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Abstract—This brief addresses the problem of stabilizing
steady, wing level flight of a fixed-wing aircraft to a specified
inertial velocity (speed, course, and climb angle). The aircraft is
modeled as a port-Hamiltonian system and the passivity of this
system is leveraged in devising the nonlinear control law. The
aerodynamic force model in the port-Hamiltonian formulation is
quite general; the static, state feedback control scheme requires
only basic assumptions concerning lift, side force, and drag.
Following an energy-shaping approach, the static state feedback
control law is designed to leverage the open-loop system’s port-
Hamiltonian structure in order to construct a control Lyapunov
function. Asymptotic stability of the desired flight condition
is guaranteed within a large region of attraction. Simulations
comparing the proposed flight controller with dynamic inversion
suggest it is more robust to uncertainty in aerodynamics.

Index Terms—Flight vehicle dynamics, Lyapunov methods,
nonlinear control systems, port-Hamiltonian systems (PHSs).

I. INTRODUCTION

ONVENTIONAL approaches to flight control of fixed-
Cwing aircraft rely on linearizing the vehicle dynamics
about an equilibrium motion, such as wings-level flight at
constant altitude and speed. The utility of control schemes,
such as linear quadratic or H, control, that rely on a small
perturbation model is limited to a neighborhood of the nominal
flight condition. One can develop a family of controllers that
are parameterized by the desired speed, climb angle, etc.,
but the performance and stability of the resulting closed-
loop system will generally depend on the rate of parameter
variation.

To obtain effective closed-loop performance with stability
guarantees over a larger operating envelope, one may instead
consider nonlinear control design methods such as dynamic
inversion [1]-[3] or adaptive control [4]-[6]. Dynamic inver-
sion, or feedback linearization, requires a well-characterized
model of nonlinear dynamics. Such a model may be imprac-
tical to obtain over the full flight envelope, particularly for
an aircraft whose configuration and inertial parameters vary
substantially between flights. Model reference adaptive control
and adaptive backstepping can accommodate a variety of
uncertainties, including uncertain nonlinearities, assuming the
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system satisfies certain structural conditions. The resulting
dynamic state feedback controllers are often computationally
sophisticated, however, which can limit their utility for low-
cost platforms such as small unmanned aircraft.

The design proposed in this brief is based on modeling the
aircraft as a port-Hamiltonian system (PHS) [7], an extension
of Hamiltonian systems in classical mechanics to systems with
inputs, outputs, and dissipative forces. PHSs are characterized
by a scalar function representing the total energy of the system
along with a pair of matrix functions that describe how energy
is distributed and dissipated. Modeling the system as a PHS
facilitates nonlinear, energy-based control design and allows
using established energy-shaping techniques for PHS [8], such
as interconnection and damping assignment, passivity-based
control (IDA-PBC) [9]. Passivity-based control (PBC) has
proven to be effective in various applications such as the
control of electric motors [10] and quadrotors [11]-[15].

Of the many mechanical system applications of PBC
described in the current literature, perhaps the closest to the
proposed application of fixed-wing aircraft flight control is
the use of PBC to control unmanned underwater vehicles
(UUVs). Woolsey [16] developed a cross-track control law for
a slender, underactuated UUV using potential energy shaping.
Fahmi and Woolsey [17] adapted this notion of potential
energy shaping for directional stabilization of a fixed-wing
aircraft. The closed-loop performance, however, exhibited
undesirable excursions in the aerodynamic angles, particularly
in the sideslip. In a different approach to energy shaping,
Valentinis et al. [18] developed a feedback controller for a
slender, underactuated UUV by shaping the target dynamics,
and suppressing the influence of unactuated degrees of free-
dom. In [19], Valentinis et al. expanded the scope of control
design to include precision guidance along a helical trajec-
tory. More recently, Valentinis and Woolsey [20] developed
a PBC for a non-neutrally buoyant, underactuated submarine
executing an emergency ascent.

With the exception of [20], the studies mentioned above
ignore the force of gravity, which is balanced by buoyancy.
While hydrodynamic forces such as lift and drag certainly
affect underwater vehicle motion, the nominal state of motion
is to advance at a constant speed with minimum drag and
zero lift, so hydrodynamic forces can be treated as pertur-
bations to be rejected by the control system. In contrast,
fixed-wing aircraft rely on an aerodynamic lift to counter
the gravitational force in steady flight and to execute maneu-
vers. The work presented in this brief focuses on stabilizing
the aircraft velocity by exploiting some remarkable prop-
erties of the aerodynamic force when expressed in a port-
Hamiltonian framework. The approach to control design is

1063-6536 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 01,2021 at 17:51:22 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

inspired by the canonical transformation approach proposed by
Fujimoto et al. [21].

