Calm Energy Accounting for Multithreaded Java Applications

Timur Babakol
tbabakol@binghamton.edu
SUNY Binghamton
Binghamton, NY, USA

Rachit Saxena
rsaxena3@binghamton.edu
SUNY Binghamton
Binghamton, NY, USA

ABSTRACT

Energy accounting is a fundamental problem in energy manage-
ment, defined as attributing global energy consumption to individ-
ual components of interest. In this paper, we take on this problem
at the application level, where the components for accounting are
application logical units, such as methods, classes, and packages.
Given a Java application, our novel runtime system CHAPPIE pro-
duces an energy footprint, i.e., the relative energy consumption of
all programming abstraction units within the application.

The design of CHAPPIE is unique in several dimensions. First,
relative to targeted energy profiling where the profiler determines
the energy consumption of a pre-defined application logical unit,
e.g., a specific method, CHAPPIE is total: the energy footprint en-
compasses all methods within an application. Second, CHAPPIE is
concurrency-aware: energy attribution is fully aware of the multi-
threaded behavior of Java applications, including JVM bookkeeping
threads. Third, CHAPPIE is an embodiment of a novel philosophy for
application-level energy accounting and profiling, which states that
the accounting run should preserve the temporal phased power be-
havior of the application, and the spatial power distribution among
the underlying hardware system. We term this important property
as calmness. Against state-of-the-art DaCapo benchmarks, we show
that the energy footprint generated by CHAPPIE is precise while
incurring negligible overhead. In addition, all results are produced
with a high degree of calmness.

CCS CONCEPTS

« Software and its engineering — Software performance.

KEYWORDS

Energy Accounting, Energy Profiling, Power Disturbance, Concur-
rency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7043-1/20/11...$15.00
https://doi.org/10.1145/3368089.3409703

Anthony Canino
acaninol@binghamton.edu
SUNY Binghamton
Binghamton, NY, USA

976

Khaled Mahmoud
kmahmoul@binghamton.edu

SUNY Binghamton
Binghamton, NY, USA

Yu David Liu
davidl@binghamton.edu
SUNY Binghamton
Binghamton, NY, USA

ACM Reference Format:

Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu
David Liu. 2020. Calm Energy Accounting for Multithreaded Java Applica-
tions. In Proceedings of the 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE ’20), November 8-13, 2020, Virtual Event, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3368089.3409703

1 INTRODUCTION

Application-level energy management has emerged as an important
dimension of energy-efficient computing, with solutions sharing
a common premise: the logical units within an application matter
in energy management. In this paper, we revisit energy account-
ing, a fundamental problem that has been extensively studied at
the lower layers of the computing stack [20, 52]. Our new focus
is on the application level: determining the energy consumption
of individual application logical units given the total energy con-
sumption of the application. This problem subsumes important
questions in green software development, e.g., which methods con-
sume the most energy in an application, which methods lead the
underlying system to a higher-power state, or how to compare
the energy/power consumption of two methods. Answering these
questions systematically may significantly impact the state of the
art of energy-aware programming [8, 13, 16, 37, 49, 53], energy-
adaptive software framework design [14, 21, 30, 34, 39], energy
testing and debugging [12, 23, 27, 38, 40, 42], and energy-oriented
approximation [5, 11, 29, 47].

At first glance, the problem of application-level energy account-
ing may appear deceptively simple. To determine the energy con-
sumption of method m, a naive approach may reduce it to a trivial
energy measurement problem: one may instrument m at its entrance
and exit program points, obtain a pair of energy readings from the
underlying hardware, and compute the difference of the two. This
naive approach however is flawed — or at best impractical — for
two reasons.

Accounting Totality. Important questions such as which method
consumes the most energy in an application requires the knowledge
of energy consumption for all methods in an application. Iterating
over every method with an instrumentation approach does not scale
for realistic applications; the overhead becomes unrealistically high
(see §2) when all methods are accounted for at the same time.

Multi-threading. More fundamentally, the instrumentation-based
approach is concurrency-oblivious, which may lead to significant

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409703
https://doi.org/10.1145/3368089.3409703

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Time

Figure 1: The Challenge of Accounting for the Energy Con-
sumption of Method foo with a Multi-threaded Application

over-accounting. This is particularly bad news for server-type ap-
plications where multi-threaded programs on parallel platforms are
the rule, not the exception. Consider Figure 1. The instrumentation-
based approach may attribute the entire energy consumption during
the execution of foo to the method, without considering a portion
of such consumption results from the execution of bar, or even
another instance of foo. In addition, managed language runtimes
may have co-running Virtual Machine (VM) bookkeeping threads,
such as the garbage collector.

Beyond these two challenges in energy accounting system design,
a third one exists against producing high-quality results.

Disturbance. Any runtime system design that profiles the appli-
cation needs to ensure that the runtime profiling mechanisms do
not significantly alter the behavior of the original application. This
well-known problem is usually coped with through ensuring the
execution time overhead of the profile run is negligible compared
to the original run. Profiling for energy, however, introduces a new
layer of subtlety. The profiler behavior may alter the power state
of the underlying hardware, leading to two consequences. First, a
change in the power states is correlated with the CPU frequency
change, so that execution time is no longer a reliable indicator of
disturbance. Second, as energy is the accumulated effect of power,
the disturbance of power consumption alters the very behavior that
the profiler tries to a observe, challenging the validity of the results
from energy accounting.

1.1 CHAPPIE

We present CHAPPIE, a total, concurrency-aware, disturbance-mitigated
application-level energy accounting system for Java applications.
With CHAPPIE, the execution of each application can produce an
energy footprint, i.e., the relative energy consumption of all program-
ming logical units within the application. For example, Figure 2
is a top-10 energy footprint for a realistic Java application h2 [3].
It shows ValueDataType. compare is the most energy-consuming
method in the application. Furthermore, it shows the relative en-
ergy consumption difference between any pair of methods, such
as Page.binarySearch and ValueDataType.compareValues. In
addition to methods, CHAPPIE is customizable so that the unit in an
energy footprint can be courser-grained as classes and packages,
or finer-grained as calling contexts to methods.

At its heart, CHAPPIE is a novel sampling-based runtime system
that draws information from multiple layers of the computing stack,
and composes it to provide the energy footprint. On the JVM level,
CHAPPIE samples the per-thread call stacks, determining which
methods are currently executing at each sample. On the hardware
level, CHAPPIE is able to sample the raw energy readings. When

Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu

Page.binarySearch

ValueDataType.compare
Page.create
ValueArray.getMemory

- |MVMap.compare

% Cursor.fetchNext

= Value.compareTypeSafe
ObjectDataType$LongType.compare
TransactionStore.getOperationld

ValueDataType.getMemory

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Aware vs Oblivious Attributed Energy Ratio

Figure 2: Method-Grained Energy Footprint for h2 (The X-
Axis represents the percentage of energy consumption con-
sumed by a particular method. The Y-Axis lists the methods
with top-10 energy consumption, with the most consuming
one at the top.)

multiple threads are active upon the receipt of a raw energy sample,
CHAPPIE is able to distribute a share of the latter among all running
methods, each of which resides on the call stack of an active thread.
The core algorithm of CHAPPIE combines the high-level informa-
tion with the lower-level one, with full awareness of concurrency.
Despite its cross-layer nature, CHAPPIE is a lightweight design with
no modifications to the application code, the compiler, the JDK, the
JVM, the OS, or the hardware.

Another highlight of CHAPPIE is it treats accounting disturbance
as a first-class concern. While overall execution time overhead and
overall energy consumption overhead may provide some insight
into how an accounting system may affect the application to be
accounted for, they are insufficient to quantify disturbance in energy
accounting.

