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This paper investigates the use of a heterogeneous stereo vision system in mitigating the
effects of time delays present in the display that is presented to a human operator. Time
delays in the display system of a telerobotic operation refer to the time difference between the
operator’s input action and the corresponding visible outcome. In man-machine interfaces,
time delays can arise due to computation, telecommunication, and mechanical limitations.
The delay needs to be overcome to bridge the gap between humans and machines as future
workplaces may require more interactions between the two. A heterogeneous stereo vision
predictive algorithm is presented that can reduce the negative effects of time delays present in
the operator’s display. The heterogeneous stereo vision system consists of an omnidirectional
camera and a pan-tilt-zoom (PTZ) camera. The human operator controls the PTZ camera in
the presence of time delay wearing first-person-view goggles. Delays present in a first-person-
view environment can deteriorate the operator’s performance and increase their workload
resulting in an aversion to using man-machine systems. As a solution, a simple predictive
display algorithm is developed that takes the delayed video imagery from the omnidirectional
camera and stitches it to the delayed video imagery of the PTZ camera to provide an almost
immediate visual response to the operator’s control actions. The usability of the system is
determined by doing human performance testing with and without the predictive algorithm.
It has been found that the system is more efficient, more user-friendly, and more accurate in
completing tasks if the predictive algorithm is implemented compared to a non-predictive case.

I. Introduction

T
o bridge the gap between humans and machines, it is necessary to enhance man-machine interfaces as future

workplaces will see a synergy between human workers and semi-autonomous robotic systems. With that goal in

mind, it has been proposed to investigate the use of aerial robots with augmented reality first-person view (AR/FPV)

interfaces to enhance worker performance and shared situational awareness in infrastructure inspection tasks. The

promise of increased efficiency, reduced workload and greater capability is attractive. However, the technology has

to overcome some hurdles before it can be user friendly. One such hurdle is the presence of time delay due to video

augmentation, georectification and wireless telecommunication. According to de Vries [1], some of the sources of

delays include: signal transport, data encryption, data compression, error correction, and computation. Throughout

this paper, the aerial robot will be referred to as a drone or unmanned air vehicle (UAV). The drone is equipped

with a heterogeneous stereo vision system consisting of a pan-tilt-zoom (PTZ) camera as its “central vision" and an

omnidirectional camera (i.e. with a fisheye lens) as its “peripheral vision".

A heterogeneous stereo vision system was used by Kang et al. [2] to develop a peripheral-central vision system

for small UAV tracking. The system is capable of providing a threat aircraft’s class and pose which other sensors like

RADAR or LiDAR cannot. The system is also able to determine the range to the threat aircraft by analyzing video

from two different cameras. Proper calibration of the heterogeneous camera system is required, however, before the

system can be used for this or some other purpose. Rathnayaka et al. [3] presented two simple calibration techniques

for a stereo camera setup with heterogeneous lenses. Instead of a conventional black-white checkerboard pattern they

developed an embedded checkerboard pattern by combining two differently colored patterns. The outer pattern consists

of red-blue checkers while the small inner pattern consists of red-blue-yellow-cyan checkers with an aspect ratio of 2:1

between the two patterns. In the first method they use left and right transformation matrices to calibrate the cameras. In

the second method they use planar homography relationships between the two cameras for calibration. Their results
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Fig. 1 Delays involved in each step

show that the second method is slightly more accurate than the first. However, their setup assumes fixed stereo vision

cameras, that is, no relative motion between the two camera frames, which is different than the case presented in this

paper. Using proper camera calibration, at first the omnidirectional camera image is undistorted. Then Zhang’s pinhole

camera model [4] is used for both the PTZ camera image and the undistorted omnidirectional camera image to obtain a

real-time relationship between the two camera frames when there is relative motion.

Chen et al. [5] summarized human performance issues associated with time delays in teleoperated robots. By time

delay the authors mean the time difference between an input action and the corresponding visible response. Having more

than 170ms of time delay degrades a robot operator’s driving performance, tracking, telemanipulation and telepresence.

It also causes over-actuation, field-of-view (FOV) reduction and motion sickness. Sheridan and Ferrell [6] show that for

considerably longer delays (1 s and above), telemanipulation operators employ a “move and wait" strategy where they

move slowly and wait to see the outcome of their action. Then they provide a corrective input that moves the end effector

closer to the goal. By repeating this discontinuous process as long as necessary to achieve a desired accuracy, the

operators complete a task. Even though this method can be effective in accomplishing the task, it requires considerable

time and patience from the operator. The respective authors of [5] and [6] suggest the use of “predictive displays" as

a solution to counter the delay-induced effects. According to Sheridan [7], in a predictive display, a visual indicator

generated by a computer is used to depict the motion of a telerobotic system. The indicator is then extrapolated forward

in time to help the operator understand instantly what might happen with the given initial conditions of the system and

the input.

