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SUMMARY

Brassinosteroids (BRs) are a group of plant steroid hormones involved in regulating growth, development,
and stress responses. Many components of the BR pathway have previously been identified and character-
ized. However, BR phenotyping experiments are typically performed in a low-throughput manner, such as
on Petri plates. Additionally, the BR pathway affects drought responses, but drought experiments are time
consuming and difficult to control. To mitigate these issues and increase throughput, we developed the
Robotic Assay for Drought (RoAD) system to perform BR and drought response experiments in soil-grown
Arabidopsis plants. RoAD is equipped with a robotic arm, a rover, a bench scale, a precisely controlled
watering system, an RGB camera, and a laser profilometer. It performs daily weighing, watering, and imag-
ing tasks and is capable of administering BR response assays by watering plants with Propiconazole (PCZ),
a BR biosynthesis inhibitor. We developed image processing algorithms for both plant segmentation and
phenotypic trait extraction to accurately measure traits including plant area, plant volume, leaf length, and
leaf width. We then applied machine learning algorithms that utilize the extracted phenotypic parameters
to identify image-derived traits that can distinguish control, drought-treated, and PCZ-treated plants. We
carried out PCZ and drought experiments on a set of BR mutants and Arabidopsis accessions with altered
BR responses. Finally, we extended the RoAD assays to perform BR response assays using PCZ in Zea mays
(maize) plants. This study establishes an automated and non-invasive robotic imaging system as a tool to
accurately measure morphological and growth-related traits of Arabidopsis and maize plants in 3D, provid-
ing insights into the BR-mediated control of plant growth and stress responses.

Keywords: Arabidopsis thaliana, Brassinosteroid, drought, leaf segmentation, phenotypic traits, plant
growth, 2D and 3D imaging, technical advance.

INTRODUCTION goal, we need to understand how plant growth and stress

Drought, or limited availability of water, looms as one of
the most pressing threats to agriculture. As the world’'s
population increases, an important challenge is to engi-
neer plants that withstand stresses such as drought while
optimizing their growth (Gupta et al., 2020). To realize this
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responses are balanced. Such dissection requires compre-
hensive characterization of growth- and drought-related
phenotypes along with the underlying signaling pathways
that coordinate these responses. One such pathway is acti-
vated by a group of plant steroid hormones called
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brassinosteroids (BRs) that function as critical regulators of
plant growth, development, and drought responses (Nolan
et al., 2017a; Nolan et al., 2020).

BRs signal through plasma membrane receptors BRI1
and BAK1 to regulate the activities of BES1 and BZR1 fam-
ily transcription factors, which control the expression of
thousands of genes for various BR responses (Nolan et al.,
2020; Sun et al., 2010; Yu et al., 2011). Mutants defective in
the BR pathway such as bri7 are dwarf in stature with
reduced stem elongation, shorter and rounder leaves (Li
et al., 1996; Szekeres et al., 1996; Clouse et al., 1996), and
increased tolerance to stresses such as drought (Nolan
et al., 2017a; Nolan et al., 2017b; Northey et al., 2016; Ye
et al., 2017). In contrast, gain-of-function mutants in the BR
pathway display increased plant growth but often have
reduced survival during drought (Nolan et al., 2017a; Ye
et al., 2017).

BR phenotyping experiments are typically performed on
Petri plates at the seedling stage and/or in a low-
throughput manner. Since BRs affect plant growth and
development at multiple stages of plant life, it would be
helpful to comprehensively measure BR-related pheno-
types in a time-dependent manner with an automated sys-
tem. Additionally, drought experiments have often been
conducted by subjecting plants to extreme water deficit
conditions that are difficult to control or scale to a large
number of genotypes. Several automated drought pheno-
typing systems have been developed that allow for more
mild drought stress scenarios and have provided signifi-
cant insights into growth regulation under these conditions
(Clauw et al., 2015; Dubois and Inzé, 2020; Granier et al.,
2006; Skirycz et al., 2011; Tisné et al., 2013; Van Dooren
et al., 2020). Thus, automated phenotyping of BR and
drought responses has great potential to further define the
interplay between growth and drought responses.

Recently, several image-based phenotyping systems
have been established for large-scale and non-destructive
phenotyping under controlled environments (Bao et al.,
2019b; Fujita et al., 2018; Granier et al., 2006; Skirycz et al.,
2011; Tisné et al., 2013). Various advanced sensor tech-
nologies have been successfully integrated into phenotyp-
ing systems, including visible RGB imaging (Minervini
et al., 2014; Clauw et al., 2015), chlorophyll fluorescence
imaging (Rousseau et al., 2013; Yao et al., 2018), thermal
imaging (Klem et al., 2017; Zia et al., 2013), and hyperspec-
tral imaging (Behmann et al., 2018; Ge et al., 2016). While
both commercial (Neumann et al., 2015; Skirycz et al.,
2011) and custom-built platforms (Apelt et al., 2015; Tisné
et al., 2013) have been created, most current systems are
limited to 2D imaging and lack the flexibility to administer
different types of treatments or compounds. However, 2D
methods cannot reflect spatial and temporal information
due to plants’ architectural complexity (Apelt et al., 2015;
Gibbs et al., 2018). Measurements such as plant volume,

plant surface area, and leaf inclination angle are all vital to
plant growth monitoring, but cannot be derived from 2D
images.

To overcome the inherent limitations of 2D-based
approaches, 3D imaging has gained great interest in plant
phenotyping. Methodologies for reconstructing 3D models
in plant phenotyping platforms can be categorized into
passive and active methods (Bernotas et al., 2019). One of
the most popular passive methods is multi-view stereo
(MVS). An et al. (2017) developed an MVS-based system
for monitoring a mapping population of 1050 Arabidopsis
plants, where 108 digital cameras along with photogram-
metric techniques were used to reconstruct 3D shapes. As
an alternative to MVS-based imaging, a 3D light-field cam-
era has been utilized to capture high-resolution 3D leaf sur-
faces of Arabidopsis plants throughout the diel cycle (Apelt
et al., 2015). One of the common limitations of the passive
approaches is that they require consistent lighting condi-
tions to acquire high-quality images. Therefore, the exist-
ing platforms that utilize passive 3D sensors are mostly
stationary with fixed camera positions. Active 3D imaging
approaches for plant modeling include time-of-flight (ToF)
cameras (Hu et al., 2018), laser scanners (Chaudhury et al.,
2017), and photometric cameras (Bernotas et al., 2019). A
ToF camera provides an economical solution for plant 3D
modeling but the resolution is relatively low. Both laser
scanners (Kaminuma et al., 2004) and photometric cameras
(Bernotas et al, 2019) have been used for Arabidopsis
plant phenotyping due to their superior performance in
capturing high-resolution 3D leaf surfaces. With the devel-
opment of robotic technologies, robot manipulators have
been integrated into plant phenotyping systems (Chaud-
hury et al., 2017; Gibbs et al., 2018) to offer dexterity for
sensor placement.