1.2 Calm Energy Accounting

CHAPPIE features calm energy accounting with a novel fine-grained
metric to ensure the accounting system does not temporally and
spatially disturb the energy behavior of the original application, so
that the energy footprint faithfully captures the characteristics of
the original application. To elaborate, let us consider the scenario
in Figure 3, where an application runs on a 2-core machine, CPU1
and CPU2, each of which may operate at two CPU frequencies, 1GHz
and 2GHz. The metric of calmness subsumes two ideas.

Temporal Calmness. The accounting run should preserve the
power phased behavior of the original application [19, 31], i.e., the
power consumption of an application may vary from timestamp to
timestamp and together they may form a pattern. This well-known
phenomenon results from time-dependent application character-
istics such as parallel vs. serial phases latent in multi-threaded
applications, and CPU-intensive vs. I/O-intensive phased behaviors.
The power variation is usually enabled by Dynamic Voltage and
Frequency Scaling (DVFS) [43], a standard feature supported by the
vast majority of CPUs and enabled as default by most operating
systems. In Figure 3b, observe that the accounting run drives both

977

Calm Energy Accounting for Multithreaded Java Applications

Original Run
_ CPU
S 1 000 ({1GHz ooo@ooo@
3
GE.) CEU 000 (1GHz 000@000@
|_
Sampling | | |
Epoch | ! !
T1 T2 T3
(a)
Original Run
_ CTU OO0 (1GHz 000 (1GHz 0001 GHz
©
©
3| Eoon e ooy
Sampling | | |
Epoch ! ! !
T1 T2 T3

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Accounting Run
= C':U @ @ 000 (1GH:
P .
8
qE> C:U @ @ 000 |1GHz
}_
Sampling | |
Epoch ! ! '
T T2 T3
(b)
Accounting Run
CPUl 500 1GHz) o000 @ 000 (1GHz
= 1
S
& CZU 000@0001GH2 ooo@
Sampling | | |
Epoch ! ! !
1 T2 T3

(©

(d)

Figure 3: Temporal Power Disturbance (Figure (a) (b)) and Spatial Power Disturbance (Figure (c) (d))

CPU1 and CPU2 to operate at 2Ghz at an earlier timestamp than the
original application, as shown in Figure 3a. Even though the accu-
mulated energy of the two runs may well correspond, the two runs
do not exhibit the same power behavior, which we call temporal
power disturbance. In a nutshell, temporal power disturbance is a
symptom of the phased behavior change of the application.

Spatial Calmness. The accounting run should preserve the power
distribution behavior of the original run, i.e., the power consump-
tion of the underlying system may vary from CPU core to CPU core
and together they may form a pattern. This well-known phenom-
enon results from application characteristics such as symmetric
vs. asymmetric workloads, and the level of parallelism enabled by
the application-scheduler interaction. The power variation is again
enabled by DVFS, where a higher workload usually drives the CPU
to a higher frequency state — hence higher power consumption —
and vice versa. In Figure 3c, the power distribution between CPU1
and CPU2 are lopsided, whereas in Figure 3d, the two are more
balanced. Even though the accumulated energy of the two runs
may well correspond, which we call spatial power disturbance. In
essence, spatial power disturbance is a symptom of the workload
behavior change of the application.

We evaluate CHAPPIE over 11 state-of-the-art DaCapo bench-
marks with diverse and realistic workloads. We show that CHAPPIE
can successfully produce the energy footprint for all benchmarks.
By judiciously setting the sampling rates, CHAPPIE can achieve
both temporal calmness and spatial calmness for all benchmarks.
When calmness is achieved, the time and energy overhead are neg-
ligible, with an average runtime overhead of 3.15+3.03% and an

978

average energy overhead is 0.84+1.09% across all benchmarks. We
further show that the produced energy footprints are precise: the
energy footprint converges when samples from additional runs are
included.

Contribution. This paper makes the following contributions:

e A novel and customizable energy accounting design that
produces an energy footprint, illustrating the relative energy
consumption of all program logic units.

A sampling-based cross-layer design that allows for concurrency-
aware energy accounting for multi-threaded Java applica-
tions

A novel calmness metric for quantifying power disturbance
in application-level energy accounting

An evaluation demonstrating the effectiveness of CHAPPIE
in understanding the energy behavior of realistic Java appli-
cation

CHAPPIE is an open-source project, hosted at an (anonymous)
website https://github.com/pl-chappie/chappie.

2 CHAPPIE MOTIVATION

In this section, we briefly motivate the need for CHAPPIE quantita-
tively.

Accounting Totality with Instrumentation. In order to support
totality in energy accounting, an instrumentation-based approach
would either need to iteratively instrument each method, or instru-
ment all methods at once. The former would lead to a large space
to consider. The latter approach, despite requiring few runs, may

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Table 1: Overhead with the Instrumentation-Based Ap-
proach (The “instrumentation X%” column shows the time
overhead when every method in the benchmark is instru-
mented and X% of the invocations are randomly selected to
take energy readings. The instrumentation was performed
through javassist [15]. All benchmarks appearing in this
section are from the DaCapo benchmark suite [9].)

instrumentation 100% | instrumentation 5%
sunflow 189x 164x
batik 118x 117x
xalan 30x 29x
h2 25x 16x

Table 2: Energy Over-Attribution due to Concurrency-
Oblivious Accounting (The first column lists top-consuming
h2 methods reported by CHAPPIE, and the second column
reports the ratio of over-attribution if concurrency were ig-
nored.)

method name over-attribution
ValueDataType.compare 2.88x
Page.binarySearch 2.20x
MVMap. compare 5.82x
MVMap.binarySearch 9.27x
LocalResult.next 3.43x
h2
5 50
2 B energy
[e]
% 40 I time
£ 30 B power
5
) 20
[J]
S 10
e
©
c—-10
[e]
z =20

A 1 I) '\6 3"}, o™

Sampling Rate (ms)

Figure 4: h2 Disturbance (The X-Axis represents different
sampling rates. The Y-Axis represents the normalized dif-
ference between the accounting run and the original non-
accounting run. Each group consists of three bars, the en-
ergy/time/power consumption. The error bars indicate stan-
dard deviation.)

lead to severe overhead. Table 1 shows the overhead of the latter
approach. Even with the aggressive omission of energy readings,
that approach still yields a significant overhead. A compiler-based
approach of selective instrumentation may help, but with the gap
being so large, it is unlikely such an approach would produce results
with practically viable overhead.

Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu

Note that even if the instrumentation-based approach can get
over the hurdle of long iteration or significant overhead, such an
approach is still fundamentally concurrency-oblivious: during the
execution between the method start and end, other methods may
be co-running.

Concurrency-Oblivious Accounting. To quantify the impact of
concurrency awareness, we construct an experiment to show how
much energy over-attribution could happen should CHAPPIE ignore
multi-threading. As this experiment is only for motivation purposes,
we take the simple approach of assigning 100% of each energy
sample to a method if its host thread is active in that sampling
interval; when multiple threads are active, duplicated assignments
are possible. We show these results in Table 2. The take-away
message here is that a concurrency-oblivious energy accounting
design may lead to significant over-attribution of method energy
consumption.

Power Disturbance. Our investigation into calmness was moti-
vated by the counter-intuitive behavior of some benchmarks during
the early stage of the CHAPPIE evaluation.

Our intuition was that the bookkeeping of accounting may carry
some overhead so the accounting run would be slower than the
original run. Some experiments however revealed an opposite trend.
As shown in Figure 4, if CHAPPIE had set the sampling rate at 1
millisecond (ms), the execution of h2 would turn out to be nearly
18% faster than the original non-accounting run!

The key to resolving this baffling mystery is power consumption.
As it turns out, the sampling rate of 1ms would lead to nearly a
50% of power increase: the sampling-based approach periodically
“pokes” the application, preventing the application from sleeping
during downtime. In these scenarios, DVFS likely increases CPU
frequency to handle the higher workload, which in turn allows the
application to run faster.