Brudnak [8] developed an algorithm for delay-mitigation in teleoperated ground vehicles using a single camera

predictive display. His approach consists of two parts: state estimation and predictive display (PD). The state estimator

(SE) works in feedforward and feedback modes simultaneously. In feedforward mode, the SE accepts driver commands

in the form of throttle, brake and steer and predicts an immediate response. The feedforward mode is based on a

very simplified vehicle dynamic model. If only the feedforward mode is utilized the states tend to drift from actual

values. Hence a feedback correction term is required to eliminate the drift in the state estimate error. The PD then

takes information and error calculation from the SE and manipulates the displayed video. Combining the PD and the

SE, Brudnak was able to provide the operator immediate visual feedback, which otherwise would have been delayed,

regarding his/her control actions. Brudnak’s results show that the assistance from the predictive display helps the

operator achieve a higher average speed compared to a no PD case. However, some complexities are associated with

Brudnak’s method. First, the use of a state estimator requires a dynamic model of the vehicle. Second, many times the

predicted frame falls outside the frame of the currently displayed image. This makes parts of the predicted image appear

black or empty as information from those regions has not reached the display system yet.

The main goal of this paper is to investigate the use of a heterogeneous stereo vision system in mitigating the effects

of time delays present in the display that is presented to a human operator. To meet this objective, a predictive display

algorithm is developed with the capability of taking some portions of the delayed omnidirectional camera image and

stitching it to the delayed PTZ camera image. This creates a composite image that represents closely what a user will

see after the delay time has passed. To test the effectiveness of the algorithm, a usability study is conducted to compare

a user’s performance with variable time delays when the predictive algorithm is employed versus when it is not.

II. The Delay Effect
In infrastructure inspection, an inspector is typically the operator looking at the live video feed coming from the

PTZ camera through a first-person view (FPV) display. The video imagery that is being displayed contains augmented

reality (AR) cues that identify structural elements (e.g. bars, beams and gusset plates), cracks and defects to assist
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Fig. 2 Prediction timeline

in the inspection process [9–11]. The time of acquiring an image and the time at which that image gets displayed on

the screen is different due to the presence of several delays as shown in Fig. 1. These delays can hamper real time

structural inspections as the camera control becomes difficult due to large overshoots or undershoots. The aerial robot

technology then, instead of alleviating, increases the workload of the inspectors which can create an aversion to using

the proposed technology. That is why it is important to predict the camera movement ahead of the delay time based on

user input so that an infrastructure inspection can be made without having to face the delay-induced effects. Referring to

Fig. 1, suppose that an image is displayed on a screen and at time t a user gives a control input to the PTZ camera,

that is, a reference command is sent to the gimbal that is controlling the PTZ camera’s line of sight. The necessary

input to the gimbal is provided through a joystick containing internal sensors with inherent delay (Δjoy). This input

measurement is then sent to the PTZ camera gimbal through a wireless network with communication delay (Δnet).

The gimbal receives the joystick input and its actuators take some time (Δact) to reach the commanded orientation.

The PTZ camera then captures the imagery along this new line of sight. This new image is then sent to a computer

through the wireless network with another network delay (Δnet). The computer augments the image with cues, such as

pointers to possible defects or georectified annotations from earlier inspections, adding some computation delay (Δcomp)

and sends the augmented image to the user. Thus a commanded input at time t gets displayed on the screen at time

t+Δjoy +2Δnet +Δact +Δcomp. The total delay is defined as: τ = Δjoy +2Δnet +Δact +Δcomp. In practice, one can

expect that Δjoy and Δact are much smaller than Δcomp and Δnet so that τ ≈ Δcomp + 2Δnet. The delays Δcomp and

Δnet vary with time which makes the overall delay τ a variable that must be taken into account.

To further explain the concept, referring to Fig. 2, two different displays are shown depicting the omnidirectional

camera image and the PTZ camera image versus time running along the horizontal axis. The images in the column at the

far left, labeled (a), denote the view obtained from the omnidirectional and PTZ cameras mounted onboard a UAV that

is hovering in place relative to a scene. The black rectangle in the omnidirectional image frame indicates the PTZ image

frame that is currently displayed. The yellow rectangles indicate the augmentations – cues – identifying defects and

introducing computational delay, Δcomp. Figure 2 does not contain representative imagery; it serves only as a sketch of

the concept. The omnidirectional camera image remains the same as long as the UAV does not move. When a user input

is obtained at time t, the current PTZ frame is calculated based on the current gimbal inertial measurement unit (IMU)

angles. Then the PTZ frame which would be viewed after the delay time τ is calculated. This prediction is represented

by the red quadrilateral in both the PTZ image frame and the omnidirectional image frame shown in Fig. 2b. The portion

of the predicted PTZ frame that is beyond the PTZ camera’s current view, as indicated by the white space in Fig. 2b,

would be missing from the predicted image and is therefore replaced by imagery obtained from the omnidirectional

camera. As the omnidirectional camera and the PTZ camera are located at a fixed distance from each other onboard the

UAV, the image from the omnidirectional camera needs to undergo perspective transformation before it is stitched to the

image from the PTZ camera. Let the time required for the algorithm to perform these calculations and transformations

be Δalg which is very small compared to the delay present in the system. Thus the stitched image that predicts the

estimated PTZ camera frame at time t+ τ is visible almost instantly at time t+Δalg. The augmented cues, however,

do not get updated with this predictive algorithm and the predicted image displays parts of the old augmentations from
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Fig. 3 Omnidirectional and PTZ camera frames with involved notations

time t as shown in Fig. 2c. The cues get updated when the information from the actual PTZ camera image at time t+ τ ,

as shown in Fig 2d, is received for the next prediction step. As information is available from the omnidirectional camera,

no portion of the predicted image remains empty as would occur with a single camera, as in [8].

