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Abstract

We propose an efficient framework for genetic subtyping of SARS-CoV-2, the novel corona-
virus that causes the COVID-19 pandemic. Efficient viral subtyping enables visualization
and modeling of the geographic distribution and temporal dynamics of disease spread. Sub-
typing thereby advances the development of effective containment strategies and, poten-
tially, therapeutic and vaccine strategies. However, identifying viral subtypes in real-time is
challenging: SARS-CoV-2 is a novel virus, and the pandemic is rapidly expanding. Viral sub-
types may be difficult to detect due to rapid evolution; founder effects are more significant
than selection pressure; and the clustering threshold for subtyping is not standardized. We
propose to identify mutational signatures of available SARS-CoV-2 sequences using a pop-
ulation-based approach: an entropy measure followed by frequency analysis. These signa-
tures, Informative Subtype Markers (ISMs), define a compact set of nucleotide sites that
characterize the most variable (and thus most informative) positions in the viral genomes
sequenced from different individuals. Through ISM compression, we find that certain distant
nucleotide variants covary, including non-coding and ORF1ab sites covarying with the
D614G spike protein mutation which has become increasingly prevalent as the pandemic
has spread. ISMs are also useful for downstream analyses, such as spatiotemporal visuali-
zation of viral dynamics. By analyzing sequence data available in the GISAID database, we
validate the utility of ISM-based subtyping by comparing spatiotemporal analyses using
ISMs to epidemiological studies of viral transmission in Asia, Europe, and the United States.
In addition, we show the relationship of ISMs to phylogenetic reconstructions of SARS-CoV-
2 evolution, and therefore, ISMs can play an important complementary role to phylogenetic
tree-based analysis, such as is done in the Nextstrain project. The developed pipeline
dynamically generates ISMs for newly added SARS-CoV-2 sequences and updates the
visualization of pandemic spatiotemporal dynamics, and is available on Github at https://
github.com/EESI/ISM (Jupyter notebook), https://github.com/EESI/ncov_ism (command
line tool) and via an interactive website at https://covid19-ism.coe.drexel.edu/.
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Author summary

The novel coronavirus responsible for COVID-19, SARS-CoV-2, expanded to reportedly
8.7 million confirmed cases worldwide by June 21, 2020. The global SARS-CoV-2 pan-
demic highlights the importance of tracking viral transmission dynamics in real-time.
Through June 2020, researchers have obtained genetic sequences of SARS-CoV-2 from
over 47,000 samples from infected individuals worldwide. Since the virus readily mutates,
each sequence of an infected individual contains useful information linked to the individ-
ual’s exposure location and sample date. But, there are over 30,000 bases in the full SARS-
CoV-2 genome—so tracking genetic variants on a whole-sequence basis becomes
unwieldy. We describe a method to instead efficiently identify and label genetic variants,
or “subtypes” of SARS-CoV-2. Applying this method results in a compact, 11 base-long
compressed label, called an Informative Subtype Marker or “ISM”. We define viral sub-
types for each ISM, and show how regional distribution of subtypes track the progress of
the pandemic. Major findings include (1) covarying nucleotides with the spike protein
which has spread rapidly and (2) tracking emergence of a local subtype across the United
States connected to Asia and distinct from the outbreak in New York, which is found to
be connected to Europe.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus
responsible for the COVID-19 pandemic, was first reported in Wuhan, China in December
2019 [1, 2]. In a matter of weeks, SARS-CoV-2 infections had been detected in nearly every
country, and as of July 2020, reported cases continue to rapidly increase across multiple conti-
nents. Powered by advances in rapid genetic sequencing, there is an expansive and growing
body of data on SARS-CoV-2 sequences from individuals around the world. During the early
stage of the pandemic, a substantial degree of heterogeneity was already identified, with differ-
ences in 15% of the sites of the sequences [3]. SARS-CoV-2 will mutate over time as transmis-
sions occur and the virus spreads; although, notably, it has previously been observed that
coronaviruses, which are single strand RNA viruses with a relatively large genome size
(~30,000 bases), tend to have lower mutation rates than other RNA viruses [4]. Central reposi-
tories are continuously accumulating SARS-CoV-2 genome data from around the world, such
as the Global Initiative on Sharing all Individual Data (GISAID) [5] (available at https://www.
gisaid.org/).

Researchers are presently using whole genome sequence alignment and phylogenetic tree
construction to study the evolution of SARS-CoV-2 on a macro and micro scale [6-10]. For
example, the Nextstrain group has created a massive phylogenetic tree incorporating sequence
data and applied a model of the time-based rate of mutation to create a hypothetical map of
viral distribution [6] (available at https://nextstrain.org/ncov). Similarly, the China National
Center for Bioinformation has established a “2019 Novel Coronavirus Resource”, which
includes a clickable world map that links to a listing of sequences along with similarity scores
based on alignment (available at https://bigd.big.ac.cn/ncov?lang=en) [11].

In more granular studies, early work by researchers based in China, analyzing 103 genome
sequences, identified two highly linked single nucleotides, leading them to suggest that two
major subtypes had emerged: one called “L”, predominantly found in the Wuhan area, and
“S”, which derived from “L” and found elsewhere [12]. Subsequently, further diversity was rec-
ognized as the virus continued to spread, and researchers developed a consensus reference
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sequence for SARS-CoV-2, to which other sequences may be compared [13]. Researchers have
continued to publish studies of the specific variants in the context of localized outbreaks, such
as the Diamond Princess cruise ship [14], as well as regional outbreaks and their international
connections [12, 15-18].

Efforts are also underway to identify potential genome sites and regions where selection
pressure may result in phenotypic variation. Particular focus has been given to the ORF (open
reading frame) coding for the spike (S) receptor-binding protein, which may impact the devel-
opment of vaccines and antivirals [19]. Notably, a group studying sequence variants within
patients reported limited evidence of intrahost variation, though they cautioned that the results
were preliminary and could be the result of limited data [20, 21]. Intrahost variation thus rep-
resents yet another layer of complexity in evaluating that viral variation which influences dis-
ease progression in an individual patient, or may be associated with events that can in turn
generate sequence variation in other individuals that patient infects.

Given the importance of tracking and modeling genetic changes in the SARS-CoV-2 virus
as the outbreak expands, there is a need for an efficient methodology to quantitatively charac-
terize groups of variation in the SARS-CoV-2 virus genome by defining genetic subtypes of the
virus. Exemplary potential applications of quantitative subtyping include the following: 1)
Characterizing potentially emerging variants of the virus in different regions, which may ulti-
mately express different phenotypes. 2) Monitoring variation in the viral genome that may be
important for vaccine development, for example due to emerging structural differences in pro-
teins encoded by different strains. 3) Designing future testing methodology to contain disease
transmission across countries and regions, for example developing specific tests that can char-
acterize whether a COVID-19 patient developed symptoms due to importation or likely
domestic community transmission. 4) Identifying viral subtypes that may correlate with differ-
ent clinical outcomes in different regions and patient subpopulations.

Phylogenetic trees obtained through sequence alignment may be utilized to map viral out-
breaks geographically and trace transmission chains [22, 23] and have been applied to SARS-
CoV-2 by, e.g., the Nextstrain group as discussed above. At an early stage in the pandemic,
however, phylogenetic trees may be unreliable predictors of evolutionary relationships
between viral strains circulating worldwide, because of insufficient information regarding the
molecular clock assumption, practical limits on data collection, and sampling bias [24].
Accordingly, subtyping based on phylogenetic models may also be unreliable and change, as
the assumptions underlying the models change given more sequencing and continued varia-
tion in the viral genome. The ISM approach described in this paper relies instead on compact
measures of sequence similarity that will remain conserved even as more genome sequence
data is added over time. ISMs thus provide a robust subtype definition, which can help track
the virus as the pandemic progresses. Therefore, it may be more efficient to focus on co-occur-
ring patterns of only the sites of the more frequently occurring variation within the viral
genome to identify subtypes, rather than utilizing whole genome sequence data to cluster viral
genomes, which may contain additional confounding variation.

Moreover, the nomenclature of clades imply that the categorization of viruses in subtypes is
static rather than dynamic. SARS-CoV-2 is a novel virus in humans that is rapidly evolving,
which makes it harder to establish a stable nomenclature for genetic typing [10]. The Next-
strain project has sought to address these challenges by providing their own clade definitions
based on whether there are a certain number of mutations at nucleotide positions in the
sequence (at least two) and naming clades based on their estimated time of emergence [25].
This shows that a conventional genetic subtype relying on whole genome phylogenetic trees
will be complicated by the changes in viral genome, especially early on in a pandemic before
those changes are clearly governed by selection pressure. Lineages will likely disappear and
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reemerge within different geographical regions and over the course of time [10]. In addition,
viral evolutionary analysis, such as by the Nextstrain group, relies on making assumptions
solely on molecular evolution (the degree of sequence similarity and branching points in defin-
ing genetic clades and other levels of organization) and not on transmission models.

