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ABSTRACT

Multimodal facial action units (AU) recognition aims to build mod-

els that are capable of processing, correlating, and integrating in-

formation from multiple modalities ( i.e., 2D images from a visual

sensor, 3D geometry from 3D imaging, and thermal images from an

infrared sensor). Although the multimodel data can provide rich

information, there are two challenges that have to be addressed

when learning frommultimodal data: 1) the model must capture the

complex cross-modal interactions in order to utilize the additional

and mutual information e ectively; 2) the model must be robust

enough in the circumstance of unexpected data corruptions during

testing, in case of a certain modality missing or being noisy. In this

paper, we propose a novel Adaptive Multimodal Fusion method

(AMF) for AU detection, which learns to select the most relevant

feature representations from di erent modalities by a re-sampling

procedure conditioned on a feature scoring module. The feature

scoring module is designed to allow for evaluating the quality of

features learned from multiple modalities. As a result, AMF is able

to adaptively select more discriminative features, thus increasing

the robustness to missing or corrupted modalities. In addition, to

alleviate the over-!tting problem and make the model generalize

better on the testing data, a cut-switch multimodal data augmen-

tation method is designed, by which a random block is cut and

switched across multiple modalities. We have conducted a thor-

ough investigation on two public multimodal AU datasets, BP4D

and BP4D+, and the results demonstrate the e ectiveness of the

proposed method. Ablation studies on various circumstances also

show that our method remains robust to missing or noisy modalities

during tests.
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1 INTRODUCTION

Facial action unit (AU) detection has been an essential task for hu-

man emotion analysis. Conventionally, most state-of-the-art AU de-

tection methods exploit images collected from the visible-spectrum

based RGB cameras [50][24][31][29][32][39][3]. However, as AU

analysis relies on the detection of subtle facial muscle movement,

the visual-only detection methods have found to be insu"cient

for detecting subtle changes from the single modality. Recent ad-

vancements in multimodal sensor development present a promise

in study of AU detection through multiple modalities. For example,

the public database BP4D+ provides a set of synchronized data with

multiple modalities, i.e., 2D visual, 3D depth and thermal modali-

ties [49], allowing us to investigate various features from di erent

modalities for AU detection, i.e.„ AU6 (Cheek Raiser), involves the

deformation of Orbicularis oculi and pars orbitalis muscles in the

cheek area, which only show subtle changes in visual images, while

a better geometric changes can usually be observed in depth im-

ages. Similarly, microcirculation and blood  ow may vary along the

contraction or relaxation of certain muscles, which results in the

change of skin surface temperature.

Recently, there has been an advancement by extending machine

learning methods to learn additional information presented in the

data from multiple modalities. For example, Li et al. [21][22] com-

bined the 2D and 3D feature for facial expression recognition. Irani

et al. [16] utilized the visual, depth and thermal modalities for pain

study. Lakshminarayana et al. [19] explored physiological signals

in combination with visual images to predict action units. Although

the presence of multiple modalities provides additional valuable

information, challenges still remain when learning features from

multiple modalities [35][28][44], which requires 1) the models must

capture the complex cross-modal interactions in order to utilize the

additional and mutual information e ectively; 2) the models must

be robust to unexpected data corruption, such as in the presence

of missing and noisy modalities during testing. In this paper, we

propose a novel AdaptiveMultimodal Fusion method (AMF) for

AU detection. First, a feature scoring module is designed for evalu-

ation of the features learned from multiple modalities, and then a

sampling based feature selection process is conditioned on the fea-

ture scores. As a result, our model learns to select the most relevant

feature representations from di erent modalities, while avoiding

useless or misleading information. More importantly, our model

is able to learn to rely on the most discriminative features from

individual modality adaptively, making it robust to various imaging

conditions, especially in the case of missing or corrupted modal-

ities during testing. Built upon the selective and adaptive feature



Figure 1: Framework of the proposed adaptive multimodal fusion model (AMF) with three modalities (i.e., visual, depth, and

thermal). AMF learns to select the most relevant feature representations from di erent modalities by the Gumbel-Softmax

resampling trick conditioned on a feature scoring module. The feature scoring module is designed to allow for evaluating the

quality of features learned frommultiple modalities. As a result, AMF is able to automatically select the more discriminative

features, and robust to missing or corrupted modalities. To alleviate the over-!tting issue and let the model generalize better

on the testing data, a cut-switch multimodal data augmentation method is also applied, in which a random block is cut and

switched across modalities.

fusion strategy, we further propose a cut-switch multimodal data

augmentation method by randomly cutting and switching a block

across modalities. By doing so, we can alleviate the over- tting

problem to a certain degree, and make the model generalize better

on the testing data. We have conducted a thorough evaluation on

two public datasets (BP4D and BP4D+), and scrutinized the perfor-

mances with respect to various combinations of multiple modalities,

cut-switch strategy, and di!erent levels of noises, demonstrating

the e!ectiveness and robustness of the proposed AMF method.