III. Perspective Projection
The theory and the notation are similar to [12] where two different camera frames are considered: omnidirectional

camera frame, {Fo}, and PTZ camera frame, {Fp}, as shown in Fig. 3. Additionally {Fw} is the the world coordinate

frame attached to a plane. Let P denote a point of interest, with Cartesian world coordinates P = [X ,Y,Z]T. Suppose

that both cameras observe a common planar object, consisting of i 3D feature points. These world coordinate points

can be represented in terms of the coordinates of both the frames {Fo} and {Fp} and are denoted as oP and pP ,

respectively. The symbols pto and pRo, respectively, indicate the translation and rotation of the omnidirectional camera

frame with respect to the PTZ camera frame. The perpendicular distances from the object plane to the corresponding

camera frames are do and dp, respectively. The normal to the object plane, n, can also be expressed in the {Fo} and

{Fp} frame coordinates as on and pn, respectively.

1. PTZ Camera Model and Calibration.
For the PTZ camera, a simple pinhole model described in [4] is used. A point in the object plane in world coordinates

can be represented in the homogeneous form by augmenting the coordinates with a “1" as: P̃ = [X ,Y,Z, 1]T. An

image of an object is grabbed by the PTZ camera in a way that its 3D feature point in world coordinates, P , is projected

on an image plane having the same depth from the PTZ camera origin. If pp = [up, vp]
T is the projection of P on the

image plane, in pixels, and p̃p = [up, vp, 1]
T is the homogeneous transformation of pp then the relationship between

the two is given by:

λp̃p = Kp[
pR, pt]P̃ i with Kp =

⎡
⎢⎣
αfp γ u0

0 βfp v0

0 0 1

⎤
⎥⎦ (1)

where λ is an arbitrary scale factor that captures the depth information of the object plane with respect to the camera

frame {Fp}. The matrix [pR, pt] is called the extrinsic parameter matrix consisting of the rotation and the translation

of the object plane in the world coordinate system with respect to the PTZ camera coordinates. The matrix Kp is the

camera intrinsic matrix with (u0, v0) as the pixel coordinate of the principal point. By definition, the principal point

is the point on the image plane onto which the perspective center is projected and from Fig. 3 the coordinates of the

principal point is: (u0, v0) = (up/2, vp/2). The symbols α and β are the scale factors in the up and vp axes, fp is

the focal length of the PTZ camera, and γ is the parameter that describes the skew of the two image axes. All of the

quantities of the matrix Kp can be obtained by following the calibration technique outlined in [4].
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Fig. 4 Original omnidirectional camera image (left) and undistorted omnidirectional camera image (right)

A. Omnidirectional Camera Model and Calibration.
Omnidirectional cameras are special in a sense that they have much larger FOV and significant distortion because of

the fisheye lenses they use. The images thus obtained are not suitable for use unless they are first undistorted into a

simple pinhole projection model. The omnidirectional camera calibration and undistortion can be done using common

OpenCV functions that implement the algorithm described in [13], which is based on the following equation:

oP = [oR, ot]P̃ i (2)

The matrix [oR, ot] is called the extrinsic parameter matrix consisting of the rotation and the translation of the object

plane in the world coordinate system with respect to the omnidirectional camera coordinates. The pinhole projection

coordinates, [ao, bo]
T, are then converted to the distorted coordinates using the following procedure:

If oP = [xo, yo, zo]
T then:

ao = xo/zo and bo = yo/zo

⇒ r2 = a2o + b2o

⇒ θ = tan−1(r)

⇒ θd = θ(1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8) [θd = Fisheye lens distortion]

Then the distorted point coordinates are:

xd =
θdao
r

and yd =
θdbo
r

(3)

Finally, on converts to pixel coordinates as follows:

ηp̃o = Ko[xd, yd, 1]
T (4)

The matrix Ko takes the same form as Kp and can be obtained during the omnidirectional camera calibration along

with the distortion coefficients k1, k2, k3, and k4. Using the equations above, the omnidirectional camera frame can be

undistorted as shown in Fig. 4. The arbitrary scale factor η captures the depth information of the object plane with

respect to the camera frame {Fo}. In Fig. 4 the edges of the undistorted image have been cropped to avoid division by

zo = 0 for the pixel points near the edges; otherwise, one would have ao, bo → ∞.
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B. Transformation Between the Frames {Fo} and {Fp}.
According to [12], two types of homographies relate one camera frame to another. The euclidean homography

matrix, H , transforms 3D points in the euclidean space from one frame to the other whereas the projective homography

matrix, G, transforms pixel coordinates from one camera frame to the other one. The euclidean homography matrix can

be obtained from a known camera displacements using:

H = oRp +
otp · onT

do
(5)

Then the projective homography, G, can be obtained from the euclidean homography, H using:

G = KpHK−1
o (6)

Equation (6) takes vectors of pixel points in the undistorted omnidirectional camera image and gives the corresponding

vectors of pixel points in the PTZ camera image. Let, Gt and Gt+τ be the projective homographies that exist between

the omnidirectional camera frame and the PTZ camera frame at times t and t+ τ , respectively. Then the projective

homography that exists between the same camera frames but at two different times is expressed as:

Gtτ = Gt+τG
−1
t (7)

Equation (7) converts a vector of pixel coordinates of the camera frame at time t to a vector of corresponding pixel

coordinates of the same camera frame at time t+ τ .