The moral of the story is that accounting, if designed naively, may
introduce disturbance and significantly alter the energy behavior of
the original application. The good news is power disturbance will
be reduced as the sampling rate decreases: as sampling slows to
32ms, the power consumption difference between the accounting
run and the original run is only 3%.

3 CHAPPIE DESIGN

In this section, we provide a high-level specification for CHAPPIE
runtime and metric design.

3.1 Runtime Design

On the top level, the CHAPPIE runtime is specified by the Crap-
PIERUNTIME function in Algorithm 1. Here, CHAPPIE continuously
samples raw energy consumption (Line 12) and JVM stack infor-
mation (Line 14) and combines the two to produce an attribution
(Line 17), i.e., how each logical unit of the monitored application
(such as a method) may be assigned with a portion of the energy
consumption reading obtained from the underlying system. Struc-
turally, each attribution A is a mapping from a logical application
unit LUNIT to its share of energy consumption ETYpE which is an
abstract representation of joules. Notation 0 represents an empty
map.

979

Calm Energy Accounting for Multithreaded Java Applications

Algorithm 1 CHAPPIE Sampling

1 typedef Tip INT // thread ID

typedef ETYPE FLOAT // energy in joules

typedef LuNIT STRING U {1} // accounting logical unit
EPOCH : INT // VM sampling interval

A : MAP<LUNIT,ETYPE> // Output attribution

7 : SET<Tip> // VM threads

V : Mar<TIp,LUNIT> // thread-indexed logical units

function CHAPPIERUNTIME
A—0
loop at rate (EPOCH)
V0
€ «— ESampLE()
for t in 7 do
V[t] « ABSTRACT(STACK(t))
a=|{t|V[t] # L}
forvin Vandv # L do
Alv] — Alv]+ex £

8 function ESAMPLE : ETYPE // obtain energy reading

Nelaes] NN G W

11
12
13
14
15
16

[E—

9 function STACK(TID) : STACK // obtain thread stack

20 function ABSTRACT(STACK) : LUNIT // transform stack to logical unit

The goal of each JVM sampling step (Line 14) is to obtain an
abstract representation (the ABSTRACT function) of the runtime
stack of the running threads (the Stack function). The latter returns
either the runtime stack frame information if a thread is active, or
empty otherwise, with ABSTRACT(0) = L . Given an energy sample
€, the algorithm first counts the number of active threads «, and each
active thread — and its associated logical unit — will be attributed
with a fraction é of €. The share of energy attributed to each logical
unit is accumulated in A, at Line 17.

CHAPPIE features an extensible and customizable design. De-
pending on how the ABSTRACT function and the LuNIT type are
concretized, the algorithm can express a variety of granularities in
application-level energy accounting. Our default implementation
supports energy accounting over deep application methods, which
assigns energy consumption to an application (i.e., non-library)
method when either the said method is at the stack top, or it is the
calling context to a library method that is at the stack top. CHAPPIE
allows users to customize the ABSTRACT function. Currently, addi-
tional versions have been implemented for context-sensitive method
energy accounting, and class/package/thread energy accounting

(see §5).

3.2 Metric Design

We now provide a rigorous definition for calmness. Its essence lies
upon the similarity between the runtime characteristics of an ac-
counting run against a reference run, i.e., the original application run
when the accounting system is not at work. To simplify the matter,
we first consider the idealized case where one instance of applica-
tion execution is sufficient to capture the runtime characteristics.
Let EPOCH represent the set of epochs in the form of N*, with the
first epoch of each run starting at epoch 1. Let CORE the set of CPU
cores and FREQ the set of observable CPU frequencies. Each run

980

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

[benchmark [workload | methods | total threads | active threads | execution time (s)]

avrora large 576 71 69 175.98
batik large 924 9 8 17.41
biojava default 103 7 6 22.76
eclipse default 5423 706 18 59.14
graphchi huge 124 53 50 246.78
h2 large 3676 954 39 115.91
jython default 1426 7 6 10.63
pmd large 950 8 6 54.65
sunflow large 257 88 46 61.13
tomcat large 3214 109 106 27.0
xalan default 1071 47 46 9.0

Figure 5: Benchmark Statistics (Workload refers to the data
size specified by DaCapo for each benchmark. Methods
shows the number of unique methods appeared in the trace.
Total threads shows the number of the threads created
throughout the lifetime of the application. Active threads
shows the maximum number of the concurrent threads at
any epoch.)

[benchmark [rate [batches [PCC [SE [RMSE]
avrora 64 6 0.9944 | 0.0145 | 0.0027
batik 8 2 0.9998 | 0.001 | 0.0005
biojava 128 3 0.9968 | 0.0139 | 0.022
eclipse 16 4 0.995 | 0.0019 | 0.0002

graphchi 16 5 0.9981 | 0.0089 | 0.0066
h2 32 2 0.9977 | 0.0046 | 0.0013
jython 32 2 0.998 | 0.0027 | 0.0005
pmd 16 2 0.9922 | 0.0079 | 0.0024
sunflow 64 2 0.9945 | 0.0088 | 0.004
tomcat 16 2 0.9999 | 0.0007 | 0.0004
xalan 16 2 0.9994 | 0.0013 | 0.0005

Figure 6: Accounting Parameters (Rate refers to the sam-
pling rate for each benchmark. Batches refers to the num-
ber of data collection runs for the accounting of each bench-
mark. PCC shows the correlation between the energy foot-
print produced from (n-1) batches and that produced from
n batches. SE shows the standard error of the PCC. RMSE
shows the root means square error.)

produces a set of samples S € P (EPOCH x CORE x FREQ), where
each sample (e; c; f) intuitively says the CPU frequency of core ¢
at epoch e is f. First, let us introduce some auxiliary functions.

Definition 3.1 (Epoch Count). We say a run with samples S con-
S|
[CORE]"
Definition 3.2 (Core Count). We say there are cCount(S,e, f)
number of cores operating at frequency f and epoch e. where

sists of eCount(S) epochs where eCount(S) 2

cCount (S, e, f) 2 [{c|(e;c; f) € S}|. From now on, we use metavari-
able m € [0..|CORE]] to represent the core count.

To study temporal calmness, we intuitively wish to characterize
how the power consumption — manifested by CPU frequencies
— “flows and ebbs” over time. We first introduce a function for
computing the CPU frequencies given a particular epoch e in a
particular run. Observe that in our sample space, there are [CORE|
number of samples for each epoch, one from each core. Rather than
assuming a fixed distribution, we represent the frequencies as a
distribution to preserve generality. Specifically,

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

““ I
frequency (GHa)

[2.75, 3.0)
[2.5, 2.75)
[2.25, 2.5)
[2.0, 2.25)
[1.75, 2.0)
[1.5,1.75)
[1.25,1.5)
[1.0, 1.25)

i

Epoch

(a) no method sampling

Epoch
(b) 32ms method sampling

Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu

frequency (GHz) frequency (GHz)

mm [2.75, 3.0) H [2.75, 3.0)
. [2.5,12.75) . 2.5, 2,75)
Hm [2.25,2.5) N [2.25,2.5)
2.0, 2.25) 2.0, 2.25)
H [1.75, 2.0) H [1.75, 2.0)
1.5, 1.75) (1.5, 1.75)
. [1.25, 1.5) [11152 B b))
(1.0, 1.25) . 1.0, 1.25)

Epoch
(c) Ims method sampling

Figure 7: Temporal Distribution of CPU Core Frequency for h2 (The X-Axis represents the epoch series of the benchmark
execution, with the first epoch and the last epoch indicates the beginning and end of execution. Each bar represents a particular
frequency range, whose height indicates the normalized number of CPU cores at that frequency at that epoch. For illustration,
we divide all frequencies into 8 ranges. For example, throughout the majority of (a), the orange bars show that 25% of cores
execute between 1.25 - 1.5 GHz, until the tail end, where 5% of cores execute at that range.)