The contributions of this work are listed in the following three-

fold:

• We present an adaptive multimodal fusion method for facial

action unit detection, which is able to e!ectively select fea-

tures from multiple modalities, enabling more accurate and

robust AU detection.

• We propose a cut-switch multimodal data augmentation

method, which has been proved to be an e!ective way of

improving performance.

• Extensive experiments are conducted to evaluate the per-

formance of multimodal based AU detection, showing the

advantage of the proposed AMF method and its robustness

to missing or corrupted data.

2 RELATEDWORKS

2.1 Action Unit Detection

In recent years, deep features of 2D visible images have been widely

used for AU detection. Deep learning approach developed by Gudi

et al. [11] is one of the pioneer works in AU detection, which

demonstrated impressive performance on both AU occurrence de-

tection and intensity classi cation tasks. Zhao et al. [50] proposed

a network called DRML which applied a region layer to capture

local structural information on di!erent facial regions. Li [23–25]

de ned several regions of interest (RoI) around AU-related facial

landmarks to enhance the feature map intensities at di!erent levels.

Furthermore, those works [23–25] cropped the trained features

maps into 3×3 and learned a separated set of features through fully

connected layers. In order to leverage the temporal information,

Chu et al. [6] and and Li et al. [23] aggregated CNN output into

Long Short-Term Memory (LSTM) for AU predictions, while Yang

et al. [42] proposed to learn the temporal information from static

image. Shao et al. [31, 32] gave insight into the spatial attention

mechanism which applied the multi-scale region learning to extract

the AU related local features. Most recently, Niu et al. [29] tried

to capture the local information and the relationship of individual

local face regions, aiming to improve the AU detection robustness.



2.2 Multimodal Machine Learning

Multimodal machine learning aims to build models that can process,

correlate, and integrate information from multiple modalities [2].

The success of multimodal machine learning has been demonstrated

in a wide range of applications, e,g, human action analysis [1, 4, 37,

38] , person/object localization and tracking [15, 34, 47] and image

segmentation [14, 51].

In the �eld of emotion related tasks such as action unit detec-

tion and facial expression recognition, we have seen a trend of

extending machine learning methods to learn additional informa-

tion presented in the multiple modalities. Li et al. [21][22] applied

2D + 3D feature-based approaches for facial expression recognition.

Zhang et al. [46] combined 2D texture images with facial land-

marks for expression recognition. Wu et al. [40] proposed a novel

deep two-view approach to learn features from both texture and

thermal images and adopted the commonality in between for ex-

pression recognition. Irani et al. [16] applied RGB-Thermal-Depth

images for pain estimation. Lakshminarayana et al. [19] conducted

a exploratory work by combining physiological signals with color

images to predict action units. Liu et al. [26] proposed a thermal

empowered multi-task network for facial action unit detection,

which made a good use of the strength and correlation of visual

and thermal modalities and achieved a good performance in AU

detection.

One of the key steps in multimodal machine learning is the

multimodal fusion, with the aim at integrating features of multi-

ple modalities for enabling more accurate and robust performance.

Three types of fusion strategies (i.e., early, late, and hybrid fusion)

are the commonly used techniques for multimodal feature fusion

[2][12][5]. Our proposed adaptive feature fusion strategy is particu-

larly related to late fusion with a focus on the selection mechanism

in order to choose the most relevant feature representations from

di�erent modalities, meanwhile it can avoid useless or mislead-

ing information. Consequently, our model remains fully robust to

missing or corrupted modalities during testing.

3 PROPOSED METHOD

In this section, we describe our approach of the selective feature

fusion across di�erent modalities.

3.1 Problem Formulation and Notation

A multimodal dataset consists of # labeled frames de�ned as X =

(XE,X3 ,XC ) for visual, depth and thermal modalities respectively.

