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ABSTRACT

Machine vision of human facial expressions has been studied for
decades, from prototypical expressions to Action Units (AUs), from
hand-crafted to deep features, from multi-class to multi-label clas-
sifications. Since the widely adopted deep networks lack interpre-
tation on learnt representations, human prior knowledge cannot
be effectively imposed and examined. On the other hand, AU is
a human defined concept. In order to align with this idea, a finer
level of network design is desired. In this paper, we first extend
the heatmaps to ROI maps, encoding the location of both positive
and negative occurred AUs, then employ a well-designed backbone
network to regress it. In this way, AU detection is performed in
two stages, key regions localization and occurrence classification.
To prompt the spatial dependency among ROIs, we utilize graph
convolution for feature refinement. The decomposition of similar-
ity matrix is supervised by AU labels. This novel framework is
evaluated on two benchmark databases (BP4D and DISFA) for AU
detection. The experimental results are superior to the state-of-the-
art algorithms and baseline models, demonstrating the effectiveness
of our proposed method.
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Figure 1: With the definition of centroids, AU detection
can be converted into heatmap regression task. The idea of
heatmap is extended to ROI map including absent AUs (bet-
ter viewed in color). Features are refined with graph convo-
lution. We impose additional supervision for the spectral de-
composition process of graph similarity matrix.

1 INTRODUCTION

Facial action unit (AU) [6] analysis has been essential for under-
standing human emotions. Different from prototypical facial expres-
sion recognition (FER), AUs characterize the facial muscle move-
ments. By various combinations of AUs, we can obtain a rich set of
facial expressions.

From the machine learning perspective, understanding facial
expressions is no longer limited to the multi-class classification
problem [1, 13, 20, 27]. In many recent AU occurrence studies [12,
19, 23, 36], given the input images, researchers employ Convolu-
tion Neural Network (CNN) to extract deep features and feed them
into classifiers to get the predictions of target AUs. The network
output is for a group of AUs since learning shared features is more
parameter efficient. Joint study of multiple AUs could also leverage
their relationship, which makes it a multi-label classification prob-
lem. Deep features usually have a much lower spatial resolution
compared to the one of original input. They are highly abstracted
which prevent us from understanding the contribution of individ-
ual location in terms of specific AU. The interpretability is further
hindered by global pooling of the features.

As depicted in Fig. 1, we propose to model AU detection as a
regression problem and construct ROI maps based on heatmap [25]
concept. Therefore, AU detection becomes a process of joint local-
ization and classification. The motivations behind come from two
facts: (1) We are able to impose prior knowledge on the location
of AUs which better supervises the feature learning; (2) Heatmap



regression has been proven effective in facial landmark detection
and human pose estimation tasks. Many well structured networks,
like stacked hourglass [18], simple pose [32], HRNet [24, 28] have
been designed for extracting task agnostic deep representations.
Compared to direct optimization of coordinates/values, which is a
highly non-linear object, heatmap serves as a strong supervision to
preserve the structure of input. We argue that this concept can also
benefit AU related tasks.

Given the advantage of heatmap regression, there still exists
three major limitations. First, the generation of ROI maps constricts
the receptive fields into several human defined ROIs which will lose
long range context information. Such context information would
be good complements of studying ROIs. Second, since AU detection
task doesn’t require the exact location of maximum activation, the
most intuitive substitute of conventional heatmap decoding proto-
col is to check if the mean or maximum over each channel of ROI
maps larger than some threshold. This solution is not only lack of
robustness, but would be distracted by activations of non-related
regions which are sub-optimal. Lastly, each AU is assigned to one
channel. There is no explicit modeling of spatial relationships. To
mitigate this problem, we employ graph convolution [9, 31] to
model the spatial dependency of AU due to its outstanding power
of relationship modeling. Many existing works have shown the
necessity by applying graphs for learning spatial relationships for
image analysis [3, 33] as well as AU detection [10]. Regular convo-
lutional operations are not sufficient to capture long range semantic
and spatial relationships between objects of an image. As stated
in [16], even after hundreds of convolutions, the receptive field of
the units of a network is severely limited. On the other hand, as
stated in [15], graph encodes dependencies between regions, such
dependencies are of much longer range than those captured by
local convolutions.