Definition 3.3 (Temporal Characterization). We use TC(S) to com-
pute the temporal characterization for a run over samples S. TC(S)
computes to an element in EPOCH +— (FREQ +— [0,1]), ie.,

from each epoch to a frequency distribution . Formally, for each
A cCount(S,e,f)

e € eCount(S) and each f € FREQ, TC(S)(e)(f) = [CORE]
Indeed, if we treat the frequency at epoch e in the sample space
S as a random variable, TC(S)(e) is its probability mass function
(PMF).

To study spatial calmness, we intuitively wish to characterize
how CPU frequencies “spread out” across cores. An intuitive repre-
sentation is to show which cores operate on each frequency. This
intuition carries some subtlety. First, there are eCount(S) number
of snapshots for the characterization of spreading out to be consid-
ered. The overall spatial characterization throughout an entire run
can be intuitively viewed as each epoch introducing an observation
characterizing how CPU frequencies are spread out for that epoch.
Second, scheduling is fundamentally non-deterministic and threads
may migrate from one another. For designing a comparative metric
like ours, this means that a comparative study for a fixed core’s
behavior is meaningless. What matters is how many cores operate
at a particular CPU frequency. With these two elaborations, we
define:

Definition 3.4 (Spatial Characterization). We use SC(S) to com-
pute the spatial characterization for a run over samples S. SC(S)
computes to an element in FREQ x CCOUNT +— [0,1], ie, a
frequency-coreCount bivariate distribution, defined as SC(S) (f, m) 2

|{e|m=cCount(S,e,f)|}|
eCount(S) :

Indeed, if we treat both the frequency and the core count in the
sample space S as a random variable, SC(S) is their bivariate PMF.

Definition 3.5 (Calmness). We say an accounting run with sam-
ples S is calm relative to a reference run with samples Sy iff:

e [TiME CORRESPONDENCE] eCount(S) ~ eCount(Sp)

e [TEmMPORAL CORRESPONDENCE] for any e such that e <=
min(eCount(S), eCount(Sp)), TC(S)(e) -~ TC(So)(e)
e [SpatiaL CORRESPONDENCE] SC(S) —~ SC(Sp)

where ~ and - abstractly represent the similarity between two
natural numbers and two distribution respectively, which we will
contretize in §4.

Time correspondence captures that the accounting run must
have similar execution time as the reference run. The temporal
correspondence and spatial correspondence enforce that the two
runs must have similar power characteristics. With energy being ac-
cumulated power over time, the criteria above together say that the
energy characteristics between the accounting run and reference
run are similar, the essence of calm energy accounting.

Multi-Tteration Runs. The discussion so far has idealistically as-
sumed that there is only one reference run and one accounting run.
As most experiments are repeated to take into the fundamental
non-determinism in the software-hardware stack, the reference run
(as well as the accounting run) may consist of multiple executions
of the application, each of which we call an iteration. Our calmness
metric can be defined for multi-iteration runs in a nearly identi-
cal manner as Definition 3.5, with small changes. Let us assume
a k-iteration run produces samples Sy, . . ., S respectively, we can
follow Definition 3.5 to construct the calmness metric over samples
S1U---U Sk, with |CORE| redefined as the number of CPUs multi-
plied by k. Intuitively, this implies we can conceptually view the
k-iteration run as one parallel run of k instances of the application
over k times of physical CPUs. This formal view simplifies our
algorithm specification: we do not need to repeat all definitions we
introduced earlier for multi-iterations runs. Practically, this means
we can merge all the samples we collected from different iterations
by reusing the formal definition we have given for a single iteration.
For example, Fig. 8 shows the equivalent view of a three-iteration
run on a two-core machine (with CPU1 and CPU2) of an application

981

Calm Energy Accounting for Multithreaded Java Applications

App in App in App in
lteration 1 Iteration 2 lteration 3
CPU| |CPU CPU| |CPU CPU| |CPU
1 2 1 2 1 2

Figure 8: A Multi-Iteration Run

app. Since both our reference run and profile run consist of multi-
iterations in our experiments, this view has been adopted in our
data analysis over calmness, to be reported in the next sections.

4 CHAPPIE IMPLEMENTATION

Thread Model Overview. We implement the CHAPPIE runtime as a
thread of its own, in the same JVM runtime as the application being
accounted for. The top-level loop construct in the specification is
implemented with a timer. The thread periodically wakes up, with
no busy waiting.

The global structure 7 in the specification requires thread-safe
access. To prevent it from becoming a bottleneck, we implement
it with a delayed buffer. Whenever a thread is started (or exited),
an entry is added (or removed) from this delayed buffer to indicate
the change. Periodically at every epoch, the thread that runs the
CHAPPIE runtime will retrieve from the buffer and apply the changes
— adding a thread or removing a thread — to its exclusively held
T structure. As a result, 7~ does not require synchronization, and
only the delayed buffer is implemented as a synchronized Queue.

Call Stack Sampling. Traditional approaches for accessing the
thread stacks — such as through the Thread.getStackTrace —
incur significant overhead. To circumvent this restriction, we resort
to a Hotspot VM API, the AsyncGetCallTrace method, to sample
the call stack, a method also used by popular profilers such as the
async profiler [2], which our implementation builds on. To integrate
with the async tool which supports asynchronous stack sampling,
we maintain a buffer to keep the stack samples, and use timestamps
to align them into each epoch.

The async profiler can sample both Java stacks and the native
stacks — the latter may result from either though JNI invocation or
JIT compilation — and CHAPPIE can handle both as a result.

Hardware Energy Reading and CPU Affinity. We rely on Intel’s
RAPL [18] interface to obtain energy samples at the granularity
of CPU power domains (sockets). Energy samples were collected
using jRAPL [36], a Java library for interfacing with RAPL. We
are able to sample both CPU package and DRAM energy. As our
experimental platform consist of multiple sockets, we treat each
socket as a separate locale for attribution (Algorithm 1) and combine
data together. As the OS scheduler may migrate a thread from one
socket to another, we maintain the CPU affinity information to
keep track of the socket — and hence the locale of attribution — a
thread belongs to.

Metric Implementation. Predicate e ~ e’ in Definition 3.5 is im-
plemented as the normalized difference between e and e’ is less
than 5%. The similarity between distributions (-) is implemented

982

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

through the standard metric of Pearson’s Correlation Coefficient
(PCC) between the pair of distributions. Two distributions are con-
sidered similar iff their PCC > 0.85. In general, PCC above 0.7 is
considered strongly correlated.

The TC and SC functions both use PMFs to represent the distri-
butions. Although modern CPUs only publish a small number of
CPU frequencies, the observed CPU frequencies are much more
diverse. For example, in our experiments, we observed 225 distinct
frequencies in our data samples. This implies that if the original
PMF is used, there are a large number of elements in the vector
for PCC computation. This is a well-known problem, and we have
applied Freedman-Diaconis rule to bin similar frequencies together.

Temporal correspondence in Definition 3.5 relies on epoch-wise
distribution similarity. While time correspondence establishes that
the number of epochs for the reference run and those for the ac-
counting run are similar, a small difference may still exist. Defini-
tion 3.5 takes the approach of only considering the less number
of the epochs between the two runs. In practice, we found that if
an accounting run is (slightly) slower than the reference run, the
delayed effect w.r.t. the frequency behavior often exhibits gradu-
ally as time goes on. To capture this gradual shift, we use a simple
interpolation approach to make the two runs match on epochs: if
the number of epochs for the reference/accounting run is ey and
e; respectively, we adjust each raw sample in the accounting run

(e;c; f) to (e’;c; f) where e’ = e x i—g. Since eg and e(’) are similar,
this adjustment only affects a small portion of samples.