The dataset is indexed by # such that X = (X1,X2, ...,X# ) where

X8 = (XE
8
,X3

8
,XC

8
), 1 ≤ 8 ≤ # . The corresponding labels for these

# frames are denoted as ~ = (~1, ~2, ..., ~# ), ~8 ∈ {0, 1}
� , where C

is the number of AUs.

3.2 Multimodal Fusion

High-level features are extracted by an individual backbone net-

work (i.e. ResNet-18 [13]) f with parameter \ , represented as a =

(aE, a3 , aC ), aE, a3 , aC ∈ R� , where D is the dimension of feature:

a: = f (X: ;\:1 );: ∈ {E, 3, C} (1)

The straight-forward approach to fuse multimodal data is to com-

bine them at the input or feature level, namely early-fusion or

late-fusion respectively. However, they are not optimal for multi-

modal data. First, the model cannot capture the complex interaction

among modalities. Second, the model is sensitive to missing or

noisy input by considering di�erent modalities equally.

Intuitively, the features from individual modality o�er di�erent

strengths for the task of AU recognition; more importantly, collect-

ing data from multiple sensors inevitably increases the chance of

having missing or corrupted modalities. Therefore, it is desirable

to design a mechanism to adaptively fuse the features based on the

condition of modalities.

Feature scoring is designed to evaluate the discriminability

of the extracted features. Similar to the widely applied attention

mechanism [36][41], this function learns to evaluate each feature

conditioned on the extracted features, thus allowing the feature

scoring function to be jointly trained with other modules.

U: = g(a: ;\:2 );: ∈ {E, 3, C} (2)

where U: = [c:1 , c
:
2 , ..., c

:
�
], : ∈ {E, 3, C}, and c:

8
∈ [0, 1] repre-

senting the score for individual feature extracted from di�erent

modalities. Instead of re-weighting each feature by the correspond-

ing score, we apply a stochastic fusion method[5] to select the

feature from di�erent modalities.

Feature Sampling aims to re-sampling a feature index U∗ based

on the scores across modalities:

U∗ = (0<?;8=6(UE, U3 , UC )

Fℎ4A4, U∗ = [c∗1 , c
∗
2 , ..., c

∗
� ], c

∗
8 ∈ {0, 1}

"
(3)

where D is the dimension of feature," is the number of modalities,

in our case, " = 3 for the visual, depth and thermal modalities.

However, the sampling step with discrete variables are di cult to

train because the back-propagation algorithm cannot be applied

directly to non-di�erential layers. The reparameterization trick is

proposed in VAE [18] to construct a di�erential unbiased estimator

of the lower bound in a model with continuous latent variables, but

fails on discrete variables. The Gumbel-Softmax trick [17][27] is a

variation of the reparameterization trick, but capable of handing

discrete variables. The Gumbel-Softmax trick allows us to draw

samples U∗ from a categorical distribution e ciently, given the

class probabilities U: and a random variable n: via:

U∗ = >=4_ℎ>C
(

0A6max
:

(

;>6(U: ) + n:
)

)

(4)

where : ∈ {E, C, 3} is the index of modality. In practice, the random

variable n is sampled from a gumbel distribution, which is a contin-

uous distribution on the simplex that can approximate categorical

samples:

n = −;>6
(

− ;>6(D)
)

, D ∼ *=8 5 >A<(0, 1) (5)

However, the argmax operation is not di�erential in Eq.4, hence a

softmax function is used as a continuous, di�erentiable approxima-

tion to argmax:

ℎ: =

exp
((

log
(

U:
)

+ n:
)

/g
)

∑

8∈{E,3,C } exp
( (

log
(

U8
)

+ n8
)

/g
) (6)

where g > 0 is the temperature that modulates the re-sampling

process: when the temperature g approaches 0, samples from the

Gumbel-Softmax distribution become one-hot and Gumbel-Softmax



distribution becomes identical to the categorical distribution; but

when g approaches to +∞, samples will become uniform distribu-

tion [33][17]. Finally, ℎ: is transformed into index U∗ through the

one-hot function, which is further used to select features a∗ from

di erent modalities.