Graph neural network [31] takes graph as input and is designed
to learn features of non-euclidean data structure. Since the image
itself is in grid structure, we come up with the question about how
to define a graph G = (V, E). To find the relationship, each spatial
location in the feature map can be considered as one node in the
graph. Edge is induced between every pair of the nodes. Corre-
spondingly, the similarity matrix A is interpreted as how similar
between two locations of the feature map. As the learning process
of feature maps, it is more reasonable to make A data dependent.
A is derived from the most current feature map and the size is a
quadratic order of feature map resolution. When the resolution
of feature map is high which preserves the most information of
input data, direct computation of A is practically infeasible. [14]
learns eigenvalues, eigenvectors first and comes up with an math-
ematically equivalent expression by multiplying them with input
step-by-step. They can circumvent the high demand of computing
complexity. In light of this work, we take one more step to instanti-
ate the eigenvector as global context w.r.t. each AU. In this way, we
can model the connections between each AU and all other spatial
locations.

In this paper, we propose a novel AU detection framework which
consists of ROI map regression and deep feature refinement with
graph convolution. By encoding all AUs into the ROI maps, the
network is able to learn their locations which improve the recog-
nition rate. Deep features from backbone network are fed into

graph convolution to explore the relationship among all spatial

locations. We regularize the learning of eigenvector matrix by AU

classification loss to make similarity matrix decomposed in AU se-

mantic space. As a result, refined features are more discriminative

achieving improved performance on two benchmark datasets.
The main contribution of this work lies in three-fold:

(1) We formulate AU detection into ROI map regression prob-
lem with positive and negative occurred AU localized and
classified at the same time. To some extent, it moderates
overfitting and data imbalance issues caused by the larger
number of negative samples.

(2) To actively utilize AU co-occurrence or mutual exclusive
pattern, we employ graph convolution to refine the deep
features. The dynamic modeling of spatial dependency fa-
cilitates the exploration of AU relationships and makes the
entire framework end-to-end trainable.

(3) We propose to supervise the learning of eigenvector ma-
trix by AU labels. In this case, the decomposition procedure
of similarity matrix would concentrate on relationships be-
tween AUs and their spatial contexts.

2 RELATED WORK

In recent years, as the deep features show impressive generalization
power over hand-crafted ones, AU researchers widely adopt deep
networks for AU recognition task. [8] is one of the pioneer works
in the FERA [26] challenge, which demonstrated impressive perfor-
mance on both AU occurrence detection and intensity classification
tasks. We refer readers for survey papers of deep features on AU
analysis [37] or broader category on FER [5, 11]. Roughly speaking,
the development of AU detection is summarized into the following
categories, which are also the active trends that researchers can
dive into for better performance.

Region learning. Different from other classification tasks where
holistic features may be nearly efficient, AU recognition desires a
finer grained analysis of human faces. The standard convolution op-
eration on the inputs shares weights within the layer. But in human
faces, different regions could have different statistics. Following the
spirit of locally connected layers, Zhao [36] proposed region layers
which uniformly slice the first feature map and apply independent
filters on each local face patch. Landmarks represent the salient
regions of human faces. They are well localized hence become reli-
able tools to define representative regions of AUs. These regions
can either be emphasized [12, 22], as advised by attention mech-
anisms, or cropped out [4, 10, 12] for further feature engineering
independent of each other.

Relationship learning AUs relationship has already been at-
tempted [29, 35] from the age of hand-crafted features. The goal
is to utilize AUs’ dependency to improve the overall performance
of a multi-label recognition problem. The study by Zhao et al. [35]
concluded that AU has two kinds of relations, positive correlation
or negative competition. Li et al. [10] extended this concept into a
graph, treating AUs as nodes, and refines AU features with gated
graph neural network (GGNN). However, the graph is statically
defined according to the statistics of datasets hence lose the adapta-
tion power during the feature learning process. Instead of refining
AU features, Corneanu et al. [4] pass the patch predictions of CNN



into Conditional Random Field (CRF) and apply structure inference
to obtain a final AU predictions. Shao et al. [23] also propose to
refine attention weights with CRF at pixel-level. L-Net in [19] re-
gards each cell of feature maps as a representation of local region
and feeds them into LSTM for relationship learning.