5 CHAPPIE EVALUATION

5.1 Evaluation Methodology

We evaluated CHAPPIE on a dual socket Intel E5-2630 v4 2.20 GHz
CPU server, with 10 cores in each socket and 64 DDR4 RAM. Hyper-
threading is enabled. The machine runs Debian 4.9 OS, Linux kernel
4.9, with the default Debian powersave governor. All experiments
were run with Java 11 on top of Hotspot VM build 11.0.2+9-LTS.
When each experiment is performed, the OS has no other workload.

CHAPPIE is evaluated over the DaCapo benchmark suite [9], of
its recent version evaluation-git+8b7a2dc, released in June 2019.
This release includes state-of-the-art workloads such as graphchi
and biojava. Aslong(er)-running applications are more interesting
w.r.t. energy management, we focus on benchmarks whose execu-
tion time is around or above 10 seconds. Among the 13 benchmarks
that fit into this criterion, we excluded 2 of them: the majority of
application code of tradesoap and tradebeans is run in a new
process — as opposed to a new thread — whose accounting CHAPPIE
currently does not support without modifying benchmark source
code.

The statistics of the benchmarks are shown in Figure 5. Here
the execution time refers to average the benchmark running time
over all of its iterations which we discuss shortly. The DaCapo
harness setup time is excluded. The benchmarks are realistic Java
applications with thousands of methods and diverse characteris-
tics in multi-threading, both in terms of total created threads and
concurrently running threads.

Figure 6 summarizes the parameter settings used for the account-
ing of each benchmark. Recall that calm energy accounting requires

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu

40.0% 40.0%

° 35.0% o 35.0%

£30.0% £30.0%

g 25.0% g 25.0%
% 20.0% 1275, 3.0 “06 20.0% - 1275, 3.0 1275, 3.0)
915.0% -3y 915.0% e !
= . (2.0, 2.25) c . (2.0, 2.25) . (2.0, 2.25)
g 10-0% . [1.75, 2.0) E 10-0% . [1.75, 2.0) . [1.75,2.0)
(@) I . (15, 1.75) @) I . [15,1.75) . [15,1.75)
5.0% (i}, [1.25,1.5) 5.0% iy [1.25,1.5) [125,1.5)
§ ll_l . (1.0, 1.25) . [1.0,1.25) . [1.0,1.25)

0.0% = 0.0%

Q % 9 ,\"1, ,\'Q) ’LQ ,Lb‘ ,-L‘b o;l/ ,,)Q) Y Q ™ ® .\"lz .\‘b ,-],Q ,-Lb& ’LQ) ,,;lz ,))‘O) \/"lz ,\‘Q) ,-19 ,-Lb\ "lib f;;b ,,)b o

Cores Operating At Frequency

(a) no method sampling

Cores Operating At Frequency
(b) 32ms method sampling

Cores Operating At Frequency
(c) Ims method sampling

Figure 9: Spatial Distribution of CPU Core Frequency for h2 (The X-Axis shows the number of cores observing the same
frequency in the same epoch. The Y-Axis shows the probability that a frequency is observed. For illustration, we divide all
frequencies into 4 ranges. For example, the red bar on the 3rd tick on (c) says that there is a 15% chance that 3 cores run in
frequency range 2.5 - 3.0+ GHz at the same time. The sum of heights of all bars equals to 1.

minimal disturbance to the original benchmark, CHAPPIE sets a dis-
tinct sampling rate (as defined by EPOCH in Algorithm 1) for each
benchmark to ensure calmness, shown in the rate column. The sec-
tion of this rate will be the focus of §5.2. To gain confidence in the
precision of the energy footprints, CHAPPIE relies on a combination
of cold/hot executions to collect data: each batch is a distinct JVM
instance that subsumes iterations, i.e., hot execution instances of a
benchmark. We elaborate on the number of batches in Section 5.4.
With each batch, we perform 10 iterations by default and follow the
standard practice of discarding the data from the first 2 iterations.
As exceptions, we perform 30 iterations (and discard the first 2)
for sunflow and jython, because of the relatively large standard
deviation of their execution time (>10%) if fewer iterations are used
for data collection.

5.2 Achieving Calmness

In this section, we study how the calmness metric is used for deter-
mining the judicious sampling rate for each benchmark. Before we
present the result for all benchmarks, we begin with a visual elab-
oration on temporal correspondence and spatial correspondence,
the cornerstones of calmness.

Figure 7 shows the temporal behavior of h2 under 3 different
settings: the reference run, the CHAPPIE-accounting run under the
selected sampling rate 32ms, and the CHAPPIE-accounting run if the
sampling rate were set at 1ms. Within each sub-figure, time elapses
from left to right. Its time-dependent variation is an illustration of
power phased behaviors. As one can see, the shape of the 32ms-
sampling result is significantly more similar to that of the reference
run, than the 1ms-sampling result. The temporal correspondence
definition in Def. 3.5 is intended to capture the similarity of the for-
mer (and the disimilarity of the latter). One interesting observation
is that the 1ms-sampling result shows more CPU cores are likely to
be driven into a higher frequency; this is consistent with our intu-
ition that a higher sampling rate may have significantly increased
activity in CPU cores, rendering them into higher frequencies due
to DVFS. Finally, observe that Figure 7(c) consists of fewer epochs,

because the run completes significantly faster than the reference
run.

Figure 7 shows the spatial behavior of h2 under the same 3 differ-
ent settings as earlier. Here, we care about how a frequency “spreads
out” across cores. If all cores have the same frequency at the same
time, it indicates a “perfectly balanced” power consumption across
cores. Within each sub-figure, this is indicated by the rightmost
point on the X-axis. As one can see, the shape of the 32ms-sampling
result is again significantly more similar to that of the reference
run, than the 1ms-sampling result. The spatial correspondence defi-
nition in Def. 3.5 is intended to capture the similarity of the former
(and the disimilarity of the latter). Specific to h2, the relative unbal-
ancedness is not surprising: h2 as an in-memory database is known
to be an I/O-intensive benchmark with a low degree of parallelism.

Finally, Figure 10 summarizes the 3 components used to de-
termine calmness: time overhead, temporal correspondence, and
spatial correspondence across all benchmarks. The full results in-
cluding standard deviation are deferred to the Appendix. If a data
point is missing, it means the data is out of the range (of our in-
terest). Based on our profiling calmness studies, we have selected
the sampling rate for each benchmark with results shown in the
second column of Figure 6.

5.3 Producing Energy Footprints

Method-Grained Accounting. The energy footprint reported by
CHAPPIE can be of various logical units of abstraction. The default
unit, i.e., each entry in the energy footprint, is the deep application
method, as discussed in §3. In our reported data, a method is viewed
as a library method if it belongs to a class whose qualified name
starts with java, jdk, sun, and apache. commons. A method belong-
ing to any additional third-party library is treated as an application
method.