3.3 AU Recognition

First of all, we de!ne a cross-entropy loss function for the ground

truth ~ and the prediction ~̄:

LCE = −
[

~) × ;>6(~̄) + (1 − ~)) × ;>6(1 − ~̄)
]

(7)

For the labeled training data (XE
8
,X3

8
,XC

8
, ~8 ), we have three classi-

!ers CE, C3 and CC to map individual feature into predictions, thus

the supervised loss for each modality is represented as LE,L3 ,LC :

L:
= −

1

#

#
∑

8=1

LCE

(

C: (X:
8 ), ~8

)

, : ∈ {E, 3, C} (8)

K features are constructed by running the Gumbel-Softmax re-

sampling procedure K times, and those K features are mapped into

prediction by classi!er C∗. An average voting strategy is applied

for the !nal prediction, and the loss function is de!ned as follow:

L∗ = −
1

#

#
∑

8=1

LCE

(

1

K

K
∑

9=1

C∗
(

a∗8, 9
)

, ~8

)

(9)

3.4 Reverse gradient guided feature scoring

Ideally, the feature scoring function 6(.) should be able to automat-

ically learn to evaluate the quality of features (aE, a3 , aC ) through

training. However, it is not guaranteed to realize it in practice.

Therefore, it is desirable to design an extra constraint that encour-

ages the feature scoring function 6(.) to ful!l its goal. The idea of

gradient reversal layer was !rst proposed by Ganin et al.[9] for un-

supervised domain adaptation through adversarial training. In our

work, we follow a similar idea but simplify it as a reverse gradient

guidance, which is de!ned as:

L∗: =

1

#

#
∑

8=1

(

1 − 38BC

(

U: ,
�

�

�

�

�

�

mL:

ma:

�

�

�

�

�

�

)

)

, : ∈ {E, 3, C} (10)

Where mL:

ma:
is the gradient of loss function L: regarding to the

latent feature a: , 38BC is a distance function. We use �>B8=4 as the

38BC function in our experiments.

3.5 Cut-Switch for data augmentation

With limited training data, deep model is prone to over!tting, es-

pecially in our case of AU recognition, where the frames were

collected from a small number of subjects with limited variations.

Therefore, an e ective data augmentation method is desirable to

alleviate the over!tting issue.

Data augmentation methods, such as CutOut [8], MixUp [45]

and the recent CutMix [43], have been proposed and demonstrated

an e ective way of alleviating the over!tting issue. However, a

patch is removed in CutOut method, which leads to information

loss and ine"ciency during training. Both MixUp and CutMix rely

on the proportionally mixed ground truth labels and areas, which

make them inapplicable to the multi-label AU recognition task.

We propose a simple but e ective cut-switch multimodal data

augmentation method, as shown in Fig.2, where three patches are

cropped and randomly switched among three modalities based on

a randomly sampled box. The bene!ts of cut-switch is two-fold:

First, as compared to CutOut [8], our method can augment training

data without information loss by cutting and switching blocks at

the aligned face area. Second, without relying on mixed labels, our

cut-switch data augmentation method can be applied to the multi-

label task, while still maintains the bene!ts of mixing area as used

in MixUp [45] and CutMix [43]. To our knowledge, this is the !rst

work for multimodal data augmentation, and experimental results

have shown the e ectiveness of such a cut-switch strategy.

3.6 Full objective of the networks

Combining the aforementioned objectives, our overall full objective

for training the network corresponding to the visual, depth and

thermal modalities is de!ned as follows:

L = _∗L
∗ +

∑

:∈{E,3,C }

(

_:L
: + _∗

:
L∗:

)

(11)

where _ are positive regularization parameters.

4 EXPERIMENTS

In this section, we evaluate the proposed method in terms of its

capability to improve multi-modal fusion as well as its robustness

for missing or noisy inputs.

4.1 Datasets

BP4D [48] is a widely used dataset for evaluating AU detection

performance. The dataset contains 328 2D and 3D videos collected

from 41 subjects (23 females and 18 males) under eight di erent

tasks. As mentioned in the dataset, the most expressive 500 frames

(around 20 seconds) are manually selected and labeled for AU occur-

rence from each one-minute long sequence, resulting in a dataset

of around 140,000 AU-coded frames. For a fair comparison with

the state-of-the-art methods, a three-fold subject-exclusive cross

validation is performed on 12 AUs.