Due to the close relationship between AU recognition and land-
mark detection tasks, researchers propose to jointly optimize these
two problems. Therefore, they can be a good supervision of each
other. Wu et al. [30] used Restricted Boltzmann Machine (RBM)
to learn the joint probabilities of landmark coordinates and AU
occurrence labels and update both tasks iteratively. Shao et al. [22]
followed by a deep framework which detects AU and regress land-
mark coordinates in a multi-task learning fashion. In contrast, our
framework is not learning landmarks. We explore the idea of the
heatmap and adapt it to AU study. Another related work is [7] which
integrates semantic correspondence module with heatmap regres-
sion for AU intensity estimation. The graph convolution in [7] is a
spatial based method treating feature channels as nodes. Instead,
our work is spectral-based and explores relationships between spa-
tial locations.

3 METHODOLOGY

In this section, we will elaborate the details of our proposed frame-
work. We first illustrate how to generate ROI maps from landmarks
and give an overview of our framework. Then we will discuss
how the refinement works with a graph convolution and extra
supervisions we introduced. Lastly, we conclude the optimization
objectives and the difference between training and testing phases.

3.1 ROI maps
We first define region of interest (ROI) for each AU. Similar to

op

Figure 2: Left: ROI centers defined for AUs, ‘scale’ is mea-
sured by inner-ocular distance. Right: Landmark indices.

the rules in [12, 22], we sample two points symmetrically on the
face based upon the most representative landmarks, see details in
Fig. 2. Therefore, we will have two ROIs for each AU. They are
small regions centered around those two points. By looking at
facial expressions inside ROIs, we are able to infer the occurrence
of specific AU. Note that some differences from rules in [12, 22] are

the locations of AU1 and AU2. Instead of shifting a distance from
inner and outer brow, we directly take their landmark positions
which have more visual context and can be clearly identified.
After definition of ROIs, we are able to generate ground-truth
ROI maps. Fig 3 gives two examples. Each map RS ! consists of one
Gaussian window with maximum value at the center p‘cgt of ROL

2
: o=+,
RE'(p) = Lexp| 52|, peQ 0

o controls the standard derivation, Q is the set of all pixel locations
in ROL 1 is the indicator function 1 :— {1, -1} according to the
ground-truth AU label. For p not in Q, it represents a background
pixel which intensity is initialized as 0.

ROI maps have C channels where C corresponds to the total
number of ROIs. Different from the maps in [7, 12, 22], which only
encode positively occurred AUs, we also encode non-occurred AUs
into the maps. In this case, the peak value is adapted to be either 1
(AU occurred) or —1 (AU absent). We re-formulate AU occurrence
detection problem into two stages. The first one is to spot the
possible locations of AUs and the second step is to classify if the
target AU is active or not. Another advantage of this formulation
is that negative samples would contribute to AU localization as
well as the classification. Given that we usually have much more
negative samples than the positive ones due to the nature of facial
expressions, such additional task’ would help the network better
understand the AU positions across different facial structures.

3.2 Graph Convolution

With shared features among different AUs, deep models are trying
to find a generalized representation which can be easily classified
and achieve the lowest average loss. There is a lack of considera-
tion on AU relationships. The graph convolution grants us more
flexibility to model the relationship and can be integrated into a
common recognition pipeline which is end-to-end trainable.

Fig. 4 illustrates our proposed framework. We choose HRNetV2 [28]
as the backbone feature extractor, which has a similar or smaller
number of parameters and computation cost to ResNet-50 and Hour-
glass [18]. Due to its high resolution characteristics and capable of
fusing multi-scale information, HRNetV2 [28] achieved a superior
performance on tasks such as semantic segmentation and facial
landmark detection. While AUs detection task studies the finer
details of facial muscle movement, it fits well to the strength of
HRNetV2 [28] which does not lose much information during the
encoding process. Assume that input images have a size of H* W %3,
Xo from the backbone network is downscaled to H/4 « W /4 « C. In
the baseline model, a 1 * 1 convolution is applied to reduce C to
Cour features, where Coy; corresponds to the number of target AUs.
We employ the graph convolution in [14] to refine Xy, enhancing
the spatial wise relationship. As shown in Eq. 2, Xj represents the
feature after refinement. L is the Laplacian matrix which has a

1 1
symmetric normalized form of L = — D" 2AD™ 2z, O is a trainable
weight matrix, and o is the ReLU activation function.