In order to understand the relationship between BR-
mediated plant growth and drought responses, we devel-
oped a mobile robotic phenotyping system capable of (i)
conducting time-course observations of plant growth using
2D and 3D imaging; (ii) administering the BR biosynthesis
inhibitor Propiconazole (PCZ) to assess the BR response;
and (iii) accurately controlling water levels for precise
water deficit (drought) treatments. Our mobile robotic plat-
form called Robotic Assay for Drought (RoAD) can auto-
mate daily weighing, watering, and non-destructive
acquisition of 2D RGB images and high-precision 3D point
clouds for BR and drought phenotyping experiments. Com-
pared to existing phenotyping platforms, our system has
significant improvements in mobility, sensor placement
flexibility, and holographic imaging.

To make use of the data acquired by RoAD, we developed
and validated algorithms for automated image processing,
including rosette and individual leaf segmentation. Subse-
quent extraction of morphological traits and machine learn-
ing approaches allowed us to identify traits that distinguish
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PCZ- or drought-treated plants from untreated controls.
Using RoAD, we then examined BR and drought pheno-
types of Arabidopsis mutants affected by BR signaling,
diverse responses of 20 Arabidopsis accessions to PCZ
treatment, and BR-mediated changes in the 3D architecture
of maize (Zea mays) seedlings. Our results demonstrate that
RoAD is a valuable tool to study BR-mediated control of
plant growth and drought responses.

RESULTS

Automated operation of RoAD: a Robotic Assay for
Drought

The RoAD system (Movie S1) was designed to perform
non-destructive imaging, weighing, and watering. The
images acquired provide valuable information for measur-
ing the morphological traits of whole plants as well as indi-
vidual leaves. The system is comprised of a custom-built
mobile robot and two tables that can hold up to 240 pots

(a)

6-axis robotic
manipulator

2D line profilometer

Unmanned ground
vehicle

Robotic Assay for Drought (RoAD) 3

(Figure 1(a)). The robot was designed as an unmanned
ground vehicle (UGV) (Shah et al., 2016) carrying a Univer-
sal Robots UR10 manipulator (Universal Robots, Odense,
Denmark) (Figure 1(b)). An RGB camera (ex0249CU3, SVS-
Vistek, Germany), a laser profilometer (LJ-V7300, Keyence,
Japan), a gripper (2F-85, Robotiq Inc., Canada), and two
water drippers are mounted to the end-effector of the
manipulator. The camera position can be adjusted for
plants of various heights. For example, Arabidopsis plants
require a lower height than maize seedlings. The robot is
equipped with a high-precision watering station that is
composed of a bench scale (BSQ-0912-001, RMH Systems,
United States) and two peristaltic pumps (DriveSure,
Watson-Marlow, United Kingdom). Two kinds of liquid
solutions can be administered to configure different water-
ing regimes. The average absolute error of desired versus
delivered water was 0.38 g (sample size: 26 078).

An experiment is initialized with a pot map, which stores
the attributes of the plants, including plant genotype, the

Watering nozzle

(b) 1]

Two-finger gripper

RGB camera

Bench Scale

Figure 1. Overview of the RoAD system.

(a) The RoAD system in action, with the mobile robot in between two tables that can each hold up to 240 10-cm-diameter pots.

(b) The hardware setup of the RoAD system. Instruments for plant handling, imaging, and watering are mounted to a six-axis robotic manipulator. An RGB cam-
era and a 2D line profilometer are used to acquire plant images. The two-finger gripper is used to pick up plants and place them on the bench scale. Watering
nozzles attached to the gripper allow for water delivery from two separate water tanks.

(c) RoAD collecting a top-view RGB image of a plant.

(d) Multi-view scanning of a plant for the construction of 3D images. Four side-view images and one top-view image are acquired. Arrows indicate the direction

of scanning.

(e) Example of a plant being watered by the RoAD system. Plant weight is monitored by the bench scale in real-time to allow for precise control of water levels.
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number of replicates, watering solution type, and target
water level. Each day, the plants are imaged, weighed, and
watered daily. During each data acquisition cycle, the robot
parks at one of three positions adjacent to the plant tables.
The manipulator is programmed to pick up each pot and
place it on the scale. Image acquisition is performed before
watering. First, a top-view RGB image is captured (Figure 1
(c)). Then, the plant is scanned from five different perspec-
tives by sweeping the laser profilometer around the plant
(Figure 1(d)) for 3D reconstruction. Multiple scanning per-
spectives minimize occlusions in 3D reconstruction. The
3D surface model of the plant is reconstructed by cross-
registering the 2D RGB image and the 3D point clouds.
After image acquisition, the plant is then watered by one
of the two peristaltic pumps to a predetermined soil mois-
ture level (Figure 1(e)). Lastly, the pot is transported back
to its position on the table. The aforementioned process
takes approximately 1.5 min. Thus, the full cycle for 240
plants takes around 6 h, typically yielding 8 gigabytes of
raw data (RGB images, 3D point cloud data, and pot weight
data).

Automated processing of Arabidopsis plant images

Various strategies for analyzing image data and measuring
growth phenotypes have been described (Minervini et al.,
2017; Zhou et al., 2017), but general solutions for the seg-
mentation of plants and individual leaves from 3D models
are less developed (Mccormick et al., 2016). The RoAD sys-
tem provides top-view 2D images of plants and multi-view
3D point clouds. To analyze the large amount of data gen-
erated by the RoAD system, we developed a fully auto-
mated image processing pipeline.

Our pipeline starts with plant segmentation of the RGB
image, followed by segmentation of plants and leaves in
the 3D point cloud. Based on the segmentation results,
phenotypic trait values are extracted and saved as a CSV
file for downstream analysis (Figure 2(a)). Plant segmenta-
tion in RGB images is based on color information (Figure 2
(b)). Plant segmentation in 3D space starts with the points
from the segmented RGB image projected onto 3D pro-
files. The resulting point cloud is then cleaned and ana-
lyzed to segment individual leaves. Previously developed
methods for leaf segmentation have used 2D images,
paired with deep learning methods that require large sets
of data to achieve satisfactory performance (Chen et al.,
2019; Liu et al., 2020). However, 2D-based leaf segmenta-
tion methods struggle when leaves overlap in images of a
plant (such as the plants shown in Figure 2(b,c)), which
tends to happen with increasing severity as plants pro-
gress through their growth cycle. The additional informa-
tion gained by 3D images makes it easier to segment plant
leaves.

