the data fitting term is
calculated as

∇yJ (y)



=
2

M

M∑
m=1

∇yH(y)Re
[
diag(u)H(I + HHWy)bm

]
em,

(15)

where bm and em are defined as

bm = G(m, :)HLHmH(y), (16)

em = LHmH̃(y)Lm − d(m), (17)

for m ∈ {1, · · · ,M}. Wy is related to H(y) and H as
A1Wy = diag(H(y)) where A1 = I − diag(H(y))HH .
The expression of ∇yH(y) depends on the architecture of the
decoding network H(.). For calculating ∇yJ (y) during each
update, the values of u and Wy are required to be determined
for the current value of the encoded unknown y.

Suppose ρc denotes the correct unknown for the measured
intensity d, i.e. d(m) = LHmρ̃cLm. Ideally, if we can start
with the initial estimation ρ(0) within an ε-neighbourhood
of ρc, the transformation network G(.) should be such that
the corresponding initial value in the transformed domain,
i.e. y(0) = G(ρ(0)), is within a neighborhood of yc, where
ρc = H(yc), that is less than or equal to ε. For initializing
ρ, first the eigenvector zρ0 corresponding to the maximum
eigenvalue of X̂ is calculated where

X̂ =
1

M

M∑
m=1

d(m)MmMH
m, (18)

for MH
m = G(m, :)diag(uin). Initial value ρ(0) is set equal

to aρ0Re(zρ0) where aρ0 =
»

1√
2M
‖d‖ and the initial value

for the transformed domain is therefore y(0) = G(ρ(0)).

B. Forward problem and gradient calculation

Since the total field deviates from the incident field due
to the target multiple scattering effect, and depends on the
encoded image vector as u = (I−Hdiag(H(y)))

−1
uin, its

value can be estimated solving the following minimization
problem:

u∗ = argmin
u
‖A2u− uin‖2, (19)

where A2 = I−Hdiag(H(y)). Another term required for the
gradient calculation is Wy , and its value is determined by the
solutions of the following set of minimization problems:

W∗
y(:, n) = argmin

Wy(:,n)

‖A1Wy(:, n)− hy,n‖2, (20)

for n ∈ {1, · · · , N} where the nth component of hy,n ∈
RN equals to H(y)(n) and the rest of its elements are equal
to 0’s. We can implement Nesterov’s method [30] and solve
N + 1 vector minimization problems parallelly to estimate
Wy and u. The initial value of the total field and Wy are
set equal to uin and an all zero N ×N matrix, respectively,
for the first iteration of the phase retrieval algorithm. For each
additional iteration, these initial values are set equal to their
corresponding values determined during the previous step. The
updates can be continued until the norms of the derivatives are
smaller than a tolerance value or until a fixed number of steps

Algorithm 1 Phase retrieval using DL based WF

1: Set ρ(0) = aρ0Re(zρ0) where zρ0 is the eigenvector for
the maximum eigenvalue of X̂ and aρ0 = 1

(2M)1/4

√
‖d‖

2: Set y(0) = G(ρ(0))
3: Set k = 1
4: while k ≤ L do
5: Estimate W∗

y,k, u∗k using y = y(k−1)

6: y(k) = y(k−1) − λk−1
y

‖y(0)‖2∇yJ (y)|y=y(k−1)

7: k = k + 1

8: y∗ = yL

has been reached. Overall SAR image reconstruction algorithm
is summarized in Algorithm 1.

V. DL NETWORK ARCHITECTURE AND TRAINING

Fig. 2: Overall DL network.

G(.) and H(.) can be designed explicitly as convolutional
neural networks (CNN) or by using the artificial neural net-
work (ANN) framework. Overall network diagram is depicted
in Figure 2. The parameters of G(.), as well as the learning
rate for the iterative updates are learned by end-to-end training.
Parameters of H(.) can be learned simultaneously with G(.) or
separately as part of a generative adversarial network (GAN)
using a set of training images. Suppose P denotes the set of all
parameters and T denotes the set of all T training samples. For
the tth sample, we have the measured intensity vector dt and
the corresponding correct unknown ρt. Assuming known fixed
transmission signal and transmitter location for all samples, the
incident field vector uin for the points in Ω is fully known
Training loss function C(P) is defined as

C(P) =
1

T

T∑
t=1

‖ρ∗t − ρt‖2, (21)

and it is minimized with respect to the variable set P via
stochastic gradient descent updates during training. The num-
ber of RNN stages L, and the number of layers and the
dimensions of the weight matrices and bias vectors of G(.)
and H(.) are adjusted as tuning parameters.

VI. NUMERICAL RESULTS

In order to demonstrate the feasibility of our proposed ap-
proach, we present image reconstruction result on a simulated
dataset, and compare with the reconstruction output from the
WF algorithm [5], [7] with Born approximation. We start by
considering simple scenes with a single extended rectangular
object of arbitrary dimensions and locations. The task is to



(a) (b) (c)

(d) (e)

Fig. 3: (a) is an example original unknown image. For M =
0.5N , (b), (c), (d) and (e) denote the spectral initialization
output, the reconstructed image using the WF [5] algorithm,
the reconstructed image using the approach in [23] and the
estimated image by the proposed method with 5 RNN stages,
respectively.

image the scene located within a 280 × 280m2 area into a
14 × 14 pixel format. The transmission signal is monotone,
which is similar to the scenario considered in [23], [24] and
valid for narrow-band assumption, with single frequency equal
to 2GHz. A total of M = 98 receiving sensors around a circle
of 10km radius with the center of the scene as its origin and
at a height of 0.5km are considered. The transmitter sensor
is located at the same fixed location for all samples. With
N = 196 and M = 98, we have an under-determined system
with measurements to unknown ratio of 0.5.

For the two networks G(.) andH(.), we have used CNN and
ANN architectures, respectively, with the number of network
layers equal to 5. The activation functions used for G(.) and
H(.) are relu and softplus, both of which operate component-
wise on their inputs. Nonlinear softplus function is defined as
softplus(t) =

[
log(et(1) + 1) · · · log(et(Nt) + 1)

]T
for

t ∈ RNt , and its derivative with respect to its argument is
diag(σ(t)) where σ(.) is the widely used sigmoid function
in the DL literature. Output vector length at the last stage
of G(.) is 81, while for the five consecutive layers of H(.),
output vector lengths are 81, 81, 81, 100 and 196, respectively.
Additionally, we make the simplifying assumption that the
maximum scattering potential for all the scenes are equal
and known as a prior for our DL based approach as well
as the WF algorithm under Born approximation. Example
original image and the reconstructed image by our proposed
method along with the reconstruction output using the WF
approach with 100000 updates are shown in Figure 3. We
also show the corresponding reconstruction output using the
phaseless multiple scattering inversion method in [23] with
100000 iterations in Figure 3(d). Compared to this non-DL
based approach, our proposed method results in better image
quality for this low sample complexity regime.

VII. CONCLUSION

In this paper, we have presented a DL based phase retrieval
approach for the non-linear measurement model which per-

forms the reconstruction task in an encoded domain where
the DL based encoding and decoding networks enables ef-
ficient initialization and incorporation of a generative prior,
respectively. Starting with an efficient initialization, aside from
solving the inverse problem in the encoded space, proposed
approach additionally solves the forward problem which is
necessary due to the non-linear nature of the measurement
model. An important open problem is the identification of
the range of forward maps and the types of scenes where
the proposed method guarantees convergence to the correct
unknown which we will explore in our future work.
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