IV. Human Performance Evaluation

Fig. 5 Cooper-Harper Handling Qualities Rating (HQR) scale [14]
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Another goal of this paper is to study performance of the algorithm through human subject testing. Several subjective

evaluation methods are followed in different scientific communities. The human-computer interaction (HCI) society,

for example, uses System Usabilty Scale (SUS). NASA, on the other hand, developed their own Task Load Index

(TLI) for subjective assessments. In this paper, however, the human performance assessments will be done through

the Cooper-Harper Handling Qualities Rating (HQR) scale [14]. The Cooper-Harper HQR scale is widely used by

aircraft test pilots and flight test engineers to evaluate the handling qualities of an aircraft in performing a specific

task. Although the scale is used widely in aircraft handling qualities assessment by pilots, the scale is generalized

enough to be applicable to other systems. The scale is also able to capture the effects of time delays present in a system

by comparing the performance deterioration due to the delay with a similar non-delayed task. In fact, Jennings et al.

[15] determined the delay tolerance limit of a pilot in a helicopter simulation using the Cooper-Harper HQR scale.

Their results showed an increased variability of position error with as little as 134 ms of delay. Handling qualities

deteriorated as the delay was increased. The justification for using the HQR scale is that it is widely known in the

aerospace/aeronautical communities. Even though all the tests for this paper were performed while keeping the UAV on

the ground, the algorithm’s performance will ultimately be evaluated in flight tests.

According to [16], there are two types pilots in aircraft testing: a high-gain pilot, and a low-gain pilot. Typically, the

low-gain pilot injects inputs that are smoother and smaller in amplitude than the inputs by a high-gain pilot. High-gain

pilots are expected to encounter the non-linear responses in handling qualities more than low-gain pilots, and such pilots

are great for exposing potential limitations in the aircraft handling qualities. Similar to the test pilots, the participants

taking part in this research may be thought of as low-gain and high-gain participants. A good experimental design

is one where both the low-gain and high-gain participants rate the system similarly. To enable assessment using the

Cooper-Harper HQR scale, bounds for desired and adequate performance must be established; see Figure 5. Two

different sets of bounds were chosen for this experiment, one in the spatial domain and the other in the temporal domain.

(a) (b) (c)

(d) (e) (f)

Fig. 6 Two reference images: (a) Omnidirectional camera image and (b) PTZ camera image; (c) feature
matching with ORB algorithm; (d) warped image after applying the homography matrix with a maximum of
10,000 feature points. Two incorrectly warped images obtained using a maximum of (e) 3000 feature points and
(f) 50 feature points.
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In the spatial domain, participants were required to track a line with a cursor with as much precision as possible. This

task assignment forced the high-gain operators to slow down a little to achieve the desired path. The temporal bounds,

involving minimum completion times for desired and adequate performance, forced the low-gain operators to speed up

their response a bit to complete the task within the time boundaries. To claim the system exhibits desired performance,

for the rating purpose, a participant must have achieved desired performance with respect to both the temporal and

spatial specifications.

V. Estimating the Homography Matrix

Fig. 7 Representative illustration of homography computation time versus maximum number of feature points

In computer vision applications, the homography matrix is estimated by finding good feature points that are visible

in both of the images of interest and then applying the RANSAC algorithm to obtain the best estimate. Of course, if the

heterogeneous camera system is fixed and the two cameras do not rotate with respect to each other then the homography

matrix remains constant and can be pre-computed before running real-time image stitching. The case considered in this

paper is different where the PTZ camera rotates with respect to the omnidirectional camera, thus the homography matrix

keeps changing as the camera rotates and zooms in or out. Figure 6 shows different homography matrices computed

using ORB and RANSAC algorithms in OpenCV. Figure 6a represents the delayed PTZ camera frame view, cropped from

the low-resolution, undistorted omnidirectional camera image. Figure 6b represents the actual delayed PTZ camera

image. (The two images are merely illustrative.) To perform proper image stitching, it is necessary to warp Fig. 6a to

make it look similar to Fig. 6b, that is, to do a perspective warp. Figure 6c shows the matched feature points using ORB
and, at most, 10, 000 feature points. The top 15% of all the detected features are kept as the best matched feature points

which are then used to compute the homography matrix using the RANSAC algorithm. The obtained homography matrix

is then used to warp the omnidirectional camera image in Fig. 6a to obtain the omnidirectional camera image viewed

from the PTZ camera perspective; see Fig. 6d. However, the estimation is not robust if a lower number of detected

feature points are used. Figure 6e is obtained by warping Fig. 6a using a homography matrix computed using 3000
matched feature points. The error in the estimation is very large. For the case of 50 feature points only, Fig. 6f, the

estimation is wrong and the resultant warped image is incorrect.

