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Abstract—Synthetic aperture radar (SAR) imaging of moving
targets is a challenging task, as standard techniques have been
developed for stationary scenes. Motivated by success of robust
principal component analysis (RPCA) in change detection for
video processing, we establish a rank-1 and sparse decomposition
framework for the SAR problem in the image domain. We
construct the phase-space reflectivity matrix for single-channel
SAR systems reconstructing images at various hypothesized
velocities and show that it is the superposition of a rank-1
matrix and a disjoint sparse matrix. This structure allows for
additional constraints that reduce the computational complexity
when compared to generic RPCA. We compare the performances
of two algorithms, proximal gradient descent (PGD) and alter-
nating direction method of multipliers (ADMM), on numerical
simulations for the moving target imaging problem.

Index Terms—Synthetic Aperture Radar (SAR), Moving Tar-
get, Robust PCA, rank-1, convex

I. INTRODUCTION

Synthetic aperture radar (SAR) is used in many defense and
remote sensing applications, as it is capable of providing high
resolution images independent of weather conditions [1]-[3].
In SAR, a scene of interest is illuminated by electromagnetic
waves that are transmitted by an antenna placed on a moving
platform in order to generate a synthetic aperture to provide
resolution beyond that of the physical antenna by simulating
an antenna length much longer than a physical antenna.

Detection of moving targets pose a challenge in SAR
imaging since standard processing techniques have been de-
veloped for imaging stationary scenes, and thus remains an
important problem in a number of SAR modalities [4]-[14].
Moving targets introduce velocity-dependent range variations,
leading to smearing artifacts in the reconstructed images [15]-
[17]. In GMTI radar with stationary receivers, clutter can be
suppressed by filtering out the zero-Doppler components, as
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the Doppler shift implies velocity information. However, the
addition of a moving radar platform in SAR makes indication
more complex; due to the movement of the platform, the
Doppler spectrum of moving targets and the stationary scene
may overlap.

Space-time processing techniques such as displaced phase
center antenna (DPCA), along track interferometry (ATI),
and space-time adaptive processing (STAP) are classical ap-
proaches to the clutter suppression problem in SAR [18]-[24].
DPCA relies on two receivers traversing the same trajectory,
simultaneously imaging the same scene [22]. The received
signal is then identical for all stationary clutters and the mov-
ing targets can be separated by subtracting the two received
signals. Similar to DPCA, ATI uses two displaced antennas
to detect ground moving targets, utilizing the formed images
instead of received signals [23], [24]. In ATI, the first image
is multiplied by the complex conjugate of the second, leading
to zero phase for the stationary targets and moving targets
can be extracted from the non-zero phase components. While
computationally efficient, these methods require specific imag-
ing geometries with multiple antennas, increasing operational
costs and acquisition complexity. In STAP, a two-dimensional
space-time filter adaptively adjusts maximize the output signal-
to-interference-plus-noise ratio (SINR), improving the detec-
tion of the moving targets [18], [19]. However, STAP is
computationally expensive, requiring the need calculate an
inverse covariance matrix, and requires target-free training
samples which can be difficult when moving target parameters
are often unknown.

Motivated by its success in image processing, robust prin-
cipal component analysis (RPCA) has been used to address
GMTI, which aims to separate a data matrix into a low-rank
component and a sparse component. A popular approach to
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achieve this property is through using multi-channel SAR,
in which an antenna array is used to obtain data through
multiple receiver channels [25]-[35]. After accounting for
phase differences caused by channel spacing, each channel’s
observation matrix is stacked into a column of a matrix. Each
channel then has similar received data except for the moving
target parts, thus forming a low-rank plus sparse matrix. In
[25], the separation problem is solved via Go Decomposition,
which assumes the rank of the low-rank component and the
cardinality of the sparse component as prior knowledge. How-
ever, these constraints introduce non-convexity to the problem
and global convergence is not guaranteed. Furthermore, the
performance of these algorithms are heavily dependent on
the choice of cardinality. In order to address these issues,
[26] extends this work by first estimating low-rank and sparse
components through ATI images. While this approach gives
a better initial point, it does not address the issue of non-
convexity. In [28], a joint multi-channel sparsity approach of
RPCA is introduced by assuming the sparsity pattern between
channels remains the same and thereby enhancing signal
signature. In [29], RPCA is used to find target-free training
samples used for STAP for more accurate clutter suppression.