In this paper, we propose a methodology to complement phylogenetics-based transmission
and evolution models of SARS-CoV-2 that can consistently and rapidly identify subtypes
without requiring an initial tree reconstruction step—and, thereby, avoid the need to make
assumptions about the molecular evolution clock and clustering thresholds. To generate highly
informative molecular signatures indicative of a subtype or emerging lineage, we look to meth-
ods that have been successfully employed in the microbiome field to resolve species/subspecies
from 16S ribosomal RNA (16S rRNA) gene [26]. The 16S rRNA gene is a highly conserved
sequence and therefore can be used for phylogenetic analysis in microbial communities [27-
31]. One way to differentiate between closely related microbial taxa is to identify nucleotide
positions in 16S rRNA data (“oligotypes”) that represent information-rich variation [32]. This
approach has also been used in the reverse direction to find conserved sites as a way to assem-
ble viral phylogenies [33]. Dawy et al. proposed to use Shannon’s mutual information to iden-
tify multiple important loci for Gene mapping and marker clustering [34]. Shannon Entropy
[35] has been applied in multiple sequence alignment data to quantify the sequence variation
at different positions [32, 36]. Given a position of interest, entropy can be used to measure the
amount of “randomness” at that position, as determined by whether sequences may have dif-
ferent bases at a specific position. For instance, if there is an A at a given position across all
aligned sequences, the entropy will be 0, i.e., there is no “randomness” at that position. On the
other hand, if at a given position there is a G in 50% of the sequences and a T in the other 50%,
the entropy will be 1 (i.e., essentially “random”), and thus a relatively high entropy. Based on
this property, oligotyping [32] utilizes variable sites revealed by the entropy analysis to identify
highly refined taxonomic units. It is important to note that while we use the term “random”
in the foregoing, in the biological context, a position may have a different base in different
sequences due to selection pressure resulting in strains with different phenotypes, rather than
purely random variation.

Accordingly, we present herein a method to define a genetic signature, called an “informa-
tive subtype marker” or ISM, for the viral genome that can be 1) utilized to define SARS-CoV-
2 subtypes that can be quantified to characterize the geographic and temporal spread of the
virus, and 2) efficiently implemented for identifying strains to potentially analyze for pheno-
typic differences. The method compresses the full viral genome to generate a small number
of nucleotides that are highly informative of the way in which the viral genome dynamically
changes. We draw on the aforementioned oligotyping approach developed for 16S rRNA data
[32] and build on its implementation of entropy and grouping patterns to address the particu-
lar challenges of viral genomes. On top of oligotyping, we add error correction to account for
ambiguities in reported sequence data and, optionally, applied further compression by identi-
fying patterns of base entropy correlation. The resulting ISM, therefore, defines a viral genetic
subtype (that can be related to a phylogenetic “lineage”, see Comparison of ISM-defined sub-
types to clades identified using phylogenetic trees) in the sense that it is a compressed (reduced
complexity) representation of a set of genetic features (a.k.a genotype).

The ISM pipeline may complement a phylogenetic approach in that it can efficiently iden-
tify viral subtypes of the population through genetic hotspots and do not rely on evolutionary
model assumptions. ISMs identify subtypes with slight differences between sequences where
the sequence identity is >99%, as is the case of SARS-CoV-2 with OrthoANT of 99.8% (at the
end of April 2020) [37]. ISMs include the key base mutations in the marker identification itself.
And thus, unlike phylogenetic lineages (i.e., clades and subsequent emergent subtypes), ISM-
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defined subtypes are expressly differentiated by mutations with high diversity (over the viral
population). For example, the ISM label of a subtype can include mutation in SARS-CoV-2’s
spike protein, which may have an important phenotypic impact.

As a succinct and robust identifier, therefore, ISM-based subtyping can facilitate down-
stream analysis, such as modeling and visualizing the geographic and temporal patterns of
genetic variability of SARS-CoV-2 sequences obtained from the GISAID database. We have
made the pipeline available on Github at https://github.com/EESI/ISM (Jupyter notebook)
and https://github.com/EESI/ncov_ism (command line tool), where it will be continuously
updated as new sequences are uploaded to data repositories (the latest report at the time
of paper submission, run on June 22, 2020, with data up to June 17, 2020, can be found in
https://github.com/EESI/ISM/blob/master/ISM-report-20200617-with_error_correction-
compressed-SHORT-ISM.ipynb). We have also developed an interactive website showing
the worldwide country-specific distributions of ISM-defined subtypes, available at https://
covid19-ism.coe.drexel.edu/

Materials and methods
Data collection and preprocessing

Nextstrain maintains a continually-updated, pre-formatted SARS-CoV-2 (novel coronavirus)
sequence dataset through GISAID (this dataset also includes sequences of other novel corona-
virus sampled from other hosts such as Bat). This dataset was downloaded from GISAID
(http://www.gisaid.org) on June 17, 2020, which contains 47,305 sequences. Our preprocessing
pipeline then begins by filtering out sequences that are less than 25000 base pairs (the same
threshold used in Nextstrain project built for SARS-CoV-2, https://github.com/nextstrain/
ncov). We also included a reference sequence from National Center for Biotechnology Infor-
mation (NCBI Accession number: NC_045512.2), resulting in an overall data set of 47,280
sequences. We then performed multiple sequence alignment on all remaining sequences using
MAFFT [38] with the “FFT-NS-2” method in XSEDE [39]. After alignment, the sequence
length was extended (for the present data set, up to 79716 nt) due to gaps inserted into the
sequences during the multiple sequence alignment.

Entropy analysis and ISM extraction

For the aligned sequences, we merged the sequence with the metadata provided by Nextstrain
as of June 17, 2020, based on identification number, gisaid_epi_isl, provided by GISAID [5].
Given the fast-moving nature of the pandemic, we filtered out sequences with incomplete date
information in metadata (e.g. “2020-01”) in order to incorporate temporal information with
daily resolution. In addition, we filtered out sequences from unknown host or non-human
hosts. The resulting final data set contained 45535 sequences excluding the reference sequence.
Then, we calculated the entropy at a given position i by Eq (1).

H(i) = =) peli) * log,(p, (i) (1)

kel

where L is a list of unique characters in all sequences and py(i) is a probability of observing a
character k at position i. We estimated py(i) from the frequency of characters at that position.
We refer to characters in the preceding because, in addition to the bases A, C, G, and T, the
sequences include additional characters representing gaps (-) and ambiguities, which are listed
in S1 File (the sequences are of cDNA derived from viral RNA, so there is a T substituting for
the U that would appear in the viral RNA sequence).
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Bases like N and -, which represent a fully ambiguous site and a gap respectively, are substan-
tially less informative. Therefore, we further define a masked entropy as entropy calculated with-
out considering sequences containing N and - in a given nucleotide position in the genome.

With the help of this masked entropy calculation, we can focus on truly informative posi-
tions, instead of positions at the start and end of the sequence in which there is substantial
uncertainty due to artifacts in the sequencing process. Finally, high entropy positions are
selected by two criteria: 1) entropy > 0.23, and 2) the percentage of N and - is less than 25%.
Further details about the selection of these two criteria are provided in S1 Fig. In the data set
we processed for this paper, the entropy threshold yielded 20 distinct positions within the viral
genome sequence. We built the Informative Subtype Markers (ISMs) at these 20 nucleotide
positions on each sequence.

Error correction to resolve ambiguities in sequence data and remove
spurious ISMs

The focus of the error correction method is to resolve an ISM that contains ambiguous sym-
bols, i.e., a nucleotide identifier that represents an ambiguous base call (as detailed in S1
File), such as N, which represents a position that could be A, C, T, or G. Our approach uses
ISMs with few or no ambiguous symbols to correct ISMs with many ambiguities. Given an
ISM with an error, we first find all ISMs that are identical to the subject ISM’s nucleotide
positions without error. We refer here to these nearly-identical ISMs as supporting ISMs.
Then, we iterate over all positions with an error that must be corrected in the subject ISM.
For a given nucleotide position, if all other such supporting ISMs with respect to the said
erroneous position contain the same non-ambiguous base (i.e., an A, C, T, or G), then we sim-
ply correct the ambiguous base to that non-ambiguous base found in the supporting ISMs.
However, when the supporting ISMs disagree at a respective nucleotide position, the method
generates an ambiguous symbol which represents all the bases that occurred in the support-
ing ISMs and compare this artificially generated nucleotide symbol with the original position
in the subject ISM. If the generated nucleotide symbol identifies a smaller set of bases, e.g., ¥
representing C or T rather than N, which may be any base, then we use the generated symbol
to correct the original one.

When we applied the foregoing error correction algorithm to ISMs generated from the
genome data set analyzed in this paper, we found that 90.2% of erroneous ISMs were partially
corrected (meaning at least one nucleotide position with ambiguity was corrected for that ISM
if not all), and 24.5% of erroneous ISMs were fully corrected (meaning all positions with ambi-
guity were corrected to a non-ambiguous base (i.e., an A, C, T, or G)). Since one ISM may rep-
resent multiple sequences in the data set, overall the error correction algorithm was able to
partially correct 96.0% of sequences identified by an erroneous ISM, and 32.4% of such
sequences were fully corrected.