X1 = o(LXo©) (2



(b)

Figure 3: (a) Left: ROI centers defined for 12 AUs in BP4D,
two for each AU. Blue dots stand for the locations and corre-
sponding AU indices are labeled above. Right: Ground truth
ROI maps. Each map is designed for each AU which has two
ROIs. We sum all maps into one for display purpose (better
viewed in color, pixel intensities range from —1 (blue) to 1
(green)). (b) Similar to (a) except for 8 AUs in DISFA.

Similarity matrix A(Xp) is derived from input feature Xy and
the degree matrix D equals to diag (d1,da, . ..,dgw’) where d; =
2.j Aij. Here we use data-dependent A(Xo) due to its adaptation
capability as the change of input. It is not restricted to any database
statistics or empirical definition, hence it is able to capture the spa-
tial structure better. Because of the symmetric property of similarity
matrix, we can decompose it into an eigenvalue matrix A and an
eigenvector matrix ®. We divide the network into two branches for
learning in parallel as a function of input Xj. Since we are targeting
AUs and interested in Coyr number of ROIs, we expect A to be
decomposed based on those regions. Therefore, eigenvector matrix
®(Xy) € RE'W*Cout and eigenvalue matrix A(Xy) € RCour*Cout_
For simplicity, here we note H/4, W /4 as H’, W’. For the branch
A(Xp), X is first average-pooled along spatial domain and then
goes through a linear layer to reduce channels from C to Coy¢. Then
it is sigmoid activated and transformed to a diagonal matrix. On
the other branch, 1 X 1 convolution is applied on Xy. We reshape
the output into H'W’ X Coy; to generate ®(Xp). Consequently, A is
learnt by multiplying ®(Xo) and A(Xo) together, as shown in Eq. 3.

A(Xo) = ®(Xo) A(Xo)®T (Xo) 3)

For each location of feature Xy, we are able to model its similarity
to the other features.

3.3 Supervised Decomposition

A(X) proposed in [14] learns a better distance metric for the simi-
larity matrix. Inherit from this property, we further extend to draw
connections with our AU detection task. As aforementioned, we
expect A(Xp) to be decomposed along the most discriminative ar-
eas and model the relationship between these attended areas and
their neighbors. To achieve this goal, we introduce an auxiliary loss
(Loss1 in Fig. 4) to regularize the decomposition process. For the
branch computing ®(Xp), each eigenvector models the spatial con-
text with respect to each AU. The assumption behind the ROI map
regression is that the designated ROIs are the most representative
areas for recognizing AUs. Inevitably, it could narrow down the
receptive field of AU detection task and could potentially overlook
some helpful spatial context. To remedy this problem, we supervise
the learning of ®(Xy) by minimizing its discrepancy with ground-
truth labels. For each AU, we first adopt a linear layer f to learn the
weights 0 of all H” x W locations and compute the cross entropy
(CE), as shown in Eq. 4, between weighted features and labels.

Cout
Lossi = = 3 CE;(a(/(@(x);07).1)) @
out 53

o stands for the sigmoid activation, y; is the binary occurrence
label of jth AU.

3.4 Complexity and Objective

Given that A € RE'WXH'W' 5 large amount of memory would
be consumed if we compute A explicitly. Therefore, we adopt the
same workaround as in [14]. LX) in Eq. 2 can be rewritten as the
following form:

LXo = Xo - D" ®ADT D2 X,
. )
—X,-P (A (P Xo))

1
where P = D™2®, we omit the data dependent annotation for
simplicity and,

D = diag(A - T) = diag (q> (A (cpT _f))) ©)

T stands for all-one vector in RF'W’_ Parentheses indicate the order
of operation. Every step in Eq. 6 is a multiplication with a vector.
By computing from the inner parentheses of Eq. 5 to the outer one,
we are able to avoid the quadratic order of complexity O (H2W?).

