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1. Introduction

Akaike’s Information Criterion (AIC) has a known tendency to select overfitted models. Hurvich and Tsai (1989) showed
that the cause of this overfitting tendency lies in the asymptotic approximations used to derive AIC. To derive a bias-
corrected version of AIC, Hurvich and Tsai (1989) evaluated the Kullback-Leibler (KL) divergence exactly for normal
distributions, assuming the candidate family of models includes the true model. The resulting criterion, AICc, often
outperforms its competitors (McQuarrie and Tsai, 1998) and has become a standard criterion recommended by many
investigators (e.g., Burnham and Anderson, 2002, p66). However, an assumption that is not always emphasized in the
derivation of AICc is that predictor values are the same in the training and validation samples. Rosset and Tibshirani
(2020) call this the “Same-X" assumption, and note that many model selection criteria implicitly assume Same-X. In
contrast, many applications of model selection fall under the “Random-X" assumption, in which predictor values differ
from training to validation. Although the Same-X and Random-X distinction has been known for some time (see Rosset
and Tibshirani, 2020, for a review of this literature), the generalization of standard model selection criteria to Random-X
is more recent. For instance, the extension of Mallows’ Cp to Random-X has appeared only recently (Rosset and Tibshirani,
2020). In this paper, we derive a new criterion, AICm, which is an exactly unbiased estimate of the Kullback-Leibler-based
criterion for regression models containing an arbitrary mix of Same-X and Random-X predictors. Such models include the
Analysis of Covariance (ANCOVA) model. The multivariate generalization of AICm also is derived.

Under Same-X, AICm equals AICc. Under Random-X, AICm leads to a new criterion that we call AICr. We use the same
numerical model as (Hurvich and Tsai, 1989) to show that AlCc is indeed biased for Random-X and that it is more likely to
select overfitted models than AICr. This paper complements Tian et al. (2020), who derive several model selection criterion
under Random-X. Their RAIC differs from our AICr only by the fact that AICr accounts for the intercept. A notable fact
is that Fujikoshi (1985) derived a criterion for selecting X-variables in Canonical Correlation Analysis. That criterion is
equivalent to selection based on differences of AICr derived in this paper.
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2. The corrected AIC for Random-X

We consider the problem of predicting y based on x. Let the conditional PDF of y given x be p(y|x), where x and y denote
explanatory and response variables, respectively. We call p(y|x) the true PDF. The candidate PDF is denoted q(y|x; ¢), where
¢ denotes model parameters. In this notation, y, x, and ¢ could be multivariate. By familiar arguments, the Kullback-Leibler
divergence leads to a model selection criterion based on the expected value of —2 log q(y|x; ¢) (Akaike, 1974; Hurvich and
Tsai, 1989; McQuarrie and Tsai, 1998).

To estimate the KL divergence, let ¢, denote an estimate of ¢ derived from the training sample (x,, y,), and let (xo, Yo)
denote the validation sample. Both samples are drawn from the true PDF, but y, and y, are conditionally independent
given (X, Xo); i.e., p(¥«, YolX«, X0) = P(¥«|x:)p(Yolxo). Then, we consider

AXo, Xs, i) = —2Eyyix0.%,.y: [108 (Vo1 X0; )], (1)

where Ey,x, x, .y, [-] denotes the expectation over p(yolXo, X+, Y+ )-
For normal distributions, the PDF q(y|x; ¢) can be derived from the model

= vy uh TS 2)

N x1 NxM Mx1 N x 1
where N is the sample size, M is the number of explanatory variables, 8 contains the regression coefficients, € is a random
vector, and the dimension of each term is indicated below it. The elements of € are independent and identically distributed

normal random variables with zero mean and variance o2, Let 8, and o2 denote the maximum likelihood estimates of 8
and o2, respectively, derived from the sample (X,, y). Then,

A(Xo, X, ¥«) = Nlog 27 + N1ogo? + Ey,ix, x. v, [||yo - Xoﬂ*Hz] Jol, (3)

where conditional independence of (8,, o2, o) given (X, X4, ¥:) has been used. It is understood that X, and X, are each
of dimension N x M, and yo and y, are each of dimension N x 1.

We assume that the candidate family of models includes the true model. Therefore, yo = Xo8 + €9, where €, has the
same distribution as € and is independent of ¢, and

Evo (%o X 35 | 1¥0 — X0B, 7] = Evoixo xe.ys [1X0B + €0 — XoB. 1] = Evgixo. oy [l€oll® + 11Xo0 (B, — B) II7]
=No? + X0 (B, — B) II*.