The RoAD system provides a high-precision point cloud
that facilitates image processing in 3D space. Based on the

superior 3D images, a surface-based segmentation (Fig-
ure 2(c)) was implemented to isolate the plant and individ-
ual leaves from the point cloud. The method is aimed at
finding smoothly connected areas in point clouds using
the constraints of local connectivity and surface smooth-
ness (Rabbani et al., 2006). The segmentation method con-
sists of two steps: normal estimation and region growing.
The surface normal and curvature (Rusu and Cousins,
2011) for each point are estimated by fitting a plane to the
K nearest neighbors. The points of a typical Arabidopsis
leaf should be locally connected to form a smooth surface
with only minor variations between neighboring surface
normals. Therefore, the process of region growing for one
region starts with a seed point that has the minimum cur-
vature. For the current seed, the algorithm finds its neigh-
bors and checks the angle between the neighbor normal
and the seed normal. The neighbor point is added to the
current region if the angle is less than the threshold 6y,.
Among the neighbors, the points whose curvature is less
than Cy, are added to a queue of potential seed points. The
current seed is removed from the queue and the process is
repeated for the next available seed in the queue. The
algorithm finishes growing the region until there are no
seeds remaining in the queue. The one-region growing
process is repeated for the rest of the unvisited points until
all the points are segmented. The clusters that are suffi-
ciently large and oriented towards the plant center are con-
sidered as leaf candidates. Based on trial and observation,
we set the three thresholds K, 8y, and Cy, as 20, 30°, and
0.01, respectively.

Traits quantified by RoAD closely resemble ground truth
measurements

The single-view point cloud can be incomplete because of
leaf overlapping. To overcome this challenge, point clouds
from multiple views were merged (Figure 2(c)). Here, we
summarize the point-cloud processing pipeline, while a
complete description of our algorithms is presented in the
Experimental Procedures section. RoAD can provide holo-
graphic imaging of a plant, allowing a series of 3D traits
such as plant height, plant volume, convex hull volume,
leaf length, and leaf width to be extracted (Figure 2(d)).
Plant volume is an important trait for estimating plant bio-
mass. In this study, plant volume was calculated by first
dividing the point cloud into horizontal slices with uniform
thickness h (h=2mm for the experiments shown here).
The volume of each slice was approximated by V;=S; x h,
where S; is the horizontal projection area of the slice. The
estimated volume was then calculated by summing the
volume of all of the slices. Convex hull volume, which is a
construct from computational geometry, provides a 3D
measure of the volume of the space occupied by a plant. In
addition, some secondary traits can be derived to describe
the properties of plant architecture. For example, the plant
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Figure 2. RoAD data analysis and phenotyping pipeline.

(a) Overview of RoAD system phenotyping and data analysis. 2D and 3D images are captured for plants under control, PCZ, and drought conditions. Image anal-
ysis is then performed for feature extraction. Fifty-five phenotypic traits calculated from the images are input variables for machine learning classifications. The
most significant features were then used for biological analysis.

(b) Color-based plant segmentation in 2D. The excess green index was implemented to isolate a typical control plant. For drought-stressed plants, the pot posi-
tion and the hue values in HSV color space were used as features for segmentation.

(c) Surface-based plant segmentation and registration in 3D. For each single-view point cloud, the segmented 2D plant is projected onto the 3D profile for
removing the background, after which the surface-based segmentation is implemented to segment individual leaves based on surface smoothness and point
connectivity. The segmented multi-view point clouds are aligned together to reconstruct full details of the plant.

(d) Typical 3D phenotypic traits generated by the image processing pipeline, including plant height, plant volume, convex hull volume, leaf length, and leaf
width. The point cloud is sliced into multiple layers along the vertical direction to estimate the plant volume, where the volume of each slice is calculated by the
multiplication of the horizontal area and the slice thickness. The ratio of plant volume to convex hull volume can be used to describe the plant compactness in
3D space.

compactness in 3D space can be quantified using 3D solid-
ity, which is defined as the ratio of plant volume to convex
hull volume.

An experiment at full capacity (240 plants) typically lasts
30 days and yields approximately 36 000 images. Pheno-
typic information related to plant growth, morphology, and
color is obtained from the image data. These phenotypic
traits can be categorized into four classes: color-related

© 2021 The Authors.

traits, 2D holistic traits, 3D holistic traits, and individual leaf
traits. Color-related traits can be an indicator of plant
health (Klukas, 2014; Hither et al., 2020). Holistic level
traits, such as plant area and plant volume, are obtained
using measurements from the entire plant, while traits
such as leaf width and leaf length are measured for indi-
vidual leaves. In this study, the three largest leaves from
each plant were selected to compute the individual leaf
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traits. A total of 55 traits were extracted from the seg-
mented images. As expected, we observed a high correla-
tion between 2D, 3D, and individual leaf traits that act as
proxies of plant growth (Figure 3(a)). For example, 3D con-
vex area, 2D area, and individual leaf area were highly cor-
related. A full list of the extracted traits and the
descriptions of how they were measured can be found in
Table S1.

To evaluate the performance of the measurements
obtained from the RoAD platform and image processing
pipeline, 240 Arabidopsis plants under three different treat-
ments were imaged. We also manually collected ground
truth measurements of leaf length, leaf width, and fresh
weight from the same set of plants. Comparisons between
the system-derived traits and manual measurements indi-
cated that RoAD accurately characterized phenotypic traits
of interest (Figure 3(b, c)). For both leaf length and leaf
width, the system-derived traits showed high R-squared
values (R? > 0.96) and aligned well with the diagonal refer-
ence line (x =y), indicating that the RoAD platform can
accurately measure leaf traits. We also compared plant vol-
ume with plant biomass measured as fresh weight, which
showed a strong linear relationship (Figure 3(d)). Ulti-
mately, the high R-squared values (R?> 0.95) and low
mean absolute errors demonstrate the utility of the RoAD
platform for automated and reliable measurements of mor-
phological traits.

RoAD enables BR phenotyping in Arabidopsis

We used the RoAD system to measure growth phenotypes
of four Arabidopsis genotypes, wild-type Col-0 (WT), bril-
301, BRI1P-BRIOX, and bes1-D, under control or 100 pm
PCZ treatment conditions. The seeds of each genotype
were germinated in Petri plates for 7 days and a single
seedling was transferred to each pot. The plants were
allowed to adapt to the soil for 2-3 days before the initia-
tion of a RoAD experiment. During an experiment, each
pot started with a well-watered condition. If the gravimetric
water content fell below the target level (3 g water per g of
soil), a specific amount of water or PCZ solution was added
to maintain the pot at the desired condition. The 2D and
3D data were collected daily using the RoAD platform for
30 days, starting the first day after setup (DAS). The day
when the system was set up was denoted by 0 DAS.