BP4D+ [49] is amultimodal spontaneous emotion dataset, where

high-resolution 3D dynamic models, high-resolution 2D videos,

thermal (infrared) images, and physiological data were acquired

from 140 subjects. There are 58 males and 82 females, with ages

ranging from 18 to 66 years old. Each subject experienced 10 tasks

corresponding to 10 di erent emotion categories, and the most

facially-expressive 20 seconds from four tasks were AU-coded from

all 140 subjects, resulting in 192,000 AU-coded frames. Following

a similar setting in BP4D dataset, 12 AUs are selected and the

performance of three-fold cross-validation is reported.

4.2 Implementation details and evaluation
metrics

In our experiments, we use two modalities in the BP4D dataset: 2D

visual image and 3D face model; and three modalities in the BP4D+

dataset: 2D visual image, 3D face model and thermal image. Face

areas are cropped from the visual and thermal modalities using a



Figure 2: Examples of the Cut-Switch data augmentation method. (a) is the original input multi-modal pairs (XE,XC ,X3 ); (b∼e)

are the potential examples after data augmentation.

tracking algorithm [10] provided in OpenCV. For 3D face model, we

 rst crop the ROIs of 3D meshes and then project the meshes into

depth maps. All the face images are further aligned and cropped

to the size of 256×256, and then randomly cropped to 224×224 for

training, center-cropping for testing. Random horizontal !ip is also

applied during training.

The hyper-parameter _∗ is set to 2, and _: , _
∗
:
are set to 1. The

block size for cut-switch is set to 50, and the number of samples K is

set to 100. The temperature g is set to 1 at begining, and gradually de-

creased towards 0.5 over each epoch of the training process. We use

an Adam optimizer with learning rate of 0.0001 and mini-batch size

50 with early stopping. Cross-validation is applied to  nd the best

parameters. We implement our method with the Pytorch[30] frame-

work and perform training and testing on the NVIDIA GeForce

2080Ti GPU.

For the AU recognition task, we use the F1-score for comparison

study with the state of the arts. F1-score is de ned as the harmonic

mean of the precision and recall. As the distribution of AU labels

are unbalanced, F1-score is a preferable metric for performance

evaluation.

4.3 Experimental results

4.3.1 Comparisonwith single-modal basedmethods . To prove

that multimodal provides additional valuable information for AU

detection, we  rst compare our method to the single modality based

methods, including Deep Structure Inference Network (DSIN) [7],

Joint AU Detection and Face Alignment (JAA) [31], Optical Flow

network (OF-Net) [42], Local relationship learning with Person-

speci c shape regularization (LP-Net) [29], Semantic Relationships

Embedded Representation Learning ( SRERL) [20], and ResNet18.

The upper part of Table.1 shows the results of di"erent methods

on the BP4D database using visual-only modality, where SRERL

achieves the highest performance, around 3.3% higher than the

corresponding ResNet-18. However, by using both visual and depth

modalities, our method outperforms all the single modality (visual)

based state-of-the-art methods, achieving around 3% improvement

in F1-score than the SRERL method, and 5.5% higher than the

ResNet-18-Depth. As no related results have been reported on the

BP4D+ dataset, we compare our method with the ResNet-18 in

Table 2. A similar  nding is also observed that our multimodal based

method outperforms the single-modal based ResNet-18, improving

the F1-score by 4.5%.

In short, the experiments show the superiority of our multimodal

fusion approach over the single-modal based approaches for AU de-

tection on the both datasets.

4.3.2 Comparison with multimodal based methods. As pre-

viously discussed, our method is designed to combine information

from multiple modalities for improving AU detection performance.

In this section, we examine if the proposed method can improve the

performance when using multiple modalities. The early fusion and

late fusion are currently the most common fusion techniques when

facing multimodal data, so we use early and late fusion strategy

with ResNet-18 backbone as baseline. We also compare with the

ResNet-18 with channel attention mechanism (CAM), and the state-

of-the-art multimodal methods: MTUT [1] and TEMT-Net [26].



Table 1: F1 scores in terms of 12 AUs are reported for the proposed method and the state-of-the-art methods on the BP4D

database. V and D represent visual and depth modality. Bold numbers indicate the best performance; bracketed numbers

indicate the second best. * indicts the result from our own implementation.

Method Modal AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg.