After getting feature Xj, another 1 X 1 convolution is applied to
reduce channels to Cyy;. By comparison with ground truth maps,
we have the following loss function:

N
1 2
Loss0 = N E “CorleI(Xl),- - R‘igt”2 swhere N =H' « W’ x Cous
i=1

™
Final objective function is the minimization of the summed two
losses:

L = Loss0 + a1 Loss1 8)

with a; is a hyperparameter that controls the importance of auxil-
iary loss.
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Figure 4: Overview of proposed framework for AU detection. We first extract features X by a backbone network. Then X is
spatially refined into X; with graph convolution. The decomposition of A is supervised by AU labels. Predicted ROI maps are
compared with ground truth (GT) maps for training. It is multiplied with the location mask M and then decoded for inference.
© and ® stand for dot product and matrix multiplication respectively.

3.5 Inference

At the inference stage, conventional heatmap regression works de-
code the spatial location from the cth channel of predicted heatmaps
(RE red) which has the largest activation P = argmax RY red For
the AU occurrence detection, it is not needed to know the exact P,.
Thus, we can consider specific AU to be active if max/mean (Rfrm)
is larger than a certain threshold. However, such a decoding pro-
tocol may relax the spatial constraint of AUs too much and cause
many false positives. For instance, it is not optimal to determine
eyebrow related AUs by activation of regions far from connected.
To remedy this problem, we propose to use the mask M. Similar

to Eq. 1, M is defined as M(p) = 1, p € Q and the positive criteria

of each AU becomes to check mean(M - Rfred) > 0 from either of
two ROIs. In other words, only the activations inside the ROIs can
count toward final predictions.

4 EXPERIMENTS

We evaluate our new framework on two datasets BP4D [34] and
DISFA [17]. They are publicly available benchmarks for the AU
occurrence detection task.

BP4D: It contains 41 subjects captured under laboratory envi-
ronments. 8 tasks are designed to elicit a range of spontaneous
emotions. There are 328(= 41 X 8) sequences in total with a frame
rate of 25. Expert coders selected the most expressive 20s of each se-
quence for AU coding. Around 140, 000 labeled frames are included
in our experiments and split into subject-exclusive 3 folds for a fair
comparison with state-of-the-art algorithms.

DISFA: There are 27 subjects in the DISFA database, 12 females
and 15 males. Videos were captured when subjects were watching
emotive videos. There are ~ 130, 000 frames in the database and
for every frame, DISFA provides intensity code with 0 — 5 different
scales. Following the evaluations in [22], the frames with intensities
equal or larger than 2 are regarded as AU occurred while the rest
are absent. Also, we divide the dataset into subject-exclusive 3 folds
and report the performance through the cross validation.

4.1 Implementation details

The bounding box of faces in raw images are obtained using the
publicly available library OpenFace [2]. Given the high resolution
of raw input containing a large portion of background, we first
preprocess the image by cropping out facial areas, and resize the
image into 256+256%3 to fit the network. So H, W are 256 and H’, W’
are 64 in our experiments. Each input image is randomly rotated
—30° to 30° (BP4D), —10° to 10° (DISFA) and flipped horizontally
for data augmentation. We use the landmarks provided by the
datasets to find ROI centers, then generate the ground-truth maps
R&! and AU location masks M. Each ROI has a size of 7 x 7. We also
standardize each image by subtracting mean values and by dividing
the variances of input channels. The backbone HRNetV2-W18 [28]
is pre-trained on ImageNet [21]. We use the Adam optimizer with
an initial learning rate of 1e — 4. It decreases by 0.1 every 10 epochs.
For both datasets, the weight decay is set to 5¢ — 4 and the batch
size is 32. o is set as 0.001 for the following experiments.