Given the large number of traits reported by the RoAD
system, we first determined which of these traits are infor-
mative for the BR response. We used machine learning to
classify WT plants between control and PCZ-treated cate-
gories. Our analysis attained test accuracies of up to 0.950
(Table S2) and identified a number of traits with high fea-
ture importance in distinguishing the BR-inhibited (PCZ-
treated) plants from the controls (Figure 4(a)). For example,
2D solidity, which is defined as the ratio of area to convex
hull area in 2D, can effectively separate the controls and

the PCZ-treated plants (Figure 4(b)). The solidity of the
PCZ-treated plants was higher than that of the controls,
indicating PCZ-treated plants show more compact growth.
This pattern was also apparent for the holistic area convex-
ity trait (Figure 4(c)), which is a measure of compactness in
3D, and the leaf aspect ratio (Figure 4(d)), which is a mea-
sure of individual leaf shape. PCZ-treated plants showed a
higher degree of compactness in 3D models and they have
shorter, wider leaves than those of the controls. These
macroscopic phenotypic traits observed upon PCZ treat-
ment are consistent with a reduction in cell elongation
resulting from BR inhibition (Hartwig et al., 2012; Sekimata
et al., 2002; Best et al., 2014; Oh et al., 2016).

If the reduced BR signaling is associated with the more
compact growth as measured by increased solidity, then
bri1-301, a loss-of-function BR receptor mutant (Xu et al.,
2008), would be expected to show a pattern similar to PCZ-
treated plants. Indeed, we observed increased solidity of
bri1-301 compared to WT (Figure 4(e,f)). Moreover, solidity
showed an opposite trend for BRITP-BRI10X, which has
increased BR signaling (Friedrichsen et al., 2000). However,
another gain-of-function BR mutant, bes?-D (Yin et al.,
2002), did not show increased solidity values (Figure 4(f)).
It is likely that the highly curved leaves of bes7-D reduced
the rosette compactness due to feedback inhibition of
some BR traits in bes1-D. Except for bes1-D, the order of
the solidity of the other three genotypes is bri7-307 > WT >
BRI1P-BRI10X, indicating that increased BR signaling gen-
erally reduces plant solidity. A complete list of phenotypic
values and corresponding statistical analysis is provided
(Tables S3 and S4).

To test how RoAD can be used to phenotype diverse
Arabidopsis lines, we examined 20 Arabidopsis accessions
from the 1001 Genomes collection (Alonso-Blanco et al.,
2016; Kawakatsu et al., 2016) under control and PCZ treat-
ment conditions (Figure 5(a), Tables S5 and S6). These
lines were selected due to either an increased or a
decreased response to another BR inhibitor, brassinazole
(BRZ) (Asami et al., 2000), when compared to Col-0. We
observed concordance between the seedling and plant
growth assays in a number of cases. For example, Petergof
and Sij 1/96 were stunted in seedling BRZ assays, and simi-
larly, they displayed a dwarf phenotype in plant growth
assays (Figures 5(a) and S1(a—d)). Across all 20 lines, there
was not a strong correlation between solidity in adult
plants in response to PCZ and BRZ responses in seedlings
(Figures 5(b) and S1(e)). BRZ and PCZ response assays in
dark-grown seedlings were largely consistent (Fig-
ure S1(f)), indicating the differences are unlikely to be
caused by the use of BRZ versus PCZ. This suggests that
additional insight can be gained through BR phenotyping
of multiple developmental stages and traits. Consistent
with this idea, we found significant genotype-by-PCZ treat-
ment interactions for 40 traits with 19 accessions having at
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(a) Correlation among the 55 system-derived traits from RoAD image analysis. Traits are grouped by category and ordered by hierarchical clustering.

(b) Correlation between system-derived traits and ground truth of data leaf length.
(c) Correlation between system-derived traits and ground truth of data leaf width.
(d) Correlation between system-derived plant volume and fresh weight.
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Figure 4. Patterns of BR phenotyping in Arabidopsis.

Percent change relative
to WT control treatment

0.8
(d)
| ‘ Length
Control
()
=

i 08 + T ++ treatment
T 06 i B8 control
5 == & PCZ

I

50% - Tk ki
250/“ _ 3 II .L treatment
. control
0% l PCz
-25% -

-50%

V\;T bri1l-301 BRI1P-IBRI1OX bes»l1-D

(a) Feature importance from machine learning classification of control versus PCZ-treated plants.
(b) Example of a 2D trait: solidity 2d, which is defined as the ratio of projected area to convex hull area. The red outline indicates the convex hull.
(c) Example of a 3D trait: holistic area convexity, defined as the ratio of plant area to the 3D convex hull area. Plants are pseudocolored based on the depth value

and enclosed by a 3D convex hull.

(d) Example of an individual leaf trait: leaf aspect ratio, defined as the ratio of leaf length to leaf width.

(e) Representative images of WT, bri1-301, BRI1P-BRI10X, and bes1-D plants under control or PCZ treament (100 pm) conditions at 30 days after setup (DAS).

(f) Solidity 2d of WT, bri1-301, BRI1P-BRI10X, and bes1-D under control and PCZ treatment conditions at 30 DAS. FDR-corrected P-values relative to the WT con-
trol are indicated from the linear mixed model: +FDR < 0.1, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.

least one significant difference (false discovery rate [FDR]
< 0.1) when compared to the commonly used Col-0 acces-
sion (Figure 5(a,c)).

We noticed that the Lch-0 accession had a distinct 3D mor-
phology and performed an additional experiment with Col-0
and Lch-0 under control, PCZ, and drought conditions (see
next section for details on drought experiments). The 3D
imaging capability of RoAD revealed that Lch-0 plants had
increased plant height compared to Col-0 (Figure 6(a—d))
which coincided with longer hypocotyls in seedling BRZ
assays (Figure S1(b,d)). We hypothesized that BRs may be at
least partially responsible for the phenotypes observed in
Lch-0. Consistent with this idea, Lch-0 had a significant

genotype-by-treatment interaction for plant height and con-
vex hull volume under control versus PCZ treatment condi-
tions (Figure 6(c-f)). Additionally, plant height and convex
hull volume of Lch-0 also had a significant genotype-by-
treatment interaction for drought (Figure 6(c-f)). This indi-
cates that the 3D architecture of Lch-0 is influenced by both
drought and BRs. The genotype-by-treatment interactions for
Lch-0 were more subtle when only considering 2D traits such
as convex area (Figure S1(g,h)). These results show that the
RoAD system captures traits relevant to BR-regulated plant
growth and drought responses, and can reveal additional
plant characteristics that might be missed by phenotyping
seedlings on Petri plates or by 2D images alone.

© 2021 The Authors.
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(a) Representative images of 20 Arabidopsis accessions grown under control or PCZ treatment (100 pm) conditions taken at 29 DAS.

(b) Comparison of solidity (PCZ/control ratio) from RoAD and the BRZ response in seedlings (BRZ/control length ratio) among the 20 accessions phenotyped.

(c) Heatmap showing genotype-by-treatment effects for each accession compared to Col-0. BL_petri indicates the response to 100 nm brassinolide in light-grown
seedlings. BRZ_petri indicates the response to 250 nm brassinazole in dark-grown seedlings. All other traits are from the PCZ response using RoAD at 29 DAS.
FDR-corrected P-values are indicated for significant terms from a linear mixed model: +FDR < 0.1, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.