The error correction method necessarily results in the replacement of ISMs with an ambig-
uous base at a site by another ISM without an error at that site. We expect, and have observed
that the abundance of non-ambiguous ISMs are inflated by the error correction process. Here,
we utilize the inflation rate of ISMs to quantify the difference in abundance of an ISM before
and after error correction process. The inflation rate is defined by Eq (2)

N, —N

= @

Inflation rate =

where N is the abundance of an ISM of interest (typically an ISM with few or no ambiguous
bases) before error correction, and N is the abundance of that ISM after error correction.
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Quantification and visualization of viral subtypes

At the country/region level, we assess the geographic distribution of SARS-CoV-2 subtypes,
and, in turn, we count the frequency of unique ISMs per location and build charts and tables
to visualize the ISMs, including the pie charts, graphs, and tables shown in this paper. All visu-
alizations in this paper and our pipeline are generated using Matplotlib and Plotly [40, 41]. To
improve visualization, ISMs that occur with frequency of less than 5% in a given location are
collapsed into “OTHER” category per location. Our pipeline then creates pie charts for differ-
ent locations to show the geographical distribution of subtypes. Each subtype is also labeled
with the earliest date associated with sequences from a given location in the dataset.

The abundance table based ordination is widely used to visualize community ecology in the
microbiome [42]. Novembre et al. also used Principal Components Analysis (PCA) to produce
a two-dimensional visual summary of the genetic variation in human populations [43]. In our
application, we can use the abundances of different ISMs in a country as features to quantify
the genetic variation pattern of SARS-CoV-2 sequences. In our analysis, we select countries
that have more than 100 viral sequences uploaded in order to have enough ISMs to viably gen-
erate such an abundance table. Then, the number of sequences is down-sampled to 100 for
each country/region with more than 100 sequences so that all countries/regions have the same
effective “sequencing depth.” Therefore, results are not biased by the different number of sub-
missions in different countries. We then construct the ISM abundance table. The elements in
the abundance table represent the abundance of an ISM in a country/region after down-sam-
pling, where each column is an ISM. We use Bray-Curtis dissimilarity [44] to quantify the dis-
similarity of ISM compositions between a pair of regions and form a pairwise Bray-Curtis
dissimilarity matrix. Finally, we employ PCA to reduce the dimensionality of the pairwise
Bray-Curtis dissimilarity matrix, plotting the first two components to visualize the genetic var-
iation patterns of those countries/regions.

To study the progression of SARS-CoV-2 viral subtypes in the time domain, we group all
sequences in a given location that were obtained no later than a certain date (as provided in
the sequence metadata) together and compute the relative abundance (i.e., frequency) of corre-
sponding subtypes. Any subtypes with a relative abundance that never goes above 2.5% for any
date are collapsed into “OTHER” category per location. Eq (3) illustrates this calculation.

N, (1)

ISM,, () = ==
(s,c)( ) N (t)

c

(3)

where ISM, (t) is the relative abundance of a subtype, s, in location, c, at a date ¢, N, (f) is
the total number of instances of such subtype, s, in location, ¢, that has been sequenced no later
than date t and N.(f) is the total number of sequences in location, ¢, that has been sequenced
no later than date t.

Comparison of ISM subtyping to phylogenetic analysis

Nextstrain [6] provides a phylogeny method to track and visualize the dynamic of SARS-CoV-
2 sequences. To obtain the results presented here, we downloaded the Nextstrain tree data
from https://nextstrain.org/ncov on June 17, 2020. Since both the ISMs and the Nextstrain
phylogenetic tree were generated based on the GISAID database, they may be easily compared.
We present two comparisons in this paper: 1) ISM hamming distance and phylogenetic tree
branch length; 2) ISM clusters defined at different entropy thresholds and Nextstrain defined
“clades”.

The highest-abundance ISMs are involved with hundreds, if not thousands, of sequences.
For a given ISM, we can find the lowest common ancestor (LCA) node in the phylogenetic
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tree of all sequences with that ISM. The branch length between the LCA and the root can be
considered as the inferred evolutionary distance between the reference sequence and the LCA
node. Hamming distance between our ISMs measures the divergence between two clusters of
sequences. We can compare branch length between the root and LCA with the Hamming dis-
tance between a given ISM and the reference ISM. Then, we compute the Pearson correlation
coefficient to measure the correlation between the evolutionary distance from the reference
genome (inferred by the phylogenetic tree) and the Hamming distance between ISMs and the
reference ISM.

In Nextstrain data, there are 5 “clades”, namely, 19A, 19B, 204, 20B and 20C, defined [25].
Different sequences are assigned to those 5 “clades” based on genetic variations in the
sequence. Since our ISMs are clusters of sequences with similar genetic variations, the Next-
strain “clades” provides us a good interface to study how our entropy threshold influences the
ISM definition by comparing the overlaps between Nextstrain “clades” grouped sequences and
ISM grouped sequences. To measure the similarity between ISM labels and “clade” labels of
sequences, we use two clustering metrics, homogeneity and completeness as proposed by
Rosenberg et al [45]. A clustering result satisfies homogeneity if all of its clusters contain only
data points which are members of a single class. A clustering result satisfies completeness if all
the data points that are members of a given class are elements of the same cluster [45]. We
vary the entropy threshold to form different sets of ISM clusters of sequences and compare
each set with Nextstrain “clades” using homogeneity and completeness.

Results and discussion

We begin by identifying and mapping the sites that form an ISM for each genome based on
sequence entropy. Then, we analyze the properties of ISMs and validate the ISMs generated
from SARS-CoV-2 data as of June 17, 2020. We present ISM abundance inflation introduced
by error correction, demonstrate how ISMs evolve as a function of entropy threshold, and
show how entropy values at different positions change over time. Then, we show the visualiza-
tion of spatiotemporal dynamics based on ISMs. We analyze the geographic distribution of
SARS-CoV-2 genetic subtypes identified by ISMs, as well as the temporal dynamics of the sub-
types. We also visualize the viral genetic variation patterns of different regions based on their
ISM subtype abundances. Then, we evaluate the results of ISM subtyping in comparison with
current genetic variation studies of SARS-CoV-2. Finally, we compare the ISM subtypes to
viral “clades” that were determined by Nextstrain, in order to demonstrate how ISMs relate to
evolutionary relationships predicted by phylogenetic methods.

Identification and mapping of subtype markers

In this section, we briefly discuss the potential functional relevance of the identified ISM loca-
tions. We further demonstrate that minimal artifacts are introduced by the error correction
methodology, which indicates that ISM identification is stable with respect to the choice of
entropy threshold within a reasonable range. Finally, we generate compressed ISM labels
based on correlated entropy variation between ISM sites.

Identification of ISM locations by whole genome sequence entropy analysis. The first
step in the ISM subtyping pipeline is the determination of the entropy at each nucleotide posi-
tion in the SARS-CoV-2 genome in order to identify the sites that will make up the ISM.
Entropy is used to quantify the variation at different positions for sequence alignment result.
For a given position with high entropy value, there are more than 1 nucleotides showing up
frequently at this position across all the aligned sequences. On the other hand, if the entropy
value is low at a position, it implies that this position is more conserved across all aligned
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Fig 1. Overall entropy as a function of nucleotide position for all SARS-CoV-2 sequences in the data set. The peaks in this figure
corresponds to highly variable positions and positions with 0 or lower entropy values represent conservative regions in the aligned viral

genomes.

https://doi.org/10.1371/journal.pcbi.1008269.9001

sequences. Fig 1 shows the overall entropy at each nucleotide position, determined based on
calculating the masked entropy for all sequences as described in the Methods section. Notably,
at the beginning and end of the sequence, there is a high level of uncertainty. This is because
there are more N and - symbols, representing ambiguity and gaps, in these two regions (gaps
are likely a result of artifacts in MAFFT’s alignment of the viruses or its genomic rearrange-
ment [21], and both ambiguous base-calls (N’s) and gaps (-’s) may result due to the difficulty
of accurately sequencing the genome at the ends). After applying filtering to remove low
entropy positions and uncertain positions, we identified 20 informative nucleotide positions
in the sequence to generate informative subtype markers (see filtering details in Methods
section).

Importantly, even though the combinatorial space for ISM is potentially very large due to
the substantial number of characters that may present at any one nucleotide position, only cer-
tain ISMs occur in substantial quantities in the overall sequence population. Fig 2 demon-
strates the rapid decay of the frequency of sequences with a given ISM. In particular, the
plot shows that the first three ISMs represent subtypes that have more than 4000 sequences
worldwide.

