
COBRA: A Framework for Evaluating
Compositions of Hardware Branch Predictors

Jerry Zhao, Abraham Gonzalez, Alon Amid, Sagar Karandikar, Krste Asanović
University of California, Berkeley

{jzh, abe.gonzalez, alonamid, skarandikar, krste}@berkeley.edu

Abstract—We present COBRA, a framework which enables a
realistic hardware-guided methodology for evaluating composi-
tions of hardware branch predictors. COBRA provides a common
interface for developing RTL implementations of predictor sub-
components, as well as a predictor composer that automatically
generates hardware predictor pipelines from sub-components
based on a high-level topological model of a desired algorithm.
We demonstrate how COBRA aids in the design and evaluation
of diverse predictor architectures and how our hardware-centric
approach captures concerns in predictor characterization that
are not exposed in software-based algorithm development. Using
COBRA, we generate three superscalar pipelined branch pre-
dictors with diverse architectures, synthesize them to run at 1
GHz on a commercial FinFET process, integrate them with the
open-source BOOM out-of-order core, and evaluate their end-
to-end performance on workloads over trillions of cycles. The
COBRA generator system has been open-sourced as part of the
SonicBOOM out-of-order core.

I. INTRODUCTION

Branch prediction accuracy is critical to modern high-
performance processors, since any misprediction may cause
hundreds of in-flight instructions to be flushed from the
pipeline. However, the complexity of modern branch predic-
tion algorithms and implementations presents a challenge to
computer architects interested in characterizing the state-of-
the-art in this area. State-of-the-art branch predictors are typi-
cally comprised of many interacting sub-predictors [22], [41].
For example, a high performance design might contain a next-
line predictor, branch-target-buffer, globally indexed counter
tables, locally indexed counter tables, and loop predictors [18],
[19], [32]. While such algorithms can be easily implemented as
software functional models, prior work as shown that software
simulators demonstrate substantial modelling error [6], [20].
Software models also cannot describe the physical implemen-
tation costs of a particular design point.

On the other hand, building a hardware implementation of
such a complex pipeline within a superscalar speculating core
is a daunting task. While existing open-source cores provide
black-box interfaces for implementing a custom predictor [13],
[49], these interfaces provide no tools to help an architect
manage superscalar execution, pipelining, and speculation.
The designer must consider the prediction pipeline as a
monolithic blackbox, instead of a more natural composition
of sub-components.

COBRA aims to bridge this gap between the productivity of
a software model and the realism of a hardware implementa-
tion by providing a framework for generating hardware branch

Interface and Predictor Sub-Component Library

Predictor Pipeline

Tournament

Local History

TAGE

µBTB

Loop

BTB

Counter Table

Global History

BTB

Global History

Counter Table

µBTB

TAGE

Loop

Fetch 1 Fetch 2 Fetch 3

RTL Evaluation

Predictor Composer

predict_histories
fire
mispredict/update/repair
metadata

predict_pc
predict_in

predict_out
predict_meta

Fig. 1. The COBRA flow. COBRA generates a complete predictor pipeline
from a library of sub-components conforming to the COBRA interface, and
enables design feedback from multi-trillion cycle simulations and physical
design.

predictors from a library of sub-components according to a
high-level topological description of the algorithm. COBRA
provides a common RTL interface for implementing a sub-
component of a predictor pipeline, and includes a starter
library of RTL implementations using this interface. COBRA
also provides a branch predictor “composer”, which interprets
a topological model of a predictor design to generate a
complete predictor pipeline from a library of sub-components.
This composer also synthesizes various predictor management
structures, such as history providers, repair mechanisms, and
history files, to manage the state of predictor sub-components.
The resulting pipeline is automatically integrated into the

frontend of the open-source Berkeley Out-of-Order Machine
(BOOM) [13] to enable evaluating the predictor in the context
of a complete core. Figure 1 depicts the complete COBRA
flow.

To demonstrate how COBRA enables holistic hardware-
guided evaluations of branch predictors, we generate three
varied predictor designs using the COBRA composer, includ-
ing a high-performance TAGE design [40]. We evaluate each
predictor on the entire SPECint17 suite [9] with reference
inputs by running FPGA simulations of a complete out-of-
order core with each predictor attached. We demonstrate how
evaluating a hardware predictor in the context of a complete
core reveals subtle nuances in predictor design that would not
be captured in a trace-based software simulation model.

The COBRA branch predictor generator is open-sourced
and available as part of the latest version of the BOOM out-
of-order core, SonicBOOM [50].

II. BACKGROUND AND RELATED WORK

A. Branch Prediction

Branch prediction is a well-studied area in general-purpose
processor design. Over decades of research in this field, several
key ideas have proven to be critical concerns when designing
a complete predictor within a high-performance core.

Correlating future branch behavior with branch history
is a thoroughly validated approach for performing branch
prediction [35]. The refinement of history-based algorithms
has been a large contributor to overall improvements in branch
predictor accuracy, as pattern-history-tables [48], GShare [29],
GSelect [29], YAGS [16], GEHL [38], PPM [30], TAGE [40],
and perceptron [24] all propose various techniques for lever-
aging branch history.

Combining multiple prediction structures through an ar-
bitration scheme into a hybrid predictor has also proven to
be successful, as a collection of predictors with affinities for
different branch behaviors can be more accurate and efficient
than a single generic predictor [22], [26], [29].

Predictor latency and pipelining are important factors to
consider when physically implementing a prediction algo-
rithm, as more complex prediction algorithms may not fit in
a single cycle at high frequency [21], [23]. Realistic imple-
mentations of complex algorithms typically require multiple
pipeline stages to calculate indices, read predictor memories,
arbitrate a final prediction, and generate a target address [39].
Predictor delay may increase the frequency of frontend bub-
bles, decreasing overall instruction throughput. Thus, to reduce
the frequency of frontend bubbles inserted by a slow, long-
latency predictor, modern predictor implementations will typ-
ically include faster low-latency predictors to provide a earlier
prediction before the backing predictor can respond [4], [42].