RoAD precisely controls water levels for drought
experiments

The RoAD system can control soil water content for con-
trolled drought experiments in two modes. The first is end-
point drought mode. In this type of experiment, the
drought-stressed plants begin the experiment in well-
watered conditions and are not watered until they fall
below the target moisture level as assessed by gravimetric
water content (Figure S2). One caveat of this method is
that drying rates may vary among pots, which has been
noted in other automated drought phenotyping systems
(Tisné et al., 2013). To address this issue, we implemented
a second mode with controlled water deficit ramping. The
plants under drought stress are kept in well-watered condi-
tions for a set period (e.g., 8 days). Subsequently, the soil
moisture level is decreased linearly, enabled by RoAD’s
daily weighing and watering regimen (Figure 7(a,b)). In
this second mode, both the rate of drying and the timing
of water deficit can be more precisely controlled.

To establish traits measured by RoAD that are informa-
tive for drought phenomics we implemented a similar
machine learning classification on WT plants under control
versus drought conditions (Table S2). From this analysis,
we found that the trait hsvS, which refers to the average

© 2021 The Authors.

saturation value in the HSV color space of the plant pixels,
could efficiently distinguish control from drought-treated
plants (Figure 7(c)). Specifically, drought-stressed plants
had lower color saturation values than control plants.

We performed a controlled water deficit ramping drought
experiment using WT, bri1-301, BRITP-BRI10X, and bes1-D
in which water levels were reduced starting at 6 DAS
(Drought 6), 8 DAS (Drought 8), or 10 DAS (Drought 10) (Fig-
ure 7(a,b), Tables S7 and S8). We first analyzed the color
information but found that the genotypes responded simi-
larly to drought in terms of color saturation (Figure 7(d)).
Next, we examined growth responses in terms of plant area
during the drought time series. We observed a more pro-
nounced decrease in growth during drought conditions for
both bri1-307 and bes1-D compared to WT (Figures 6(f) and
7(e)). These results differ from water-withholding drought
survival assays in which bri1-307 plants have increased sur-
vival rates whereas bes7-D has decreased survival (Nolan
et al., 2017a; Ye et al., 2017). While the conditions for tradi-
tional drought survival assays are more severe, the drought
conditions applied from the RoAD system are milder, which
might better represent field conditions. This suggests that
monitoring growth during drought using the RoAD system
could reveal additional aspects of BR-mediated growth and

The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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Figure 6. Lch-0 has an altered 3D architecture in response to PCZ and drought.

(a) Top-view images of representative plants of Col-0 and Lch-0 under control, drought, and PCZ conditions at 33 days after setup (DAS).

(b) Comparison of 3D models of representative plants of Col-0 and Lch-0 under control, drought, and PCZ conditions at 33 DAS.

(c) Plant height for Col-0 and Lch-0 under control, drought, and PCZ conditions.

(d) Comparison of plant height of Col-0 and Lch-0 under control, drought, and PCZ conditions at 33 DAS. FDR-corrected P-values are indicated for significant
genotype-by-treatment interactions from a linear mixed model: +FDR < 0.1, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.

(e) Convex hull volume for Col-0 and Lch-0 under control, drought, and PCZ conditions.

(f) Comparison of convex hull volume of Col-0 and Lch-0 under control, drought, and PCZ conditions at 33 DAS. FDR-corrected P-values are indicated for signifi-
cant genotype-by-treatment interactions from a linear mixed model: +FDR < 0.1, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.

stress coordination. Interestingly, the reduction of growth in prove instrumental in dissecting BR-mediated growth and
BRITP-BRI10X plants under drought was less severe than drought responses.
that in WT plants (Figure 7(e,f)). This indicates that some

aspects of the BR response that are increased in BRITP- The 3D architecture of the BR response in maize seedlings

. i | RoAD
BRITOX may help improve growth under drought. Taken is revealed by Ro
together, the ability of the RoAD system to precisely control To extend the RoAD system to row crops, we implemented
soil water conditions and monitor phenotypic traits should RoAD assays in maize. PCZ has previously been

© 2021 The Authors.
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Figure 7. Drought responses in Arabidopsis.

0.8

(a) Representative images of control and drought-treated WT, bri1-301, bes1-D, and BRI1P-BRI10X plants from 20 to 34 days after setup (DAS).
(b) Soil water content over time for control and drought-treated plants. For drought treatments the decrease in water levels was initiated at 6 DAS (Drought 6), 8

DAS (Drought 8), or 10 DAS (Drought 10) using controlled water deficit ramping.

(c) Feature importance from machine learning classification of WT control and drought-treated plants.
(d) Saturation (hsvS) values of WT, bri1-301, BRITP-BRI10X, and bes1-D plants under control and drought conditions.
(e) Plant area for WT, bri1-301, BRITP-BRI10X, and bes1-D under control and drought conditions. Individual plant data are represented by dots, and the group

averages are shown with solid lines.

(f) Comparison of plant area of WT, bri1-301, BRITP-BRI10X, and bes1-D on 32 DAS. FDR-corrected P-values are indicated for significant genotype-by-drought
interactions from a linear mixed model: +FDR < 0.1, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.

demonstrated to be an effective BR inhibitor in maize, but
the corresponding changes in 3D plant architecture have
yet to be explored (Best et al., 2017; Hartwig et al., 2012).
To this end, we developed a protocol for RoAD to carry out
image acquisition for maize seedling plants non-
destructively. During each acquisition cycle, a total of one
RGB image and four multi-view point clouds were saved
for each maize plant. The multi-view point clouds were fil-
tered and then merged into a single point cloud (Figure 8
(a)). To compute the component phenotypes, a point cloud
skeletonization method was used to analyze the maize
plant architecture (Figure 8(b,c)) (Bao et al., 2019a; Xiang
et al., 2019). A series of morphological traits were automat-
ically extracted. Maize plants were grown in a growth
chamber and imaged to evaluate the system and the image
analysis algorithm. Comparisons between the measure-
ments indicated that the RoAD platform provides accurate
and reliable measurements for seedling maize plants (Fig-
ure S3, R? between 0.93 and 0.99).

© 2021 The Authors.

Thirty maize plants with five levels of treatments (PCZ 0,
100 pm, 500 pm, 1000 pm, and 2000 pm) were grown to
examine the effect of PCZ on maize seedling growth (Fig-
ure 8(d,e), Tables S9 and S10). Images were acquired daily
from 10-14 days after planting (DAP). A set of phenotypic
traits were extracted automatically using the developed
algorithm. We plotted averaged growth curves by plant
height, plant width, plant area, and plant volume per treat-
ment (Figure S4(a-d)). PCZ inhibited growth of the maize
plants, which was evident by the reduction of the plant
height, plant width, plant area, and plant volume. These
effects increased with the PCZ concentration. Consistent
with our observations in Arabidopsis, the solidity for PCZ-
treated maize plants was also increased compared with
controls (Figure 8(f)). Next, we studied individual leaf traits
to gain more detailed insights into the differences
observed at the plant level. We found that the PCZ-treated
plants had lower leaf curvature values than the control
plants (Figure 8(g)). Leaf length also decreased for PCZ-

The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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Figure 8. Image processing and BR phenotyping of
maize seedlings.