The brief is organized as follows. Section II describes
the structure of a PHS and summarizes the control design
approach of Fujimoto ef al. [21]. Section III presents the rigid
body model for a fixed-wing aircraft, including a novel rep-
resentation of the aerodynamic force in the PHS framework.
The aerodynamic force model is quite general, so the resulting
control strategy is effective for widely varying geometries.
Section IV describes the application of the method presented
in Section II to the model presented in Section III. Section IV
gives concluding remarks.

II. PORT-HAMILTONIAN SYSTEMS

The trajectory tracking control design method described by
Fujimoto et al. [21], which serves as the basis for the control
design presented in this brief, is based on a general theoretical
framework for underactuated (electro-)mechanical systems.
The approach relates to the IDA-PBC method described by
Ortega et al. [9]; Fujimoto’s [21] approach may be interpreted
as a variant of the latter when the control system is time-
invariant. Here, we briefly describe the structure of a PHS.
A PHS has the form:

. oHT”
x=[J(x)— R(x)]g +g(x)u (1)
oHT
y=2g' - @)
x
where x(¢t) € R”" is the state vector, J(x) = —J (x) is

an interconnection matrix which represents energy conserving
interactions among the state variables, the matrix R(x) =
RT (x) > 0 accounts for the dissipation incurred during system
motion, H : R" — R is the Hamiltonian function, and the
matrix g(x) € R determines how the m inputs u(t) € R”
affect system motion. The input vector u(f) and the output
vector y(t) € R™ are conjugate in the sense that their inner
product expresses the power exchanged with external systems.
The PHS can be shown to be passive [7] with the Hamiltonian
as a storage function:

dHx) oHE®" _ 7
T Y ST 3)

Given a PHS model, the control design objective is to con-
struct a passive error system through feedback transformation.

B 6H(x)R(x)
ox

III. VEHICLE MOTION MODEL

We consider a rigid aircraft with four inputs: the thrust force
and three control moments in roll, pitch, and yaw. Let v =
[u,v, w]" represent the translational velocity of the aircraft
with respect to inertial space, but expressed in the body frame,
and let p = [p1, p2, p3]7 = mv denote the corresponding
body translational momentum, where m is the aircraft mass.
Letw = [p, q, r]" represent the angular velocity of the aircraft
with respect to inertial space, but expressed in the body frame,
and let b = [hy, ha, h3]" = Iw denote the corresponding body
angular momentum, where I is the moment of inertia matrix.
It is convenient to define a transformation of the translational

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 1. Aerodynamic angles for an aircraft.
velocity variables (u, v, w) — (V, f, a) which is well-defined
for V> 0and f € (—n /2,7 /2):

V=lpll, p= arcsin(%), and a = arctam(g) )
u

where arctans denotes the 4-quadrant arctangent (see Fig. 1).
We can use the angle of attack, a, and sideslip angle, f,
to define a proper rotation matrix mapping free vectors from
a wind frame [22], where the aerodynamic forces are defined,
to the body frame:

Rpw (e, f) = e 2% e®F 5)

where e; is the ith unit basis vector for R and the overhat
indicates the 3 x 3 skew-symmetric “cross product equivalent
matrix”” which, for vectors a and b, satisfies ab = a x b.

The aircraft orientation with respect to the inertial frame is
typically expressed in terms of Euler angular rates correspond-
ing to a common Euler angle parameterization for the rotation
matrix Rjp = %% %089 The rotational kinematic equations
in this case are well-defined provided 6 # +x /2.

