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Abstract

Effective antiretroviral therapy (ART) has significantly reduced mortality of people living with HIV (PLWH), and the prevalence of
at-risk alcohol use is higher among PLWH. Increased survival and aging of PLWH is associated with increased prevalence of
metabolic comorbidities especially among menopausal women, and adipose tissue metabolic dysregulation may be a significant
contributing factor. We examined the differential effects of chronic binge alcohol (CBA) administration and ovariectomy (OVX) on
the omental adipose tissue (OmAT) proteome in a subset of simian immunodeficiency virus (SIV)-infected macaques of a longitu-
dinal parent study. Quantitative discovery-based proteomics identified 1,429 differentially expressed proteins. Ingenuity Pathway
Analysis (IPA) was used to calculate z-scores, or activation predictions, for functional pathways and diseases. Results revealed
that protein changes associated with functional pathways centered around the “OmAT metaboproteome profile.” Based on z-
scores, CBA did not affect functional pathways of metabolic disease but dysregulated proteins involved in adenosine monophos-
phate-activated protein kinase (AMPK) signaling and lipid metabolism. OVX-mediated proteome changes were predicted to pro-
mote pathways involved in glucose- and lipid-associated metabolic disease. Proteins involved in apoptosis, necrosis, and
reactive oxygen species (ROS) pathways were also predicted to be activated by OVX and these were predicted to be inhibited
by CBA. These results provide evidence for the role of ovarian hormone loss in mediating OmAT metaboproteome dysregulation
in SIV and suggest that CBA modifies OVX-associated changes. In the context of OVX, CBA administration produced larger met-
abolic and cellular effects, which we speculate may reflect a protective role of estrogen against CBA-mediated adipose tissue
injury in female SIV-infected macaques.
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INTRODUCTION

Of the estimated 1.2 million people living with HIV (PLWH)
in the United States, �50% are 50yr of age or older and
women account for more than half of this population (1). With
increased survival and aging of PLWH on antiretroviral ther-
apy (ART), the incidence of comorbid conditions such as met-
abolic dysregulation (2, 3) and early onset menopause in HIV-
infected women (4, 5) is increased and exceeds that of the
general population. At-risk alcohol consumption is common
among PLWH (6–8) and is associated with accelerated disease
progression/severity and increased development of metabolic
comorbidities in both PLWH and a preclinical model of sim-
ian immunodeficiency virus (SIV) infection (9–15).

Adipose tissue dysregulation is a central mechanism medi-
ating metabolic comorbidities among PLWH (16–20). In fact,
at-risk alcohol use, HIV/ART, and aging, especially among
postmenopausal women, have been shown to independently
produce similar negative effects on adipose tissue biology,

function, and overall metabolic health. At-risk alcohol use
impairs adipose tissue lipid metabolism and glucose toler-
ance, particularly in visceral adipose tissue (21–23), alters adi-
pokine secretion (24, 25), and increases risk for metabolic
disease (26–28). HIV/ART contributes to alterations in adipose
tissue distribution, including increased visceral/abdominal
adiposity (18, 19, 29), impaired adipogenesis (29–31), disrupted
adipokine release (32, 33), increased adipose inflammation,
and reduced insulin sensitivity (32–34). Postmenopausal sta-
tus is associated with increased visceral adiposity (35),
impaired adipose tissue lipid and carbohydrate metabolism
(36, 37), lowered adiponectin (38), and an increased risk for
metabolic syndrome (39, 40). Preclinical models of ovarian
hormone loss have shown that loss of estrogen disrupts insu-
lin signaling protein expression and promotes adipose inflam-
mation (41), increases adipocyte lipid accumulation (42), and
promotes adipose tissue hypertrophy, hyperplasia, and glu-
cose intolerance (43). Despite several studies providing evi-
dence for similar negative impacts, very few studies have
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investigated the combined effects of alcohol, HIV/ART, and/
or postmenopausal status on adipose tissue biology andmeta-
bolic health.

The rhesus macaque SIV model is an established and highly
relevant preclinical animal model for investigating the patho-
physiological consequences of chronic alcohol in the context
of immunodeficiency virus infection. Previous studies from
our laboratory have shown that chronic binge alcohol (CBA)
administration leads to marked dysregulation of glucose-insu-
lin dynamics and accentuates metabolic derangements in SIV
infection (13, 44, 45). CBA administration reduced serum adi-
ponectin, an insulin-sensitizing adipokine, omental adipocyte
cell size, and in vitro adipogenic differentiation ability of adi-
pose-derived stem cells, whereas increasing omental adipose
collagen expression in male SIV-infected, ART-treated rhesus
macaques (44, 45). Taken together, these findings strongly sug-
gest that CBA accelerates whole body and organ-specific meta-
bolic dysfunction, especially of adipose tissue, in SIV-infected,
ART-treatedmacaques.

Much of the knowledge of alcohol-mediated effects on adi-
pose tissue was acquired in HIV-negative models or male
PLWH, thus the effects of CBA on adipose tissue health in a
HIV-infected host and how these effects are influenced by
loss of ovarian hormones is largely under investigated.
Visceral adiposity, which is associated with increased mor-
tality in PLWH, is also associated with the development of
metabolic disorders including dyslipidemia, insulin resist-
ance, and impaired glucose homeostasis (46–50). Using a rel-
evant preclinical model of HIV and proteomic analysis, the
goal of this study was to examine the differential effects of
CBA administration and ovarian hormone loss, simulated by
ovariectomy (OVX), on the omental adipose tissue (OmAT)
proteome of SIV-infected, ART-treated female rhesus maca-
ques. Proteins are the executors of most physiological proc-
esses and functions. Quantitative proteomic analysis is a
reliable and powerful experimental approach used for global
differential analysis of proteins. Quantitative proteomics
provides insight into the molecular framework and physiol-
ogy of biological samples, processes, and disease states. By
focusing on the differential protein expression of OmAT, we
hope to bridge the gap and provide more understanding of
overall biological processes and functions that are dysregu-
lated due to alcohol and/or OVX in SIV.