Following Akaike, we take the expectation of (3) with respect to p(y.|x,). From standard regression theory (Seber and
Lee, 2003, theorem 3.5),

B.—B~~(0.0%(xx,) "), (4)
and hence
IEY*‘XOaX* [”XO (ﬁ* - ﬂ) ”2] = UZ tr [XO (XIX*)71 X(T)] . (5)

Also by standard regression theory,
2

N5~ X (6)
and hence

. 17 N 1 -

WWeloe2 | T\N—M=—2) o2
Consolidating these results gives
N -1
EY*\X*,XO [A(X07 X*».V*)] = N10g27'[ + N]EY*|X* [IOgo'f] + m [N +tr [XO (sz*) Xg]] . (8)
In general, explanatory variables may consist of a mix of random and fixed variables. Accordingly, partition Xy as
Xo=[F Ro], (9)

where F is a fixed N x M matrix, and Rg is a random N x Mk matrix, with M = M + M. The rows of Rq are independent
realizations from a multivariate normal distribution. Exactly one column of F is a vector of ones corresponding to the
intercept, hence 1 < Mr < M. The resulting design matrix (9) includes the Analysis of Covariance (ANCOVA) model.
Similarly, define

X.=[F R], (10)

where R, is drawn from the same distribution as Ry but is independent of Ry. F is the same in (9) and (10). The following
lemma is proven in the appendix.
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Lemma 1. Let Xo and X, be defined as in the previous paragraph. Then
-1 Mg(N + M)
B, 17 [ X0 (1) 7 X ]| = e+ T

where 1 < Mg <M and Mg = M — M.

(11)

To estimate (8), we use logo? as an unbiased estimate of Ey, x, [log 0*2], and invoke Lemma 1, which yields the

following proposition.
Proposition 1. An unbiased estimate of (8) under (9) and (10) is

N(N + Mr) - Mg
N—-M-2 N-M-1)"

where “m" emphasizes a mix of Random-X and Same-X explanatory variables.

AICm(Y|X) = Nlog 27 + Nlogo? + (12)

Two special cases are of interest. The first is Xo = X, = F, which is the case for both Fixed-X and Same-X as defined
by Rosset and Tibshirani (2020). Fixed-X means F is fixed and Same-X means F is random. The appendix shows that
Lemma 1 holds true for both Same-X and Fixed-X. Therefore, both Fixed-X and Same-X correspond to M = M and
Mg = 0 in Proposition 1.

Proposition 2. An unbiased estimate of (8) under Same-X or Fixed-X is
N(N + M)

N—-M-2"

This expression is precisely the AICc derived in Hurvich and Tsai (1989). Therefore, the standard correction for AIC

corresponds to Fixed-X and Same-X.
The second special case is Random-X, defined as follows.

AICc(Y|X) = Nlog2m + Nlogo? + (13)

Definition 1 (Random-X). Random-X means that Xy and X, are defined as in (9) and (10) with Mg = 1, where F is an
N-dimensional vector of ones to account for the intercept.

Our definition of Random-X differs from that of Rosset and Tibshirani (2020) by including an intercept term. We
include the intercept in Random-X so that the expectation of (8) does not depend on the mean of Xy and X,. Random-X
corresponds to Mg = 1 and Mg = M — 1 in Proposition 1.

Proposition 3. An unbiased estimate of (8) under Random-X is

N—-—M-2 N—-—M-1
where the “r" is to emphasize that the explanatory variables are random.

N(N + 1 M-1
AICr(Y|X) = Nlog2m + Nlogo? + (N+1) (1+ ) (14)

The difference between AICr and AlCc is
(M —1)(M + 2)
(N-M—1(N—-M-=2)

which is positive for all M > 1. It follows that AlCc underestimates the out-of-sample prediction uncertainty under
Random-X. This is to be expected: if X is random, then its difference between training and validation samples contributes
a source of prediction uncertainty that is missing when X is assumed fixed. For given N, this bias grows faster-than-
quadratically with M. The fact that the bias grows with M means that AICc is more likely than AICr to select overfitted
models under Random-X.

Hurvich and Tsai (1989) also consider model selection for autoregressive (AR) models, for which Random-X is clearly
more appropriate than Same-X. However, past justifications of AICc for AR processes have been based on asymptotic
arguments (Hurvich and Tsai, 1989; Brockwell and Davis, 2002). For serially correlated processes, Lemma 1 does not
hold, for reasons discussed in Appendix 1. The exact information criterion for AR processes is not known for small N,
even for Gaussian processes.

AICK(Y|X) — AICC(Y [X) =

(15)

3. Numerical simulations

Following Hurvich and Tsai (1989), we compare selection criteria using realizations from model (2) with § =
(1,2,3,0,0,0,0), 6> = 1, and N = 10. The candidate models contain at most seven explanatory variables, hence X
is N x 7. The candidate models are evaluated sequentially such that the m’th model uses the first m columns of X.