DSIN [7] Visual 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9

JAA [31] Visual 47.2 44.0 54.9 77.5 74.6. 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0

OF-Net [42] Visual 50.8 45.3 56.6 75.9 75.9 80.9 88.4 63.4 41.6 60.6 39.1 37.8 59.7

LP-Net [29] Visual 43.4 38.0 54.2 77.1 [76.7] 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0

SRERL [20] Visual 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 [47.1] [53.3] 62.9

ResNet-18 Visual 48.0 46.7 57.0 77.5 71.6 83.5 85.0 63.8 47.1 58.2 39.4 37.3 59.6

ResNet-18 Depth 44.6 49.3 54.4 77.5 74.8 83.7 88.4 59.0 53.3 60.6 41.9 36.2 60.3

Early fusion {V, D} 44.1 50.0 50.6 75.7 63.8 84.8 [89.3] [65.0] 39.0 62.6 35.7 29.8 57.5

Late fusion {V, D} 51.2 46.8 61.1 80.5 73.8 87.7 88.9 62.4 47.7 61.1 41.2 31.4 61.1

ResNet-18+CAM* {V, D} 55.4 [50.3] 62.9 [81.5] 72.1 [87.6] 88.2 63.1 49.9 65.3 44.5 43.8 [63.7]

MTUT[1]* {V, D} 51.3 50.2 [62.2] 77.2 71.7 83.8 88.2 61.4 54.3 57.9 45.8 42.2 62.2

TEMT-Net[26]* {V, D} 53.7 47.1 60.5 77.6 75.6 84.8 87.4 67.0 [57.2] 61.3 44.7 41.6 63.2

AMF {V, D} [55.1] 58.3 62.0 82.5 75.6 87.2 89.6 60.9 59.1 62.4 45.0 52.0 65.8

Table 2: F1 scores in terms of 12 AUs are reported for the proposedmethod and the state-of-the-artmethods on the BP4D+ data-

base. V, D and T represent the corresponding visual, depth and thermalmodality. Bold numbers indicate the best performance;

bracketed numbers indicate the second best. * indicts the result from our own implementation.

Method Modal AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg.

ResNet-18 Visual 47.8 [47.0] 24.5 84.3 [88.0] 89.8 87.2 80.6 47.5 36.7 [54.7] 27.4 59.6

ResNet-18 Depth 40.9 39.2 30.4 83.8 86.7 90.9 [90.2] 79.6 38.2 44.0 52.5 39.4 59.6

ResNet-18 Thermal 39.0 34.0 25.0 82.2 84.0 87.6 87.2 79.2 32.1 36.5 43.9 7.9 53.2

Early fusion {V, D, T} 39.0 34.6 26.2 80.1 86.1 89.5 87.7 74.0 41.0 33.5 44.9 15.8 54.4

Late fusion {V, D, T} 38.5 38.9 [38.8] 82.8 84.0 89.5 89.2 78.4 42.6 32.3 52.2 22.1 57.4

MTUT[1]* {V, D, T} [49.9] 49.5 36.8 [85.4] 88.6 90.5 88.0 [81.0] [49.4] [44.6] 54.0 [35.4] [62.7]

TEMT-Net[26]* {V, D, T} - - - - - - - - - - - - -

AMF {V, D, T} 50.1 46.3 44.4 85.8 87.7 [90.6] 90.8 83.8 51.0 47.6 57.5 33.9 64.1

MTUT is designed to improve the testing performance in hand

gesture recognition task by encouraging the networks to learn a

common understanding across di erent modalities while avoiding

negative transfer. TEMT-Net is a thermal empowered multi-task

deep model which learns the latent representative by transferring

the visual modality to the thermal modality. Since the source code

for both MTUT and TEMT-Net are not released, we implement

the corresponding methods, and report the results in Table.1 and

Table.2. For the BP4D dataset, our model outperforms all the related

methods, and achieves the highest F1-score 65.8%, which is around

8.3%, and 4.7% higher than the early and late fusion methods,2.1%

higher than the ResNet-18 + CAM, and 3.6% and 2.6% higher than

the MTUT and TEMT-Net. The improved performance is also ob-

served in BP4D+ dataset, as shown in Table.2, our model achieves

the highest performance 64.1%, showing 9.7%, 6.7% improvement

over the early and late fusion methods, and 1.4% improvement over

the MTUT. Note that the structure of TEMT-Net is incapable of

being extended to three modalities, so no result reported in the

BP4D+ dataset.