METHODS

Animal Experiments

All experiments described in this study were approved by
the Institutional Animal Care and Use Committee at
Louisiana State University Health Sciences Center (LSUHSC,
New Orleans, LA) and adhered to the National Institutes of
Health guidelines for the care and use of experimental ani-
mals. The pathophysiological course of SIV infection has
been previously described in published manuscripts using
male rhesus macaques (13, 51–55). This is the first report of
findings in the adipose tissue of SIV-infected, ART-treated
female rhesusmacaques.

OmAT samples used in the present study were obtained
from a subset of macaques included in an ongoing parent
longitudinal study. For this study, proteomic analysis was

performed on OmAT of 16 macaques. The experimental
design of the parent study is described below.

Adult (6- to 9-yr-old) female Indian rhesus macaques
(Macaca mulatta) were randomized to either (1) chronic
binge alcohol-administered (CBA) or (2) isovolumetric water-
administered (VEH) groups. Animalswere surgically implanted
with gastric catheters and administered alcohol at a concentra-
tion of 30% (wt/vol) in water (30min infusion; 13–14g/kg/wk of
alcohol; 5 days/wk). Macaques achieved a peak blood al-
cohol level of 50–60mM (�230mg%), 2h after alcohol ini-
tiation. After 3mo of CBA or VEH administration, animals
were infected intravaginally with SIVmac251. At 2.5mo post-
SIV infection, coinciding with viral set-point, all animals
were initiated on daily subcutaneous injections of 20mg/kg of
Tenofovir {TFV, 9-[2-(phosphonomethoxy) propyl] adenine,
PMPA} and 30mg/kg of emtricitabine (FTC), provided by
Gilead Sciences Inc. (Foster City, CA). This dose and drug com-
bination effectively suppresses viral load and results in mini-
mal toxicity in normal healthy macaques from infancy to
adulthood and does not result in liver or renal toxicity in SIV-
infected macaques (54). One month postinitiation of ART, ani-
mals were randomized to either ovariectomy (OVX) or sham
(SHAM) surgery for a total of four treatment groups: VEH-
SHAM (n = 4), VEH-OVX (n = 5), CBA-SHAM (n = 4), and CBA-
OVX (n = 3). Eightmonths followingOVXor shamsurgery, after
an overnight fast, all macaques were euthanized according to
the American Veterinary Medical Association’s guidelines.
Each SIV-infected rhesus macaque was euthanized by first
anesthetizing the animal with ketamine xylazine (10mg/kg).
Buprenex is administered via intravenous catheter and undi-
luted propofol is administered slowly intravenously at 1–2mg/
kg to effect induction of anesthesia with a maintenance infu-
sion rate of 24–37mg/kg/h throughout the perfusion proce-
dure. Perfusion is achieved for 2–5min using ice-cold Ringer's
solution administered using a perfusion/embalming machine.
After the perfusion, death is confirmed with intravenous
administration of pentobarbital (1.8–10mg/kg). Euthanasia
before study-end was performed as needed based on the pres-
ence of any one of the following criteria: loss of 25% of body
weight, complete anorexia for 4days, major organ failure,
or medical conditions unresponsive to treatment and surgical
complications unresponsive to immediate intervention.
OmAT samples were excised at necropsy and immediately
flash frozen for further analysis. The total time for CBA or
VEH administration was 14.5mo, SIV infection for 11.5mo,
and 9mo on ART.

Anthropometric Measurements

Body weight was recorded weekly using an Avery Weigh-
Tronix scale with a WI-125 electronic weight indicator.
Crown-rump length was measured with the macaque lying
on its side, shoulder line vertically perpendicular to the body
from the top of the unflexed head to the junction of the
rump-tail groove. Body mass index (BMI) was calculated as
kg of body/m2 of crown rump length.

Body Composition

Dual-energy X-ray absorptiometry scans were performed
to assess total body lean and fat mass Prodigy Total Body
Fan-Beam densitometer (GE Medical Systems, Madison, WI)
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with a Small Animal Package of the enCORE software was
used for themeasurements.

Protein Preparation for Discovery-Based Quantitative
Shotgun Proteomics

Protein was isolated from OmAT samples by the addition
of 1% SDS and sonication. Protein concentration was deter-
mined using a BCA Protein Assay Kit (Thermo Fisher
Scientific, Waltham,MA). Based on the protein concentration,
100μg of each sample was prepared for trypsin digestion by
reducing the cysteines with tris(2-carboxyethyl) phosphine
(TCEP) followed by alkylation with iodoacetamide (IAA).
After chloroform-methanol precipitation, each protein pellet
was digested with trypsin overnight at 37�C. The digested
product was labeled using a tandem mass tag (TMTpro) 16-
Plex Reagent Set (Thermo Fisher Scientific) according to the
manufacturer’s protocol, and following a hydroxylamine
quench, was stored at�80�C until further use.