Alternatively, as described by Battista e al. [23], one may
use the heading angle y together with the tilt vector &£ = Rlze3
to describe the attitude kinematics. This alternative represen-
tation is well-defined provided |¢1| = |¢7ei| # 1. That is,
the parameterization is valid provided the body’s forward axis
is not aligned with the inertial vertical axis, precisely the
same conditions under which the Euler angle parameterization
holds. Thus, the aircraft rotational and translational kinematic
equations are

{=({xwo
p=—(1-¢) tTee
% = Rpv. (6)

For flight in still air, the dynamic equations expressed in
the body-fixed reference frame are

iz:hxw—i—rc—i—ra 7
P=pxw+mgl+ fe+ fa (8)

where f, and t, represent the aerodynamic force and moment,
respectively, while f, and 7. represent the control force and
moment. We assume the aircraft has a single thruster aligned
with its velocity such that f. = F.v/V, where F, is the scalar
thrust. The assumption that thrust is aligned with velocity
is nonstandard—it would require a gimballed propulsor—but
it resolves an analytical challenge in the coming stability
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analysis. The assumption is revisited in Section V where we
consider more conventional assumptions about thrust.

We assume the aerodynamic force and moment are governed
by quasi-steady flow, depending only on the translational
and rotational velocity. Rather than adopt explicit analytical
expressions for aerodynamic effects, however, we make only
generic assumptions. For example, we assume the aerody-
namic moment opposes rotation and vanishes when the motion
is purely translational: 7,-® < 0 when @ # 0 and 7, = 0 when
® = 0. In reality, there are important acrodynamic moments
that arise from translational motion, such as the “weathervane”
moments in pitch and yaw. Rather than account for these
bare airframe effects early in the modeling process, we absorb
them into the three-axis control moment to be defined shortly.
To implement the resulting control law, one must first remove
these moment contributions due to the aerodynamics of the
bare airframe. A simple aerodynamic moment model that
captures the primary effects of roll, pitch, and yaw damping
is 7, = —D,(v)® where D,(v) > 0.

The aerodynamic force is typically expressed in wind frame
components: the drag force, which opposes velocity; the lift
force, which acts normal to drag and in the aircraft plane of
symmetry; and the side force, which is normal to the two other
components. These components are assumed to depend solely
on the aerodynamic angles. In reality, small aerodynamic
forces also arise in response to aircraft rotation. For example,
an aircraft rotating in yaw will experience a small side force
due to the vertical stabilizer; this small force, acting about the
center of gravity through a large moment arm, provides a yaw
damping moment. We ignore these small aerodynamic forces
due to rotational motion, although we retain the aerodynamic
moments that they generate, in the control design and analysis;
the small aerodynamic forces are included in simulations.

For a given (constant) air density p and wing planform
area S, the aerodynamic force expressed in the body reference
frame can be written as:

f20) = SV R (e, (@, ) ©

where C(a, f) = [Cp(a, ), Cs(a, B), Cr(a, f)]T contains
the indicated nondimensional aerodynamic force coefficients.
These are assumed to exhibit the following properties:

1) The drag coefficient, Cp(a, ), is a positive function and
even in both arguments.

2) The side force coefficient, Cg(a, ), is a smooth, odd
function with respect to f£. It is positive (respectively,
negative) when e’ lies in the first (respectively, fourth)
quadrant of the complex plane.'

3) The lift coefficient, Cy(a, ), is a smooth function and
nondecreasing with respect to o.

Although the third condition given above allows a diminishing
slope of the lift coefficient near the stall angle of attack, it pro-
hibits the decrease in lift coefficient that occurs with increasing
angle of attack beyond the stall condition. Thus, while the
aerodynamic model is quite general in its representation of
normal flight conditions, the subsequent analysis and results

"Note that the sign of Cg is opposite the standard convention for lateral
force coefficient.

require (and help to ensure) that the aircraft operates below
the stall condition.

Using the definitions of aerodynamic angles in equations (4)
and (5), we can reformulate the aerodynamic forces:

wCp— Voo Wy .
fa(v)y = —0o oVCp + V/u? 4+ w?Cs
WwVCp— 2V ey MV

(10)

where p = 1/2pS is assumed to be constant and the drag,
side-force and lift coefficients depend on the velocity wv.
Equation (10) can be further decomposed as follows:

f.0) = (J, —R,)v an

where J, = (oV)/((u? + w?*)/*)[wCs, VCr, —uCs]" acc-
ounts for a force orthogonal to the velocity vector (i.e., a turn-
ing force) and where the matrix R, = pVCpl > 0 accounts
for the dissipation of translational kinetic energy. (The term I
represents the 3 x 3 identity matrix).