4.2 Metrics

F-score (F;) is the most popular evaluation metric used for AU

detection, which is computed as harmonic mean of precision and
precision - recall

recall Fy =2 - precision + recall

4.3 Results and Discussions

We compare our proposed algorithms against state-of-the-art al-
gorithms JPML [35], DRML [36], EAC [12], DSIN [4], JAA [22],
ARL [23], SRERL [10], LP [19] on BP4D [34] and DRML [36], EAC [12],
DSIN [4], JAA [22], ARL [23], SRERL [10], LP [19] on DISFA [17]
database. The results are reported in Table 1 and Table 2 regarding
each individual AU and their average (Noted as Avg.). On BP4D,
our model outperforms all state-of-the-art algorithms and achieves
an average F; of 63.5. And the major improvement comes from
the less likely occurred AUs (AU1, AU2, AU4, AU23) in the dataset.
These AUs have a lower occurrence rate (~ 20%) as discussed in
previous work [10, 12, 23], therefore they lack optimization when
jointly trained with other labels.

On DISFA, we observe a significant F1 increment from 58.7 to
62.0. Consistent with findings in BP4D, main improvement is from
AU1, AU2 and AU4. Our method employs the graph convolution
to explore the relations among all spatial locations. Therefore, it
promotes the co-occurrence or mutual exclusive patterns of AUs.
Moreoever, graph networks show great potential on certain AUs.
Together with SRERL [10] which utilizes GGNN, we outperform
other works in terms of AU2, AU7, AU12, AU15 in BP4D and AU1,
AUZ2 in DISFA.

4.3.1 Ablation Study. We further provide ablation study on the
BP4D dataset to investigate the effectiveness of each proposed mod-
ule. Table 3 shows the performance comparisons in terms of both
individual AUs and the average. All experiments are conducted in a
three-fold cross validation with the same settings. Heatmap stands
for the baseline model that encodes the positive AUs occurrence
only. The decoding threshold is 0.5. It achieves an average F; of
62.0, which is inferior to the state-of-the-art algorithms. This is as
expected since modeling positive AUs only will render a large num-
ber of non-activated heatmap channels, given the sparsity nature of
ground truth AU labels. We argue that the negative samples would
contribute not only to classification but localization of ROIs, which
is in return of benefit to AU recognition. As shown in the third
column of Table 3, many AUs (such as AU2, AU10, AU14, AU17)
have dramatic improvement over their counterparts in the second
column. The overall performance 62.5 is on par with the peer mod-
els. We further applied the graph convolution [14] which learns
the similarity matrix A based on X; without supervision of the
decomposition process by AU labels. Although the F; is increased
from 62.5 to 62.8, it does not exercise the full power of spatial re-
finement for AU detection. If we consider the refinement as the
message passing scheme between one spatial location and all others
in X, a similarity matrix is the bridge that controls the amount of
information to communicate. The extra supervision of eigenvectors
essentially contributes to two aspects: (1) It encourages the ROIs
to anchor the decomposition of similarity matrix; (2) It aggregates
the spatial context w.r.t. each AU, which complements the region

learning for AU recognition. Note that the second aspect is par-
ticularly crucial given the potential limitation of ROI definitions
and mis-tracked landmarks in some training samples. Therefore,
we observe a significant performance increment on half of the AUs
(e.g., AU4, 7, 15, 17, 23, 24), as shown in the last column of Table 3.

4.3.2  Does loss balancing help? We noticed an extremely imbal-
anced data distribution in the DISFA database. Most likely occurred
AU25 in Table 4 has an ~ 6.6 times of positive samples than the
least likely one (AU9). With 3-Fold partition of 27 subjects, this
ratio in the training set of one fold may be even larger. Previous
works [10, 19, 22, 23] propose to use weighted loss functions to pre-
vent data imbalance issues from skewing the training process. We
investigate if this strategy can also help in our method. Similar to
those state-of-the-art algorithms, we use weighted versions (noted
as ‘weighted’ in Table 4) of Loss0 and Loss1 for comparison. Dur-
ing the training phase, for both Eq. 4 and Eq. 7, we multiply with
inverse occurrence rates before they average over AUs. Though the
recognition rates of some minority AUs (like AU6, AU9, AU26) are
increased, we don’t observe a further increment on average F;. We
attribute it to the feature refinement by graph convolution which
models the relationship among AUs.