Some potential reasons for the rapid drop off in the frequency relative to the diversity of
ISMs may include the following: First, since the virus is transmitting and expanding so quickly,
and the pandemic is still at a relatively early stage, there has not been enough time for muta-
tions that would affect the ISM to occur and take root. In that case, we would expect the num-
ber of significant ISMs to rise over time. Second, the population of publicly available sequences
is biased to projects in which multiple patients in a cluster are sequenced at once: e.g., a group
of travelers, a family group, or a group linked to a single spreading event (there are sequences
from cruise vessels in the database). We expect that the impact of any such clustering will be
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Fig 2. Distribution of ISMs extracted from experimental sequences. Number of sequences containing the 20 most abundant ISMs (after error
correction) within the total data set (out of 45535 sequences), indicating the rapid drop off in frequency after the first few most prevalent ISMs.
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diminished in time as more comprehensive sequencing efforts take place. Third, ISMs may be
constrained by the fact that certain mutations may result in a phenotypic change that may be
selected against. In this case, we may expect a steep change in a particular ISM or close relative
in the event that there is selection pressure in favor of the corresponding variant phenotype.
However, as of yet there has been no solid evidence of mutations within SARS-CoV-2 that

are associated with selection pressure, i.e., as being more transmissible or evading antibodies,
though studies do suggest the possibility [19, 46, 47].

Fig 2 also shows that despite the application of the error correction method detailed in the
Methods section, some symbols representing ambiguously identified nucleotides, such as S
and D still remain in the ISMs. These represent instances in which there was insufficient
sequence information to fully resolve ambiguities. We expect that as the number of publicly
available sequences increases, there will likely be additional samples that will allow resolution
of base-call ambiguities. That said, it is possible that the ambiguity symbols in the ISMs reflect
genomic regions or sites that are difficult to resolve using sequencing methods, in which case
the ISMs will never fully resolve. Importantly, however, because of the application of the error
correction algorithm, there are fewer spurious subtypes which are defined due to variants aris-
ing from sequencing errors, and all remaining ISMs are still usable as subtype identifiers.

Potential functional significance of ISM locations. After the informative nucleotide
positions were identified, we then mapped those sites back to the annotated reference sequence
for functional interpretation [13]. As a practical matter, because the ISM is made up of the
high-diversity sites within the SARS-CoV-2 genome, it inherently includes the major loci of
genetic changes that are being identified in population studies worldwide. The ISM also
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Table 1. Mapping ISM sites to the reference viral genome.
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Nucleotide Position Entropy Annotation
241 0.86092 Non-coding Region
1059 0.68346 ORFlab
2480 0.23123 ORFlab
2558 0.24007 ORFlab
3037 0.86980 ORFlab
8782 0.40949 ORFlab
11083 0.45757 ORFlab
14408 0.86807 ORFlab
14805 0.49255 ORFlab
17747 0.23734 ORFlab
17858 0.23409 ORFlab
18060 0.24005 ORFlab
20268 0.28748 ORFlab
23403 0.86829 S surface glycoprotein
25563 0.78760 ORF3a
26144 0.44564 ORF3a
28144 0.40928 ORF8
28881 0.88582 nucleocapsid phosphoprotein
28882 0.88370 nucleocapsid phosphoprotein
28883 0.88174 nucleocapsid phosphoprotein

excludes sites at the ends of the genome in which variation is most likely to be the result of
sequencing artifacts. As shown in Table 1, we found that all but one of the nucleotide positions
that we identified were located in coding regions of the reference sequence. The majority of
the remaining sites (12/19) were found in the ORF1ab polyprotein, which encodes a polypro-
tein replicase complex that is cleaved to form nonstructural proteins that are used as RNA
polymerase (i.e., synthesis) machinery [48]. One site is located in the reading frame encoding
the S surface glycoprotein, which is responsible for viral entry and antigenicity, and thus repre-
sents an important target for understanding the immune response, identifying antiviral thera-
peutics, and vaccine design [49, 50]. High-entropy nucleotide positions were also found in the
nucleocapsid formation protein, which is important for packaging the viral RNA [51]. A study
has also shown that, like the spike protein, the internal nucleoprotein of the virus is significant
in modulating the antibody response [52]. Other sites were found in the ORF3a and ORFS,
which, based on structural homology analysis do not have known functional domains or
motifs, and have diverged substantially from other SARS-related variants which contained
domains linked to increased inflammatory responses [53, 54].

In sum, the majority of high-entropy sites are in regions of the genome that may be signifi-
cant for disease progression, as well as the design of vaccines and therapeutics. Accordingly,
ISMs derived from the corresponding nucleotide positions can be used for viral subtyping
for clinical applications, such as identifying variants with different therapeutic responses or
patient outcomes, or for tracking variation that may reduce the effectiveness of potential vac-
cine candidates. Unlike phylogenetic clusters, the ISM includes information about the single
nucleotide variation (SNV) directly in the nomenclature. The subtypes which are identified
are not a function of a selected clustering algorithm or a feature that has been selected as being
relevant to a cluster.
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Evaluating artifacts in ISM abundance due to error correction. Even though the SARS-
CoV-2 data set appears to be large, it represents only a small sample of the full scope of cases.
Therefore, tracking the pandemic requires using as much global data as possible, which means
that imperfect sequence data must be tolerated to avoid losing potentially relevant samples.
However, error correction will only be useful if it can maintain the integrity of the data, in par-
ticular, permit accurate identification of viral subtype abundance. In our case, we expect and
do observe that the abundance of non-ambiguous ISMs will be inflated sightly by the error
correction process. S2 File shows the inflation rate of highest-abundance ISMs after error
correction.

We can see from S2 File that the error correction process only inflates the frequency of the
highest-abundance ISMs in our database by less than 10%. To demonstrate that the error cor-
rection is a conservative process, we further show an ISM, CCACCCGCCCACAAGGTGGG,
which is inflated by 10.79% as a case study. Half of the inflation arises due to sequences with
ISM CCACCCGCCCACNAGGTGGG with 1.0 hamming distance away from the corrected ISM
(there is an N instead of an A at position 13 in the ISM). Our error correction process corrects
that N to A because all non-ambiguous ISMs with the same nucleotide configuration except for
position 13 (non-ambiguous ISMs have an A at position 13 instead of N). Accordingly, ISM
abundance inflation due to error correction will be generally conservative, and will not con-
found population-level analyses of ISM subtypes based on their relative abundance.

Sensitivity of ISM labels to the selection of the entropy threshold. To demonstrate the
influence of the entropy threshold on ISM identification, we show a Sankey diagram in Fig 3.
Fig 3 was constructed by first defining different sets of ISMs based on entropy threshold of 0.1,
0.23 (the major entropy threshold in our manuscript that result in 20 ISM sites), 0.4, 0.6 and
0.8. A stripe on the diagram represents an ISM (as labeled on the plot). The diagram tracks
ISM identification according to sequences grouped by respective ISMs. For example, ISMs
defined at a higher entropy threshold each likely identify more sequences (i.e. more sequences
will likely have the same given ISM). Correspondingly, there will be an increased number of
ISMs which are more refined (each identifying smaller collections of sequences), at a lower
entropy threshold. The width of the stripe corresponds to the number of sequences with that
ISM.

The Sankey diagram further shows that ISMs defined at a lower entropy threshold can
“merge” together as the entropy threshold moves higher. For example, TCTTGGGGG and
TCTTGTGGG are two different ISMs if we choose 0.6 as the entropy threshold. They can be dif-
ferentiated by the 6th position (a G/T variation). However, when the threshold moves higher
to 0.8, this position is dropped from the ISM, as its entropy now falls below the threshold. As a
result, the two ISMs are merged into TTTGGGG. Some ISMs are stably identified throughout,
while other ISMs merge together at different entropy thresholds. We can see from Fig 3 that
the entropy threshold acts as a way to tune the resolution of subtype definition. When choos-
ing a high entropy, positions that can differentiate relatively smaller (less abundant) subtypes
are ignored. On the other hand, setting the entropy threshold lower reveals more ISM sub-
types. For example, TCACTCGTCCACAGGGTAAC is defined at 0.23 threshold and when set to
0.1 threshold, 5 additional less-abundant ISMs emerge. We can thus observe, based on the dia-
gram, that some subtypes are more “stable” markers than others. However, there are also some
ISMs that are not sensitive to the selection of entropy threshold. For example, the subtype
labeled as TTACTCGTCCACAGTGTGGG (particularly found in genetic sequences from New
York state and some European countries, as discussed below) does not merge with other high-
abundance ISMs until the entropy threshold is set to 0.7. Therefore, this ISM may be consid-
ered to be a stable marker. Overall, the most abundant ISMs are generally stable for an entropy
threshold between 0.23 and 0.4.
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Fig 3. Sankey diagram of the most abundant 20 ISMs defined by an entropy threshold of 0.1 and how they relate to ISMs defined at other entropy
thresholds. This figure shows that the most abundant ISMs are generally stable for an entropy threshold between 0.23 and 0.4.

https://doi.org/10.1371/journal.pcbi.1008269.9003

We can also track how the entropy at individual variable positions evolve as a function
of time. Fig 4 shows how the entropy at sites labeled by their position on the reference
genome changes over time, as more sequences are collected and the genetic sequences
change. Here, we visualize the dynamic of entropy values at different positions over time.
That is, given a nucleotide position in the reference genome and the number of weeks since
December 24, 2019, we compute the entropy of that position using all sequences collected

by that time.