An equal amount of each TMT prolabeled sample was
pooled together in a single tube and SepPak purified (Waters
Chromatography, Dublin, Ireland) using acidic reverse phase
conditions. To eliminate unreacted TMTpro, a 10% acetoni-
trile (ACN) wash was performed before elution of labeled
peptides in 70% ACN. After complete drying, an off-line frac-
tionation step was used to reduce sample complexity. The
sample was resuspended in 10mM ammonium hydroxide,
pH 10. This mixture was subjected to basic pH reversed-
phase chromatography (Dionex UltiMate 3000; Thermo
Fisher Scientific). Briefly, the fractions were ultraviolet (UV)
monitored at 215nm for an injection of 100μL at 0.1mL/min
with a gradient developed from 10mM ammonium hydrox-
ide (pH= 10) to 100%ACN over 90min. A total of 48 fractions
(200μL each) were collected in a 96-well microplate and
recombined in a checkerboard fashion to create 16 “super-
fractions” (original fractions 1, 17, and 33 became new super-
fraction #1, etc.; original fractions 2, 18, and 34 became new
superfraction #2, etc.) (56).

The 16 superfractions were then analyzed on a Dionex
UltiMate 3000 nano-flow system (LC) coupled to a Thermo
Fisher Scientific Orbitrap Fusion Tribrid mass spectrometer
(MS). Each fraction was subjected to a 90-min chromato-
graphic method employing a gradient from 2% to 25% ACN
in 0.1% formic acid (ACN/FA) over the course of 65min, a
gradient to 50% ACN/FA for an additional 10min, a step to
90% ACN/FA for 5min, and a 10-min re-equilibration into
2% ACN/FA. Chromatography was carried out in a “trap-
and-load” format using an EASY-Spray source (Thermo
Fisher Scientific); trap column C18 PepMap 100, 5mm, 100A
and the separation column was EASY-Spray PepMap RSLC
C18, 2mm, 100A, 25cm. The entire run was at a flow rate of
0.3mL/min and electrospray was achieved at 1.8 kV.

TMTpro data acquisition utilized an MS3 approach for
data collection (57). Survey scans (MS1) were performed in
the Orbitrap utilizing a resolution of 120,000. Data-de-
pendent scans (MS2) were performed in the linear ion trap
using a collision-induced dissociation of 25%. Reporter
ions were fragmented using high-energy collision dissocia-
tion (HCD) of 65% and detected in the Orbitrap using a re-
solution of 50,000. This was repeated for a total of five
technical replicates.

Bioinformatic and Principal Component Analyses

TMTpro data analysis was performed using Proteome
Discoverer 2.3 (Thermo Fisher Scientific) (58–61). Each run of
the 16 “superfractions” was merged and searched using
SEQUEST HT (62). The Protein FASTA database was Macaca
mulatta, SwissProt, Tax ID=9544, version 2018-10-25 and con-
tained 44,389 protein sequences. Static modifications included
TMTpro reagents on lysine and N-terminus (þ 304.2071), car-
bamidomethyl on cysteines (þ 57.021), and dynamic modifica-
tion of oxidation of methionine (þ 15.9949). Parent ion
tolerance was 10ppm, fragment mass tolerance was 0.6Da,
and the maximum number of missed cleavages was set to 2.
Only high-scoring peptides were considered utilizing a false
discovery rate (FDR) of<1%, and only one unique high-scoring
peptidewas required for inclusion of a given identified protein.
Factors included in analysis were abundance ratios, P values,
adjusted P values, SEQUEST-HT, PEP scores, percentage cover-
age, peptide spectral matches, the number of peptides, and
unique peptides observed.

Abundance ratio was calculated by pairwise comparisons of
experimental/control groups. Pairwise comparisons are shown
in Table 1. Results from pairwise comparison of CBA-SHAM
versus VEH-SHAM are referred to as CBA-mediated effects,
and a full list of significant differentially expressed proteins are
listed in Supplemental Table S1 (all Supplemental material is
available at https://doi.org/10.6084/m9.figshare.14593653).
Results from pairwise comparison of VEH-OVX versus VEH-
SHAM are referred to as OVX-mediated effects and a full list
of significant differentially expressed proteins are listed in
Supplemental Table S2. Results from pairwise comparison of
CBA-OVX versus VEH-OVX are referred to as CBA effects in
the context of OVX, and a full list of significant differentially
expressed proteins are listed in Supplemental Table S3. Results
from pairwise comparison of CBA-OVX versus CBA-SHAM are
referred to as OVX effects in the context of CBA, and a full list
of significant differentially expressed proteins are listed in
Supplemental Table S4. The proteomics data have been depos-
ited to the ProteomeXchange Consortium via the PRIDE part-
ner repository (63, 64) with the data set identifier PXD023076
and 10.6019/PXD023076.

Bioinformatic analyses were performed using Qiagen
Ingenuity Pathway Analysis (IPA) software (QIAGEN Inc.,
https://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis). Proteins with at least a 1.5-fold change (up
or down) with a P value (FDR) of 0.05 were considered in the
core analysis to identify enriched biological processes and the
most significant canonical pathways, diseases, and disorders.
In an expression analysis, IPA calculates z-scores, or activation
predictions, for a functional annotation or disease. Unlike the

Table 1. Pairwise comparisons for omental adipose tis-
sue proteomic data analysis

Comparison Result

CBA-SHAM vs. VEH-SHAM CBA effects
VEH-OVX vs. VEH-SHAM OVX effects
CBA-OVX vs. VEH-OVX CBA effects in the context of OVX
CBA-OVX vs. CBA-SHAM OVX effects in the context of CBA

VEH-SHAM (n = 4); CBA-SHAM (n = 4); VEH-OVX (n = 5); CBA-OVX
(n = 3). CBA, chronic binge alcohol; OVX, ovariectomy; VEH, vehicle.
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P value, the z-score takes into account the direction of protein
expression. A negative z-score indicates a functional activity or
pathway that is inhibited, and a positive z-score indicates func-
tional activity or pathway activation. Principal component
analysis was performed on proteomic data of over 1,429 pro-
teins using scikit-learn version 0.23.1 Python code library.