4.4 Ablation study

4.4.1 Results on BP4D+ with fusion of di�erent modalities.

We conduct experiments to examine the e ects of fusion of di erent

modalities, and report the results in Table.3. There are some inter-

esting !ndings: 1) di�erent modalities are not contributing equally

for AU detection, and they may have their own strength and weakness.

The fusion of {depth, thermal} is almost always achieving the worst

performance than fusion of other modalities in all three methods; 2)

adding more modalities to the model does not always help for increas-

ing the performance unless the model is able to capture the complex

cross-modal interactions. As we can see, the worst performance on

late fusion is observed when using the visual, depth and thermal

modalities. On the contrary, our model achieves the highest perfor-

mance when using all the three modalities than using any two of

them.

4.4.2 E�ectiveness of individual part for AU detection. To

answer the question of impact of individual part of proposedmethod,

we conduct experiments on the BP4D dataset under di erent set-

tings, and report the results in Table.4. A late fusion based ResNet-

18 is trained with and without the cut-switch data augmentation



Table 3: Ablation study on BP4D+ dataset with fusion of di�erent modalities. Bold numbers indicate the best performance for

individual method.

Method Modal AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg.

Early fusion

{V, D} 35.6 32.7 26.9 80.2 85.8 89.8 88.0 77.0 37.3 34.1 46.9 15.4 54.1

{V, T} 39.1 33.8 30.0 83.7 85.0 90.5 89.2 75.3 43.4 35.8 50.0 17.5 56.1

{D, T} 24.2 24.3 25.0 83.1 82.3 89.0 88.2 81.4 36.4 40.0 49.0 19.9 53.5

{V, D, T} 39.0 34.6 26.2 80.1 86.1 89.5 87.7 74.0 41.0 33.5 44.9 15.8 54.4

Late fusion

{V, D} 43.9 46.1 38.9 83.4 89.0 89.1 88.4 79.3 47.6 42.9 53.0 23.3 60.4

{V, T} 44.4 42.5 34.0 83.0 86.5 89.5 89.3 78.8 46.9 35.7 55.6 15.3 58.5

{D, T} 31.0 34.7 38.8 85.4 87.3 90.1 89.5 81.0 43.2 45.6 55.7 24.3 58.9

{V, D, T} 38.5 38.9 38.8 82.8 84.0 89.5 89.2 78.4 42.6 32.3 52.2 22.1 57.4

AMF

{V, D} 45.3 42.5 34.8 85.9 87.9 89.5 90.4 82.6 50.1 45.5 55.7 42.1 62.7

{V, T} 53.2 50.4 36.0 84.3 86.7 90.4 90.1 82.6 45.7 47.4 56.5 39.4 63.5

{D, T} 39.6 40.7 32.8 84.3 85.3 89.2 89.3 77.6 45.4 44.3 56.3 37.6 60.2

{V, D, T} 50.1 46.3 44.4 85.8 87.7 90.6 90.8 83.8 51.0 47.6 57.5 33.9 64.1

Table 4: Ablation study of e�ectiveness of individual part of our model on BP4D dataset. Bold numbers indicate the best.

Method Modal AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg.

Resnet-18 w/o cut-switch {V, D} 51.2 46.8 61.1 80.5 73.8 87.7 88.9 62.4 47.7 61.1 41.2 31.4 61.1

Resnet-18 + cut-switch {V, D} 53.8 51.5 58.6 79.4 73.5 86.2 89.1 59.6 44.8 64.8 45.3 46.6 62.8

AMF w/o cut-switch {V, D} 52.1 51.0 64.5 79.2 73.9 86.4 88.3 60.5 55.3 64.2 47.7 49.2 64.4

AMF + cut-switch {V, D} 55.1 58.3 62.0 82.5 75.6 87.2 89.6 60.9 59.1 62.4 45.0 52.0 65.8

method using the visual and depth modalities. As shown in the ta-

ble.4, the performance is improved from 61.1% to 62.8% by training

with the cut-switch method, which proves the e ectiveness of our

proposed cut-switch data augmentation method. 1.4% performance

improvement is also achieved by training AMF with and without

the cut-switch.

Without cut-switch, we compare our method with late fusion

based ResNet-18, as such, any performance improvement can be

attributed to our feature fusionmodule. As shown in Table.4, around

3.3% higher F1-score is achieved by comparing our proposed feature

fusion method (third row) with the directly late fusion method ( rst

row), which shows the e ectiveness of our proposed feature fusion

method.