(a) 3D point cloud of a maize plant.

(b) 3D skeleton of the plant. The blue and red points
represent leaf tip and leaf base, respectively.

(c) Stem and leaf segmentation. The color indicates
individually segmented leaves.

(d,e) Plant growth from 10 to 14 DAP shown in (d)
2D and (e) 3D view. Maize plants were divided into
five groups and treated with 0, 100, 500, 1000, or
2000 pm PCZ.

(f) Solidity of maize plants under different PCZ
levels.

(g) Leaf curvature of the second leaf under the indi-
cated control or PCZ treatment conditions.

(h) Leaf length of the second leaf under the indi-
cated control or PCZ treatment conditions.
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treated plants compared with the control plants (Figure 8
(h)). The decrease in leaf curvature and leaf length partially
explained the increase in solidity observed and corrobo-
rated that PCZ treatment led to more compact maize seed-
ling phenotypes. The trends observed in our phenotypic
characterization of the maize seedling PCZ response are
congruent with the described roles of BRs in controlling
maize growth and development (Hartwig et al., 2011; Hart-
wig et al., 2012; Kir et al., 2015) and provide insights into
the 3D architecture of this response.

DISCUSSION

In this study, we developed RoAD, an automated pheno-
typing system designed for analyzing BR and drought
responses in Arabidopsis. The system is capable of
watering and maintaining plants at different soil mois-
ture conditions, as well as providing top-view RGB
images and multi-view 3D point clouds of plants over
time. RoAD incorporates an automatic image processing
pipeline, supporting plant and leaf segmentation and
calculation of morphological and color features. The
pipeline was validated with manual measurements of
plants. Overall, we found that the system-derived traits
were highly correlated with the manually collected
ground truth data. We assessed how traits measured by
RoAD vary among BR mutants subjected to PCZ or
drought conditions. Additionally, we phenotyped 20
Arabidopsis accessions under control and PCZ treat-
ment conditions, which revealed substantial variation in

PCZ (uM)

traits affected upon BR inhibition. The system was also
used for maize seedling phenotyping, demonstrating
that it is readily extensible to the analysis of other plant
species.

The RoAD system differs from other previously devel-
oped phenotyping systems by (i) utilizing a mobile base,
which can easily move to and fit in different growth cham-
bers; (ii) adopting a six-axis robotic manipulator, making
the robot more versatile, dexterous, and flexible to acquire
multi-view images; and (iii) allowing multiple treatments
such as PCZ and water limitation. In drought experiments,
users can set when water limitation starts, the target water
level, and when the target water level is reached. The
robotic platform is extendable to other analytical sensors
(such as near-infrared, thermal, and probing sensors) and
could be integrated into facilities for large-scale plant phe-
notyping. A limitation of the RoAD system is that during
each acquisition cycle, there is a gap of several hours
between when the first and last plants of an experiment
are processed, which means the timing of imaging and
watering varies from plant to plant, but the data collection
interval remains the same for every plant. To address the
potential influence of the data acquisition timing differ-
ence, we have incorporated a randomized block design
that avoids confounding between factors of interest such
as genotypes or treatments and the acquisition order. It
would be helpful to design multiple robots working in par-
allel to reduce the time between two data collections for
different individuals.

© 2021 The Authors.
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Using RoAD and machine learning, we identified 2D
solidity as an important feature in distinguishing control
from PCZ-treated WT plants. While inhibition of the BR
pathway by PCZ and a BR loss-of-function mutant, bril-
301, reduced plant solidity, increased BR signaling in
BRI1P-BRI1-OX decreased solidity (Figure 4). On the other
hand, bes1-D, which is also a BR gain-of-function mutant,
had more complex phenotypes at the whole-plant level
with increased solidity compared to WT Col-0. It is worth
noting that the bes7-D mutant used in this study was intro-
gressed into the Col-0 background (Vilarrasa-Blasi et al.,
2014), whereas this mutant was originally described in the
Enkheim-2 (En2) background (Yin et al, 2002). The
increased solidity of the bes7-D allele used in this study
might be due to highly curled leaves, likely due to feedback
inhibition of the BR pathway.

By phenotyping 20 Arabidopsis accessions, we identified
a large array of traits that responded to PCZ treatment differ-
ently than Col-0, which is often used as a WT control and ref-
erence accession (Figure 5). Additionally, the 3D imaging
capabilities of RoAD detected altered plant height and con-
vex hull volume in the Lch-0 accession, which would have
been difficult to observe by 2D imaging (Figure 6). The plant
height and convex hull volume of Lch-0 were significantly
affected by PCZ and drought treatments compared to Col-0,
indicating that both BRs and drought influence the 3D archi-
tecture and that this effect differs between Lch-0 and Col-0.
The ability to capture 3D plant traits with RoAD will also be
important when applying such a system to crop plants, such
as maize. We noticed that seedling BR response assays did
not always correlate with adult plant PCZ response pheno-
types, suggesting complementarity among these assays.
Our results demonstrate the utility of RoAD in phenotyping
BR-mediated growth responses across different develop-
mental stages, phenotypic traits, and genotypes.

BR and drought responses are extensively intertwined.
Several mechanisms impinge on BES1 to balance BR-
regulated growth responses with drought survival (Chen
et al., 2017; Nolan et al., 2017a; Xie et al., 2019; Ye et al.,
2017). Gain-of-function bes?-D mutants have reduced sur-
vival during drought, whereas loss-of-function bri1-301
mutants display increased drought survival (Nolan et al.,
2017a; Ye et al., 2017). Despite these opposite phenotypes
in terms of drought survival, RoAD drought experiments
showed that both bes7-D and bri1-307 had more dramatic
reductions in growth compared to WT under the drought
conditions tested. On the other hand, the growth of BR
gain-of-function BRI1P-BRI1-OX plants showed less inhibi-
tion in response to drought compared to WT. These phe-
notypes of BRITP-BRI1-OX are interesting in light of the
recent findings showing that overexpression of the vascu-
lar BR receptor BRL3, a homolog of BRI1, allows for
increased drought survival without compromising plant
growth (Fabregas et al., 2018; Planas-Riverola et al., 2019).

© 2021 The Authors.
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Our findings suggest additional complexity in BR-mediated
control of drought responses. Future studies should decon-
volute the role of various BR signaling components in
modulating both growth during drought and plant survival.
The precise control of water levels and drought timing
enabled by RoAD will enable such investigations.

In conclusion, the RoAD system provides a comprehen-
sive and automated platform for BR and drought response
experiments in soil-grown plants. The ability of RoAD to
accurately measure morphological and growth-related
traits of plants over time and under different treatments
should prove a powerful resource to study the coordina-
tion between BR-mediated growth and stress responses.