RESULTS

Body Composition Measurements

No significant differences in percent change in body
weight from pre-OVX to study end point, percent change in
BMI from pre-OVX to study end point, or change in percent
fat from pre-OVX to study end point were observed among
the four treatment groups.

CBA and OVX Differentially Alter OmAT Proteomic
Profile of SIV-Infected Rhesus Macaques

A total of 1,429 proteins were identified and quantified by
proteomic profiling of OmAT samples. A volcano plot of differ-
entially regulated proteins by CBA (1A) and OVX (1B) is shown
in Fig. 1. The red circles depict data with significant P values
(�0.05) and absolute fold change (FC) value of at least 1.5.

CBA significantly upregulated 14 proteins and downregu-
lated 75 proteins, as shown in the Venn diagram (Fig. 2A).
CBA in the context of OVX (CBA-OVX vs. VEH-OVX) signifi-
cantly upregulated 111 proteins and downregulated 25 proteins
(Fig. 2A). A total of 12 proteins were significantly differentially
regulated by CBA (CBA-SHAM vs. VEH-SHAM) and in the

context of OVX (CBA-OVX vs. VEH-OVX), which are shown
below each Venn diagram. Of these 12 proteins, 4 were signifi-
cantly upregulated (acetyl-CoA carboxylase alpha, ACACA;
ATP citrate lyase, ACLY; fatty acid synthase, FASN; phospho-
serine aminotransferase 1, PSAT1) and 8 were significantly
downregulated (coiled-coil domain containing 50, CCDC50;
histone H1A, H1A; heterogeneous nuclear ribonucleopro-
tein D, HNRNPD; galectin-3, LGALS3; serum amyloid A
protein, SAA1; translocation protein SEC62, SEC62; PKD
domain-containing protein, EGK_13856; uncharacterized
protein, EGK_04932).

OVX significantly upregulated 47 proteins and downregu-
lated 40 proteins, as shown in the Venn diagram (Fig. 2B). OVX
in the context of CBA (CBA-OVX vs. CBA-SHAM) significantly
upregulated 83 proteins and significantly downregulated 58
proteins of the OmAT proteome (Fig. 2B). A total of 14 proteins
were significantly differentially regulated by OVX (VEH-OVX
vs. VEH-SHAM) and OVX in the context of CBA (CBA-OVX vs.
CBA-SHAM). Of these 14 proteins, 9 were significantly upregu-
lated (Acetyl-CoA Carboxylase Beta, ACACB; Alcohol dehydro-
genase 1B, ADH1B; Aldehyde Dehydrogenase 1 Family Member
L1, ALDH1L1; amine oxidase, AO; FASN; NADH dehydrogenase
flavoprotein 1, NDUFV1; peptidyl-prolyl cis-trans isomerase F,
PPIF; protein S100, S100; uncharacterized protein, EGK_08523)
and 5were significantly downregulated (asparaginyl endopepti-
dase, AEP; immunoglobulin heavy chain variable 4, IGHV4;
perilipin-4, PLIN4; stabilin-1, STAB1; threonine synthase-like 2,
THNSL2). Notably, many of these common proteins, among all
4 comparisons, are involved in pathways related to the OmAT
metaboproteome.
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Figure 1. Body weight and body composition measurements. A: percent change in body weight from preovariectomy (pre-OVX) to study end point. B:
percent change in body mass index from pre-OVX to study end point. C: change in percent body fat from pre-OVX to study end point. n = No. of animals
per group; VEH-SHAM (n = 4); CBA-SHAM (n = 4); VEH-OVX (n = 5); CBAOVX (n = 3); data analyzed using 2-way ANOVA.
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To better understand how CBA and OVX affect OmAT pro-
teome, we utilized PCA to compare the proteomic profiles
from all four treatment groups. PCA analysis revealed two
principal components (PCs) that best accounted for the vari-
ability in our data set (Fig. 3). PC1, which accounts for 21.27%
of variability, clusters proteomic profiles based on OVX (Fig.
3), whereas PC2, which accounts for 19.24% of variability,
clusters proteomic profiles based on CBA (Fig. 3). PC3
explained �10% of the overall variance within the data (not
shown).

Canonical Pathways Affected by CBA

To understand functional mechanisms associated with
CBA- and OVX-mediated differentially expressed proteins,
the proteomic data set was submitted to IPA core analysis
(65). The top-enriched categories of canonical pathways with
a P value less than 10�3 and representative differentially
expressed proteins in each canonical pathway are listed in
Tables 2 and 3. Notably, there were six canonical pathways
affected by both CBA and CBA in the context of OVX. They
were “biotin-carboxyl carrier protein assembly,” “adenosine
monophosphate-activated protein kinase (AMPK) signaling,”

“liver X receptor/retinoid X receptor (LXR/RXR) activation,”
“acetyl-CoA biosynthesis III (from citrate),” “peroxisome
proliferator-activated receptor alpha/retinoid X receptor
alpha (PPARa/RXRa) activation,” and “thyroid receptor/reti-
noid X receptor (TR/RXR) activation” (Table 2).