Let  =[¢7, v, qT]" be the configuration vector, where g
denotes the position of the aircraft in inertial space. We con-
catenate configuration and momentum into the state vector
x = [hT, pT’ "T]T’

Proposition 1: The system dynamics (6), (7), and (8) can
be written in the PHS form (1-2) with Hamiltonian

H= 1hTrlh + Lpr —mgelq (12)
2 2m h
and with
hp & —a@®" 0
p b 0 0 —RL
J=1 ¢ 0 0 0 0 (13)
at) 0 0 0 0
| 0 Rp 0 0 0
T
D, 0 0 0 0 o
0 R, 0 0 0 0o —
R=|0 0 00 0|.g=|¢ & (14)
0O 0 0 0 0 0 0
(0 0 0 0 0 P

Here, Rp depends on both ¢ and y and a(¢) is derived
from equation (6): a(¢) = —(1 — (f)’lcTélél. Note that this
PHS formulation holds for aerodynamic coefficients Cp, Cs,

and Cy, of any functional form.

IV. DIRECTIONAL STABILIZATION

The procedure followed in this brief is inspired by the work
of Fujimoto er al. [21], whose brief describes a trajectory
tracking control strategy for PHSs in which a passive error
dynamic system is constructed via canonical transformation.

The goal in this section is to stabilize the aircraft’s motion to
non-slipping (f = 0), wings-level (¢ = 0) flight in a specified
direction described by a desired course angle y,; and a desired
climb angle y,4, with y; # /2.
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Rather than specify the desired airspeed V; and solve for
the desired angle of attack a,, we specify the desired angle of
attack and solve for the corresponding airspeed. The former
approach would require knowing the functional forms for
the aerodynamic force coefficients; we assume that only the
most general properties of these functions are known. Directly
specifying the desired angle of attack also allows one to more
easily avoid the stall condition, which is not captured by the
assumptions concerning the lift coefficient Cy. The stall is
avoided through the judicious choice of the nominal flight
condition and prescribed bounds on the initial state; see the
discussion following Theorem 1.

The desired velocity vector is vy = V,(cosay, 0, sinay)T.
Given a desired climb angle, selecting oy also fixes the
desired pitch angle, or equivalently the desired tilt vector
since the desired roll angle is zero: ¢y = [—sin(ay + y4),
0, cos(ay+74)]". The angular velocity is zero in the desired
state of steady, wings level flight at a fixed attitude. As for
the translational velocity, the airspeed is chosen in such a
way that the aerodynamic forces balance the component of
gravitational force along the vertical axis. Therefore, V; =
((mgcosya)/(0Cr,)'?), where Cr, is the lift coefficient
evaluated at steady state, is chosen.

While v, represents the desired velocity when the attitude
is at a steady state, using it as the direct reference command
may yield poor performance and violate conditions required
in the proof of stability. Instead, state-dependent target values
denoted with the subscript “t” are designed which converge to
the desired values at a steady state.

Define the function

1
He = 5 —10) 17 (h 1) + %(v V4V
2

ﬁ((sina —sinag)® +2(1 — cos B)) (15)

where Vs = 1/2(k; (¢ — £)" (¢ — &) + ky (y — ya)?) s an
artificial potential with k., k, > 0 and where

(o, f,8) = [—th’lQ cscagcosf, 0O, O]T (16)
and
Vi(a, B, ¢)
in?2
- | =8 TR C+ zs.m b cosoc—M :
oCr, 2sinoy cosa

a7)

Note that M. can be split into H;, = 1/2(h — Iw,)"
I~'(h — Iw,) which contains information about error in the
rotational dynamics, V; which quantifies the error in the pitch
and heading, and ‘H, = H. — H, — Vg which contains
information about error in the translational dynamics. Here
and below, the velocity components V, «, and f should be
interpreted as functions of the translational momentum p.

Theorem 1: The control law

7T

rC:—[H —1% —1“’*]@7 R)— —C(w— @)

Oy [

_1_(j R) FHp 6(VA+H):| ,

ox

(18)
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T
thi|(j R)I:wt’ ’Q:|
on

Vi
op’
—mgvTev 4+ Vd (mg(VVt)
+ sec fcosa(sina — sinag)
(mg(VV) ™" e3 Ryt — oCu,)),

where H = H — H,. and C > 0, asymptotically stabilizes the
desired equilibrium.

Remark 1: Implementing the control law requires knowl-
edge of the aerodynamic model, but the proof does not rely
on an explicit functional form for the aerodynamic forces and
moments. See the comments following (9).