Fig. 11 illustrates a portion of this footprint — the top-10 energy-
consuming methods — for graphchi, a concrete instance of the

983

Calm Energy Accounting for Multithreaded Java Applications

15 —@- avrora
— B batik
x 10 @ biojava
; —&- eclipse
1 5 ~¥- graphchi
g 4 h2
E 0 4 jython
@ pmd
3 Sonfow
(3 m
g -5 >
€
2-10
-15 =
A N T L - LA
Sampling Rate (ms)
(a) time overhead
. 1.00 -8 avrora
g 1 batik
biojava
§0.95 "o caipse
g ~¥- graphchi
Q - h2
o 0.90 jython
= -8 pmd
8 sunflow
=~0.85 % tomcat
© - xalan
2
£0.80
K]
0.75
A G < N) A
Sampling Rate (ms)
(b) temporal correspondence
1.00 -@- avrora
[- Dbatik
o] - bi
50.95 o cime
E ~¥- graphchi
<) - h2
%0.90 A iython
g ® pmd
5085 v 7 o tomeat
E - xalan
20.80| & %
[7) \ A
0.75

Sampling Rate (ms)

(c) spatial correspondence

Figure 10: A Summary of Benchmark Calmness (For both
sub figures, each line indicates a benchmark and the axis
indicates the method sampling rate.)

namesake data-intensive graph processing system [35]. The Da-

Capo’s benchmark implements ALS matrix factorization, an itera-

tive algorithm with graph traversal and updates. The energy foot-

print generated by CHAPPIE corroborates the nature of this bench-

mark, with the top ranked method being ALSMatrixFactorization

.update. The next three highest-ranked methods are related to

graph traversal, with methods ChiVertex.outEdge and ChiVertex

.inEdge for accessing the edges of a vertex, and DataBlockManager .
dereference for fetching the value associated with an edge.

It is interesting to observe that energy consumption and execu-
tion time do not always correspond. In graphchi, method ALSMatrix
Factorization.update has a higher normalized energy consump-
tion than its execution time, indicating that the system is in a
higher-power state. This method is mathematical in nature, and
our results can be intuitively explained through a well-known phe-
nomenon: with default governors, compute-intensive workloads
often lead the CPU to a higher-power state. As a counter example,

984

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

ALSMatrixFactorization.update

ChiVertex.outEdge

DataBlockManager.dereference

ChiVertex.inEdge
DataBlockManager.getRawBlock

HugeDoubleMatrix.getRow

Method

FloatConverter.getValue
MemoryShard.loadAdjChunk
ChiVertex.addInEdge

. time
BufferedDatalnputStream.read EE energy
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Normalized Energy Consumption

Figure 11: Top 10 Energy-Consuming Application Methods
for graphchi (Each green/red bar indicates the normalized
energy/time of a top consuming method. Energy is directly
computed by CHAPPIE according to our algorithm specifica-
tion. Time is approximated by the number of samples mul-
tiplied by the length of the sampling interval.)

Page.binarySearch

[Cursor.min, Cursor.hasNext]
[MVMap.binarySearch, MVMap.binarySearch]
[MVMap.binarySearch, MVMap.get]
[MVMap.put, MVMap.put]

[MVMap.remove, MVMap.remove]

Figure 12: Context-Sensitive Method Accounting for top 10
energy-consuming method of h2. (Each slice with context
[X,Y] indicates that a method is called by Y which in turn is
called by X. Note that one of the calling context is recursive.)

MemoryShard. loadAdjChunk has a lower power, consistent with
the fact that this method is I/O-intensive.

Calling Context-Grained Accounting. Through providing differ-
ent concrete ABSTRACT functions (see Section 3), CHAPPIE is a gen-
eral framework that can be customized to account for programming
abstractions at different levels of granularity. For example, CHAPPIE
can report method energy consumption in a context-sensitive man-
ner, i.e., accounting for different calling contexts separately. Fig. 12
provides a finer-grained view into two top consuming methods
for h2, an in-memory database. Our results show that the majority
of energy consumption for Page.binarySearch comes from the
(recursive) calling context of MVMap.binarySearch which aligns
with our understanding of binary search algorithms. This example
shows that CHAPPIE at the context-sensitive granularity provides
additional context that paints a fine-grained picture for understand-
ing the energy behavior of h2.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

PNGImageEncoder

StrokeShapePainter

CSSEngine
FillShapePainter
AbstractGraphicsNode
PNGEncodeParam

Class

SVGOMDocument
ParsedURLDefaultProtocolHandler
SVGClipPathElementBridge

CompositeGraphicsNode

Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu

org.apache.batik.ext.awt.image.codec.png

org.apache.batik.gvt
org.apache.batik.css.engine
org.apache.batik.anim.dom
gorg.apache.batik.bridge

Y org.apache.batik.dom

ac

o |org.apache.batik.util
org.apache.xerces.impl
org.apache.batik.css.parser

org.apache.batik.css.engine.value

B energy B energy
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Normalized Energy Consumption Normalized Energy Consumption
(a) Class (b) Package

Figure 13: Top 10 Energy-Consuming Application Classes and Packages (Each green normalized energy of a top consuming

class or package.)

Class- and Package-Grained Accounting. Alternatively, CHAPPIE
can be customized with an ABSTRACT for Java class- and package-
level granularity. Figure 13 shows the result for batik, an Apache
toolkit for transforming and rendering Scalable Vector Graphics
(SVG) [1]. The DaCapo benchmark focuses on the use scenarios of
transforming SVG files into Portable Network Graphic (PNG) im-
ages and rendering them. Our results show that PNGImageEncoder
and StrokeShapePainter classes are responsible for a majority of
batik energy consumption, which happens to be aligned with the
main features of this application: transformation and rendering.
As classes are often the abstraction units for dividing program-
ming tasks among developers in large-scale software development,
CHAPPIE class-level energy footprint provides insight on which
programmers are the critical link on developing energy-conscious
software. One granularity coarser, CHAPPIE can further demon-
strate energy consumption at the package level. For batik, half of
its energy consumption results from PNG codec, as shown in the
package org.apache.batik.ext.awt.image.codec.png.

5.4 Overhead and Precision

As a disturbance-mitigated approach, CHAPPIE is fundamentally
overhead-averse: it selects a sampling rate only when calmness
is achieved, leading to minimal time overhead (according to time
correspondence in Def. 3.5) and minimal power/energy overhead
(according to temporal/spatial correspondence in Def. 3.5). For all
benchmarks operating at the selected sampling rate, the average
time overhead is 3.15+3.03% and the average energy overhead is
0.84+1.09%.

With multi-batch runs as part of the design, CHAPPIE is also con-
structed with precision as an inherent goal. Intuitively, the ground
truth of energy consumption of a method is the accumulation of
the energy consumption from all of its instructions. This is equiva-
lent to a sampling-based approach where the number of samples
approaches infinity. One standard metric to study the approxima-
tion to the ground truth is the convergence of results, i.e., whether
introducing more samples may significantly change the results.

To achieve this goal, we study the extent that the energy footprint
may change when data from an additional batch are introduced.
Intuitively, if introducing additional batches of samples can lead to
little change in the energy footprint, convergence is achieved. We
compute the PCC between the data of n-1 batches and that of n
batches, and set the batch parameter for the benchmark as n if the
PCC is greater than 0.99. The batches column of Figure 6 shows the
batch setting for each benchmark. Most benchmarks require only 2
batches — the minimum number in a relational approach we take
— to achieve PCC > 0.99. The remaining benchmarks, e.g., avrora,
exhibit higher variability, but observe that each still converges to
our high PCC requirement within a limited number of batches.

6 RELATED WORK

Energy accounting is a classic problem at lower layers of the com-
puting stack. Examples include iCount [20] at the digital circuit
level and Currentcy [52] at the OS level. With the primary goal
of attributing a global energy budget to individual components,
totality is implicit in energy accounting solutions. This paper is a
systematic study of bringing energy accounting to the application
level, where the individual components at concern are methods,
calling contexts, classes, and packages.