In [32]-[35], subaperture based approaches are used for
imaging. In [32], [34], the high resolution SAR image is split
into a number of subaperture images in the azimuth direction
to exploit a low-rank sparse decomposition (LRSD) frame-
work for SAR images. A discrete Fourier (DFT) transform is
applied to a SAR image containing unfocused moving targets,
and is followed by a filtering operation to extract frequency
domain subapertures. An inverse DFT of the original image
size is then performed on zeropadded subapertures to obtain
subaperture images. These images are then stacked column-
wise to construct a matrix that fits the LRSD framework and
decomposition is achieved via alternating direction method of
multipliers.

Similar to these approaches, ours relies on the LRSD frame-
work. In contrast to these works, we consider to formulate
our model based on the phase-space reflectivity function for
monostatic SAR systems [7]-[9], [36], [37]. Motivated by
RPCA, we construct a finite dimensional matrix that can
be decomposed into a rank-1 stationary component and a
sparse component associated with moving targets. Using this
rank-1 constraint, we reduce the computation time of generic
RPCA, as there is no need for a singular value decomposition
associated with the singular value threshold. We show that
this matrix is formed by two disjoint, orthogonal subspaces
allowing for additional constraints to be made on the moving
targets other than sparsity. In addition to separating the station-
ary and moving targets, our approach both focuses the moving
target and estimates velocity parameters without the need of
a priori knowledge on motion parameters, nor the number of
moving targets in the scene. We use two methods of solving
the GMTI problem using proximal gradient descent (PGD)
and alternating direction method of multipliers (ADMM).

The rest of the paper is organized as follows: In Section
II, we present the SAR received signal model. In Section III,

we discuss our framework for separating moving targets from
stationary clutter. Section IV presents numerical simulations
results, and we conclude our discussion in Section V.

II. FORWARD MODELS

We consider a monostatic SAR system in which the trans-
mitter and receiver are collocated. We begin by making the
start-stop approximation for moving targets in which the target
and the antennas only move between pulses, and are stationary
during a pulse. Let s € [sg, s1] denote the slow-time, which
indexes each data processing window and x be a location
on the ground where x = [x,9(x)] € R3 x € R? and
Y : R? — R is a known smooth function modeling ground
topography. Without loss of generality, we let x be the position
of the targets at the beginning of the synthetic aperture, at
time sp = 0. Assuming the scatterer moves at a constant
velocity, we can represent the trajectory of the scatterer as
z(s) = x+vxs, where v, € R? is the velocity of a particular
point scatterer located at point x at time sg = 0. Since the
target is moving on the surface, the velocity vy is of the form
Vx = [Vr, Vith(x) - Vy], Where vy is the 2D-velocity of the
target and V,1(x) is the gradient of the ground topography.
We define the phase-space reflectivity function of a target as:

q(x,v) = p(x)d(v — vg) (1)
~ p(x)e(v,ve) 2)

where ¢(v,v;) is a smooth, differentiable function of v that
approximates the Dirac delta function in the limit. Under Born
approximation, the received signal model for monostatic SAR
is defined as follows [5], [7], [38]:

d(s,t) = /e_i¢(“’s7"”’)A(w,sm,v)q(x,u)dwdxdu 3)

where t is the fast-time, w € R is the temporal frequency,
A(w, s,x,v) is a complex amplitude function varying slowly
in w that includes transmitter and receiver antenna beam
patterns, the transmitted waveforms, geometrical spreading
factors, etc. and ¢(w, s,x,v) is the phase function given by
P(w, s,x,v) = Z(R(s,x)+B(s,x,v)) with R(s,x) being the
total travel distance, B(s,x,v) being the range-variation due
to the movement of the scatterer, and ¢ the speed of light. For
a monostatic SAR configuration, R(s,x) = 2|v(s) — x| and
B(s,x,v) = 2(x = 7(s)) -vs where y(s) € R? is the location
of the transmitter/receiver pair, and (x — (s)) denotes the unit
vector from the transmitter/receiver to the scatterer.