Canonical Pathways Affected by OVX

There were nine canonical pathways affected by both OVX
and OVX in the context of CBA. “liver X receptor/retinoid X
receptor (LXR/RXR) activation,” “farnesoid X receptor/reti-
noid X receptor (FXR/RXR) activation,” “clathrin-mediated
endocytosis signaling,” “sirtuin signaling,” “acetyl-CoA bio-
synthesis III (from citrate),” “xenobiotic metabolism aryl
hydrocarbon receptor (AHR) signaling pathway,” “palmitate
biosynthesis I (animals),” “fatty acid biosynthesis initiation
II,” and “PPARa/RXRa activation” (Table 3).

Directionality of Effects on Pathways Affected by CBA
and OVX

IPA core analysis provides z-score values indicating pre-
dicted pathway activation (positive values) or inhibition (neg-
ative values). Figure 4 depicts the top canonical pathways
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Figure 2. Graphical representation of omental adipose tissue proteomics data based on chronic binge alcohol (CBA; A) and ovariectomy (OVX; B)
effects. A: volcano plot of proteomics data based on CBA effects shown as P values vs. fold change (FC). CBA upregulated 14 proteins and downregu-
lated 25 proteins in omental adipose tissue. CBA in the context of OVX upregulated 111 proteins and downregulated 75 proteins. CBA in both compari-
sons upregulated four common proteins and downregulated eight common proteins, listed below the Venn diagram. B: volcano plot of proteomics data
based on OVX effects shown as P values vs. fold change (FC). OVX upregulated 47 proteins and downregulated 40 proteins. OVX in the context of CBA
upregulated 83 proteins and downregulated 58 proteins. OVX in both comparisons upregulated nine common proteins and downregulated five com-
mon proteins, listed below the Venn diagram. Red points in volcano plot represent data points with P � 0.05 and a fold change� 1.5. ACACA, acetyl-
CoA carboxylase alpha; ACACB, acetyl-CoA carboxylase beta; ACLY, ATP citrate lyase; ADH1B, alcohol dehydrogenase 1B; ALDH1L1, aldehyde dehydro-
genase 1 family member L1; AEP, asparaginyl endopeptidase; AO, amine oxidase; CCDC50, coiled-coil domain containing 50; EGK_04932, uncharacter-
ized protein; EGK_08523, uncharacterized protein; EGK_13856, PKD domain-containing protein; FASN, fatty acid synthase; H1A, histone H1A; HNRNPD,
heterogeneous nuclear ribonucleoprotein D; IGHV4, immunoglobulin heavy chain variable 4; LGALS3, galectin-3; PLIN4, perilipin-4; PSAT1, phosphoser-
ine aminotransferase 1; NDUFV1, NADH dehydrogenase flavoprotein 1; PPIF, peptidyl-prolyl cis-trans isomerase F; S100, protein S100; SAA1, serum amy-
loid A protein; SEC62, translocation protein SEC62; STAB1, stabilin-1; THNSL2, threonine synthase-like 2.

ALCOHOL AND OVARIECTOMY DYSREGULATE ADIPOSE METABOPROTEOME

362 Physiol Genomics � doi:10.1152/physiolgenomics.00001.2021 � www.physiolgenomics.org
Downloaded from journals.physiology.org/journal/physiolgenomics at LSU Health New Orleans Libraries (068.011.086.079) on August 26, 2021.

http://www.physiolgenomics.org


with a calculated z-score for each comparison. CBA inhibited
AMPK signaling pathway (Fig. 4A). CBA in the context of OVX
inhibited pathways associated with insulin receptor signaling,
whereas activating pathways associated with necroptosis,
fatty acid b-oxidation, tricarboxylic acid cycle (TCA) cycle,
and oxidative phosphorylation (Fig. 4B).

OVX inhibited the sirtuin signaling pathway (Fig. 4, C–D).
Most notably, OVX activated PPARa/RXRa activation and
LXR/RXR activation pathways, but in the context of CBA,
OVX inhibited these same pathways.

Metabolic Disease Pathways Affected by CBA and OVX

In addition to canonical pathways, downstream “diseases
and functions” categories were identified for all four compari-
sons. Analysis of each pairwise comparison revealed “meta-
bolic disease” as a top disease category (Fig. 5). Functional
pathways associated with “metabolic disease”were not signif-
icantly enriched by CBA. OVX activated five functional path-
ways associated with “metabolic disease” (Fig. 5A), and OVX
in the context of CBA activated two functional pathways and
inhibited one functional pathway associated with “metabolic
disease” (Fig. 5B). In contrast, CBA in the context of OVX
inhibited five pathways associated with “metabolic disease”
(Fig. 5C).

Comparison Analysis of Diseases and Biofunctions
Affected by CBA and OVX

Examination of the z-score-based heat map values for a
given pathway, disease, or biofunction revealed differences
among the four experimental comparisons (Fig. 6). For
example, proteome changes due to CBA or OVX are associ-
ated with a strong activation of pathways associated with
carbohydrate quantity and lipid concentration, whereas in
combination, CBA and OVX did not produce significant
changes in these pathways. In addition, CBA in the context
of OVX inhibited both apoptosis and necrosis pathways,

whereas OVX in the context of CBA led to the activation of
apoptosis and necrosis pathways.

DISCUSSION

We examined the effects of CBA and OVX on the OmAT pro-
teome in SIV-infected macaques. Our quantitative discovery-
based proteomic approach identified commonalities and dif-
ferences in OmAT protein expression profiles due to CBA,
OVX, and their combination. Our results identified functional
pathways associated with protein changes centered around the
“OmAT metaboproteome profile.” Specifically, our results
show predominant OVX-mediated OmAT metaboproteome
dysregulation with most significant number of differentially
regulated proteins and their implicated pathways. CBA appears
to be an effectmodifier of the OVX-associated changes.