From Fig. 7 it can be seen that the average computation time (obtained by averaging 100 calculations at each of

the maximum number of feature points: 100, 150, 200 ... etc) increases as the number of feature points increase but

after reaching 6500 feature points the computation time remains the same, reflecting the fact that ORB cannot detect

more than 6500 feature points in between the two reference images. Regardless, for the given hardware and software,

using only 100 feature points requires about 160 ms. It is impossible to use feature detection techniques to compute

real-time homography matrices at each instant of the video imagery using the hardware and software considered here.

To overcome this problem, homography matrices are calculated using Eqn. (6).
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Fig. 8 System setup: Two cameras mounted on a UAV

VI. Heterogeneous Stereo Vision Algorithm

A. System Setup
Different camera models and parameters used in this experiment are shown in Table 1 and a picture of the setup

mounted on a UAV (stowed for transport) is shown in Fig. 8. The radius vector from the omnidirectional camera frame

to the PTZ camera frame was calculated to be: otp = [12.7, 152, 267]T mm. The gimbal was calibrated beforehand

to align the PTZ camera axes with the omnidirectional camera axes. The heterogeneous stereo vision algorithm is

implemented in real-time using ROS (Robot Operating System) which is a collection of tools, libraries and conventions

that aim to simplify robotic hardware and software integration. An NVIDIA Jetson Nano acted as the on-board computer.

The Nano was responsible for running the necessary ROS drivers for the two different cameras and the gimbal. The

messages generated by the cameras and the gimbal were then sent to a ground station through a wired local area network

(LAN) connection. The average delay in the wired connection path, Δnet, was found to be 4.3ms and was ignored

since it was negligible compared to the total delay, τ . The ground station, a Linux machine, received the ROS messages

containing camera images and the gimbal’s IMU angles. It then ran the image stitching and predicting algorithm and

displayed the output image. The gimbal was controlled through a Pixhawk 4 avionics unit using the Mission Planner

software interface. These elements required the use of another laptop, running the Windows operating system, which

took the joystick inputs and sent them to the gimbal. The amount of delay in this message transmission could not be

calculated, but was observed to be negligible. The joystick used for this experiment was a generic Microsoft Xbox

controller. The Windows machine also ran a simple python code to measure the time that elapses while depressing a

particular button on the Xbox controller. Table 2 contains some details about the different hardware used.

To test the validity of the image stitching and prediction algorithm the entire experiment was carried out on the

ground where wired LAN connections could be established and the disturbances and noises were minimal. The wired

connection was important because it made the network delay, Δnet, minimal which meant that the computation delay

Δcomp was the dominant delay term in the total delay of the system, τ . This would not be the case for a wireless LAN

connection and its effects will be studied in the future. The total delay of the system, τ ≈ Δcomp, was specified through

the implementation of the message_filters package in ROS. The TimeSequencer() function in that package

guaranteed that ROS messages would be called in the temporal order in which they were received. All ROS messages

contain timestamps indicating when the messages were acquired. If a specific delay amount has been specified the

TimeSequencer filters out and stores the messages based on their timestamp until the messages are out of date by at

least the specified delay amount. This enables the creation of a simulated environment where the images displayed

on the screen are delayed by at least the specified amount. In this way, various amounts of delay were injected to the

incoming images and the IMU angles. It had been observed that the ROS image_transport package, responsible

for publishing or subscribing to image messages, published the PTZ images at 16Hz and the omnidirectional camera
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Table 1 Camera specifications

Omnidirectional PTZ

Parameters Camera Camera

Model Insta 360 Air Webcamera USB

Focal Length (mm) 1.0 5− 50

Sensor Size (mm) 3.3× 3.3 4.8× 3.6

Pixel Size (μm) 2.19× 2.19 3× 3

Resolution (px) 1504× 1504 1920× 1080

Mass (g) 26.5 330

images at 7Hz. Image messages are large because each message contains pixel intensities of three different color

channels (red, green and blue) and one alpha channel (a component that represents the degree of transparency or opacity

of a color). The PTZ camera with resolution 1920× 1080 sends 1920× 1080× 4 = 8.294Megapixels per frame. As

each of the pixels take 32 bits of data approximately 31.64Mbits of data per frame is required for the PTZ camera.

Similarly, the omnidirectional camera with resolution 3008 × 1504 sends 3008 × 1504 × 4 × 32 ≈ 69.04Mbits of

data per frame. In this case, the camera captures images faster than they can be published as ROS messages and some of

frames are thus discarded. So, in one second, only 16 PTZ and 7 omnidirectional camera frames can be published

before using all the available bandwidth (1000Mbit/s) of a gigabit Ethernet LAN cable. Although the stitching and

prediction algorithm could run as fast as 50Hz, it was slowed to down to run only at 15Hz. Running the algorithm

faster would not improve performance as the PTZ camera frame rate was maxed out at 16Hz.