Another important concern in predictor design is super-
scalar prediction [12], [17]. Although a simple design might
serialize the instruction stream behind branches, we observe
that the trend towards wide instruction fetch units points
towards the importance of superscalar prediction as well.
We measured that serializing the fetch unit behind branch

predictions in a 4-wide fetch BOOM core decreased IPC by
15% in the Dhrystone synthetic benchmark [47].

Two other concerns in predictor design include predictor
repair and predictor storage. Predictor repair mechanisms
are necessary for maintaining the state of local histories and
loop counters, which are often corrupted due to misspeculated
updates [44], [46]. Predictor storage efficiency is important
because high performance branch predictors might require
thousands of entries with counters, tags, and target addresses.
Many techniques have been devised for efficiently storing
predictor state in single or dual-ported SRAMs [37], [40].

Given the complexity of modern branch predictor pipelines,
a framework for accurate evaluations of predictor algorithms
should expose these concerns to architects using clearly de-
fined abstractions.

B. Software Branch Predictor Simulators

Software simulators, such as ChampSim [2], CBPSim [1],
BPSim [51], SimpleScalar [10], or gem5 [8], are often used
in the development of novel branch predictor algorithms.
Although these simulators provide architects the freedom to
implement flexible software abstractions for predictor com-
position and design, they also present significant disadvan-
tages [34], [45].

Execution-driven simulators like gem5 and SimpleScalar
simulate precise microarchitectural behaviors, but do so at
the expense of simulation speed. Trace-based simulators like
ChampSim and CBPSim are faster, but cannot model microar-
chitectural behaviors like speculation and superscalar execu-
tion. Both execution and trace-driven simulators have been
shown to demonstrate substantial modelling error for branch
prediction accuracy [3], even after hand-tuning [15], [20].
When single-digit percentage reductions in mispredictions are
commercially valuable, the difficulty of hand-tuning a software
simulator to accurately model hardware behaviors limits the
usefulness of such simulators towards branch predictor design
exploration.

Software simulators also provide limited insight into the
cost or complexity of the physical realization of a predictor
algorithm. While BPSim can analytically estimate area utiliza-
tion and energy consumption of the TAGE predictor algorithm,
it relies on hand-crafted models that do not generalize to other
designs.

By generating realistic hardware predictor RTL instead
of relying on software models, COBRA enables fast and
comprehensive evaluations of predictor designs through FPGA
simulation, as well as accurate physical design feedback from
standard EDA tools.

III. THE COBRA PREDICTOR INTERFACE

The COBRA interface is designed to support diverse physi-
cally realizable implementations of hardware branch predictor
sub-components. Section IV discusses how sub-components
conforming to the COBRA interface can be composed into a
complete predictor pipeline.

2

A. Pipelined Predictors

In the COBRA interface, prediction begins when the predic-
tor sub-component receives the fetch PC, at cycle 0. However,
branch predictor sub-components have diverse latencies. For
example, a fast micro BTB might provide a target address on
the next cycle after fetch redirection, while a backing TAGE-
like predictor might require 3+ cycles to index the counter
tables and arbitrate a final prediction.

In the COBRA interface, an implementation of a predictor
sub-component may respond at any cycle p≥ 1 after predictor
query. The implementation of a predictor must only guarantee
that for a prediction made at cycle p, either the same prediction
or a more powerful prediction is provided for all cycles d > p.
The requirement is not restrictive, as any prediction made at
cycle p is assumed to be valid in future cycles. The internal
pipelining of a predictor sub-component is not limited beyond
this, providing freedom to the predictor microarchitect.

B. Branch Histories

Since incorporating a history vector is a central technique
of many branch prediction algorithms, our interface provides
both local and global histories as input vectors ghist, lhist
to a predictor sub-component. Global histories generally need
to be read out of some history register, and local histories need
to be read from a local history table. The history vectors are
provided only at the end of the first cycle to these predictors.
Figure 2 shows when a pipelined predictor may access the PC
and history inputs, and the stages at which it might respond.

Predictor Sub-componentPC

H
ist

or
ie

s

F1 F2 F3F0

Pr
ed

ic
tio

n

Pr
ed

ic
tio

n

Pr
ed

ic
tio

n

Fig. 2. Pipeline diagram depicting when predictors are queried (Fetch-0),
when histories are provided (Fetch-1), and when predictions can be made
(Fetch-1,2,3,...).

C. Superscalar Prediction

In the COBRA interface, a predictor sub-component outputs
a vector of predictions predict_out for a PC that is
expected to fetch multiple instructions. This enables the design
of superscalar sub-components which can learn behaviors for
multiple branches within a fetch-packet. This is especially
useful for avoiding aliasing between branches in branch-dense
code.

For example, consider two adjacent conditional branches
that are frequently in the same fetch packet. A bimodal counter
table which reads only one entry per cycle would not be able
to learn the target addresses for both branches correctly, as
both branches would alias onto the same entry. A superscalar
counter table would be able to provide correct target addresses
for both branches.

However, more complex predictor sub-components, like
perceptron predictors or loop predictors, might only be able
to provide a single prediction per cycle. Implementations of
these sub-components can provide a single prediction for the
entire vector, or learn the index into the fetch-packet at which
to provide the prediction.

D. Metadata

The COBRA interface provides an abstract metadata field
to each predictor sub-component. The implementation of any
sub-component specifies the bitlength of the metadata it wants
to store, and provides this metadata on cycle p alongside
its prediction. The interface guarantees that this metadata
will be provided to the predictor sub-component at a future
point during update or repair. This field is useful both for
reducing the number of read ports in predictor memories, and
for supporting repair mechanisms for predictors storing local
branch state.

We observe that many predictor sub-components ought to be
implemented as area-efficient single or dual ported memories,
since predictor accuracy improves substantially with storage
budget [31]. To fully utilize fetch throughput at steady-state, a
pipelined predictor should be able to both provide a prediction
and learn an update every cycle. Thus, at full throughput, a
predictor would naı̈vely require 1 write and 2 reads (1 predict
and 1 update) per cycle.