EXPERIMENTAL PROCEDURES
Assembly of the RoAD system

RoAD consists of a mobile service robot and two elongated tables
that support the pots. The robot is made up of an UGV (Shah
et al., 2016), a weighing station, a six-axis manipulator that carries
an RGB camera, a laser profilometer, and an electric gripper with
two liquid drippers at the fingertips. The robot is able to navigate
in the growth chamber and pick up each pot on the tables with
high reliability. The base of the UGV has a dimension of 73 cm x
73 cm x 51 cm. A T-slotted aluminum building system (80/20 Inc,
United States) was used to build the frame of the vehicle. The
UGV is equipped with four mecanum wheels (6" HD, AndyMark,
United States) and magnetic guide sensors (MGS1600, Roboteq,
United States). The mecanum wheels were driven by four brush-
less DC motors (BL58-412F-48V GRA60-032, Midwest Motion Prod-
ucts, United States) through two dual-channel motor controllers
(FBL2360, Roboteq, United States). The motor controllers, the
manipulator, and the sensors are controlled by an industrial-grade
embedded computer (ML400G-30, Onlogic, United States). To
reach all the pots on the tables, the UGV travels along a straight
magnetic tape on the floor between the two tables. The UGV can
autonomously move to three positions along the magnetic tape,
which are enabled by the magnetic guide sensor and additional
magnetic markers next to the magnetic tape. The two tables
(71 cm x 213 cm) are made of rectangular plastic panels and 80/20
aluminum frames. As the magnetic guidance system has a posi-
tion accuracy of +£1 ¢cm, seven spherical metal balls of 2.54 cm in
diameter are positioned along the edges of each table for the
robot to accurately calibrate its pose with respect to the table. At
each workstation, two balls on the near side of the table and one
ball on the far side are scanned with the laser profilometer. Ball
centers are estimated by fitting spheres to the resultant 3D point
clouds. Subsequently, the pot positions in a grid system can be
located with an accuracy of £5 mm, which is determined by the
accuracies of the hand-eye calibration, the synchronization
between the laser profilometer and the manipulator, and sphere
fitting. The space between adjacent pots on the table allows an
approximately 1 cm tolerance. The 3D ball-based pose calibration
method is essential to the high reliability of the RoAD platform.

A Graphic User Interface (GUI) was developed to set plant attri-
butes, manage RoAD parameters, and control the RoAD system.
To start a new experiment, the user needs to define plant attri-
butes including plant genotype, the number of replicates, water-
ing solution type and target water level. Subsequently, a pot map
is generated using a randomized complete block design. In the
pot map, each plant has a unique ID. The GUI allows the user to

The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2021), doi: 10.1111/tpj.15401



14 Lirong Xiang et al.

set the drought mode and tune parameters such as the exposure
time of the RGB camera, the vertical distance from the camera to
the plant, and the speed and acceleration of the robotic manipula-
tor. The user can select various operation modes based on the
needs of the experiment. In mode 1, RoAD will grab pots given by
the user and put them on the table sequentially. Mode 2 is for
daily image acquisition and watering of the plants on the tables.
Mode 3 is designed to image and scan a plant that is manually
placed on the bench scale.

Plant materials and growth conditions

Our experiments on the RoAD system included the following Ara-
bidopsis thaliana (Arabidopsis) lines: WT Col-0, bes1-D (Vilarrasa-
Blasi et al., 2014; Yin et al., 2002), BRI1P-BRIT10X (Friedrichsen
et al., 2000), bri1-3071 (Xu et al., 2008), and the 20 Arabidopsis
accession listed in Table S11. Plants were grown under control (3
g water per g dry soil), PCZ (3 g water with 100 pm PCZ added per
g dry soil) (Hartwig et al., 2012; Sekimata et al., 2002; Best et al.,
2014; Oh et al., 2016), or drought conditions (0.75 g water per g
dry soil). Plant seeds were sown on ' Linsmair and Skoog plates
supplemented with 1% sucrose and stratified at 4°C in darkness
for 2-5 days. Plates were then placed in the light at 22°C. After
7 days, the plants were transferred to 10-cm-diameter pots filled
with equal weights of soil, and soaked in plastic trays with water
or PCZ solution. The exact mass of dry soil was determined for
each experiment, so that the gravimetric water content could be
calculated to reach the desired soil moisture level. Plants were
positioned on the two tables using a randomized complete block
design with four to eight replications per genotype per treatment.
Lighting in the growth room was set to a 12/12-h light/dark cycle.
A dehumidifier was used to maintain the relative humidity at
approximately 50%. Weighing and watering were performed once
a day for each pot, according to the target conditions. The plants
were imaged for approximately 30 days, starting from the day
when the plants were placed in the phenotyping system. For trait
validation, the leaf length and width were measured manually
using the MATLAB image processing toolbox and converted from
units of pixels to centimeters using a pinhole camera model.

For the BRZ response experiments, we sterilized seeds for 4 hiin a
Nalgene Acrylic Desiccator Cabinet (Fisher Scientific, 08-642-22) by
mixing 200 mL bleach (8.25% sodium hypochlorite) with 8 mL con-
centrated hydrochloric acid to generate chlorine gas. Seeds were
then resuspended using 0.1% agarose solution for plating. Control
(BRZ0; DMSO solvent only) or BRZ-treated (250 nm) 1/2 LS plates
were supplemented with 1% (w/v) sucrose. After seeds were plated,
the plates were sealed with breathable tape (3M Micropore) and
placed inthe dark at 4°C for 5 days. Plates were then exposed to light
for 6-8 h and wrapped in foil for 7 days of growth in the dark. Plates
were imaged with an Epson Perfection V600 Flatbed Photo Scanner
at a resolution of 1200 dots per inch and hypocotyls were then mea-
sured in ImageJ.

Brassinolide (BL) response experiments were carried out in a
similar fashion, except that plates were supplemented with control
solvent (BLO, DMSO) or 100 nm BL (Wako chemicals) and plants
were grown for 7 days at 22°C under continuous light.

To compare BRZ and PCZ treatments in seedlings, we selected
250 nm PCZ and 500 nm BRZ as concentrations that resulted in a
similar decrease in hypocotyl elongation for WT Col-0. BRZ and
PCZ response assays were then performed side-by-side using 7-
day old seedlings that were grown in the dark using the methods
described above for BRZ assays.

Maize plants were studied to further extend the application of
the RoAD system to crop plants. B73 maize seeds were planted in

plastic pots in a growth chamber, with one seed per pot. The
plants were divided into five experimental groups and one control
group. The plants in the experimental groups were watered with
indicated concentrations of PCZ (100 pm, 500 pm, 1000 pm, or
2000 pm), and the plants in the control group were grown with
water. The plants were cultivated in a growth chamber (16 h light/
8 h dark) at a temperature of 28°C and a relative humidity of 50%.
Thirty individual plants were randomly selected from all six
groups, with five replicates in each group to be inspected by the
RoAD system. Image acquisition was performed at five different
developmental time points (once a day from 10 to 14 DAP). One
RGB image and four multi-view depth images were acquired for
each plant. The maize plants were manually transported from the
growth chamber to the RoAD system.