Table 2 Hardware specifications

Jetson Linux Windows

Nano Machine Machine

CPU Quad core ARM A57 Intel Core i7-8750H Intel Core i7-8550U

GPU NVIDIA maxwell 128 core GeForce RTX 2060 Intel UHD Graphics 620

Memory (GB) 4 16 16

Operating System Ubuntu 18.04 Ubuntu 16.04 Windows 10

B. Algorithm Steps
The real time implementation of the heterogeneous stereo vision image stitching algorithm can be described in the

following eight steps. The algorithm execution time Δalg ≈ 20ms, which means that it can be run as fast as 50Hz.
Step 1. The gimbal IMU angles are obtained in the form of quaternions. They are converted to Euler angles and stored in

a vector along with their respective timestamps. The most recent of these IMU angles are taken as the pitch and

yaw angles (θt+τ and ψt+τ ) at the predicted frame {F}t+τ . The logic behind doing this is that the joystick input

at time t moves the gimbal almost instantly, as Δnet is assumed to be negligible, and the movement gets displayed

at time t+ τ .

Step 2. The algorithm then looks back at time t− τ to find the gimbal angles (θt and ψt) corresponding to the currently

displayed image frame {F}t. The time value t− τ is compared against the vector of timestamps and the angles

corresponding to the closest time are chosen as the gimbal angles for the current frame {F}t. The storage vector

should be sufficiently large so that the time value t− τ is always bigger than the timestamp of the first element.

For this paper 100 elements were stored in the storage vector before the oldest value got replaced by the newest

value. As the algorithm was running at 15Hz, 100 values meant that the vector stored the gimbal angles for the

past 6.67 s.
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Fig. 9 Flowchart of the proposed algorithm with the final output in the end

Fig. 10 Stitched image using heterogeneous cameras. The checkerboard pattern is obtained from [3].

Step 3. After obtaining θt+τ , ψt+τ , θt and ψt two different projective homographies are calculated – Gt+τ and Gt –

using Eqn. (6).

Step 4. Using Eqn. (7) the homography between two similar image frames at two different times t+ τ and t is obtained.

This is Gtτ for both the omnidirectional and the PTZ camera frames. The main difference between Gtτ and Gt

or Gt+τ is that the former is a transformation between the same camera frames at two different times whereas the

latter two are transformations at some particular time between two different camera frames.

Step 5. The homographies, Gt+τ and Gt, obtained in Step 3 are used to warp the delayed omnidirectional camera image;

the OpenCV function cv::warpPerspective() is used here. The resulting images Im{Ot+τ} and Im{Ot} are

(undistorted) omnidirectional camera images, but from the perspective of the PTZ camera at times t+ τ and t,
respectively.

Step 6. Next, the currently displayed PTZ image, Im{PTZt}, is warped using Gtτ , obtained in Step 4, to obtain

Im{PTZtτ}. The image Im{PTZtτ} actually contains the currently displayed PTZ image but from the

perspective of the predicted frame at t+ τ due to a joystick input at time t.
Step 7. Similarly, Im{Ot} is warped to Im{Otτ} using Gtτ . The image Im{Otτ} is then subtracted from Im{Ot+τ}

using the function cv::subtract(). The subtracted image contains the portion of the image in Im{Ot+τ} that
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(a) (b)

Fig. 11 Images used for the (a) tracking and (b) target acquisition tasks.

is not present in Im{Otτ}.

Step 8. Finally, the subtracted image in Step 7 is added to Im{PTZtτ}, obtained from Step 6, using the function

cv::add(). The resulting image is the composite image consisting of delayed omnidirectional and PTZ camera

images. The whole process takes about 20ms and is then displayed on the screen. Thus, an image which was

supposed to be displayed at time t+ τ gets displayed at time t+Δalg � t+ τ . An example of the composite

stitched image is shown in Fig. 10.

VII. System Usability Determination

A. Study Design
A human performance study was designed to test the effectiveness of the proposed predictive display system in

mitigating display delays in the FPV environment. The study was designed to capture the common maneuvers that a

typical bridge inspector might perform while using the system. Participants wore an Eachine EV800D FPV headset and

completed several tasks under three different test cases:

(i) delayed case 1: 500 ms delay

(ii) delayed case 2: 1000 ms delay

(iii) delayed case 3: 1500 ms delay

In each of the cases (i)-(iii), a precision tracking task (a) was performed along the xy-plane followed by a target

acquisition task (b). The PTZ camera images for the tracking tasks were saved for later analysis of the cursor paths

generated by each participant. The total error in a tracking task was obtained as the total (unsigned) area of the regions

that fell outside the desired bounds. The Cooper-Harper rating scale was used primarily for the subjective evaluation

of the system. In the precision tracking task the participants were asked to track a stepped line from left to right, as

shown in Fig. 11a, as closely and as accurately as possible. The thick blue line was the desired bound whereas the red

line was the adequate bound in the spatial domain. The center of the displayed image was augmented with a red dot,

indicating a cursor location, which the operator controlled in order to track the line as closely as possible. To achieve the

desired performance, participants had to ensure that the red dot at least touched the thick blue line while completing

the tracking task. The temporal bounds were specified as 45 s for the desired performance and 90 s for the adequate

performance. The spatial and temporal bounds for desired and adequate performance were used for all the test cases,

with or without prediction.