At the application level, energy accounting and energy profiling
overlap in their overall goal of characterizing the runtime char-
acteristics of an application. While accounting is implicitly total,
profiling may or may not. This is why instrumentation remains a
viable approach in existing energy profilers as they many choose
to study the runtime characteristics of individual logical units one
by one. This approach is particularly common in empirical stud-
ies, where the energy consumption of specific program features
is reported based on instrumenting such features. With a feature
focus — e.g., the use of the concurrent collections API [25, 45], or
the impact of data access patterns [36] — instrumentation can be a
feasible solution as it can be placed for one code block at a time. In
this use scenario, CHAPPIE may be useful in improving the precision
of profiling by making the profiler concurrency-aware. Eprof [41]
accounts for smartphone energy consumption through tracking

985

Calm Energy Accounting for Multithreaded Java Applications

I/O system calls and pre-defined SDK-NDK routines, producing a
breakdown on important smartphone use scenarios related to the
use of 3G network, screen, etc. E-Android [23] is a profiler that de-
tects Android collateral energy consumption through tracing a set
of pre-defined energy-critical events. These energy profilers may
profile pre-defined application components, such as the software
component for 3G network interaction or screen tracking, but their
designs are geared toward physical components of the platform,
without a full account of general logical units as CHAPPIE does.
Bokhari et al. [10] defines a conceptual energy profiling framework
for resampling in the presence of measurement inaccuracy. Earlier
energy profilers such as JouleTrack [48] and Powerscope [22] focus
on measurement framework design, addressing e.g., how to provide
high-rate energy samples and how to synchronize the execution
with the measurements.

Another key feature unique to CHAPPIE is its systematic inves-
tigation into power disturbance. We are unaware of existing en-
ergy profilers that provide metrics to quantify and overcome it. In
non-energy profiler design, that a profiler may intervene and alter
the behavior of the original application is a basic fact, motivating
designers to reduce the overhead introduced by the profiler. For
non-energy profilers, say a memory consumption profiler, the effect
of power disturbance — if any — is of a lesser concern. This is in
contrast with energy profiling, power disturbance may alter the
very characteristic the profiler intends to capture. Sampling-based
non-energy profilers are standard [28, 51, 54].

One area CHAPPIE may positively impact on is application-level
energy management and optimization, with solutions ranging from
energy-aware programming languages and energy-adaptive frame-
works. Several examples may demonstrate this synergy. Green [5]
relies on online energy accounting to perform QoS calibration.
PowerDial [30] and JouleGuard [29] may use energy feedback to
make control decisions. LAB [34] needs to continuously account
for energy consumption to balance latency, accuracy, and battery.
Eco [53] must track energy consumption to match the applica-
tion demand and the system resource supply. Aeneas [14] relies
on online energy readings to enable energy optimization guided
by reinforcement learning. With CHAPPIE, these application-level
energy efforts can gracefully extend to the more complex use sce-
narios where the application may be multi-threaded, and multiple
applications may co-exist. Another area CHAPPIE may provide es-
sential support for is energy testing and debugging, an emerging
research direction [6, 7, 12, 23, 27, 38, 40, 42, 46]. As energy and
performance often go hand in hand, this direction may unify with
performance bug studies [4, 17, 33, 44] to provide comprehensive
software lifecycle support for software non-functional properties.

The dual of energy accounting is energy analysis, a bottom-up
approach to determine the energy consumption of a program based
on its building blocks. With a bottom-up design principle, these
approaches are fine-grained by design. Instruction-level power anal-
ysis [50] may associate instructions with power profiles. Additional
designs exist to perform energy analysis in a WCET-like setting [32],
on the bytecode level [26], and the LLVM IR level [24] for instance.
Energy analysis has a nearly orthogonal interest in illuminating
program energy consumption to ours, and the two approaches may

986

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

1 P 7 8
[T e7ezs0% | T | - ToTs061
batik -0.42£0.03% | -
biojava 4.5620.14:
eclipse 0.04£0.00"
graphchi 8.18:0.10°
h2 4.66+0.0!
Sython 0320178
pmd 07£0.15¢
sunflow 1.76+0.41%
toncat 02980007 | 03010007 | 0395
xalan -1.46+0.06% | -1.37+0.05% | -2.91£0.11% | -3.61+0.14% | -
(a) Overhead
name rate
1 2 4 8 16 32 64 128 256 512
avrora 0.79£0.01 | 0.64+0.01 | 0.65+0.01 | 0.83+0.01 | 0.78+0.01 | 0.87+0.01 | 0.93+0.01 | 0.93+£0.01 | 0.95£0.00 | 0.95+0.01
batik 0.86+0.03 | 0.88+0.02 | 0.91£0.02 | 0.89+0.02 | 0.91£0.02 | 0.91£0.02 | 0.89£0.02 | 0.90£0.02 | 0.90£0.02 | 0.89+0.02
biojava | 0.93+0.01 | 0.94+0.01 | 0.95+0.01 | 0.98+0.01 | 0.9940.00 | 1.00£0.00 | 0.99+0.00 | 0.99+0.00 | 1.00+0.00 | 1.00+0.00
eclipse | 0.98+0.01 | 0.98+0.01 | 0.98+0.01 | 0.98+0.01 | 0.98+0.00 | 0.99+0.00 | 0.98+0.00 | 0.98+0.00 | 0.99+0.00 | 0.99+0.00
graphchi | 0.75+0.01 | 0.78+0.01 | 0.82+0.01 | 0.86+0.01 | 0.85+0.01 | 0.82+0.01 | 0.85+0.01 | 0.89+0.00 | 0.87+0.01 | 0.88+0.00
h2 0.75+0.02 | 0.81£0.01 | 0.90£0.01 | 0.90+0.01 | 0.90+0.01 | 0.94+0.01 | 0.94+0.01 | 0.94+0.01 | 0.93+0.01 | 0.95+0.01
Jython 0.98+0.01 | 0.98+0.00 | 0.99+0.00 | 0.99+0.00 | 0.99+0.00 | 0.99+0.00 | 0.99+0.00 | 1.00+0.00 | 1.00+0.00 | 1.00+0.00
pmd 0.95+£0.01 | 0.95£0.01 | 0.96+0.01 | 0.93+0.01 | 0.94+0.01 | 0.96+0.01 | 0.96+0.01 | 0.96+0.01 | 0.97+0.01 | 0.96+0.01
sunflow | 0.98+0.00 | 0.98+0.00 | 0.98+0.00 | 0.98+0.00 | 0.98+0.00 | 0.98+0.00 | 0.97+0.01 | 0.97+0.01 | 0.98+0.01 | 0.98+0.01
tomcat 1.00£0.01 | 0.96£0.03 | 0.96£0.02 | 0.95+0.02 | 0.95+0.02 | 0.92+0.03 | 0.94£0.02 | 0.91£0.03 | 0.94£0.02 | 0.95£0.02
xalan 1.00£0.02 | 1.00+0.01 | 1.00+0.01 | 0.98+0.03 | 0.96+0.04 | 0.98+0.02 | 0.95+0.03 | 0.99+0.02 | 0.99+0.01 | 0.97+0.02
(b) Temporal Correspondence
name rate
1 2 4 8 16 32 64 128 256 512
avrora 0.08+0.12 | -0.03+0.13 | -0.2740.12 | 0.10+0.13 | 0.70+0.10 | 0.86+0.07 | 0.89+0.06 | 0.98+0.02 | 0.97+0.04 | 0.95+0.04
batik 0.69+0.10 | 0.77+0.08 | 0.80+0.08 | 0.80+0.08 | 0.80£0.08 | 0.87+0.06 | 0.82+0.07 | 0.87+0.06 | 0.86+0.06 | 0.90+0.05
biojava | 0.32+0.13 | 0.33+0.14 | 0.41+0.14 | 0.36+0.16 | 0.35+0.17 | 0.59+0.14 | 0.46+0.16 | 0.82+0.10 | 0.85+0.09 | 0.88+0.08
eclipse 0.78+0.10 | 0.72+0.11 0.75£0.10 | 0.87£0.07 | 0.95£0.05 | 0.94£0.05 | 0.91£0.06 | 0.94£0.05 | 0.90£0.06 | 0.93+0.05
graphchi | 0.85+0.06 | 0.85+0.06 | 0.87+0.06 | 0.93+0.05 | 0.95+0.04 | 0.98+0.03 | 0.97+0.03 | 0.99+0.02 | 1.00+0.01 | 0.99+0.01
h2 0.04+0.12 | 0.16+0.12 | 0.50+0.10 | 0.47+0.11 | 0.77+0.08 | 0.91+0.05 | 0.94+0.04 | 0.97+0.03 | 0.96+0.04 | 0.97+0.03
Jython 0.80+0.09 | 0.80+0.09 | 0.83+0.08 | 0.86+0.07 | 0.90£0.07 | 0.92+0.07 | 0.83+0.09 | 0.94+0.06 | 0.87+0.09 | 0.87+0.09
pmd 0.60+0.11 | 0.75£0.08 | 0.69+0.09 | 0.62+0.09 | 0.78+0.08 | 0.79+0.07 | 0.91+0.05 | 0.90+0.05 | 0.95+0.04 | 0.93+0.04
sunflow | 0.48+0.12 | 0.46+0.13 0.39+£0.13 | 0.49£0.13 | 0.47+0.13 | 0.61£0.13 | 0.87+0.08 | 0.92+£0.07 | 0.97+0.06 | 0.96+0.06
tomcat 0.58+0.18 | 0.80+0.11 0.95+0.05 | 0.97+0.04 | 0.96+0.04 | 0.98+0.03 | 0.98+0.03 | 0.98+0.03 | 0.97+0.04 | 0.98+0.03
xalan 0.68+0.20 | 0.68+0.17 | 0.89+0.12 | 0.90+0.10 | 0.88+0.12 | 0.75+0.18 | 0.954+0.06 | 0.93+0.08 | 0.76+0.16 | 0.88+0.09