A. Phase-space reflectivity matrix

We now discretize the underlying scene reflectivity function
and represent it in the standard pixel basis such that the
image domain is sampled on an N-dimensional grid of D :=
{x.}2_,. Furthermore, we discretize the range of velocities
using [Avq, Avs] intervals into an M-samples to obtain an
M x N sized matrix QQ, a matrix formed by reconstructing
an image at each constant hypothesized velocity for the entire
scene. If the hypothesized velocity is equal to the true velocity

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on August 26,2021 at 23:49:58 UTC from IEEE Xplore. Restrictions apply.



of the scatterer, the scatterer will be reconstructed in its correct
initial position. The reconstructed reflectivity images are then
stacked into rows of Q, where each image corresponds to a
constant hypothesized velocity, and we refer to Q as the phase-
space reflectivity matrix. Since all stationary targets have the
same velocity ¥ = 0, they appear in the same row of Q
corresponding to the index v = 0. Thus, stationary targets
form a rank-1 component in Q, which we denote as Q. On
the other hand, the remaining terms span a subspace in CM of
dimension equal to the number of unique velocities V' within
the scene of interest, which is upper-bounded by the number
of moving targets. Thus, we propose a decomposition of the
unknown matrix Q to a rank-1 Qg and sparse Q, as follows:

Q = Qs + Ql/' 4

III. MOVING TARGET IMAGING VIA RANK-1 RPCA

Here, we introduce an updated minimization problem for
our rank-1 framework of Q. It is well-known in an optimiza-
tion setting that the nuclear-norm promotes low-rankedness
and the ¢;-norm promotes sparsity. Typical RPCA seeks to
solve the problem

Jmin Q- + AQul

®)

st Qs +Q,=Q,
where || - || is the nuclear-norm, the sum of singular values
of Qs, and || - ||1 is the ¢; norm which equals the sum of

magnitudes of Q,. Many numerical algorithms exist to solve
the LRSD problem [39]-[41], but it is most popularly solved
using proximal methods to arrive to an iterative solution.
However, the singular value threshold (SVT), the proximal
mapping corresponding to the nuclear-norm, is very compu-
tationally expensive due to the calculation of the singular
value decomposition. Recall that our constructed Q matrix
is the superposition of a rank-1 Q, and an orthogonal Q, .
We show that we can impose additional constraints to support
the structure of Q and reduce the per-iteration complexity of
RPCA.

We construct our objective function by first denoting the
index of zero-velocity as 1., and define the constraint C'; as
the set of matrices X that lie in the space formed by e,_p®.
Here, e,, € RM is the standard basis vector that has the 1
entry at index corresponding to v., 0 else, and p € RY is
a vector of reflectivity coefficients. While rank-1 constraints
are typically non-convex, note that since we always have
knowledge of the index corresponding to v., C; is actually
a convex constraint set. Furthermore, recall that Qs and Q,
lie in the span of orthogonal subspaces. We introduce a second
convex constraint set Ci- as the set of matrices X that lie in
the orthogonal complement of Oy, defined as Cj-. Finally, we
seek to solve

min

AQy 6
Jmin MQ ©®

s.t ||d_]:(QS+QV)||F <90
Qseclv QueclL-

We solve (6) via PGD and ADMM and note that rank-1
constraint renders the nuclear-norm redundant. As the rank-
1 constraint can be efficiently implemented by a simple
projection, we observe that the complexity of both algorithms
is significantly reduced as there is no need to calculate an
SVD. After successful decomposition of Q, the moving targets
can then be reconstructed by searching the rows of Q, and
reshaping them into 2D matrices.

IV. NUMERICAL EXPERIMENTS
A. Scene and Imaging Parameters

We use a 100 x 100m? scene with a single stationary
target discretized into 31 x 31 pixels. A monostatic radar
signal is synthesized according to (3) with A = 1. The
antenna traverses a circular trajectory defined as v(s) =
[11 4 11 cos(s), 11 4+ 11sin(s),6.5]km. The center frequency
is 9 GHz with a bandwidth of 622 MHz in accordance to
the GOTCHA Volumetric SAR dataset [42]. The slow-time
and fast-time are sampled uniformly, obtaining 2048 and 100
samples respectively. We note that the assumptions of the
moving targets having a linear trajectory while the antennas
traverse a complete circular trajectory may not be valid in
practice. However, this configuration is chosen to separate
the velocity-estimation effects from potential limited-aperture
artifacts.

B. Results

1) Multiple moving point targets and stationary extended
target: In this set of simulations, there are three moving point
targets located in the upper left, upper right, and lower left
quadrant of the scene at time s = 0 moving at a velocities of
vy = [10, —14] km/hr, v5 = [4,—16] km/hr and v3 = [10, 0]
km/hr respectively. A stationary extended target is located in
the lower right quadrant of the scene. Figure 1 shows the
ground truth scene with antenna trajectories.

X, (meters) 1

14,16] km/hy.