4.4.3 Robustness for noisy input. To show the performance

when unexpected data corruption occur during testing, for example

in the scenario of missing modality or noisy input, we conduct

further experiments to evaluate the robustness of our model.

To emulate the scenario of missing modality, we replace one of

the designated missing modality with all zero, and report the results

in Fig.4. We can !nd that the performance of RestNet-18 (late fusion)

w/o CAM decrease dramatically at the absence of one modality. It

is especially true when visual modality is missing, the performance

decreased from 61.1% and 63.7% to 23.6% and 29.8% for ResNet-18

and ResNet-18+CAM respectively. However, another interesting

fact is that the performance of ResNet-18 only decreased from 61.1%

to 48.8%, which indicates the late fusion based ResNet-18 learns to

put more weight on the visual modality than the depth modality

through a biased classi!er, even under the condition of missing

visual modality. On the other hand, our proposed method remains

robust to missing modality, achieving 60.7% and 60.6% F1-score

Figure 3: Example images for noisy modality corresponding

to Fig.5 . Gaussian noise f = 0.1, 0.2, 0.5, 0.8 are added to the

normalized visual and depth images (range from -1 to 1). Im-

ages from a small area labeled as red box are used to show

the di�erence.

for missing visual and depth modality respective, which is about

37.1% and 11.8% higher than the corresponding ResNet-18 model.

It is worth noting that, even with missing modality, our model still

outperforms the single modality based ResNet-18 (ResNet-18-Visual

and ResNet-18-Depth).

We further evaluate the performance of our method and the

ResNet-18 under the setting of corrupted modality, and report the

results in Fig.5. As we can see, both our model and ResNet-18

model are robust to Gaussian noise with variance less than 0.2,

and the performance changes as increasing the variance. The red

and blue line in Fig.5 represent our model with Gaussian noise

added to the visual or depth modality respectively, which shows

comparable performance even with the variance increased from

0.2 to 0.8. The example images of corrupted modality is shown in



Figure 4: Ablation study ofmodel robustness respect tomiss-

ing modality on BP4D.

Fig.3. The worst performance is observed at the point (variance=0.8,

F1-score= 61%), which is close to the performance of ResNet-18 with

clean inputs. We attribute the improved robustness to the feature

scoring and sampling steps in our proposed method, which is able

to evaluate the quality of features learned from individual modality

and sample the feature based on their corresponding scores. On the

other hand, the performance of ResNet-18 decreases dramatically

when the variances (i.e., noise level) increase in the visual modality,

as shown in the green line of Fig.5. The yellow line shows a certain

robustness to the corrupted depth modality, which is consistent

to our  nding that the late-fusion based ResNet-18 model relies

heavily on the visual modality (as shown the depth missing in

Fig.4). Such a performance is due to the ResNet-18 being as a biased

classi er.

When Gaussian noise is added to both modalities, as shown in

grey lines, the performances of both our model and ResNet-18 de-

crease dramatically when the variance increases, as both modalities

are corrupted and not enough information available. Note that such

an extremely worst case rarely occurs in real applications though.

5 CONCLUSION

In this paper, we proposed a novel adaptive multimodal fusion

(AMF) framework for AU detection. A feature scoring module is

designed to evaluate the features learned from multiple modalities.

The adaptive feature fusion process is conditioned on the feature

scores with the Gumbel-Softmax resampling tricks to select the

most relevant features from di erent modalities, while avoiding

useless or misleading information. To alleviate the over-!tting is-

sue, and make the model generalize better on the testing data, a

cut-switch multimodal data augmentation strategy is also proposed.

Extensive experiments demonstrate that our proposed model out-

performs the single modality and both early and late fusion based

multimodal models, as well it shows a better performance than

the state-of-the-art peer approaches. In order to investigate the

Figure 5: Ablation study of model robustness respect to

noisy input on BP4D.

performance in various data degradation conditions, we conduct

experiments to study the in"uence of missing or corrupted modal-

ities, and the results show that our models are robust to various

imaging conditions in terms of missing modality and noisy input.

It is worth noting that our proposed AMF framework is expand-

able to any number of modalities. Our future work will investigate

feature fusion schemes from more modalities including audio and

physiological signals, as well as more e#cient data augmentation

scheme across multi-dimension and multi-modal data.
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