To avoid the second read at update-time, a predictor im-
plementation in the COBRA framework could store the read
data from predict-time in the metadata field, and recover
it automatically from the interface at update-time. COBRA
does not restrict what information may be stored in this field,
so implementations of sub-components may generally use this
field to reduce repeated computation or memory accesses at
update-time. For example, a set-associative structure could
store the hit-way, while an arbitration scheme can store the
ID of the provider sub-component. Given that different types
of sub-components will have unique uses for this field, we
allow each sub-component to independently specify the bit-
length required.

E. Predict, Update, and Repair

We observe that predictor sub-components have diverse
requirements on predict, update and repair. The COBRA
interface describes a common set of prediction “events” which
encompass the set of signals most predictor sub-components
might require. The signals are:
• predict: Informs the sub-component to begin generat-

ing a prediction for a provided PC
• fire: Informs the sub-component to speculatively up-

date local state for a prior predict PC
• mispredict: “Fast” immediate update from a mispre-

dicted branch
• repair: Informs the sub-component to repair misspec-

ulated local state for a given predict PC
• update: “Slow” commit-time update from a committing

branch

3

Although implementations of predictor sub-components
may choose to use and ignore arbitrary subsets of these five
signals, we target two primary use cases: commit-time-update
and speculative-update.

As an example, a predictor which learns correlations with
global history might be tolerant to delayed commit-time
updates. Such a predictor would not be corrupted due to
misspeculation, but would also suffer from the additional delay
before the backend commits a branch. An implementation of
this design would use the update signal provided by the
interface to update predictor state when branches commit.

On the other hand, a predictor which learns local behavior
might require immediate updates after prediction, for example,
to increment a loop counter. Such a predictor would also
require immediate repair upon misspeculation, as misspecula-
tion could corrupt the predictor’s state with falsely speculated
updates. An implementation of this style of predictor would
use the fire, mispredict, and repair signals to manage
its local state.

The mispredict, repair, and update signals all
provide the same fetch PC and histories provided at predict
time, so that the predictor sub-component can regenerate
indices calculated at predict time. In addition, these three
events also provide the resolved or misspeculated direction for
the relevant branches for a fetch PC. The metadata bitvector
a predictor generates at predict time is also provided back to
it at mispredict, repair, and update time.

F. Predictor Composition

While untagged predictor sub-components might provide a
base prediction for all PCs, tagged predictor components have
the option to provide no prediction. Additionally, some pre-
dictor sub-components may only provide a partial prediction,
for instance a BTB which provides the target address for a
branch, but not the predicted direction.

To support both use cases, the interface provides an addi-
tional input field predict_in(d) representing predictions
made from other branch predictor sub-components at any cycle
d. The implementation of a predictor sub-component may use
as input any predict_in(d) with d ≤ n, where n is the
desired latency for the output prediction.

BTB

Tag
Check

read_target

read_tag

predict_in.target

predict_in.taken

predict_out.target

predict_out.taken

Fig. 3. A BTB which learns only target addresses augments the incoming
predict_in prediction.

In the event where a predictor component chooses to provide
no prediction on cycle n, the implementation should simply

“pass-through” the incoming prediction from cycle d = n. In
the event where a predictor component chooses to provide a
partial prediction at cycle n, the implementation should simply
override fields of the incoming predict_in(d) with d = n.

Figure 3 displays how this interface enables decoupling
of a BTB from other predictor sub-components. This BTB
augments a predicted direction provided by some other pre-
dictor sub-component with a predicted target. In the event of
a tag miss, the BTB passes through the predicted target from
predict_in. This enables composition of this BTB with
other predictor sub-components.

We additionally observe that arbitration schemes like a
tournament predictor choose one of many incoming predic-
tions. Thus, a predictor sub-component may be implemented
to require multiple predict_in inputs. Such a predictor can
arbitrate between multiple predict_in inputs to determine
the output prediction.

G. Sub-Component Library

We demonstrate the flexibility of the COBRA predictor
interface by implementing a library with a subset of com-
monly used predictor sub-components. These predictor sub-
components are defined as synthesizable RTL modules in the
Chisel hardware construction language [5]. We implement
only a representative subset of sub-components to demonstrate
the flexibility of the COBRA interface, as other predictor
types, like perceptron [24] or statistical-corrector [40], may
be implemented similarly.

1) Counter-tables: The sub-component library includes bi-
modal counter tables with a parameterized indexing option, so
they can be indexed by a global history, local history, PC, or
any hashed combination of the above. The metadata field of
the predictor interface stores counter values to avoid re-reading
the tables at update time.

2) BTBs: The sub-component library includes two types of
BTBs: a large 2-cycle BTB, and a small 1-cycle microBTB
(uBTB). The set-associativity of the BTBs is enabled by the
metadata field of the interface, as the implementations uses
this field to recover the hit way at update time.

3) Tournament selector: The tournament selector contains
a 2-bit counter table, indexed by global history to select
the winning sub-predictor. The selector uses the metadata
field to track the predictions made by the sub-predictors to
determine an update for the counter table.

4) TAGE: The TAGE sub-component manages updates and
predictions from a set of global-history tagged tables according
to the algorithm described in [40]. The metadata field is
used to track the index of the provider and allocator tables.

5) Loop predictor: The loop predictor attempts to correct
periodic mispredictions made by a base predictor. Its design is
a simpler version of the loop predictor implemented in [41].
Unlike previously discussed sub-components, the loop predic-
tor is updated at query time, and repaired immediately on
mispredicts. This sub-component uses the metadata field
to track the contents of its counter entries such that it can
restore those entries during the repair phase.

4

IV. THE COBRA PREDICTOR COMPOSER

COBRA also provides a composer for hardware branch
predictors. The COBRA composer is driven by a topological
representation of the desired predictor design. Given a topo-
logical representation for a design, the composer generates a
synthesizable hardware pipeline from available predictor sub-
components. The composer also integrates the pipeline with
generated management structures for maintaining the state of
the entire pipeline.