Proof: Taking H, as a candidate Lyapunov function,

. P T
He = H((J R)—H +gu)
oH, oH.T

OH, oH c
- ((j R)_ +gu)— ox ox

With the proposed control moment, 7., in equation (18),
the time derivative of the proposed Hamiltonian function
becomes:

F. = QCDV +m[0

sin S cos

19)

(20)

He
T
= TR o w)Co - )
ox ox
0 g ®;
oM, " oM, "
+| o (J-R) N2
Val  oH,T vl av,m om,”
R o oam om
(2D

Adding and subtracting the term

(0H,)/(0x)(T — R)(0H,)/(6x)" and taking advantage
of the structure of J and R reduces equation (21) to

. 0 oH, T
He = —ﬂRﬂ —(@— o) Clw—w)
ox ox
0 T
oH, " ‘:’
+ op (T -R) opT (22)

V' N oH," =
on on "

Expanding (22) and substituting for the control thrust F,
from equation (19) gives:

. K T
M= — H;,Ré’l'(h
ox ox

—0Cp(V = V)(V? = V)

+ke (& = &) o +ky (y — ya)a@)e

+ de sinﬂ(mgilQ cosff —opVCys — me;Rwat
sin B(1 cosa + (3sina))

— (0 — (u,)TC((o — @)

—mgV~!
+ Va? (sina — sin ay) cos a sec 8

(—oViCp + me] Rgww, + mgV, 'e] Rywt).  (23)
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Fig. 2.
intervals by the 3-D aircraft model.

One may use w;, to eliminate undesired terms involving
Vg4 sin . However, o, is multiplied by sin @ whose value can
pass through zero during transient motion. To resolve this
issue, subtract de sin f(sina — sinay)mw,;, from the fourth
line of (23) and add it to the last line. Substituting (16) and
(17) in (23) then gives:

y 0 oH, T
He = —ﬂRﬂ _ ((x) _ (X)t)TC(a) . wt)
ox ox
2
L 0CH(V — VPV + vy — 52
V, sinay

V2 sin B
\%4
oViVi(sina —sinay)(Cp — Cyr,) cosa

(oV?*Cs +mgsin B(¢1 cosa + (3 sina))

cos f 24
Note that the first two terms are non-positive since R > 0
and C > 0. In addition, the facts that Cp is positive and
that V and V, are non-negative mean that —pCp(V — V,)?
(V+V,) <0. The term —(V? sin* B)/V(¢1 cos a + (3 sina) is
not guaranteed to be nonpositive, however | sin? f(¢] cosa +
Gsina)| < 1. Provided the airspeed V > 0 remains suf-
ficiently large, this term will not affect the sign definiteness
of H,. The conditions for Lyapunov stability must hold within
level sets of H,.. By choosing a sufficiently small level set, one
can ensure that V remains sufficiently large and therefore that
HC < 0, showing that the desired equilibrium is stable.
LaSalle’s principle states that trajectories which begin in a
compact and positively invariant set €, where the Lyapunov
conditions hold, converge to the largest invariant set M con-
tained in the set £ = {(h, p,¢,w) C Q | d/(dt)H. = 0}.
It can be easily shown that d/(dt)H, = 0 if and only if
=0,V =V,a=a4 f=0and & = 0. Depending on the
set Q, however, there could be more than one state contained
within M. To determine all possible states contained in M,
one must consider the dynamics within the set E. Referring
to equations (6), (7), and (8), we find that the equations are
satisfied if and only if ¢ = ¢{; and w = w,. The equilibrium is
therefore (locally) asymptotically stable. To estimate the basin
of attraction, one may examine level sets of the Lyapunov
function.
Remark 2: In applications where energy shaping is used
to stabilize a PHS, one typically shows that the closed-loop
dynamics are Hamiltonian with respect to a control-modified

East (m)

Desired velocity direction (black dashed) and actual path (blue solid). The initial position is the origin. Vehicle attitude is denoted at two second

Hamiltonian, and then proceeds with stability analysis. For
the fixed-wing nonlinear flight control problem considered
here, we were unable to obtain a coordinate transformation
under which the closed-loop dynamics can be recognized as
a Hamiltonian system. Doing so requires solving a system
of partial differential equations (PDEs) whose solution is not
intuitive, even when the functional form of the aerodynamic
force coefficients is explicit. In our case, we consider a general
class of aerodynamic force coefficients and show, in the proof
of Theorem 1, that the function H, is indeed a Lyapunov
function.