In the target acquisition task the participants were asked to acquire a target, by placing the camera red dot in the

center of a bullseye from an initial orientation as fast as possible (Fig. 11b). The blue and the red squares in the image

indicate desired and adequate performance in the spatial domain, respectively. The temporal bounds were set to 15 s
for desired performance and 20 s for adequate performance. Again, just like in the tracking task, the spatial and the

temporal bounds remained unchanged for all the different cases with or without prediction.

To remove any potential bias, the participants were not told of the amount of delay being applied. Each participant

had to perform 6 tracking tasks (a), one for each of the three cases (i)-(iii) with and without the predictive display

algorithm. They then performed 12 target acquisition tasks (b), two for each of the three cases (i)-(iii) with and without
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the predictive display algorithm. In the target acquisition task (b), each of the cases was run twice: once with the cursor

initially located at bottom left corner of the screen and once with it located at the bottom right corner. The data obtained

from each of the participants were the handling qualities ratings and the time required to complete each task. The

experimental test plan also allowed for the assessment of motion sickness symptoms of the participants due to wearing

an FPV headset. However, none of the participants reported feeling any motion-sickness like effects.

B. Study Population
Nine participants took part in the study. HQR data from participants A, D and E were used to establish a baseline

rating for the system and to set the desired and the adequate bounds. Participant A was a professional air force test pilot

with prior experience with the HQR scale and identified himself as a moderate-high gain participant. Participant D

was found to be of low-gain whereas participant E was of high-gain. The baseline ratings for several different example

cases were chosen by participant A. The spatial and temporal bounds were chosen after analyzing the performances of

participants A, D and E.

(a) (b)

(c) (d)

Fig. 12 Cooper-Harper ratings for cases (i)-(iii): (a) Tracking with predictive display (PD); (b) Tracking
without PD; (c) Target acquisition with PD; (d) Target acquisition without PD. Black dots indicate individual
operator ratings; red triangles represent the mode of all ratings. Note that a lower number corresponds to a
more favorable rating; see Figure 5.

Participants B, C, F, G, H and I were calibrated according to the baseline ratings. Each participant was given

sufficient time at first to get familiarized with the system and the controller. Then they were asked to perform some

tracking and targeting tasks for several different example cases. The baseline rating for each of those cases was then

revealed to the participants so that they had an idea of what a system with a good, bad or an average handling quality

rating felt like. After the participants are shown five cases of good, bad, and average handing quality ratings, they were
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(a) (b)

(c) (d)

Fig. 13 Time to complete the cases (i)-(iii): (a) Tracking with predictive display (PD); (b) Tracking without
PD; (c) Target acquisition with PD; (d) Target acquisition without PD. Black dots indicate results for individual
operators; red triangles represent the mean of all ratings.

tested on three different example cases where they were asked to rate the system after completing a task. Their ratings

were then matched with the baseline rating obtained. If the participant’s ratings fell within one unit of the baseline

rating, they were considered proficient in rating the system. Otherwise, three more example cases were presented and

the participants were tested again. These ten calibration cases proved to be sufficient to help each participant apply the

HQR scale in a manner consistent with the other participants.

VIII. Results
Figures 12a - 12d contain the the Cooper-Harper rating of the system with and without the predictive algorithm. In

all cases, the same image in Fig. 11 is used. The red triangle markers are the mode of the ratings obtained from the

six participants. Since a non-integer Cooper-Harper rating has no meaning, the mode of the ratings, that is, the rating

that was selected the most often, was taken instead of the mean. It is seen that in both the tracking and targeting tasks

the prediction algorithm yields better ratings. For the tracking task, the ratings are better with the predictive display

in operation (Fig. 12a) than without (12b). The performance deterioration with increasing delay is also lower with

active prediction. Overall at lower delays, the prediction achieves a rating of 3, which means minimal compensation

is required to achieve the desired performance. At higher delays (1 s and 1.5 s) the performance deteriorates a little

as the rating increases to 4, which means a moderate amount of compensation is required to obtain desired results.

Without prediction, on the other hand, the rating is 5 at 0.5 s delay dropping to 7 at a 1.5 s delay. A rating of 5 means

the operator cannot perform as desired even with considerable compensation. At the highest tested delay, even adequate
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(a) (b)

Fig. 14 Participant’s path at 1.5 s delay with a) predictive algorithm and b) no predictive algorithm

performance is not obtainable.

Similar conclusions can be drawn from Figs. 12c and 12d. For the targeting task, assessments of the system’s

performance were not greatly affected by the delay when the prediction was enabled, as seen by the consistent rating of

3. Without prediction, however, operators failed attain the desired performance at the highest tested delay. Even at low

delay, moderate compensation was required for desired performance.