A. Predictor Topologies

We observe that a complete predictor pipeline can be
represented as an ordering of predictor sub-components, where
the ordering specifies which predictor sub-component provides
the final prediction. For a collection of predictor components
with varying latencies, an ordering of the predictor sub-
components specifies the hierarchy of predictions used to
generate a final prediction from the entire pipeline at each
pipeline stage. Specifically, for any latency d, the subset of
the predictor topology containing sub-components with latency
n≤ d specifies the final prediction made d cycles after query.
Given two sub-components pa, pb, an ordering “pb > pa”
indicates that sub-component pb provides the final prediction
in any cycle where the final prediction is ambiguous.

For example, consider a predictor pipeline with three
sub-components: a single-cycle uBTB (uBTB1), a two-cycle
tagged pattern-history-table (PHT2), and a two-cycle loop
predictor (LOOP2). We explore how the COBRA topological
representation enables expressing two different compositions
of these basic components.

LOOP2 >PHT2 > uBTB1

uBTB1 >PHT2 > LOOP2

Consider the prediction that the pipelines specified by these
topologies will provide 1 cycle after fetch. In both topologies,
the subset of the topology with n≤ 1 contains only the uBTB,
so both pipelines will provide the same predictions 1 cycle
after fetch. However, the prediction emitted at cycle 2 differs
substantially between either topology.

In the first topology, the PHT is specified to override the
prediction formed by the uBTB. Thus, if the PHT predicts not
taken, it will override the prediction provided by the uBTB
from cycle 1. The behavior is similar for the loop predictor.
In the case where the loop predictor catches a loop, it will
override the predictions formed by both the PHT and uBTB.
In the case where neither the loop predictor nor the PHT form
a prediction, the prediction made by the uBTB in cycle 1 is
automatically carried over to cycle 2.

In the second topology, the uBTB is specified as the most
powerful prediction. Thus, a hit in the uBTB in cycle 1 will
cause the uBTB prediction to be the final prediction in both
cycles 1 and 2, regardless of whether or not the PHT or
loop predictors hit. In the case where the uBTB provides no
prediction, the generated pipeline will use the PHT prediction
when both the PHT and loop predictors hit.

F1 F2 F3

µBTB prediction
pred_valid

F1 F2 F3

µBTB prediction
pred_valid

PHT prediction
pred_valid

Loop prediction
pred_valid

PHT prediction
pred_valid

Loop prediction
pred_valid

Fig. 4. Pipeline diagrams of two possible predictor topologies. The prediction
provided at Fetch-1 is naturally pipelined into future pipeline stages. The
uBTB provides the Fetch-1 prediction in both topologies.

Figure 4 depicts the pipelines generated by either topology.
This topological representation makes no assumptions about
what the “best” topology for a given set of sub-components
is. Instead, freedom is presented to the designer to specify
an arbitrary topology based on the sub-components and the
desired pipeline.

1) Predictor Arbitration: For predictor arbitration schemes
which learn to choose a final prediction from two or more
sub-components, we observe that a simple ordering cannot be
used to describe the desired pipeline. Consider a tournament
predictor scheme, which contains a 2-cycle untagged local-
history-indexed table (LHT2), 2-cycle untagged global-history-
indexed table (GHT2), and a 3-cycle arbitration scheme for
selecting a final prediction, (TOURNEY3). Such a topology
can be expressed in the form:

TOURNEY3 > [GHT2,LHT2]

This form of expressing topologies is very flexible at
permitting generation of diverse branch predictor pipelines.
Consider the case where the designer wants to incorporate a
loop predictor. Three reasonable topologies can be expressed
to describe integration approaches for a 2 or 3-cycle loop
predictor.

TOURNEY3 > [(LOOP2 > GHT2),LHT2]

TOURNEY3 > [GHT2,(LOOP2 > LHT2)]

LOOP3 > TOURNEY3 > [GHT2,LHT2]

In the first two modified topologies, the loop predictor
augments either the global or local-indexed tables, while in the
final topology, the loop predictor corrects the final tournament
prediction. This flexibility demonstrates the power of the
topological representation, as it can capture a wide variety
of predictor designs.

5

/ / C o n s t r u c t t h e p r e d i c t o r sub −components
v a l l oop = Module (new LoopPred (n E n t r i e s = 1 6))
v a l gbim = Module (new HBIM(u s e G l o b a l = t r u e))
v a l lb im = Module (new HBIM(u s e L o c a l = t r u e))
v a l t o u r n e y = Module (new Tourney)

/ / E x p r e s s t h e edges o f t h e t o p o l o g y
t o u r n e y . i o . p r e d i c t i n (0) := gbim . i o . p r e d i c t o u t
t o u r n e y . i o . p r e d i c t i n (1) := lb im . i o . p r e d i c t o u t
l oop . i o . p r e d i c t i n (0) := t o u r n e y . i o . p r e d i c t o u t

/ / S p e c i f y t h e s o u r c e f o r t h e f i n a l p r e d i c t i o n
f i n a l p r e d i c t i o n := loop . i o . p r e d i c t o u t

Fig. 5. Example code demonstrating construction of construction of a
predictor pipeline from a desired topology and available sub-components.

B. Predictor Pipeline Generator

To specify a desired topology to the COBRA composer, the
designer specifies the sub-component nodes in the design, the
topology connecting the nodes, and the node providing the
final prediction. For example, consider the topology presented
previously:

LOOP3 > TOURNEY3 > [GHT2,LHT2]

Figure 5 demonstrates how a user would drive the composer
to produce the pipeline for this topology. Notice how the code
can be easily modified to elaborate any of the three pipelines
described in Section IV-A1.

The composer additionally generates control-flow-
redirection logic to provide natural overriding of earlier
predictions from low-latency sub-components with later
predictions made by long-latency sub-components [21]. This
is similar to the technique used in the Alpha21264 [26].

1) Predictor Management Structures: A substantial part of
the complexity of a predictor pipeline lies in the predictor
management structures, which are responsible for maintaining
the state of the predictor through speculative execution and
updates. Thus the COBRA predictor composer also generates
these structures, and automatically connects them to the gen-
erated pipeline.

The generated history file is a circular buffer which tracks
the state of predictions in the pipeline. When the processor
pipeline backend resolves a branch, the target address and
direction are updated into the history file. Entries are dequeued
from the history file in program order as the core commits
branches. When entries are dequeued, the resolved direction
and PC are sent to all the predictor sub-components to perform
predictor updates.