We can see that at the earliest stages of the pandemic, the ISM positions corresponding to
nucleotide positions 8782 and 28144 in the reference sequence had the highest entropy, i.e.,
high variation in these two positions were found in sequences collected by Early February.
Subsequently, the entropy values of these two positions drop. Notably, Fig 4 shows how the
highly varying spike protein mutation at position 23403 (the A to G spike protein mutation,
which has been found to be abundant in Europe and US and has since spread around the
world [46], evidently became prevalent in the middle stage (in early March). In addition, we

observe that there are some ISM positions which appear to covary, as indicated by the correla-
tion between the changes in their entropy values. For example, the entropy of positions 8782
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Fig 4. Entropy value changes over time at different ISM positions. Each curve in this figure represents the entropy of a highly variable position over
time. The position in reference genome is labeled on the right end of the curve. The gene name associated with that position is labeled in the legend.

https://doi.org/10.1371/journal.pchi.1008269.9004

and 28144 covary, which is consistent with the correlation of the SN'Vs at these positions in
genome sequence data available early on in the pandemic (i.e., before February 2020) [12].

Correlated/Covarying positions allow compression of the ISM representation. As indi-
cated by Fig 4, the number of sites with sufficient entropy to be included in the ISM increases
over time, as genetic changes occur and accumulate. This means that a representative ISM is a
20-base long identifier as of June 2020, which is unwieldy as a subtype identifier. Moreover, as
shown in Fig 4, there are nucleotide sites with entropy covarying over time, representing cor-
relations in genetic changes which result in redundancy in the ISM. Therefore, we may select a
subset of positions to represent all the covarying positions to reduce the size of our ISMs. This
results in a more compact identifier, which, at a small cost to resolution, provides for more effi-
cient subtype differentiation and categorization.

Table 2 shows the most abundant nucleotide configurations at certain covarying positions
and how many variations can be preserved after compression. The most abundant nucleotide

Table 2. Covarying ISM positions and their most abundant nucleotide configurations.

Covarying group
241, 3037, 14408, 23403

2480, 2558
8782, 28144

17747, 17858, 18060
28881, 28882, 28883

NT configurations Coverage Representative position
TTTG, CCCA 96.19% 23403
AC, GT 98.68% 2558
CT, TC 98.52% 8782
CAC, TGT 98.38% 18060
GGG, AAC 98.94% 28881

The first column shows the group of covarying positions; The second column shows most abundant nucleotide configurations at those positions; The third column

shows the number of sequences associated with the nucleotide configurations listed in the second column and the fourth column is the representative positions we

picked to represent all the positions in this group. From this table, we can see that we can reduce the ISM size by 45% at a small cost to resolution.

https://doi.org/10.1371/journal.pcbi.1008269.1002
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20-NT ISM
TCACTCGTCCACAGGGTAAC
TTACTCGTCCACAGTGTGGG
TCACTCGTCCACAGGGTGGG
CCACCCGCCCACAAGGTGGG
TCACTCGTCCACAGTGTGGG
TCACTCGTCCACGGGGTGGG
CCACCTGCCTGTAAGGCGGG
CCACCC-CTCACAAGTTGGG
CCGTCCTCTCACAAGTTGGG
CCACCCTCCCACAAGGTGGG
CCACCTGCCCACAAGGCGGG
CCACCTGCTCACAAGGCGGG
TCACTCGTCCACRGGGTAAC
CCACCCTCTCACAAGTTGGG
CCGTCC-CTCACAAGTTGGG
TCACTCGTCCACDGGGTGGG
TCACTCTTCCACAGGGTAAC
TCACTCGTCCAYAGGGTAAC
TTACTCTTCCACAGTGTGGG
TCACTCTTCCACAGGGTGGG
—-TACTCGTCCACAGTGTGGG
TCRCTCGTCCACAGGGTAAC
—CACTCGTCCACAGGGTGGG
CCACCCGCCCACAAGTTGGG
TCACTC-TCCACAGGGTAAC

https://doi.org/10.1371/journal.pchi.1008269.t003

Table 3. Map between 20-NT ISM and 11-NT compressed ISM.

11-NT compressed ISM sequences involved

CCCGCCAGGGA 10565
TCCGCCAGTGG 7252
CCCGCCAGGGG 6890
CCCGCCAAGGG 3112
CCCGCCAGTGG 2118
CCCGCCGGGGG 1975
CCTGCTAAGGG 1536
CCC-TCAAGTG 1125
CTCTTCAAGTG 1031
CCCTCCAAGGG 1000
CCTGCCAAGGG 956
CCTGTCAAGGG 709
CCCGCCRGGGA 550
CCCTTCAAGTG 547
CTC-TCAAGTG 442
CCCGCCDGGGG 334
CCCTCCAGGGA 184
CCCGCYAGGGA 183
TCCTCCAGTGG 171
CCCTCCAGGGG 120
TCCGCCAGTGG 118
CCCGCCAGGGA 112
CCCGCCAGGGG 109
CCCGCCAAGTG 109
CCC-CCAGGGA 108

configurations cover at least 96% of the sequences for each covarying group (the third column
in Table 2). We further validate the groups of covarying nucleotide sites identified by the tem-
poral entropy curve in Fig 4 by Linkage Disequilibrium (LD) analysis, which measures the
degree of nonrandom association between two loci on a genome [55]. The results, included as
S3 File, show that the sites within each covarying group have significant linkage with high pair-
wise 7* values (generally greater than 0.95). Linkage disequilibrium is a measure of the degree
of nonrandom association between two loci [55]. This is in line with previous studies of LD on
SARS-CoV-2 [12, 56, 57], which found, e.g., that positions 8782 and 28144 showed high signif-
icant linkage, with an 7 value of 0.954 [12].

We then select the representative positions with the highest entropy within each covarying
group that can cover all of the most abundant nucleotide configurations. Compression reduces
the ISM length from 20 to 11 nucleotides.

Table 3 shows the mapping between the original 20-NT ISM and 11-NT compressed ISM
for ISMs associated with more than 100 sequences in the database. From the table we can see
that most of the abundant 20-NT ISMs are assigned to unique 11-NT compressed ISMs. How-
ever, there are three 11-NT compressed ISMs that correspond to multiple 20-NT ISMs. For
example, 20-NT ISM TCACTCGTCCACAGGGTAAC (10,565 sequences) and TCRCTCGTCCA
CAGGGTAAC (112 sequences) are merged to CCCGCCAGGGA after compression. These two
subtypes are differentiated by position 3 in the long ISM (2&/R). As such, defining subtypes
based on compressed ISM will result in the inflation of a few principal subtypes by an amount
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of around 1%. Compressed ISM subtypes, therefore, conserve the distribution of major ISM
subtypes. A more compact and easy-to-use subtype nomenclature may thus be utilized to
quantitatively assess the relative subtype abundance at the population level.

Geographic distribution of SARS-CoV-2 subtypes

To demonstrate that ISM subtypes can be used to analyze and visualize the spread of the
SARS-CoV-2 pandemic, we describe the geographic distribution of the relative abundance
of subtypes in different countries/regions worldwide, as well as in different states within the
United States. Not only does this provide an illustration of the method’s capabilities, but it
also permits comparison of the subtyping analysis with theories regarding viral spread
between regions. Fig 5 shows the distribution of ISMs, each indicating a different subtype,
in the regions with the relatively larger amount of available sequenced genomes. As shown
therein, the ISMs are able to successfully identify and label viral subtypes that produce dis-
tinct patterns of distribution in different countries/regions. Beginning with Mainland
China, the source of SARS-CoV-2 reference genome [13, 58] (NCBI Accession number:
NC_045512.2), we observe two dominant subtypes, as indicated by relative abundance of
the ISM among available sequences: CCCGCCAAGGG (as indicated on the plot, first seen on
December 24, 2019, in sequences from Mainland China in the dataset), CCTGCCAAGGG
(first seen on January 5, 2020 in sequences from Mainland China in the dataset). As dis-
cussed in the Results section, there are a few covarying positions that can be removed for a
shorter ISM while still preserving the most of information. Therefore, for simplicity, we
present SARS-CoV-2 subtypes in their short forms throughout this paper. In comparison
with other methods, we include both the original ISM form and compressed ISM in the
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Fig 5. Major subtypes in countries/regions with the most sequences (in the legend next to each country/region, we show the date when a major
subtype was first sequenced in that country/region). Subtypes with less than 5% abundance are plotted as “OTHER”. The raw counts for all ISMs in
each country/region, as well as the date each ISM was first found in a sequence in that country/region, are provided in S5 File.

https://doi.org/10.1371/journal.pcbi.1008269.9005
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discussion. The visualizations of the original ISMs (including pie charts and time series
charts) are available in S4 File.