CBA-Mediated Effects in SIV-Infected Macaques

The negative effects of chronic alcohol on adipose tissue
biology and metabolic function have been extensively inves-
tigated (22, 23, 25, 66–69). In a male macaque SIV model, we
have previously published that CBA accelerates SIV-disease
progression and promotes whole body and adipose tissue-
specific metabolic dysfunction including changes in insulin-
glucose dynamics and changes in adipose tissue collagen
content, inflammatory cell infiltration, and adiponectin
secretion (10, 13, 44, 45, 70). However, in our current study,
IPA analyses revealed that CBA administration did not pro-
duce large-scale differential regulation of canonical path-
ways or functional pathways of metabolic disease. CBA
administration induced protein changes that promote inhi-
bition of the AMPK signaling pathway. In support of previ-
ous findings showing alcohol-induced increases in cell death
(68, 71), CBA administration increased protein expression
associated with activation of both apoptosis and necrosis
pathways. Despite several studies reporting evidence for
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Table 2. Canonical pathways affected by CBA and CBA in the context of OVX

Ingenuity Canonical Pathway P Value of Overlap Ratio

CBA effects
Biotin-carboxyl carrier protein assembly� 8.15E-06 2/3
AMPK signaling� 4.38E-04 4/214
LXR/RXR activation� 1.08E-03 3/121
Acetyl-CoA biosynthesis III (from citrate)� 1.67E-03 1/1
Myc-mediated apoptosis signaling 3.17E-03 2/50
Palmitate biosynthesis I (animals) 3.34E-03 1/2
Fatty acid biosynthesis initiation II 3.34E-03 1/2
PPARa/RXRa activation� 3.91E-03 3/190
RAR activation 4.14E-03 3/194
TR/RXR activation� 8.70E-03 2/84
BMP signaling pathway 8.90E-03 2/85

CBA in the context of OVX
Mitochondrial dysfunction 1.80E-21 22/171
Oxidative phosphorylation 7.73E-17 16/109
Acute phase response signaling 8.21E-16 18/179
TCA cycle II (eukaryotic) 4.77E-14 9/24
Sirtuin signaling pathway 3.73E-11 17/291
Isoleucine degradation I 9.34E-10 6/16
LXR/RXR activation� 1.18E-09 11/121
FXR/RXR activation 1.83E-09 11/26
Glutaryl-CoA degradation 7.30E-08 5/16
Acetyl-CoA biosynthesis I (pyruvate dehydrogenase complex) 8.76E-08 4/7
Fatty acid b-oxidation I 9.61E-08 6/32
Coagulation system 1.69E-07 6/35
Valine degradation I 1.91E-07 5/19
Ketolysis 5.17E-07 4/10
Tryptophan degradation III (eukaryotic) 5.40E-07 5/23
Ketogenesis 8.08E-07 4/11
Mevalonate pathway I 2.41E-06 4/14
2-ketoglutarate dehydrogenase complex 3.58E-06 3/5
Extrinsic prothrombin activation pathway 4.33E-06 4/16
Superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 7.20E-06 4/18
Intrinsic prothrombin activation pathway 1.22E-05 5/42
Superpathway of cholesterol biosynthesis 5.26E-05 4/29
Biotin-carboxyl carrier protein assembly� 1.53E-04 2/3
Neuroprotective role of THOP1 in Alzheimer’s disease 1.92E-04 6/116
GP6 signaling pathway 2.20E-04 6/119
Branched-chain a-keto acid dehydrogenase complex 3.04E-04 2/4
Hepatic fibrosis signaling pathway 3.36E-04 10/368
TR/RXR activation� 3.48E-04 5.84
Stearate biosynthesis I (animals) 3.87E-04 4/48
2-Oxobutanoate degradation I 5.04E-04 2/5
Folate polyglutamylation 5.04E-04 2/5
Tight junction signaling 1.36E-03 6/168
Ethanol degradation II 1.54E-03 3/32
Role of tissue factor in cancer 1.56E-03 5/117
Folate transformations I 1.78E-03 2/9
Noradrenaline and adrenaline degradation 2.00E-03 3/35
Glycine betaine degradation 2.21E-03 2/10
superpathway of methionine degradation 2.35E-03 3/37
Complement system 2.35E-03 3/37
PPARa/RXRa activation� 2.53E-03 6/190
Estrogen receptor signaling 2.59E-03 8/328
Iron homeostasis signaling pathway 3.11E-03 5/137
Calcium signaling 3.77E-03 6/206
AMPK signaling� 4.53E-03 6/214
Epithelial adherens junction signaling 4.84E-03 5/152
c-linolenate biosynthesis II (animals) 6.47E-03 2/17
Methylthiopropionate biosynthesis 7.17E-03 1/1
Acetyl-CoA biosynthesis III (from citrate)� 7.17E-03 1/1
Sorbitol degradation I 7.17E-03 1/1

Ratio is the number of differentially expressed proteins in our data set that were implicated in the pathway relative to the total number
of proteins in that pathway. AMPK, adenosine monophosphate-activated protein kinase; CBA, chronic binge alcohol; FXR, farnesoid X
receptor; LXR, liver X receptor; OVX, ovariectomy; PPARa, peroxisome proliferator-activated receptor alpha; RXR, retinoid X receptor.
Only pathways with P value of overlap 10�3 are shown. �Pathways that are enriched in both comparisons.
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Table 3. Canonical pathways affected by OVX and OVX in the context of CBA