The time data collected for each of the tasks are also sorted according to the three different delay cases and are

presented in Figs. 13a-13d. Comparing Figs. 13a and 13c with Figs. 13b and 13d, it can be seen that the average time

required to complete a task with the prediction algorithm in operation is much lower and the difference between the mean

execution times across different delay cases is smaller than without prediction. The wide variation in task completion

time for the case where there is no prediction merits special attention. Different participants reacted differently when

they were presented with delay in the system. Some participants sought to achieve adequate results and tried to finish

the task as quickly as possible without pausing to correct the path tracking errors. Others employed the “move and

wait” strategy mentioned earlier to finish the tracking or targeting tasks accurately. This took considerably more time as

the participants had to pause a lot to see what corrective action would be needed. This can be seen in Fig. 14b where

participants B, C, and G tried to finish the task in a short time and produced paths which had large deviations from the

desired path. Participants F, H and I used “move and wait” strategy and produced paths with minimal deviation. All the

participants were able to track the desired path for the same amount of delay much more accurately with the prediction

enabled. Figure 14 is a good indication that the prediction algorithm helps the participants track more quickly and

accurately. Moreover, the participants do not need to know any special strategy or sacrifice accuracy to counter the

effects of the delay. The same conclusion can be obtained from the participant paths involving 0.5 s and 1 s of delays.

Those figures are included in the appendix.

After obtaining all the participants’ path data, like the ones shown in Fig. 14, the error in the tracking task is

computed by summing the area under the curve that fell outside of the region containing the desired path. The total error

thus has the unit of square pixels. For each participant, all the errors are normalized by dividing with the error value

obtained at 0.5 s of delay with the predictive display enabled. This data is shown in Table 3. As different participants

followed different approaches while facing a delay, it is not logical to compare the error data of one participant with

another. Instead, the normalized error data for each of the participants with predictive algorithm is compared with the

normalized error data of the same participant without the predictive algorithm. It seems that participants who followed

the move and wait strategy had less error in their path tracking than the ones who chose to sacrifice accuracy for speed.

Except for participants F and I, all the other participants show an increased error when the delay time is increased and

prediction is not enabled. For the case of 1.5 s delay with no prediction enabled, the error data for participant G are not

calculated as they lost control while performing the task. The HQR scale provides a subjective assessment of the system

under different delays whereas the task completion time and the error in the tracking task provide objective assessment

of the system. In this study it has been found that both the objective and the subjective assessments indicate that the

predictive display helps to mitigate the negative effects of delay.
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Table 3 Error in the tracking task (normalized)

.5 s delay 1 s delay 1.5 s delay .5 s delay 1 s delay 1.5 s delay

with PD with PD with PD no PD no PD no PD

Participant B 1 0.27 0.40 3.64 6.65 16.25

Participant C 1 0.33 1.35 6.89 5.81 13.76

Participant F 1 1.81 1.71 4.09 5.56 4.13

Participant G 1 0.40 0.44 1.59 4.04 -

Participant H 1 0.63 0.06 1.35 1.33 2.23

Participant I 1 0.21 0.95 1.73 0.53 1.08

For the experiments described here, the tasks presented to participants involved only PTZ imagery. While the images

included stitched views from the omnidirectional camera, the focal area for tasks did not extend into these regions. The

image stitching algorithm does not currently perform as well as expected because the undistortion process in OpenCV
that corrects for the highly distorted fisheye lens effect crops the edges of the image. As a result, if the yaw and pitch

angles are beyond ±25o the warpPerspective() functions warps the points incorrectly. The error in the warping

is higher the further away a pixel point is from the optical center. Figure 15 shows an example of poor stitching. On

closer inspection, it is seen that the edges, where the images from the two different cameras are stitched together, are not

properly aligned. In fact, the image coming from the omnidirectional camera does not seem to be warped and scaled

correctly which is the case of having a faulty homography matrix due to the fisheye lens distortion. In future studies,

different fisheye camera models will be used rather than the generic OpenCV fisheye camera model in the hope that they

will provide better image stitching results.

Fig. 15 Incorrectly stitched image.

IX. Conclusion
In this paper a heterogeneous stereo vision system is considered which can assist bridge inspectors in performing

their duties via teleoperation in real time. Like in all teleoperation cases, the delays present in the system can cause

usability problems that would discourage inspectors from adopting this technology. Making use of a heterogeneous

vision system, a solution has been presented where the delayed imagery coming from the omnidirectional camera is

stitched to the delayed imagery of the PTZ camera. The stitched image predicts the actual scenario seen by the PTZ

camera ahead of the delayed time. The usability studies showed that the prediction algorithm improves the users’

experience of the system by decreasing the workload in performing a task, reducing the time of completing a task and

increasing the accuracy of performing a task. Ongoing work involves using better omnidirectional camera models than

the ones provided by OpenCV to perform better image stitching. Also, instead of letting the PTZ camera move with

respect to the fixed omnidirectional camera both the cameras can be mounted on a larger gimbal. This would make

the homography present in between the two camera frames constant, which may also improve stitching performance.

Finally, the work will be expanded from a ground based setup to an airborne setup where the participants would perform
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the same tasks as the ones described in this paper to understand the effectiveness of the algorithm in an actual bridge

inspection scenario.
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Appendix
The paths taken by the participants for cases (i) and (ii) for both the predictive and the non-predictive setups are

given below.

(a) (b)

Fig. 16 Participant’s path at 0.5 s delay with a) predictive algorithm and b) no predictive algorithm

(a) (b)

Fig. 17 Participant’s path at 1 s delay with a) predictive algorithm and b) no predictive algorithm
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