Another subtype, CCCTCCAAGGG, is the most abundant, i.e., dominant subtype in other
Asian countries like Japan and Singapore (first detected on January 18, 2020, in sequences
from Mainland China in the dataset). These subtypes are found in other countries/regions, but
in distinct patterns, which may likely correspond to different patterns of transmission of the
virus. Subtype CCCGCCAGGGA (first detected in February 16, 2020, in sequences from United
Kingdom in the dataset) is found abundant in many European countries and then detected in
Japan and Singapore later. This subtype has also been found in Canada and Brazil, suggesting
a geographical commonality between cases in these diverse countries with the progression of
the virus in Europe. Another prevalent subtype is TCCGCCAGTGG which is first detected in
France in February 21, 2020. This subtype then becomes the dominant subtype in Denmark,
USA, and one of the major subtypes in Canada and Germany. Both subtypes, CCCGCCAGGGA
and TCCGCCAGTGG, have an A23403G mutation (corresponding to position 14 in the ISM)
which has been discussed in recent studies [19, 46].

The data further indicate that the United States has a distinct pattern of dominant subtypes.
In particular, the subtype with the highest relative abundance among U.S. sequences is
CCTGCTAAGGG, first seen on February 20, 2020. This subtype has also emerged as one of the
major subtypes in Canada, with the first sequence being found on March 5, 2020.

We also found that some states within the United States have substantially different subtype
distributions. Fig 6 shows the predominant subtype distributions in the states with the most
available sequences. The colors shown on the charts are also keyed to the colors used in Fig 5,
which allows for the visualization of commonalities between the subregional subtypes in the
United States and the subtypes distributed in other regions. It is obvious that east coast states
and west coast states demonstrate different ISM distributions.

Most prominently, New York is dominated by a subtype, TCCGCCAGTGG, which is also
highly abundant among sequences from European countries, including France, Denmark,
Germany, and Iceland. California, on the other hand, includes as a major subtype,
CCCGCCAAGGG, which is also a major subtype in Mainland China, as shown in Fig 5. The
most abundant subtype in Washington, CCTGCTAAGGG, is also a major subtype in other
states in United States. This CCTGCTAAGGG subtype is also found in substantial abundance
in Canada as well. This is consistent with the hypothesis that this subtype is endogenous to
the US.

Regions with similar genetic variant patterns are identifiable in Fig 5, but only at a qualita-
tive level. As described in the Methods section, the ISM abundance table can be used to pro-
vide a quantitative analysis of the similarity between the genetic variation patterns of countries
and regions. Fig 7 shows a visualization of the difference in genetic subtype patterns between
different countries and regions using Principle Components Analysis (PCA) as described in
the Methods, projecting onto the first two principle components. We can see that a few Euro-
pean countries form small clusters of similar ISM abundance, i.e., a similar subtype distribu-
tion. This implies that similar SARS-CoV-2 subtypes are shared by these countries, e.g.,
Austria, Netherlands, Germany, and Sweden. Most Asian countries are projected to the upper
right part of the PCA plot, in contrast to North American countries and a few European coun-
tries clustered towards the bottom. This indicates the difference between the dominant genetic
subtypes of ISM and patterns of genetic variation between these regions of the world. In partic-
ular, the separation in this ISM subtype space further supports the hypothesis that the outbreak
in New York is linked to some travel cases from European countries, such as France. To fur-
ther validate the utility of ISMs for subtyping, we show an analysis of the geographical distribu-
tion of the dominant subtypes in Italy in S2 Fig.
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Fig 6. Viral subtype distribution in the United States, showing the 25 states with the most sequence submissions. Subtypes with less than 5%
abundance are plotted as “OTHER”. The raw counts for all ISMs in each state, as well as the date each ISM was first found in a sequence in that state, are

provided in Sé6 File.

https://doi.org/10.1371/journal.pchi.1008269.g006

Temporal dynamics of SARS-CoV-2 subtypes

The present-time geographical distributions shown in Figs 5, 6 and 7 suggest that ISM subtyp-
ing may identify the temporal trends underlying the expansion of SARS-CoV-2 virus and the
COVID-19 pandemic. To demonstrate the feasibility of modeling the temporal dynamics of
the virus, we first analyzed the temporal progression of different ISMs on a country-by-coun-
try basis. This allows examination of the complex behavior of subtypes as infections expand in
each country and the potential influence on regional outbreaks by subtypes imported from
other regions.

As described in the Methods section, we graph how viral subtypes are emerging and grow-
ing over time, by plotting the relative abundance of viral subtypes in a country/region (via the
most frequently occurring ISMs over time) in Figs 8 and 9. As discussed above, through the
pipeline we have developed, these plots use a consistent set of colors to indicate different ISMs
(and are also consistent with the coloring scheme in Fig 5).

In the United States, we can observe a few waves of different subtypes. For example, in the
early stage (late January and early February), the predominant subtype is the same as that of
Mainland China. In contrast, the most abundantly found subtype in late February and March,
CCTGCTAAGGG, is not abundant in either Asia or Europe. However, this subtype has been
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https://doi.org/10.1371/journal.pcbi.1008269.9007

found in a substantial number of sequences in both Canada and Australia. It is plausible, there-
fore, that the CCTGCTAAGGG subtype has become abundant as the result of community trans-
mission in the United States, and has been exported from the United States to these other
countries. Interestingly, while the CCTGCTAAGGG subtype has been found across the United
States, as shown in Fig 6, it has not been found to be substantially abundant in New York. Over
time, however, within the United States the dominant subtype has become TCCGCCAGTGG,
which is the predominant subtype in New York state (and linked to the dominant subtype in
many European countries).

As shown in Fig 9 and additional temporal plots for the Netherlands and Spain contained
in the Supplementary Material, the subtype distribution in sequences within European coun-
tries differs significantly from that of North America and Australia. In particular, as detailed
above, the European dynamics of SARS-CoV-2 appear to reflect the theory that in many Euro-
pean countries, initial cases may have been due to travel exposure from Italy, rather than
directly from China. For instance, we observe that the United Kingdom data shows the same
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Fig 8. Relative abundance (%) of ISMs in DNA sequences from USA as sampled over time.
https://doi.org/10.1371/journal.pchi.1008269.g008

early subtypes as those of Mainland China which were also observed in Australia and Canada,
i.e., CCTGCCAAGGG and CCCGCCAAGGG. The CCCGCCAAGGG subtype emerged as a highly
abundant subtype in United Kingdom data in early February. This subtype was also been
found with great frequency in the Netherlands and Australia, but not in Spain, suggesting
additional viral genetic diversity within Europe for further study.
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All inferences drawn from observed temporal trends in subtypes based on the genome
sequence dataset—whether based on ISM or phylogeny-based methods-will be limited by
important caveats, including: 1) The collection date of the viral sequence is usually later than
the date that the individual was actually infected by the virus. Many of those individuals will be
tested after they develop symptoms, which may only begin to arise several days or even two
weeks after infection according to current estimates [59]. 2) The depth of sequencing within
different regions is highly variable. As an extreme case, Iceland, which has a small population,
has 1.3% of all sequences in the complete data set. Italy, on the other hand, had a large and
early outbreak but has disproportionately less sequencing coverage (133 sequences).

Evaluating the ability of ISM-defined subtypes to track significant genetic
changes during the SARS-CoV-2 pandemic

In our results section, we identified a few widespread ISM subtypes, e.g., TCCGCCAGTGG that
dominates New York and some ISM subtypes that are unique to a region, e.g., CCTGCTAAGGG
that is mostly found in North America. In this section, we show related literature and how
their results relate to ours. We primarily use the original 20-nt ISM identifiers in this section,
rather than the compressed ISM, in order to discuss all the positions identified by our entropy
analysis and relate them to the literature.

Subtype prevalent in New York and some European countries TTACTCGTCCA-
CAGTGTGGG (TCCGCCAGTGG in compressed form). This subtype has been dominating the
US since mid-March, as shown in Fig 8. In Fig 6, we can see that this subtype dominates many
states including New York (first seen early March in New York). Additionally, as shown in Fig
5, this same subtype has been dominant in European countries, first observed in sequencing
data in late February. The first detection dates in New York (later) and Europe (earlier) align
with the hypothesis of European travel exposure being the major contributor to the New York
outbreak of SARS-CoV-2. Various studies have demonstrated the SNV C14408T in ORF1b to
be associated with a virus subtype found abundantly in New York as well as multiple European
countries [16, 60, 61], which is designated as an ISM hotspot site 8 in Table 1. These studies
also identified a SNV of A23403G in the S spike protein to be heavily associated with the domi-
nant subtype of both Europe and New York, correlating to ISM hotspot site 14 from our analy-
sis. Our temporal entropy plot in Fig 4 further indicates that these two sites are covarying.
Lastly, the studies also reported a SNV of G26144T, which corresponds to ISM site 16 and has
been observed in the predominant subtypes found in Europe and New York.