The metadata field discussed in Section III-D is stored
in the history file. The metadata, along with the global
and local histories, are provided to the predictors at update,
mispredict, and repair time, such that the predictor sub-
components can recover entry indices and read data.

2) Predict, Update, and Repair: A state machine sits
alongside the history file to generate update or repair signals
for the branch predictor sub-components. In steady state, this
state machine generates commit-time update signals as it
dequeues the history file. After a mispredict, the state machine

performs a “forwards-walk” through the history file to generate
repair signals, which restore the state of local-history and
loop predictors. This is similar to the forwards-walk scheme
proposed in [46].

3) History providers: The COBRA predictor composer
additionally generates history providers. The current imple-
mentation supports a global history and a PC-indexed local
history.

The global history provider speculatively updates itself
based on the predicted direction of in-flight branches. Our ini-
tial simple implementation corrects mispredictions by storing
snapshots of the global history register in the history files.
The local history provider is also speculatively updated by
predicted directions of in-flight branches. On mispredict, the
local history provider is repaired by the repair mechanism
described above.

COBRA’s initial implementations of these history providers
are basic, but sufficient for demonstrating the flexibility of
the framework. A more efficient global-history register could
be implemented using pointers into a circular buffer. Other
variants of history information, like path histories [33], can
also be implemented as new history providers.

C. Composer Implementation
A COBRA-generated predictor can be integrated into a host

processor as a drop-in replacement for the host processor’s
existing branch prediction and fetch redirection logic. Since
COBRA generates a complete predictor pipeline, including
the predictor management structures, integration should re-
quire minimal changes to existing RTL in the host core.
We choose the Berkeley Out-of-Order Machine (BOOM) as
the host processor to demonstrate integration of a COBRA-
generated branch predictor. BOOM is a configurable open-
source superscalar out-of-order RISC-V core [13]. Figure 6
depicts COBRA integration with BOOM’s instruction fetch
unit.

I-Cache

Generated Pipeline

Control/Redirect Logic

History
Providers

Decode Decoded Instruction
Buffer

Update/Repair
State Machine

Branch Metadata and
History Files

Resolved Branches

Fig. 6. BOOM instruction fetch unit modified to accept a predictor pipeline
generated by COBRA. Gray components indicate new COBRA-generated
components.

The only prediction sub-component from the original
BOOM core which was preserved was the return-address-stack
(RAS). As the design of return-address-stacks is relatively
less complex than the design of other predictor structures
in branch prediction, we do not incorporate it in the initial
implementation of COBRA.

6

V. EVALUATION

We demonstrate COBRA’s utility for generating and eval-
uating high-performance branch predictor architectures by
exploring three diverse predictor designs. We compare the
end-to-end performance of these designs to the end-to-end
performance of existing open-source and commercial hardware
predictor implementations.

A. Design Exploration

We demonstrate COBRA’s versatility by generating three
diverse predictor designs out of the COBRA sub-component
library, summarized in Table I, Figure 7, and the topological
representation below.

LOOP3 > TAGE3 > BTB2 > BIM2 > uBTB1

GTAG3 > BTB2 > BIM2

TOURNEY3 > [GBIM2 > BTB2,LBIM2]

The first “TAGE-L” topology describes a TAGE (TAGE3)
predictor with a loop corrector (LOOP3). The backing predic-
tor is a PC-indexed bimodal counter table (BIM2). This design
is vaguely similar to the state-of-the-art branch predictor
algorithm TAGE-SC-L [41], only with no statistical corrector,
and a simpler loop predictor. The second “B2” topology
describes a similar predictor to the one implemented in the
original BOOM core. This predictor pairs a single partially
tagged table of history-indexed counters (GTAG3) with a PC-
indexed backing counter table (BIM2). The third “Tourney”
describes a tournament predictor, with a globally-indexed
tournament selector (TOURNEY3) choosing between counters
provided by untagged global and local history-indexed tables
(GBIM2,LBIM2). This predictor is similar to the ones in the
Alpha21264 [26] and riscyOOO [49] cores.

COBRA enables the reuse of the counter tables, BTB, and
predictor management structures across all three topologies,
greatly reducing the design effort of each design. Further-
more, individual predictor sub-components were designed and
validated independently, before evaluation of the complete
predictor pipelines.

For evaluation, all three predictor pipelines were attached
to a four-wide BOOM core, as configured according to Ta-
ble II. The resulting core was then synthesized at 1GHz
through Cadence Genus [11] on a commercial FinFET process.
Synchronous memories in the core, including most branch
predictor memories, were mapped to available SRAMs in

TABLE I
PARAMETERS OF EVALUATED COBRA-DESIGNED PREDICTORS.

Name Description Storage
Tourney 32-bit global, 256x32-bit local histories

2K-entry BTB w. 16K-entry 2-bit BHT
1K tournament counters

6.8 KB

B2 16-bit global history
2K partially tagged + 16K untagged counters
2K-entry BTB

6.5 KB

TAGE-L 64-bit global history
7 TAGE tables
2K-entry BTB w. 32-entry uBTB
256-entry loop predictor

28 KB

TAGE-L

B2

Tourney

F1 F2 F3

BTB

Global History
Register

Global-Indexed
Counter Table

Tournament Predictor

Local-Indexed
Counter Table

Local History
Table

F1 F2 F3

BTB

Global History
Register Global-Indexed Counter Table

PC-Indexed Counter Table

F1 F2 F3

BTB

µBTB

PC-Indexed Counter Table

Global History
Register

Loop Predictor

TAGE Tables

Fig. 7. Pipeline diagrams of the COBRA-generated predictors.

TABLE II
BOOM PARAMETERS IN EVALUATION OF COBRA PREDICTORS.