V. SIMULATION

To demonstrate the control law presented earlier, we simu-
late its performance using a flight dynamic model for the T-2
generic transport model (GTM) presented in [24].

In the simulation, the aircraft starts with an airspeed
of 20 m/s and with initial values of zero for a and f. The
desired motion corresponds to wings-level flight at an angle
of attack of 10° with a zero climb angle and a course angle
of 45° (northeast). Initial values for state variables other than
velocity were chosen randomly. The results shown in Fig. 2
reflect the analytical stability results presented earlier, although
the simulation model incorporates aerodynamic interactions
that were ignored in the control design and analysis, such as
aerodynamic force terms involving angular rates.

Fig. 2 shows the vehicle trajectory (solid line) using the
proposed controller subject to the previously stated initial
conditions. The aircraft’s orientation is indicated at equal time
steps by a 3-D model of a conventional aircraft, although the
geometry is not that of the GTM. The feedback-controlled
trajectory converges to the desired flight profile. Figs. 3 and 4
show the time history of rates and attitude variables as solid
lines and the corresponding desired steady-state values as
dotted lines.

Additional simulations have been performed to explore
the assumption that thrust is aligned with velocity. This
assumption differs from the more common assumption that
thrust is aligned with the longitudinal axis. While physical
mechanisms are available to adjust the line of thrust, neither
of these two assumptions is especially accurate for a generic
aircraft with a fixed propulsor. In any case, to examine
the sensitivity of the stability results to the thrust direction
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and magnitude, we include two additional simulations—one
for which the magnitude of the feedback-controlled thrust
is directed along the longitudinal axis (constant thrust line
with varying thrust) and another where the constant-magnitude
thrust is applied along this same fixed thrust line. The time
history of the Lyapunov function is shown in Fig. 5. The
non-negative Lyapunov function decreases monotonically for
the proposed control law, as it must do, and it appears to
do the same when the (feedback-varying) commanded thrust
magnitude is directed along the longitudinal axis. In the case
of constant, longitudinal thrust, the aircraft motion converges
to the desired one, however, the value of H,. does not decrease
monotonically.

Further simulations were conducted to study the controller’s
behavior in the presence of uncertainties in the inertial
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Fig. 5. Lyapunov function histories for different thrust scenarios.

parameters and the aerodynamic model. All the simulations
begin with the initial state previously described and are
prescribed the same desired steady-state as above with a
simulation time of 40 s. The simulations indicate that the
closed-loop performance is robust to the uncertainties in the
sense that the system remains stable and the state converges
to a steady motion in the neighborhood of the desired motion.
To quantify the effect of perturbations, an appropriate metric
was defined. First, we define the mean squared deviation P of
the velocity direction from the desired value for the perturbed
flight dynamic model:

Ri () p(t T (R (t)p(t
__/ ( B(1)p(t) id) ( m()p()_id)dt (25)
el e
where i; = e &g 142¢, is the desired inertial velocity

direction and 7 is the total simulation time. We define
N similarly as the mean squared deviation of the velocity
direction for the nominal plant. The error metric is

P—-N
vtk

To better understand the effectiveness of the controller
compared to other approaches, we consider an alternative
control design approach. Since the control law developed here
involves static state feedback, we compare it with another
nonlinear static state feedback method. The dynamic inversion
controller described in [25] is chosen due to its popularity
and ease of implementation. In line with the methodology
detailed in the brief, a “control output” vector of the same
dimensions as the input vector is taken. To present a fair
comparison between the passivity-based and dynamic inver-
sion controllers, the control input vector is selected to reflect
quantities present in the control Hamiltonian in equation (15):
¥y = [a —aq, B, 1 +sinag, w — wy]”. Bach element in the
control output vector is differentiated, with respect to time,
until at least one element of the control input vector appears.
Hence, for each element of the output vector, J;, one obtains
an equation of the form y '(d) = b;+ B;u, where the superscript
(d;) denotes the number d, of time derivatives that are taken,
b; is the sum of all the terms that are independent of the
input, and B; is a row vector representing whether and how
the various input components appear in the given derivative
of y;. Let b be the vector formed by concatenating all the
b;’s and B be the matrix constructed by stacking all the B;’s.
The inverse dynamics control law is u = —B T+ v), where

E =

(26)
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Fig. 6. Histogram comparing performance of the passivity-based and

dynamic inversion controllers for 1000 simulations with uncertain inertia
parameters.
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Fig. 7. Performance comparison of the passivity-based and dynamic inversion
controllers, given uncertainty in the aircraft’s mass (top) and inertia (bottom).
The subscript “d” indicates the terms with perturbation.

v =97 P.y®. Here, P is a set of preselected, constant
matrices. For the sake of this comparison study, the set Py is
selected to achieve a performance similar to that of the PBC.