Subtype potentially endogenous to the United States CCACCTGCCTGTAAGGCGGG
(CCTGCTAAGGG in short form). This is the prevalent subtype characteristic within Wash-
ington state through the latest update of the sequencing database analyzed in this paper (June
2020). It has been linked to the endogenous spread of the virus across the United States [18,
62]. According to our ISM analysis, this subtype is separated by a hamming distance of 3 from
one of the major subtype of the outbreak in China, CCACCTGCCCACAAGGCGGG (the differ-
ences are at ISM positions 10, 11 and 12). Viral spread is suspected to be due to primary expo-
sure of an individual from China to Washington state, designating this case as “WA1” [17, 60].
“WA1” lineage is noted to have three characteristic SNVs, namely, C17747T, A17858G, and
C18060T which correspond matches with our ISM positions of 10, 11 and 12 respectively [16-
18, 60, 61]. While “WA1” is suspected as the primary subtype for viral spread in Washington
state, there are cases that have shown additional SN'Vs, which suggest mutational variation
from the “WAL1” strain. These SNVs include C8782T and T28144C [16, 17, 60] and correspond
to hotspot sites 6 and 17 respectively. The same major subtypes seen in Washington state were
also identified in positive cases in Connecticut (also detected by Fig 6 using our ISM). It is
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Fig 10. The relative abundance of variants of the D614G spike protein mutation (position 14 in our ISM and position 23403 in the reference

genome).

https://doi.org/10.1371/journal.pchi.1008269.9010

highly probable that there was trans-coastal exposure due to domestic travel from Washington
state into Connecticut, due to the various high-volume airports that are present in and around
this state [18].

Subtypes including the A23403G/D614G spike protein variant. The SNV A23403G
(resulting in D614G variant in spike protein) is a major viral mutation that has been observed
in the major European countries of Italy, Spain, France, as well as Middle Eastern regions of
Turkey and Israel [16, 63-65]. Some studies suggest that this D614G variant of the S spike pro-
tein provides greater survival and transmission ability to the virus, however there need to be
additional studies conducted to confirm these claims [63]. This position corresponds to ISM
position 14. Based on our ISM table, we can quickly navigate to this position and plot the
abundance of different variants at this position over time. Fig 10 shows how the abundances of
the variants at position 23403 change over time. We can quickly make this plot by indexing all
the ISMs at position 14 and grouping them temporally. Indeed, Fig 10 illustrates how, in late
February, A23403G started to take off in abundance and has quickly overwhelmed the initially
more prevalent subtype.

Comparison of ISM-defined subtypes to clades identified using
phylogenetic trees
As discussed in the foregoing, subtypes defined by ISM are differentiated based on single

nucleotide variants, which may eventually be found to represent functionally significant muta-
tions in the viral genome. The ISM, however, does not include phylogenetic information,
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which sharply limits the utility of the ISM to infer patterns of viral evolution. Nevertheless,
ISM-defined subtypes do correspond well with clusters of sequences based on phylogenic
reconstruction. To identify whether the ISM may still be an effective identifier of genetic sub-
types within the context of viral evolution, we compare subtype identification using the ISM
and the phylogenetic tree structure. In particular by comparing the ISM-defined groups of
sequences identified by our pipeline with the phylogenetic tree-based clusters (i.e., clades)
identified by the Nextstrain group [6]. We do so by placing an ISM of interest at the lowest
common ancestor (LCA) node of sequences containing that ISM on the phylogenetic tree pro-
duced by Nextstrain. Then, we compare the branch length between the root and LCA, which is
considered as the evolutionary distance between a node and the reference sequence, and the
Hamming distance between a given ISM and the reference ISM, CCACCCGCCCACAAGGTGGG
(CCCGCCAAGGG in short form), which represents the degree of difference (by number of
SNVs) between ISMs.

Fig 11 shows that Hamming distance (dark-colored) has a high correlation with the LCA
branch length (gray-colored). This means that the Hamming distances between ISMs are able
to consistently reflect evolutionary distance at a high level. There are a few outliers though; for
example, CCACCTGCTCACAAGGCGGG (CCTGTCAAGGG in short form) has higher LCA
branch length but lower ISM Hamming distance. This indicates that some evolutionary signals
will be missed by grouping sequences by ISM, likely because the signals are contained in
lower-entropy genomic regions which are unrepresented in the ISM. Conversely, we observe
that the phylogenetic clades identified by Nextstrain are imperfect with respect to their preser-
vation of SNV information. Nextstrain identifies the clades based on whether they contain at
least two prevalent SNVs. But, presumably because the clades are identified by whole genome
sequence clustering, not every sequence within a clade will necessarily include those SNVs.

Moreover, not only can the ISM pipeline effectively define meaningful viral subtypes, but it
can also do so with greater computational efficiency than tree reconstruction methods. Fas-
ttree [66], on its fastest setting, is reportedly the fastest tree reconstruction method (orders
of magnitude faster than most machine learning methods). Fasttree theoretically executes at
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fewer distinct ISMs. Thus, there is a trade-off with the entropy threshold, but the sweet spot is around 70-80% on both metrics, showing
that ISMs capture some aspect of phylogenetics but have their own characteristics.

https://doi.org/10.1371/journal.pcbi.1008269.9012

O(N'* x log(N) x L x a) time, where N is the number of unique sequences, L is the width of
the alignment, and a is the size of the alphabet. For Shannon’s entropy, the basis of ISM defini-
tion used in our work, the computation is O(L x N x a) where L is the number of loci and N is
the number of sequences, and a is the size of the alphabet. Accordingly, the computational
time required to enumerate subtypes using the ISM is substantially reduced, i.e., a function of
the thresholded loci reduced and number of sequences instead. One caveat is that the ISM
method requires multiple sequence alignment to identify high entropy sites, which can be a
computationally intensive process. However, phylogenetic tree methods based on whole
genome sequences require that as well. And, ISM identification may be done on new
sequences using previous positions between multiple sequence alignment updates.

In sum, ISM can provide a compact and effective representation of a sequence as it includes
the essential genetic variation information, while also including a substantial amount of molec-
ular evolution information.

We further assess how ISMs defined at different entropy thresholds relate to the clades
identified by Nextstrain. We compute homogeneity and completeness scores between ISM
labels and Nextstrain clades as a function of entropy threshold. Homogeneity measures the
extent to which ISMs each identify only sequences in one clade. Completeness measures the
extent to which sequences that are members of a given clade are identified by a common ISM.
Fig 12 shows the homogeneity and completeness as a function of the entropy threshold used to
define ISMs. As shown therein, sequences with a common ISM are generally assigned to a
common clade, and sequences from a given clades also often identified by a set of few ISMs.
As the entropy threshold increases, ISMs correspondingly moving “upwards” through the phy-
logenetic tree to better represent a clade, increasing completeness while maintaining high
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homogeneity. Conversely, as the entropy threshold lowers, ISMs increase in their resolution,
corresponding to an increase to almost perfect homogeneity but with low completeness.

Conclusion

In this paper, we present a pipeline for subtyping SARS-CoV-2 viral genomes based on short
sets of highly informative nucleotide sites (ISMs). Our results demonstrate the following key
features of ISM-based subtyping. First, the ISM of a sequence preserves important nucleotide
positions that can help to resolve different SARS-CoV-2 subtypes. ISMs provide a quick and
easy way to track key sets of SNVs which are covarying as the SARS-CoV-2 pandemic spreads
throughout the world. The SNVs which consistently covary with the spike protein variant has
rapidly become prevalent throughout the world and may be a potential link to increased viral
transmission [3, 19, 46]. Second, ISM-based subtypes are able to capture the majority of phylo-
genetic relationships between viral genomes that are represented in Nextstrain tree clades. ISM
analysis shows promise as a complement to phylogenetic classification, particularly given the
limits of phylogenetics at early stages in the pandemic (e.g., due to uncertainty regarding key
assumptions, such as the rate of the molecular clock and confidence in branches)—while also
being more computationally efficient. Third, ISM subtyping can provide robust and informa-
tive insight regarding the geographic and temporal spread of the SARS-CoV-2 sequences, as
well potentially be a way to identify phenotypic variants of the virus. For example, in this
paper, we show that the distribution of ISMs is an indicator of the geographical distribution of
the virus as predicted by the flow of the virus from China, the initial European outbreak in
Italy, and subsequent development of local subtypes within individual European countries as
well as interregional differences in viral outbreaks in the United States.

An important caveat of all viral analyses, including subtyping, is that they are limited by the
number of viral sequences available. Small and/or non-uniform sampling of sequences within
and across populations may not accurately reflect the true diversity and distribution of viral
subtypes. However, the ISM-based approach has the advantage of being scalable as sequence
information grows, and with more information, it will become both more accurate and precise
for different geographic regions and within subpopulations.