Frontend 16-byte wide fetch
4-wide decode/rename/commit
32-bit and 16-bit RVC instructions

Execute 128-entry ROB
8 pipelines (4 ALU, 2 MEM, 2 FP)
3x 32-entry IQs (INT, MEM, FP)

Load-Store Unit 32-entry LDQ, 32-entry STQ
2 LD or 1 ST per cycle

TLBs 32-entry L1 DTLB
32-entry L1 ITLB
1024-entry L2 TLB

L1 Caches 8-way 32 KB ICache and DCache
next-line prefetcher

L2 Cache 8-way 512 KB
L3 Cache 4 MB FASED [7] LLC model
Memory 16 GB FASED [7] DDR3 timing model

that technology. Critical paths in the resulting design are not
affected by the generated branch-predictor (they are in the
issue-units of BOOM).

Figure 8 reports the total area breakdown of the branch
predictor for each of the three designs, including the cost of
predictor management structures. Expensive tagged predictor
sub-components, such as the TAGE tables and the BTB, are
relatively costly compared to untagged structures. Further-
more, predictor management structures incur non-trivial cost,
as the local history provider generates a large PC-indexed table

7

TABLE III
EVALUATED SYSTEMS FOR SPECINT17 PERFORMANCE COMPARISON.

Core Intel Skylake AWS Graviton BOOM
Branch predictor Undisclosed Tournament B2 TAGE-L
L1 Cache Sizes (I/D) 64/64 KB 48/32 KB 32/32 KB
L2/L3 Cache Size 1 MB/24 MB 2 MB/0 MB 512 KB/4 MB
Compiler/OS gcc/Ubuntu 18.04 Server gcc/Buildroot Linux
Platform AWS EC2 bare-metal FireSim FPGA-accelerated cycle-exact simulation

Fig. 8. Area utilization of our three predictor pipelines, broken down across
predictor sub-components. Meta denotes predictor management structures like
history files and history providers.

Fig. 9. Area utilization of 4-wide fetch BOOM cores with each of the 3
evaluated predictors.

of histories.
Figure 9 reports total area breakdown of the core, to

highlight the relative cost of the predictors compared to other
core components. The total area of even a large predictor
design is only a small portion of the area of a large superscalar
out-of-order core.

B. Performance Evaluation

We additionally evaluate the branch prediction accuracy and
IPC of BOOM with the COBRA-generated branch predictors,
and compare to commercial server-class cores. The modified
BOOM cores were synthesized on AWS F1 FPGAs using
FireSim [25]. The FireSim simulations ran at 30 MHz on
the FPGAs, and modeled the system running at 3.2 GHz. We
run the SPECint17 speed benchmarks with reference inputs as
single-threaded workloads. The SPECint suite was compiled
using gcc, with -O3 optimizations. Branch prediction accu-
racy and IPC were measured with the out-of-band profiling
tools in FireSim.

To demonstrate the value of the holistic evaluation COBRA
enables, we additionally compare our COBRA-augmented
BOOM core to Intel Skylake and AWS Graviton cores, running
as c5n.metal and a1.metal instances on AWS EC2. For
these cores, SPECint was compiled using gcc with -O3.
Branch prediction accuracy and IPC were measured with the
Linux perf profiling tool. Table III displays the comparison
of all profiled systems.

Figure 10 displays the SPECint17 evaluation results. The B2
and Tournament predictors are less accurate, but also require
far less area than the TAGE-L predictor. The Tournament
predictor notably suffers from aliasing issues on several work-
loads, caused by the lack of a tagged predictor sub-component
in this design.

VI. DISCUSSION AND FUTURE WORK

Evaluating our predictor in the context of a complete core
revealed issues in predictor design that would not have been
exposed in a software model of the algorithm. We discuss rep-
resentative examples of the phenomena we observed, demon-
strating the value of end-to-end branch-predictor evaluation.

A. Physical Design

Pipelining a predictor is sometimes necessary for avoiding
critical paths or congestion. However, increasing prediction
latency will also increase the number of bubbles inserted into
the pipeline on a redirection. Unlike a software model, our
hardware-centric predictor design framework enables evaluat-
ing the performance implications of predictor pipelining and
delay.

Our original implementation of the TAGE-L predictor ar-
bitrated a final decision in 2 cycles, instead of 3. While this
design could redirect the PC faster, it introduced a critical
path, as table read, tag check, and prediction arbitration were
all performed in one cycle. To resolve this issue, we inserted
an additional pipeline stage into the TAGE sub-component,
such that the prediction latency became 3 cycles.

Since the COBRA interface for predictor sub-components
supports varied latencies, the TAGE sub-component could
be modified in isolation from other sub-components. Thus,
modifying TAGE required no modifications to the composer,
or to the topology for a complete TAGE-based predictor
pipeline.

Delaying the TAGE response had no impact on overall
prediction accuracy, and a minimal (≈ 1%) degradation of
IPC. This is partially because not all branches in a SPEC
workload are hard-to-predict, and benefit from a TAGE-based
prediction [28]. Furthermore, the BOOM core can fetch more

8

Fig. 10. Comparison of branch misses per kilo-instructions and IPC between three COBRA-BOOM variants and two commercial server-class cores, on 10
SPECint benchmarks. HARMEAN is harmonic mean across all benchmarks. Comparison against Skylake and Graviton is approximate due to different ISAs.

instructions than it can decode in a cycle, so backpressure from
decode will frequently hide temporary stalls in instruction
fetch.

In the future, we plan on more aggressively tuning the pre-
dictor sub-components according to additional feedback from
physical design. Predictor energy consumption is expected to
be an important concern, as the energy cost of continuously
reading predictor SRAMs is significant [36].

B. Speculative Execution

Since the frontend of a core is inherently speculative,
predictor structures must be tolerant to misspeculation. While
trace-based simulators do not model speculative execution, a
predictor generated by the COBRA framework can be fully
evaluated within the context of a speculating core. We examine
a specific instance of how speculation significantly affects
branch prediction accuracy.

One structure for which misspeculation is especially dan-
gerous is the global history register, as misspeculated updates
to the global history register potentially corrupt many future
predictions. In our original design for the global history
provider, misspeculated global history updates were repaired,
but predictions formed from a misspeculated history were not
replayed. We explored an alternate design, in which repairing
global history forced a replay of instruction fetch with the
corrected history. Although replaying fetch inserts bubbles into
the fetch pipeline, correcting invalid predictions made with a
misspeculated global history has positive effects on overall
prediction accuracy.