Image processing

Segmentation of Arabidopsis plants in 2D. The excess
green (ExG) index has been found to be an effective indicator to
separate green plants from soil (Hamuda et al., 2016). In our pipe-
line, the RGB image is first converted to a grayscale image using
the ExG index and then binarized by Otsu’s thresholding method
(Figure 2(b)). However, we observed that the plants under water-
limited conditions tend to exhibit a dark purple color at late growth
stages (Figures 7(a)) and S2(a)). Accordingly, we implemented hue
information in HSV (hue, saturation, and value) color space to iden-
tify the dark purple parts. The pot edges were detected using Circle
Hough Transform to aid in the isolation of plants. The part inside
the detected circle was considered the region of interest (ROl). The
ROl was then transformed to HSV color space. An appropriate
threshold was then applied to the hue channel of the ROI to sepa-
rate the drought plant from the soil. The mask images from ExG
and HSV color space were combined to acquire a plant-only RGB
image. The 2D image processing pipeline was implemented in
MATLAB R2017a (MathWorks, United States).

Segmentation and registration of Arabidopsis plants in

3D. The 3D point cloud processing pipeline utilized the Point
Cloud Library (Rusu and Cousins, 2011) and the OpenCV library
(Bradski and Kaehler, 2008). First, the point cloud was down-
sampled and filtered to reserve only the parts that were common
among the multi-view point clouds (plant, soil, and pot). We then
implemented the iterative closest point algorithm to find the glo-
bal transformation between multiple point clouds taken from dif-
ferent viewing angles. At this stage, four transformation matrices
were obtained, which were used to merge the point clouds. In the
next step, we segmented the plant canopy by mapping the fore-
ground from the 2D image to the point cloud. The resulting point
cloud was filtered and cleaned by removing small clusters. After
that, the segmented plants from each frame were merged into a
single frame, using the transformation matrices obtained in the
registration process. Finally, in order to remove the duplicate
points without losing important information, a voxel grid filter
with a 3D box size of 5 mm?® was applied to the combined point
cloud.

Maize plant image analysis and trait validation. A point
cloud skeletonization method was introduced to analyze the maize
plant architecture and segment individual leaves. The raw data (Fig-
ure S5(a)) were filtered and merged to a single point cloud (Fig-
ure S5(b)). To compute the plant height, the random sample
consensus algorithm (Fischler and Bolles, 1981) was implemented
to fit a plane in the merged point cloud to detect the soil (Fig-
ure S5(c)). The points were sliced into layers based on their height

© 2021 The Authors.
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and Euclidean clusters were extracted for grouping each layer. The
3D skeleton was generated and mapped to a graph by connecting
the centroid of the adjacent Euclidean clusters (Figure S5(d)). The
individual leaf was detected by iteratively traversing the graph from
a one-neighbor node (leaf tip, blue points) along a connected path
until encountering a three-neighbor node (leaf base, red points)
(Figure S5(e)). Leaves were numbered consecutively, with the first
leaf being closest to the soil. The stem was detected as a 3D Hough
line (Figure S5(f)). Based on the segmentation results, a series of
morphological traits were automatically extracted (Table S1).

A total of 21 maize plants were grown in a growth chamber and
studied to evaluate the system and the proposed algorithm. The
plants were sampled at 20 days after planting. The position of the
camera was adjusted based on the heights of the plants. After
image acquisition, plants were manually measured to collect
ground truth data. Plant height and plant width were measured
using a ruler. Subsequently, each leaf was cut off to measure the
leaf length and leaf area. Leaf length was measured as the dis-
tance from leaf base to tip. The leaf was then scanned using an
Epson Perfection V600 Flatbed Photo Scanner and quantified
using MATLAB to obtain the area.

Linear mixed model analysis

A linear mixed-effects model was fit to the trait data using the Ime
function in the R nlme package (Pinheiro et al., 2020). For each
trait and day, the mixed model used raw trait measurements as
the dependent variable with fixed effects of genotype, treatment,
and their interaction. The random effects structure consisted of a
random intercept of plant index within block. Genotype-specific
weights were assigned to account for unequal variance across
genotypes. The model specification was as follows: Ime(raw value
~ genotype * treatment, random = 1lIblock/index, weights = varl-
dent(form = ~1igeno)). For all plotted data, P-values were adjusted
for multiple testing according to (Benjamini and Hochberg, 1995).

Machine learning classification

To understand the underlying relationship between system-derived
phenotypic traits and plant responses to PCZ or drought treat-
ments, we constructed two-class classification models based on
four supervised machine learning methods: a least absolute shrink-
age and selection operator (LASSO) (Tibshirani, 1996), a support
vector machine (SVM) (Smola and Scholkopf, 2004), a random for-
est (Breiman, 2001), and Adaptive Boosting (AdaBoost) (Hastie
et al, 2009). LASSO is a parametric method that is capable of
addressing collinearity issues in high-dimensional feature selection
setups (Li et al., 2019). The idea of LASSO is to add a penalty term
into parameter estimation and shrink the least important feature’s
coefficient to zero. We used the LASSO estimator integrated with
logistic regression for classification (Moghimi et al., 2018). SVM is
one of the most robust prediction methods, and it constructs a
hyperplane with soft margins for classification. The linear kernel
function was used for the SVM classifier in this study in order to
get the feature weight. The non-parametric method from machine
learning provides an alternative solution to avoid the problems
caused by multicollinearity among variables (Tomaschek et al.,
2018). Both random forest and AdaBoost are non-parametric mod-
els that make predictions based on a number of decision trees,
while the former uses bagging and the latter uses adaptive boost-
ing as the ensemble method. Random forest aggregates hundreds
of de-correlated decision trees trained on a randomly selected boot-
strapped dataset. On the other hand, AdaBoost trains decision trees
in a sequential way by increasing the weight of data points misclas-
sified by previous classifiers.

© 2021 The Authors.
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The classifications with labeling ‘1" for control and ‘2’ for PCZ
were performed for WT Arabidopsis plants with DAS values larger
than 15. The full dataset of WT plant morphological traits under con-
trol and PCZ conditions was shuffled and split into two groups with
70% for training and 30% for testing with 10-fold cross-validation.
Feature importance was calculated for each model to assess the rel-
ative contribution of each trait in the classification process, and the
averaged feature importance ranking was obtained from the four
models. The mean and standard deviation of accuracy, F1, preci-
sion, and recall values of the four classifiers are reported in Table
S2. The same processing pipeline was applied to WT plants with
DAS values larger than 24 to classify control and drought-stressed
Arabidopsis plants. Machine learning classification methods were
implemented in Python 2.7.14 (Python Software Foundation, United
States) using scikit-image v0.13.0 (Pedregosa et al., 2011).
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