4.4 Visualization

After we sample an image from the test set and feed it into the
network after training, we visualize the activation maps of X and
X1 in Fig. 5 to illustrate the effectiveness of proposed spatial refine-
ment. We rearrange the channels (270 each) into grid structure for
comparison purpose. Each cell represents one channel with a dimen-
sion of 64 X 64. As we can see, X contains much more activations
inside the face than X; has. With the help of graph convolution,
the most unrelated activations in X (Fig. 5a) have been smoothed
out, making X; more uniformly distributed prior to entering the
following Conv1 X 1 layer. Therefore, the channels can be easily
weighted and classified by a linear layer. We also noticed that, in
X1, the boundary is likely to be activated in many channels. It is an
artifact caused by the face cropping process but can also be tackled
easily by the channel weighting. When inspecting both Xy and Xi,
there exist small dots inside the face. Those are ROIs defined in
the map to be regressed. With reduced distractions of unrelated
activations in Xp, X; pays more attention to learning those ROIs.
More importantly, X7 has a much diverse and sparse combination of
ROIs, indicating the exploration of possible relations among them.
This, in return, will reflect the co-occurrence or mutual exclusive
AU patterns.

We also visualize the eigenvectors ®(x) in Fig. 6 in order to
examine how they aggregate the context w.r.t. each AU. The first
column shows sampled images from the test set. It is worth noting
that one advantage of our approach is that given the input images, it
can localize AU related regions by appearance on the face no matter
whether this AU occurs or not. It is very different from the tradi-
tional attention mechanisms which only highlight those active
areas. Moreover, facial appearance is the reflection of facial muscle
movements. Facial muscles are the “engines” that initiate the facial
action and drive the motion of each AU region. For example, AU6
(cheek raiser) is triggered by the orbital part of orbicularis oculi
muscle. AU10 (upper lip raiser) is caused by the lower end of the



Table 1: F1 of 12 AUs on BP4D database. Bold numbers indicate the best performance.

AU | JPML [35] | DRML [36] | EAC[12] | DSIN [4] | JAA [22] | ARL [23] | SRERL [10] | LP [19] | Ours
1 32.6 36.4 39.0 51.7 47.2 45.8 46.9 43.4 52.6
2 25.6 41.8 35.2 40.4 44.0 39.8 45.3 38.0 47.0
4 37.4 43.0 48.6 56.0 54.9 55.1 55.6 54.2 61.4
6 42.3 55.0 76.1 76.1 77.5 75.7 77.1 77.1 76.8
7 50.5 67.0 72.9 73.5 74.6 77.2 78.4 76.7 79.2
10 72.2 66.3 81.9 79.9 84.0 823 83.5 83.8 83.5
12 74.1 65.8 86.2 85.4 86.9 86.6 87.6 87.2 88.6
14 65.7 54.1 58.8 62.7 61.9 58.8 63.9 63.3 60.4
15 38.1 33.2 37.5 37.3 43.6 47.6 52.2 45.3 49.3
17 40.0 48.0 59.1 62.9 60.3 62.1 63.9 60.5 62.6
23 30.4 31.7 35.9 38.8 42.7 47.4 47.1 48.1 50.8
24 42.3 30.0 35.8 41.6 41.9 55.4 52.3 54.2 49.6

Avg. 45.9 48.3 55.9 58.9 60.0 61.1 62.9 61.0 63.5

Table 2: F1 of 8 AUs on DISFA database. Bolded numbers indicate the best performance.