We found that repairing the global history improved mean
IPC by 15%, and reduced the branch mispredict rate by 25%
across all SPECint benchmarks. However, on select short loop-
based benchmarks, the delay from history repair decreased
overall IPC. On Dhrystone, for example, additional frontend
bubbles inserted by the history repair process decreased total

IPC by 3%. A future, more optimal design could dynamically
learn when to aggressively speculate past malformed predic-
tions, and when to insert bubbles to recover a correct history.

C. Core Optimizations

Microarchitectural optimizations in the backend of a core
can have significant implications on branch prediction ac-
curacy. Since our predictor composer generates complete
pipelines suitable for integration into high-performance cores,
we can holistically evaluate the interactions between a predic-
tor and the backend.

To demonstrate, we modified the backend of BOOM to
decode short-forwards-branches (or “hammock” branches) into
set-flag and conditional-execute micro-ops [27]. Specifically,
execution of the short-forwards-branch would set a predicate
bit instead of redirecting control flow, and the instructions
in the shadow of the branch would read the predicate bit
when issued to determine whether to execute, or perform no
operation. This is similar to the mechanism implemented in
the IBM Power8 microarchitecture [43].

We found that enabling the short-forwards-branch opti-
mization improved the accuracy of all three branch predictor
designs due to two effects. First, branches that could be
dynamically decoded as short-forwards-branches would no
longer cause mispredictions, as the correct behavior for these
branches would always be ”not-taken”. Second, branch pre-
dictor sub-components no longer needed to devote entries to
learning the direction of these short-forwards-branches, freeing
up resources for learning other hard-to-predict branches.

Overall, this optimization substantially improved prediction
accuracy on the CoreMark EEMBC benchmark [14]. Without
the optimization, a 4-wide fetch BOOM core with the CO-
BRA TAGE-L predictor achieves only 4.9 CoreMarks/MHz,
and 97% branch prediction accuracy. However, enabling the
optimization improves performance to 6.1 CoreMarks/MHz,

9

with 99.1% branch prediction accuracy. Combined with future
backend optimizations like custom instructions or macro-op
fusion, COBRA provides an important path for researchers
interested in end-to-end core evaluation and optimization.

VII. CONCLUSION

We present COBRA, a framework for modeling and eval-
uating compositions of hardware branch-predictor pipelines.
The COBRA interface supports reusable implementations
of branch predictor sub-components, and the COBRA
composer enables hardware-based evaluation of arbitrary
branch-predictor topologies. To our knowledge, the COBRA-
augmented BOOM core is the fastest open-source RISC-V
core by IPC [50]. COBRA has been open-sourced as part of
the latest version of BOOM to provide a productive, realistic
platform for advancing the state-of-the-art in branch predictor
design and high-performance cores.

ACKNOWLEDGEMENTS

The information, data, or work presented herein was funded
in part by the NSF CCRI ENS Chipyard Award #2016662, as
well as by the Advanced Research Projects Agency-Energy
(ARPA-E), U.S. Department of Energy, under Award Number
DE-AR0000849. Research was partially funded by ADEPT
Lab industrial sponsors and affiliates Intel, Apple, Futurewei,
Google, and Seagate. The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

REFERENCES

[1] “Branch prediction championship 2016 kit,” https://www.jilp.org/
cbp2016/framework.html.

[2] “Champsim,” https://github.com/ChampSim/ChampSim.
[3] A. Akram and L. Sawalha, “A comparison of x86 computer architecture

simulators,” 2016.
[4] A. ARM, “Cortex®-a72 mpcore processor technical reference manual

(revision r0p2).”
[5] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,

J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012.
IEEE, 2012, pp. 1212–1221.

[6] R. Bhargava, L. K. John, and F. Matus, “Accurately modeling speculative
instruction fetching in trace-driven simulation,” in 1999 IEEE Interna-
tional Performance, Computing and Communications Conference (Cat.
No. 99CH36305). IEEE, 1999, pp. 65–71.

[7] D. Biancolin, S. Karandikar, D. Kim, J. Koenig, A. Waterman,
J. Bachrach, and K. Asanović, “FASED: FPGA-accelerated simulation
and evaluation of DRAM,” in FPGA’19.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[9] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 41–42.

[10] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,”
ACM SIGARCH computer architecture news, vol. 25, no. 3, pp. 13–25,
1997.

[11] “Rtl design, genus style,” https://www.cadence.com/en US/home/
multimedia.html/content/dam/cadence-www/global/en US/videos/tools/
digital design signoff/rtl design genus style, Cadence, 2015.

[12] P. Caprioli and S. Chaudhry, “Multiple branch predictions,” Dec. 1 2005,
uS Patent App. 11/068,626.

[13] C. Celio, “A highly productive implementation of an out-of-order
processor generator,” Ph.D. dissertation, PhD thesis, EECS Department,
University of California, Berkeley, 2018.

[14] E. M. B. Consortium et al., “Coremark benchmark,” 2013.
[15] R. Desikan, D. Burger, and S. W. Keckler, “Measuring experimental

error in microprocessor simulation,” in Proceedings of the 28th annual
international symposium on Computer architecture, 2001, pp. 266–277.

[16] A. N. Eden and T. Mudge, “The yags branch prediction scheme,”
in Proceedings. 31st Annual ACM/IEEE International Symposium on
Microarchitecture. IEEE, 1998, pp. 69–77.

[17] P. G. Emma, J. W. Knight, J. H. Pomerene, and T. R. Puzak, “Simultane-
ous prediction of multiple branches for superscalar processing,” Jul. 18
1995, uS Patent 5,434,985.

[18] A. Fog, “The microarchitecture of intel, amd and via cpus,” An optimiza-
tion guide for assembly programmers and compiler makers. Copenhagen
University College of Engineering, 2011.