In contrast to Hurvich and Tsai (1989), we use 10 000 realizations instead of 100 (for more accuracy), and the first
column of X is a vector of ones corresponding to the intercept term. For Random-X, we generate 10 000 realizations of Xo,

3
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Fig. 1. Selection criteria and the Kullback-Leibler divergence averaged over 10 000 realizations from the regression model (2) with M =7, N = 10,
and other details described in the text. The example is similar to that in Fig. 1 of Hurvich and Tsai (1989)..

Table 1

Probability of selecting a candidate model of order m when
the true order is m = 3. Probabilities are estimated from
10 000 simulations.

m AIC AlCc AlCr
1 0.00 0.00 0.01
2 0.00 0.00 0.01
3 0.32 0.97 0.98
4 0.10 0.03 0.00
5 0.09 0.00 0.00
6 0.14 0.00 0.00
7 0.34 0.00 0.00

and another 10 000 independent realizations of X,, such that each row of the last M — 1 columns are independent
identically distributed normal random variables. The corresponding estimate of A is

A 10000 © ”yok) _ ng)ﬂ(k)HZ
Arandomx(Xo, Xs, yi) = ——— Nlo }
Random X( 05 Nx y*) 10000 Z g( ) (O‘(k))2

where superscript (k) indicates the estimate derived from the k’th realization. For Same-X, 10 000 realizations of X, are
generated in the same way, and Xp is set equal to X,. The corresponding sample estimate of A is

10000

. 2 No? XY (BY-B) 1P
ASame—X(X*a X*,y*) = m Z]: N lOg (Jik)) + ( )

7 T
) )

It is understood that terms like X0, and X, B, are evaluated using only the first m columns of the candidate model.

The average values of AIC, AICc, AICr, ARandom x and ASAme x are shown in Fig. 1. The results for AIC, AlCc, and ARandom X
essentially reproduce those of Fig. 1 in Hurvich and Tsai (1989), with our ARandom-X corresponding to A in Hurvich and Tsai
(1989). As can be seen, AIC is a strongly negatively biased estimator of Agandom-x, Whereas AICc is less biased. Nevertheless,
AlCc is still negatively biased relative to Arandom-x. This bias also is evident in Fig. 1 in Hurvich and Tsai (1989). For m > 3,
AlCc is an unbiased estimate of Asyme-x. These results confirm that AlCc is an unbiased estimate of the information criterion
for Same-X, but not for Random-X. In contrast, AICr is an unbiased estimate of the information criterion for Random-X.

Table 1 shows the probability of choosing the candidate model of order m over the true model of order 3 for the
three criteria. As can be seen, AIC has large probability of selecting overfitted models (i.e., 67% for m > 3). In contrast,
AICc selects overfitted models 3% of the time, while AICr selects overfitted models 0% of the time, confirming that AICr is
less likely to select overfitted models than AICc. In this particular example from Hurvich and Tsai (1989), the probability
of selecting overfitted models is small, but other examples that highlight the overfitting tendencies of AICc could be
contrived.

Hurvich and Tsai (1989) also consider the autoregressive model

Ve = 0.99}/{,] — O.Sy[,Z + € (t = O, ey N — 1), (16)

where ¢; is a Gaussian white noise process with zero mean and unit variance. We fit realizations from this model to an
order-m autoregressive model, where order-0 corresponds to the intercept-only model. The fit is based on least squares

4
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Fig. 2. Average criteria and Kullback-Leibler divergence averaged over 10 000 realizations from the autoregressive model (16) based on N = 23.
The example is similar to that in Fig. 2 of Hurvich and Tsai (1989)..

Table 2

Probability of selecting a particular candidate AR model of
order p when the true order is p = 2. Probabilities are
estimated from 10 000 simulations from model (16).

p AIC AlCc AICr
0 0.00 0.00 0.00
1 0.00 0.01 0.01
2 0.24 0.88 0.92
3 0.04 0.07 0.05
4 0.02 0.03 0.01
5 0.01 0.01 0.00
17 0.04 0.00 0.00
18 0.11 0.00 0.00
19 0.43 0.00 0.00