Scene of interest

X, (meters)

Fig. 1. Illustration of the simulation set-up for a multiple moving targets
and a stationary extended target. The dark region shows the scene of interest,
where the yellow square shows the position of the target and the white arrows
show its velocity components. The antennas traverse a circular flight trajectory,
where the white triangle shows the transmitter/receiver pair.

The phase-space reflectivity matrix Q is constructed using
hypothesized velocities ranging from -20 km/hr to 20 km/hr in
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both the x— and y—directions at Av = 2 km/hr, resulting in
441 discrete velocities. We perform both PGD and ADMM and
consider the /5-norm error between Q and Q + Q, . Figure 2
shows a plot of the average error for PGD and ADMM at each
iteration. We see that ADMM converges to a solution faster
than PGD, but both algorithms arrive to the same solution.
Since both algorithms arrive to the same solution, we focus
on results from PGD.

’ Error vs. Iterations, Projection

ADMM
PGD

0.9 \ 1

08|\ 1

07| \ ,

Error

06| | \ ]

051 | 1

0.4 L . . . .
0 10 20 30 40 50 60 70 80 90 100

Iteration

Fig. 2. /2-norm error vs. iterations for PGD (orange) and ADMM (blue).

For a visual demonstration, we display the reconstructed
moving targets. We search the rows of the obtained Q, to
obtain the hypothesized velocities obtained by the algorithms.
Figure 3 shows that the algorithm recovers the correct veloc-
ities. This results in the reconstructed moving targets being
focused in the correct positions; the superposition of each
reconstructed moving target at their estimated velocities as
well as the reconstruction of the stationary component are
shown in Figure 4.

Velocity indices of ground truth
T T T

0 50 100 150 200 250 300 350 400 450
Indices where velocity is present

Velocity indices of recovered Q"
1 g T T T T T

0.5 o

o] 50 100 150 200 250 300 350 400 450
Indices where velocity is present

Fig. 3. Indices of moving target velocities for ground truth (top) and
reconstruction (bottom).

2) Signal-to-noise ratio: In this set of simulations, we vary
the signal-to-noise ratio (SNR) of the received signal data by

Reconstructed moving targets.
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Fig. 4. The reflectivity image reconstructed using the estimated velocities
(left) and the reconstruction of the stationary component (right).

adding white Gaussian noise to the signal. We use the same
imaging and scene parameters as previous sections. Here, SNR
is defined by 10log(o4/0,,), where o is the standard deviation
of the received signal data, and o,, is the standard deviation
of the noise. We varied the SNR of the received signal from
-20dB to +20dB with a step-size of +2dB and used structural
similarity index (SSIM) between the ground truth moving
targets and reconstructed moving targets as a performance
metric. Figure 5 shows the SSIM values as SNR varies. Each
point is averaged over 10 realizations of noise. We see that
moving targets are able to be separated even at very low SNRs.
For a visual demonstration, we display the reconstruction of
the moving targets and stationary components when SNR =
0 dB for a single realization in Figure 6. We see that the
reconstructed moving targets are still focused in their correct
initial positions.

SNR (dB) vs. SSIM

0.9 / J
0.8 /ﬁ 1
0.7 | b
06 | =

05 q

SSIM

04} q
0.3 1
0.2 {f q

0.1 5

SNR (dB)

Fig. 5. Signal-to-noise ratio (SNR) vs. structural similarity index (SSIM) of
the reconstructed SAR image

V. CONCLUSION

In this paper, we present a framework based on LRSD for
SAR imaging of moving targets. Our method exploits a rank-
1 and sparse structure of the underlying unknown reflectivity
matrix, reducing computational complexity when compared
to typical LRSD frameworks that rely on the nuclear-norm
and its associated singular value thresholding. We demonstrate
the effectiveness of separating and focusing moving targets
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Fig. 6. The reflectivity image reconstructed using the estimated velocities
(left) and the reconstruction of the stationary component (right) when SNR =
0dB.

through numerical simulations, and compare the performances
of two popular algorithms PGD and ADMM. We see that
while ADMM is faster in convergence, both algorithms arrive
to the same solution in comparable time. We consider more
complex moving target scenes and robustness with respect to
clutter in future simulations. We also note that in order to
determine the minimum detectable velocity of this approach,
a sample complexity analysis on the forward model is needed.
Meanwhile, speed of convergence can be addressed through
the use of deep learning networks, extensions of this work that
are left for future study.
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