[19] A. Frumusanu, “Arm’s cortex-a76 cpu unveiled: Taking aim at the top
for 7nm,” May 2018. [Online]. Available: https://www.anandtech.com/
show/12785/arm-cortex-a76-cpu-unveiled-7nm-powerhouse

[20] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D.
Emmons, M. Hayenga, and N. Paver, “Sources of error in full-system
simulation,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2014, pp. 13–22.

[21] D. A. Jiménez, “Reconsidering complex branch predictors,” in The Ninth
International Symposium on High-Performance Computer Architecture,
2003. HPCA-9 2003. Proceedings. IEEE, 2003, pp. 43–52.

[22] D. A. Jiménez, “Multiperspective perceptron predictor,” Championship
Branch Prediction (CBP-5), 2016.

[23] D. A. Jiménez, S. W. Keckler, and C. Lin, “The impact of delay on
the design of branch predictors,” in Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture, 2000, pp.
67–76.

[24] D. A. Jiménez and C. Lin, “Dynamic branch prediction with percep-
trons,” in Proceedings HPCA Seventh International Symposium on High-
Performance Computer Architecture. IEEE, 2001, pp. 197–206.

[25] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra et al., “Firesim: Fpga-
accelerated cycle-exact scale-out system simulation in the public cloud,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 29–42.

[26] R. E. Kessler, “The alpha 21264 microprocessor,” IEEE micro, vol. 19,
no. 2, pp. 24–36, 1999.

[27] A. Klauser, T. Austin, D. Grunwald, and B. Calder, “Dynamic ham-
mock predication for non-predicated instruction set architectures,” in
Proceedings. 1998 International Conference on Parallel Architectures
and Compilation Techniques (Cat. No. 98EX192). IEEE, 1998, pp.
278–285.

[28] C.-K. Lin and S. J. Tarsa, “Branch prediction is not a solved problem:
Measurements, opportunities, and future directions,” arXiv preprint
arXiv:1906.08170, 2019.

[29] S. McFarling, “Combining branch predictors,” Technical Report TN-36,
Digital Western Research Laboratory, Tech. Rep., 1993.

[30] P. Michaud, “A ppm-like, tag-based branch predictor,” Journal of In-
struction Level Parallelism, vol. 7, no. 1, pp. 1–10, 2005.

[31] P. Michaud, A. Seznec, and R. Uhlig, “Trading conflict and capacity
aliasing in conditional branch predictors,” in Proceedings of the 24th
annual international symposium on Computer architecture, 1997, pp.
292–303.

[32] M. Milenkovic, A. Milenkovic, and J. Kulick, “Demystifying intel
branch predictors,” in Workshop on Duplicating, Deconstructing and
Debunking, 2002.

[33] R. Nair, “Dynamic path-based branch correlation,” in Proceedings of
the 28th annual international symposium on Microarchitecture. IEEE,
1995, pp. 15–23.

[34] T. Nowatzki, J. Menon, C.-H. Ho, and K. Sankaralingam, “Architectural
simulators considered harmful,” IEEE Micro, vol. 35, no. 6, pp. 4–12,
2015.

[35] S.-T. Pan, K. So, and J. T. Rahmeh, “Improving the accuracy of dynamic
branch prediction using branch correlation,” in Proceedings of the
fifth international conference on Architectural support for programming
languages and operating systems, 1992, pp. 76–84.

[36] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. R. Stan, “Power
issues related to branch prediction,” in Proceedings Eighth International

10

Symposium on High Performance Computer Architecture. IEEE, 2002,
pp. 233–244.

[37] D. J. Schlais and M. H. Lipasti, “Badgr: A practical ghr implementation
for tage branch predictors,” in 2016 IEEE 34th International Conference
on Computer Design (ICCD). IEEE, 2016, pp. 536–543.

[38] A. Seznec, “The o-gehl branch predictor,” The 1st JILP Championship
Branch Prediction Competition (CBP-1), 2004.

[39] A. Seznec, “A 256 kbits l-tage branch predictor,” Journal of Instruction-
Level Parallelism (JILP) Special Issue: The Second Championship
Branch Prediction Competition (CBP-2), vol. 9, pp. 1–6, 2007.

[40] A. Seznec, “A new case for the tage branch predictor,” in Proceedings
of the 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2011, pp. 117–127.

[41] A. Seznec, “Tage-sc-l branch predictors again,” 2016.
[42] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design tradeoffs for

the alpha ev8 conditional branch predictor,” ACM SIGARCH Computer
Architecture News, vol. 30, no. 2, pp. 295–306, 2002.

[43] B. Sinharoy, J. Van Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra,
D. Q. Nguyen, B. Konigsburg, K. Ward, M. Brown, J. E. Moreira
et al., “Ibm power8 processor core microarchitecture,” IBM Journal of
Research and Development, vol. 59, no. 1, pp. 2–1, 2015.

[44] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark, “Improv-
ing prediction for procedure returns with return-address-stack repair
mechanisms,” in Proceedings. 31st Annual ACM/IEEE International
Symposium on Microarchitecture. IEEE, 1998, pp. 259–271.

[45] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and
V. S. Pai, “Challenges in computer architecture evaluation,” Computer,
vol. 36, no. 8, pp. 30–36, 2003.

[46] N. Soundararajan, S. Gupta, R. Natarajan, J. Stark, R. Pal, F. Sala,
L. Rappoport, A. Yoaz, and S. Subramoney, “Towards the adoption of
local branch predictors in modern out-of-order superscalar processors,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 519–530.

[47] R. P. Weicker, “Dhrystone: a synthetic systems programming bench-
mark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030,
1984.

[48] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch predic-
tion,” in Proceedings of the 24th annual international symposium on
Microarchitecture, 1991, pp. 51–61.

[49] S. Zhang, A. Wright, T. Bourgeat, and A. Arvind, “Composable building
blocks to open up processor design,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 68–81.

[50] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” in Fourth Workshop on
Computer Architecture Research with RISC-V, 2020.

[51] C. Zhou, L. Huang, and Q. Dou, “Bpsim: An integrated missrate, area,
and power simulator for branch predictor,” in 2017 6th International
Conference on Modern Circuits and Systems Technologies (MOCAST).
IEEE, 2017, pp. 1–4.

11