estimation of a model of the form (2), where y is a 23-dimensional vector from the process, the first column of X is a
vector of ones corresponding to the intercept, and the next two columns of X are 1-step and 2-step lagged versions of
the process. Therefore, M = 3 and N = 23. The corresponding estimates of the criteria are shown in Fig. 2. The results
are similar to those of Fig. 2 in Hurvich and Tsai (1989), particularly in showing that AIC fails to reach a minimum and
that AICc follows the shape of Arandom-x- The probability of selecting particular models are shown in Table 2. The results
are similar to those in Table 1, particularly in showing that AIC tends to select the maximum order and that AICr tends
to select more parsimonious models than AICc. However, AICc is negatively biased relative to Asame-x. This discrepancy
is presumably due to serial correlation in the data, which violates the assumptions under which AlCc was derived. AICr
appears to be a nearly unbiased estimate of A;angom-x, but this is fortuitous to this example. For instance, if an AR(1)
model is used, then the bias of AICr is evident, and AICc is even more biased (not shown). These results show that neither
AlCc nor AICr are exactly unbiased for AR processes. These biases reflect the fact that neither criterion is derived by exact
integration of an information criterion for AR processes.

4. Multivariate AICm

We now derive AICm for the multivariate regression model

Y = X B + E,

N xP NxM MxP N x P (17)

where N is sample size, P is the number of response variables in Y, M is the number of explanatory variables in X,
B contains regression coefficients, E is a random matrix. Each row of E is independently distributed as a multivariate
normal with zero mean and covariance matrix X.

Following the univariate derivation, let B, and X', denote the maximum likelihood estimators of B and X, respectively,
derived from the training sample (X,,Y,), and let (Xo, Yo) be the validation sample used to estimate KL divergence.
Then,

—2log q(yolxo; ¢*) = NP log(27) 4 N log| X, |4+Q. (18)
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where || denotes the determinant and
Q = tr[(Yo — XoB,) X' (Yo — XoB.)']. (19)
Assuming the candidate family of models includes the true model, Yo = XoB + Egy, where the rows of Ey and E are
independent, then
Ey,x0.%:.Yx [Q] = Eygixo X, v, [tr [Z*_]E(T)Eo + X." (B, —B) X(Xo (B, — B)]]
=Nt [ 'Z]+u[Z B, —B) X;Xo (B, —B)].
From standard regression theory, (B, Xq, X',) are conditionally independent given (X,, Xp), and NX', has Wishart

distribution Wp[N — M, X'] (theorems 6.2.2 and 6.2.3 in Mardia et al., 1979). Standard properties of Wishart-distributed
matrices (Muirhead, 2009, section 3.2.3) give

B N
T N-M-P-1

Using the fact that the covariance between (B,); and (B, )y is (ZJ),-k((XIX*)‘l)ﬂ (theorem 6.2.3 in Mardia et al., 1979), it
follows that

Eyexs [ 2] ) (20)

% (N +tr [XO (XIX*)fl Xg:l) . (21)

Therefore, the information criterion for multivariate regression model (17) is

Ey,v,1xx. [Q] =

-1
EYOY*|X0X* [—2 lOg q(yO|X(); ¢*)] = NP log(Zn)-i—NIEy*p(* IOg |2*| + <N + tr I:X() (XIX*) Xg]) 5 (22)

N—-M-P-1
which is the multivariate generalization of A in (8) (to which it reduces when P = 1). Invoking Lemma 1 gives the
following selection criterion for multivariate regression with an arbitrary mix of Random-X and Same-X predictors.

Proposition 4. An unbiased estimate of the information criterion (22) for the multivariate regression model (17) under (9)
and (10) is

AICm(Y|X) = Nlog|X,| + NP log 27w +

N(N + Mg)P (1 n Mg ) .
N—-M-P-1 N—-—M-1
Substituting Mg = M and My = 0 gives the Same-X AlCc,

(N 4+ M)NP
N-M-P-1
which agrees with the AICc in Bedrick and Tsai (1994). Substituting Mg = 1 and Mg = M — 1 gives the multivariate
generation of AICr for Random-X,

AICc(Y|X) = Nlog|X.| + NP log 2w +

N(N 4+ 1)P M-1
AICr(Y|X) = Nlog | X NP log 2 1 ,
(Y1X) g2 + gn+N_M_P_1<+N_M_1)
which agrees with (14) for P = 1. An equivalent expression for AICr is
N(Mg + P) N(Mg)
AICK(Y|X) = Nlog 2w + Nlogo? + (N + 1 - :
(Y|X) = Nlog2r + Nlogo? + +)(N_MR_P_2 v

Using this expression to compute the difference in AICr between nested models yields (5.17) of Fujikoshi (1985), where
the latter is the AIC criterion for selecting the “best subset” of X-variables in Canonical Correlation Analysis. This reveals
that Fujikoshi (1985) derived the corrected AIC for Random-X well before (Rosset and Tibshirani, 2020) and related papers.
DelSole and Tippett (2020) give yet another derivation of AICr from a different perspective.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.sp.2021.109064.
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