Ingenuity Canonical Pathway P Value of Overlap Ratio

OVX effects
Acute phase response signaling 6.57E-13 13/179
LXR/RXR activation� 2.23E-09 9/121
FXR/RXR activation� 3.19E-09 9/126
Clathrin-mediated endocytosis signaling� 1.30E-07 9/193
Coagulation system 3.55E-07 5/35
Atherosclerosis signaling 1.66E-05 6/127
Neuroprotective role of THOP1 in Alzheimer’s disease 1.34E-04 5/116
Production of nitric oxide and reactive oxygen species in macrophages 1.48E-04 6/188
IL-12 signaling and production in macrophages 2.45E-04 5/132
Intrinsic prothrombin activation pathway 7.43E-04 3/42
Sirtuin signaling pathway� 1.48E-03 6/291
Extrinsic prothrombin activation pathway 2.04E-03 2/16
Caveolar-mediated endocytosis signaling 3.66E-03 3/73
Macropinocytosis signaling 4.10E-03 3/76
Acetyl-CoA biosynthesis III (from Citrate)� 4.22E-03 1/1
Apelin liver signaling pathway 5.37E-03 2/26
Xenobiotic metabolism AHR signaling pathway� 5.61E-03 3/85
Palmitate biosynthesis I (animals)� 8.43E-03 1/2
Fatty acid biosynthesis Initiation II� 8.43E-03 1/2
PPARa/RXRa activation� 8.64E-03 4/190
Xenobiotic metabolism PXR signaling pathway 8.95E-03 4/192

OVX in the context of CBA
Mitochondrial dysfunction 1.05E-12 13/171
Oxidative phosphorylation 7.55E-11 10/109
Sirtuin signaling pathway� 8.18E-10 13/291
Glutaryl-CoA degradation 7.21E-07 4/16
Valine degradation I 1.52E-06 4/19
Tryptophan degradation III (eukaryotic) 3.42E-06 4/23
Ketolysis 1.09E-05 3/10
Fatty acid b-oxidation I 1.35E-05 4/32
Ketogenesis 1.49E-05 3/11
LXR/RXR activation� 1.99E-05 6/121
Mevalonate pathway I 3.26E-05 3/14
Isoleucine degradation I 4.99E-05 3/16
Biotin-carboxyl carrier protein assembly 6.20E-05 2/3
Stearate biosynthesis I (animals) 6.88E-05 4/48
Superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate) 7.22E-05 3/18
TCA cycle II (eukaryotic) 1.75E-04 3/24
NRF2-mediated oxidative stress response 2.35E-04 6/189
Superpathway of cholesterol biosynthesis 3.12E-04 3/29
Ethanol degradation II 4.19E-04 3/32
Iron homeostasis signaling pathway 4.21E-04 5/137
Acetyl-CoA biosynthesis I (pyruvate dehydrogenase complex) 4.29E-04 2/7
AMPK signaling 4.57E-04 6/214
Noradrenaline and adrenaline degradation 5.47E-04 3/35
Superoxide radicals degradation 5.70E-04 2/8
Xenobiotic metabolism AHR signaling pathway� 6.29E-04 4/85
Sucrose degradation V (mammalian) 7.31E-04 2/9
Folate transformations I 7.31E-04 2/9
Glycine betaine degradation 9.10E-04 2/10
Acyl-CoA hydrolysis 1.56E-03 2/13
PPARa/RXRa activation� 1.82E-03 5/190
Clathrin-mediated endocytosis signaling� 1.95E-03 5/193
FXR/RXR activation� 2.70E-03 4/126
Serotonin degradation 3.60E-03 3/67
LPS/IL-1 mediated inhibition of RXR function 3.71E-03 5/224
Aryl hydrocarbon receptor signaling 4.24E-03 4/143
Acetyl-CoA biosynthesis III (from citrate)� 4.57E-03 1/1
Glycolysis I 6.27E-03 2/26
Gluconeogenesis I 6.27E-03 2/26
Palmitate biosynthesis I (animals)� 9.13E-03 1/2
Fatty acid biosynthesis initiation II� 9.13E-03 1/2
Glycine biosynthesis I 9.13E-03 1/2

Ratio is the number of differentially expressed proteins in our data set that were implicated in the pathway relative to the total number of
proteins in that pathway. AHR, aryl hydrocarbon receptor; AMPK, adenosine monophosphate-activated protein kinase; CBA, chronic binge
alcohol; FXR, farnesoid X receptor; LXR, liver X receptor; OVX, ovariectomy; PPARa, peroxisome proliferator-activated receptor alpha; RXR,
retinoid X receptor. Only pathways with P value of overlap 10�3 are shown. �Pathways that are enriched in both comparisons.
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increased ROS with chronic alcohol exposure, including pre-
vious studies from our laboratory in end-stage SIV-infected
male macaques, the ROS functional pathway was not signifi-
cantly altered in the OmAT of female SIV-infected macaques
(52, 72–74). These results underscore the importance of fur-
ther investigation of the effects of CBA on adipose tissue in

SIV, as well as the possible sexual dimorphic responses to
CBA, to understand the cellular and molecular mechanisms
thatmediate these differential responses.