AU | DRML [36] | EAC [12] | DSIN [4] | JAA[22] | ARL[23] | SRERL [10] | LP[19] | Ours
1 17.3 41.5 42.4 43.7 43.9 45.7 29.9 55.0
2 17.7 26.4 39.0 46.2 42.1 47.8 24.7 63.0
4 37.4 66.4 68.4 56.0 63.6 59.6 72.7 74.6
6 29.0 50.7 28.6 414 41.8 47.1 46.8 45.3
9 10.7 80.5 46.8 44.7 40.0 45.6 49.6 35.2
12 37.7 89.3 70.8 69.6 76.2 73.5 72.9 75.3
25 38.5 88.9 90.4 88.3 95.2 84.3 93.8 93.5
26 20.1 15.6 42.2 58.4 66.8 43.6 65.0 54.4

Avg. 26.7 48.5 53.6 56.0 58.7 55.9 56.9 62.0

(b)

@

Figure 5: Activation maps of (a) Xy and (b) X;. We re-arrange a total of 270 channels into grid structure to have a direct feature
comparison before and after graph convolution. Small dots in each map stand for ROIs. In (b), non-related activations are
removed but diverse patterns of ROIs are preserved. Since 270 channels are weighted summed into C,,; ROI maps, each map
is regarded as a combination of those patterns.

is able to better analyze the structure of underlying muscle move-
ments. Except for some artifacts caused by the image boundary, we

linked muscle (levator labii superioris). Learned eigenvector maps
reflect the motions of these linked muscles. Therefore, our work



Table 3: Ablation study on the BP4D dataset

+ Neg AUs
AU | Heatmap | + Neg. AUs " I:Ie(g;.CJ;Us + GCN
+ Supervison
1 55.2 52.3 50.9 52.6
2 47.8 49.4 48.1 47.0
4 59.0 56.9 60.6 61.4
6 77.0 77.5 77.5 76.8
7 77.6 77.7 77.4 79.2
10 82.6 83.6 83.1 83.5
12 88.5 88.5 88.5 88.6
14 58.3 61.9 61.5 60.4
15 47.5 46.6 46.7 49.3
17 55.6 61.2 61.6 62.6
23 47.1 46.1 48.6 50.8
24 48.1 48.5 48.8 49.6
Avg. 62.0 62.5 62.8 63.5

Table 4: Positive samples ratio of DISFA databset and perfor-
mance comparison with/without loss balancing.

AU 1 2 4 6 9 12 25 26 Avg.
Occ. Rate 5.0 43 15.2 7.9 4.2 129 277 8.8 -
Weighted | 527 610 725 46.7 37.8 734 93.6 55.0 | 616

Ours 550 63.0 746 453 352 753 935 544 | 62.0
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Figure 6: Visualization of eigenvectors ®(x) w.r.t. each AU
for BP4D (top) and DISFA (bottom) dataset. Leftmost column
represents input images sampled from the test set. Failure
cases are noted as blank maps.

can also see that the largest activation comes from the most related
regions on the face, and does not have to be on the exact location
of ROI centers. The intensity of activation decreases as the distance
from ROI goes further. Please note that, even if some AUs share the
same ROI centers (AU12, 14, 15 or AU 23, 24 in BP4D), their contexts
are varied, which means their individual characteristics are still
well exhibited. As an example, the third row of Fig. 6 illustrates that
the activated regions of AU15 (lip corner depressor) is lower than

that of AU12 (lip corner puller). When compared to AU12, AU15
has indeed a movement along the vertical direction. Although some
eigenvectors may not be differentiable visually, their contexts are
easily classified by the following linear layer.

4.5 Conclusion and future work

In this paper we have presented a new ROI map regression frame-
work for action unit detection. Each ROI map consists of two ROIs
defined for both positive and negative occurred AUs, thus allowing
us to re-format the AU detection process into two separate stages:
AU localization and AU classification. By leveraging the graph
convolution with supervised spectral decomposition, features for
producing the ROI maps are spatially refined. The results are better
than the compared state-of-the-art algorithms when tested on two
benchmark datasets. We have also conducted the ablation study to
showecase the effectiveness of individual components. As well, we
have visualized and scrutinized the eigenvectors and the activation
maps before and after the graph convolution.

Our future work will take a more effective way to define ROIs
in an attempt to make it more robust to significant landmark er-
rors. We will also investigate how the number of ROIs (current
number is two) defined for each AU would impact the recognition
performance. To demonstrate the generality, we will apply our
proposed framework to other applications with more databases in-
cluded for cross-validation. Additionally, applying graph reasoning
on multi-scale features would be another future direction.
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