Using ISM subtyping pipeline on continuously updated sequencing data, we are capable of
updating subtypes as new sequences are identified and uploaded to global databases. We have
made the pipeline and updated analyses available on Github at https://github.com/EESI/ISM
(Jupyter notebook), https://github.com/EESI/ncov_ism (command line tool) and an interac-
tive website at https://covid19-ism.coe.drexel.edu/. In the future, as more data becomes avail-
able, ISM-based subtyping can be employed on subpopulations within geographical regions,
demographic groups, and groups of patients with different clinical outcomes. Efficient subtyp-
ing of the massive amount of SARS-CoV-2 sequence data will therefore enable quantitative
modeling and machine learning methods to develop improved containment and potential
therapeutic strategies against SARS-CoV-2. Moreover, the ISM-based subtyping scheme and
associated downstream analyses for SARS-CoV-2 are directly applicable to other viruses,
enabling efficient subtyping and real-time tracking of potential future viral pandemics.

Supporting information

S1 Fig. This figure shows the histogram of entropy and the frequency of N and - (Left: His-
togram of masked entropy values of sites calculated without considering ambiguous bases
or gaps (N’s and -’s). The red line demonstrates the high-entropy threshold used to define
ISM sites (> 0.23); Right: Many genome positions in the alignments had nearly all ambiguous
bases and/or gaps (the peak at around 1.0). On the other hand, the peak at around 0 represents
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high quality positions with a fewer number of N and - present. Sites with large number of N’s
and - should be filtered out because a large number of N’s and -’s at a position is typically due
to sequencing error or alignment artifact which provides less information about the real nucle-
otide distribution at this position. We set the percentage of N and - threshold to < 0.25 (indi-
cated by the red vertical line in this plot) to keep the most informative group of sites in the
genome). The left hand side of the plot shows that there are over 100 positions with an entropy
value around 1 (here we show the counts of entropy values greater than 0.1 because most of
the positions in viral genomes have no variation so far and thus leads to 0 entropy at those
positions—the peak at 0 masked entropy is not shown in full). However, most of those posi-
tions have high entropy because there are high percentage of N and - at those positions across
all sequences in our dataset. The right hand side of the plot shows that there are a large amount
of positions with high frequency of N and - (the peak at around 1.0). On the other hand, the
peak at around 0 represents high quality positions with a fewer number of N and - present.
According to this figure, we set the percentage of N and - threshold to 0.25 to keep the most
informative group of sites in the genome.

(PDF)

S2 Fig. This figure shows the relative abundance in other countries of the most abundant
subtype in Italy CCCGCCAGGGA (left) and the second-most abundant subtype in Italy
CCCGCCAGGGG (right). Based on publicly available sequence data from Italy, we found

that Italy had two particularly abundant ISMs, CCCGCCAGGGA and CCCGCCAGGGG, as

can be seen in the pie chart in Fig 5. The third-most abundant subtype shown in the chart
(CCCTCCAAGTG) corresponds to cases that were linked to original exposure from China,
which is consistent with the ISM being in common with one found in Hong Kong. This sup-
plementary figure shows the relative abundance (proportion of total sequences in that coun-
try/region) of each of these two dominant subtypes of Italy in other countries/regions. As the
plot shows, the outbreak in other European countries have generally involved the same viral
subtypes as those which are most abundant in Italy, as defined by ISM. Indeed, initial reports
of cases in various other European countries in late February 2020 were linked to travelers
from Italy [68]. The subtypes which are predominant in Italy are found, however, at lower yet
notable abundance in countries including Japan, Canada and Australia. Somewhat surpris-
ingly, though the Italy subtypes were found in other U.S. states, only 88 out of the 1478
sequences from New York in the data set had the same ISM as the two dominant subtypes in
Italy (see S6 File). This suggests that the outbreak in New York may not be linked to travel
exposure directly from Italy, but rather from another location in Europe, with the important
caveat that some potential subtypes may not have been detected there (due to relatively low
number of sequences available from Italy). Indeed, the dominant subtype in New York
(TCCGCCAGTGG) was detected in 86 sequence from Iceland and only one of them linked to
travel exposure in Italy. However, 30 out of 86 cases linked to exposure in Austria, 6 linked to
UK, 2 linked to Denmark, and 1 linked to Germany. This further suggests that it was unlikely
that the incidence of the TCCGCCAGTGG subtype in New York is connected to Italy but rather
than elsewhere in Europe, but limited sequence coverage in Italy prevents more definitive
inference. However, one of the dominant subtypes in Italy, CCCGCCAGGGG, is not abundant
in East Asian regions such as Mainland China and Japan, as indicated in this supplementary
figure.

(PDF)

$3 Fig. Relative abundance (%) of ISMs in DNA sequences from Australia as sampled
over time. Australia shows growing subtype diversity as its cases increase over time. Ini-
tially, Australia’s sequences were dominated by two subtypes that were also substantially
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abundant in Mainland China (CCCGCCAAGGG and CCTGCCAAGGG). Later, another sub-
type (CCCTCCAAGGG) starts to emerge. This subtype was less relatively abundant in Main-
land China but more highly abundant in sequences from Hong Kong and Singapore (see Fig
5). Then, starting with sequences obtained on February 27, 2020, and subsequently, more
subtypes are seen to emerge in Australia that were not found in other Asian countries but
were found in Europe. This pattern suggests a hypothesis that Australia may have had multi-
ple independent viral transmissions from Mainland China—or, as noted in the previous dis-
cussion, potentially through transmissions from Iran—followed by potentially independent
importation of the virus from Europe and North America.

(PDF)

S4 Fig. Relative abundance (%) of ISMs in DNA sequences from Canada as sampled over
time. This figure shows that the earliest viral sequences in Canada included mostly subtypes
found in Mainland China, with the same pattern in which there was a second, later subtype

in common with Mainland China, which was also found in travel exposure from Iran
(CCCTCCAAGGG). And, like in Australia, in Canada these few initial viral sequences were fol-
lowed by a diversification of subtypes that including many in common in Europe and the
United States. In sum, Australia and Canada show patterns that might be expected for smaller
populations in countries with diverse and extensive travel connections.

(PDF)

S5 Fig. Relative abundance (%) of ISMs in DNA sequences from Mainland China as sam-
pled over time. This figure reflects Mainland China’s containment of SARS-CoV-2, as seen in
the initial growth in viral genetic diversity, followed by a flattening as fewer new cases were
found (and correspondingly fewer new viral samples were sequenced).

(PDF)

S6 Fig. Relative abundance (%) of ISMs in DNA sequences from the Netherlands as sam-
pled over time.
(PDF)

S7 Fig. Relative abundance (%) of ISMs in DNA sequences from Spain as sampled over
time. This figure shows, in Spain, the CCCGCCAAGGG subtype was also found in an early
sequence data but not thereafter. And, in Spain, a unique subtype has emerged that is not
found in abundance in any other country.

(PDF)

S8 Fig. Temporal dynamics of individual viral subtypes across different regions. This figure
shows that the reference genome subtype began to grow in abundance in Mainland China,
before leveling off, and then being detected in the United States and Europe, and subsequently
leveling off in those countries as well. In the case of Mainland China, that could be due to the
substantial reduction in reported numbers of new infections and thus additional sequences
being sampled. However, the other countries have continuing increases in reported infection
as of the date of the data set, as well as substantially increasing numbers of sequences being
sampled—making it less likely that the reference subtype (CCCGCCAAGGG) is simply being
missed. In those cases, it appears from Figs 8 and 9, and S6 Fig that in later times, other sub-
types have emerged over time and are becoming increasingly abundant. One potential expla-
nation is that the SARS-CoV-2 is an RNA virus and thus highly susceptible to mutation as
transmissions occur [69]. Therefore, as transmissions have continued, the ISM associated with
the reference sequence has been replaced by different ISMs due to these mutations. Another
plausible explanation for such leveling off in a region is that the leveling off in relative
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abundance of the subtype represents containment of that subtype’s transmission while other
subtypes continue to expand in that country or region. The latter could plausibly explain the
pattern observed in the United States, where earlier subtypes connected to Asia did not
increase in abundance while a putative endogenous subtype, as well as the dominant New
York subtype, have significantly increased in abundance (see Fig 8 and accompanying discus-
sion above). Further investigation and modeling of subtype distributions, as well as additional
data, will be necessary to help resolve these questions.

(PDF)

S1 File. This file contains the sequence notation table [67].
(CSV)

S2 File. ISM inflation by error correction table.
(CSV)

$3 File. This table shows significantly linked pairs of sites and their pairwise 7* value of
linkage disequilibrium [44].
(CSV)

S4 File. The figures in this document uses the same color codes for the original ISMs as the
corresponding compressed ISMs. We can see from the figures that major genetic patterns are
preserved in compressed ISM system.

(PDF)

S5 File. The raw counts for all ISMs in each of 20 countries/regions, as well as the date each
ISM was first found in a sequence in that country/region.
(CSV)

S6 File. The raw counts for all ISMs in each of 25 U.S. states, as well as the date each ISM
was first found in a sequence in that location.
(CSV)

S7 File. Acknowledgements of sequences this research is based on. This file contains a list of
sequences from GISAID’s EpiFlu Database on which this research is based and their corre-
sponding authors and laboratories.

(CSV)
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