In the context of OVX, CBA administration led to much
more profound effects on OmATmetaboproteome profile. In
agreement with current knowledge of CBA effects on adipose
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tissue metabolism, pathway analysis revealed that CBA in
the context of OVX inhibited insulin receptor signaling and
AMPK signaling functional pathways, whereas activating
fatty acid oxidation, acetyl-CoA biosynthesis, and glutaryl-
CoA degradation pathways. CBA in the context of OVX led to
the activation of the TCA cycle and oxidative phosphoryla-
tion pathways. These results suggest that ovarian hormone
loss potentially plays a more important role than CBA in
modulating these pathways. Further investigation is war-
ranted to uncover possible competing mechanisms responsi-
ble for these contrasting effects. CBA in the context of OVX
led to general inhibition of metabolic disease functional
pathways. Specifically, functional pathways of hepatic stea-
tosis, abnormal metabolism, insulin resistance, and disor-
ders of lipid and glucose metabolism were inhibited due to
CBA in the context of OVX. These results are in line with
reports suggesting that ovariectomized rats were protected
from early alcohol-induced organ injury (75). Mechanisms

leading to this apparent OVX-mediated “protection” are still
unknown and should be further investigated. Whether chron-
icity or quantity of alcohol use modify these effects remains
to be examined.

OVX-Mediated Effects in SIV-Infected Macaques

Our OmAT proteomic results agree with clinically occur-
ring metabolic phenomenon associated with loss of estrogen
in women (37, 76–78). The pathway analyses indicated that
OVX significantly altered expression of proteins involved in
lipid and glucose metabolism. In terms of functional path-
ways of metabolic disease, OVX differentially regulated pro-
teins that promoted development of glucose and lipid
metabolism disorders including hyperlipidemia and dyslipi-
demia. Risk for metabolic comorbidities increases withmeno-
pause, and the transition to postmenopause is associated with
occurrence of metabolic dysregulation including lipid, glu-
cose, and insulin dyshomeostasis (76, 78). HIV infection itself
and ART also promote the emergence of metabolic comorbid-
ities (2, 34, 79, 80). It is well known that estrogen has impor-
tant modulatory effects on adipose tissue lipid metabolism
(43, 81). It is not completely clear whether menopause in HIV-
infected women exacerbates risks for metabolic complica-
tions. However, our results in female SIV-infected macaques
and the results of comparative studies on risk assessment in
uninfected and HIV-infected women suggest that the loss of
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estrogen in SIV/HIV further contributes to development of
metabolic dysfunction (77, 82).

In addition to major effects on adipose tissue metabolism,
OVX also significantly affected cell survival and ROS genera-
tion pathways. Specifically, in the OVX groups, differential
regulation of proteins indicated activation of apoptosis, necro-
sis, and ROS in OmAT of SIV-infectedmacaques. Literature on
the effects of estrogen on cell survival is inconsistent. Several
studies report that estrogen stimulates growth and inhibits ap-
optosis through estrogen receptor-mediated mechanisms in
many cell types (83–86). On the other hand, there is also strong
evidence suggesting that estrogen stimulates apoptosis in
other cell types, including breast cancer (83, 85, 87). Our results
suggest that estrogen loss in SIV may promote cell death by
the activation of apoptosis and necrosis pathways. Whether
CBA or OVX increases apoptotic cell death in OmAT is the
focus of our ongoing studies.

In the context of CBA, OVX altered protein expression indi-
cating activation of functional pathways associated with met-
abolic disease including glucose metabolism disorders and
insulin resistance. OVX in the context of CBA led to decreased
protein expression associated with hepatic steatosis func-
tional pathway. There was strong activation of cell death
pathways, specifically apoptosis and necrosis, with OVX in
the VEH-OVX versus VEH-SHAM comparison, which con-
trasts with inhibition of these pathways in the context of CBA.
Whether CBA results in a functional attenuation of OVX-
mediated cell death and ROS will be pursued in ongoing
studies.

This investigation was not without limitations. One limita-
tion is the small sample size, and global proteomic analysis
was performed on a subset of OmAT samples which is part of
a larger parent study. Ongoing work will include protein vali-
dation and identify the functional relevance in the full set of
OmAT samples obtained from the parent study. Another limi-
tation is the use of only one complete package software,
Proteome Discoverer (PD), for both identification and quanti-
fication of proteomic data sets. However, PD is a very power-
ful software tool for identification of peptides and proteins.
PD has been previously used in several published manu-
scripts from LSUHSC’s Proteomics Core Facility (58–60).

Together, these results provide evidence for the role of
ovarian hormone loss (estrogen being the major hormone) in
mediating OmATmetaboproteome dysregulation in SIV and
suggest that chronic alcohol exposure is an effect modifier in
the context of OVX (Fig. 7). Our findings indicate that in the
comparison between CBA-SHAM versus VEH-SHAM, CBA
does not dysregulate many proteins of pathways associated
with metabolic disease. However, OVX promotes pathways
associated with the development of metabolic disease. The
data also suggest that CBA administration in the context of
OVX produced larger metabolic and cellular effects, suggest-
ing a possible protective role of estrogen against CBA-medi-
ated adipose tissue injury in female SIV-infected macaques.
Further investigation is necessary to determine whether and
how this protection is mediated in OmAT. Ongoing studies
will investigate the functional significance of alcohol and
OVX-mediated OmAT metaboproteome derangements on
adipocyte metabolic capacity. The implications of alcohol
use and OVX on omental adipose tissue metaboproteome
resulting in alterations in glucose and lipid metabolism and

metabolic disease pathways in this study may help formu-
late recommendations to reduce risk of metabolic comorbid-
ities among HIV-infected women.

SUPPLEMENTAL DATA

Supplemental Tables S1–S4: https://doi.org/10.6084/m9.figshare.
14593653.
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