A. Uncertainty in Inertial Parameters

For uncertainties in the inertial parameters, we consider per-
turbations to the mass and inertia matrix. For each simulation,
these perturbations are randomly generated, with a uniform
distribution ranging between +10% of the corresponding
term’s nominal value. All other parameters are kept the same
as before. The controllers are fed accurate translational and
rotational velocities, as well as the position and attitude
data, and compute the respective momenta, in addition to the
required system inputs, using the nominal mass and inertia
matrix. 1000 numerical simulations of the closed-loop system
were conducted under these conditions for either controller.
Results indicate that both controllers had a comparable per-
formance where the state remains within a neighborhood of
the desired steady state, as shown by the histogram in Fig. 6.

B. Uncertainty in Aerodynamic Model

The uncertainty in the aerodynamic model takes the form
of perturbations to the aerodynamic coefficients. As before,

200
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0 0.05 0.1 0.25

Fig. 8. Histogram comparing performance of the passivity-based and
dynamic inversion controllers for 1000 simulations with uncertain aerody-
namic parameters.
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Fig. 9. Performance comparison of the passivity-based and dynamic inversion
controllers, given uncertainty in the aerodynamic force (left), aerodynamic
moment due to rotational velocity (middle), and aerodynamic moment due
to translational velocity (right). The subscript “d” indicates the terms with
perturbation.

the perturbations are generated at random in a uniform distri-
bution ranging between +10% of the corresponding term’s
nominal value. The aerodynamic model uncertainties that
are considered fall in three categories: uncertainty in the
aerodynamic force due to the translational velocity, uncertainty
in the aerodynamic moment due to the angular velocity, and
uncertainty in the aerodynamic moment due to the translational
velocity. The first two sources act on terms and quantities
already accounted for in the simulation model. With regard
to aerodynamic moments due to translational velocity, recall
that these terms were omitted from consideration with the
understanding that their effect should later be removed from
the computed control moment. The concept is akin to feedback
linearization, so it is especially important to assess the effect of
uncertainty in these terms. For expedience, the coefficients are
classified as being related to the angle of attack («-dominant)
or being related to the sideslip angle (f-dominant). Then,
the coefficients of the same class are perturbed by the same
randomly generated number. Like before, 1000 numerical
simulations of the closed-loop of system were conducted
under these conditions for either controller. As shown by the
histogram in Fig. 8, results show that the state remains within
a neighborhood of the desired steady state. However, the tail of
the distribution pertaining to dynamic inversion is much longer
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than that for PBC. This observation suggests that the proposed
controller is more robust to uncertainties in the aerodynamic
model.

The simulation results also indicate that the performance
of both controllers is more sensitive to perturbations in
o-dominant terms than any other terms as shown in Fig. 9.

VI. CONCLUSION

This brief presents a nonlinear, energy-based control design
for a small, fixed wing aircraft that stabilizes the aircraft to
wings-level flight at a commanded velocity, characterized by
a desired speed, course, and climb angle. The control law
requires knowledge of some aerodynamic parameters, but the
stability analysis uses very general assumptions about the
aerodynamic forces and moments.

By recognizing a special structure of the aerodynamic force,
it is possible to cast the aircraft equations of motion as a PHS.
One may then leverage the system’s passivity properties to
design a nonlinear, energy-based control strategy. A Lyapunov
function candidate was constructed by modifying the storage
function; the stability proof relies on exploiting the structure
of the PHS model. Simulations illustrate that the control law is
robust to model parameter uncertainty and that its performance
compares favorably with dynamic inversion, an alternative,
nonlinear, static state feedback method.

Future work involves adapting the control law presented
here to stabilize a time-varying desired velocity, which is a
precursor for curvilinear path-following, and demonstrating
the algorithm in flight tests.
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