(c) Spatial Correspondence

Figure 14: Calmness Statistics (Rate refers to the sampling
rate.)

follow a classic duality in software research, reasoning vs. monitor-
ing. Practically, it is unclear how related work adapt to scenarios
with multi-threaded executions.

7 CONCLUSION

CHAPPIE is a novel runtime design for application-level energy
accounting of multi-threaded Java applications with calmness as a
new metric to quantify power disturbance in energy accounting.
The project repository contains all data for all benchmarks, and a
report for additional figures covering all benchmarks.

ACKNOWLEDGMENTS

We thank Doug Lea and Aleksey Shipilev for useful discussions on
the AsyncGetCallTrace functionality and the honest profiler. This
project is supported by US NSF CNS-1910532.

APPENDIX

The detailed data on runtime overhead, temporal correspondence,
and spatial correspondence, with standard deviation information,
are reported in Figure 14.

REFERENCES

Apache batik https://xmlgraphics.apache.org/batik.

Async profiler, https://github.com/jvm-profiling-tools/async-profiler.

h2 database engine, https://www.h2database.com/html/main.html.

Aram, M. M. u,, L1u, T., ZENG, G., AND MuzAHID, A. Syncperf: Categorizing,
detecting, and diagnosing synchronization performance bugs. In Proceedings
of the Twelfth European Conference on Computer Systems (2017), EuroSys ’17,
pp. 298-313.

https://xmlgraphics.apache.org/batik
https://github.com/jvm-profiling-tools/async-profiler
https://www.h2database.com/html/main.html

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

=
&

~
—

=

[10

(1

[12]

(13

[14

[15

[16]
[17

(18]

[19]

[20]

[21]

[22

[23]

[24]

[26]

[27]

[28]

BAEek, W., AND CHILIMBI, T. M. Green: a framework for supporting energy-
conscious programming using controlled approximation. In PLDI’10, pp. 198-209.
BANERJEE, A., CHONG, L. K., BALLABRIGA, C., AND ROYCHOUDHURY, A. Energy-
patch: Repairing resource leaks to improve energy-efficiency of android apps.
IEEE Transactions on Software Engineering 44, 5 (May 2018), 470-490.
BANERJEE, A., CHONG, L. K., CHATTOPADHYAY, S., AND ROYCHOUDHURY, A. De-
tecting energy bugs and hotspots in mobile apps. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(New York, NY, USA, 2014), FSE 2014, Association for Computing Machinery,
p. 588-598.

BARTENSTEIN, T., AND L1v, Y. D. Green streams for data-intensive software. In
Proceedings of the 35th International Conference on Software Engineering (ICSE
2013) (May 2013).

BLACKBURN, S. M., GARNER, R., HorrMAN, C., KHAN, A. M., McKINLEY, K. S.,
BENTZUR, R., DiwAN, A., FEINBERG, D., FRAMPTON, D., GUYER, S. Z., HIRZEL, M.,
HosxkiINg, A., Jump, M., LEE, H., Moss, J. E. B., PHANSALKAR, A., STEFANOVIC,
D., VANDRUNEN, T., VON DINCKLAGE, D., AND WIEDERMANN, B. The DaCapo
benchmarks: Java benchmarking development and analysis. In OOPSLA 06,
pp- 169-190.

BokHARI, M. A., WENG, L., WAGNER, M., AND ALEXANDER, B. Mind the gap -
a distributed framework for enabling energy optimisation on modern smart-
phones in the presence of noise, drift, and statistical insignificance. In 2019 IEEE
Congress on Evolutionary Computation (CEC) (2019), pp. 1330-1337.

BosToN, B., SAMPSON, A., GROSSMAN, D., AND CEZE, L. Probability type inference
for flexibile approximate programming. In OOPSLA ’15.

BRUCE, B. R, PETKE, J., AND HARMAN, M. Reducing energy consumption using
genetic improvement. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015 (2015), pp. 1327-1334.
CANINO, A., AND L1v, Y. D. Proactive and adaptive energy-aware programming
with mixed typechecking. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017 (2017), pp. 217-232.

CANINO, A, L1u, Y. D., AND MASUHARA, H. Stochastic energy optimization
for mobile GPS applications. In Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018 (2018), pp. 703-713.

CHiBA, S. Load-time structural reflection in java. In Proceedings of the 14th
European Conference on Object-Oriented Programming (Berlin, Heidelberg, 2000),
ECOOP 00, Springer-Verlag, pp. 313-336.

CoHEN, M., ZHU, H. S, EMGIN, S. E., AND L1u, Y. D. Energy types. In OOPSLA ’12.
CURTSINGER, C., AND BERGER, E. D. Coz: Finding code that counts with causal
profiling. In Proceedings of the 25th Symposium on Operating Systems Principles
(2015), SOSP *15, pp. 184-197.

Davip, H., GorsaTov, E., HANEBUTTE, U. R, KHANNA, R., AND LE, C. Rapl:
Memory power estimation and capping. In ISLPED 10, pp. 189-194.
DHODAPKAR, A. S., AND SMITH, J. E. Managing multi-configuration hardware via
dynamic working set analysis. In Proceedings of the 29th Annual International
Symposium on Computer Architecture (USA, 2002), ISCA ’02, IEEE Computer
Society, p. 233-244.

DuUTTA, P., FELDMEIER, M., PARADISO, J., AND CULLER, D. Energy metering for free:
Augmenting switching regulators for real-time monitoring. In 2008 International
Conference on Information Processing in Sensor Networks (ipsn 2008) (2008), pp. 283
294.

FEL Y., ZHONG, L., AND JHA, N. An energy-aware framework for coordinated
dynamic software management in mobile computers. In MASCOTS 04 (2004),
pp- 306-317.

FLINN, J., AND SATYANARAYANAN, M. Powerscope: a tool for profiling the energy
usage of mobile applications. In Proceedings WMCSA’99. Second IEEE Workshop
on Mobile Computing Systems and Applications (1999), pp. 2-10.

Gao, X., Liu, D,, Liu, D., WANG, H., AND STAVROU, A. E-android: A new energy
profiling tool for smartphones. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS) (June 2017), pp. 492-502.

GRECH, N., GEORGIOU, K., PALLISTER, J., KERRISON, S., MORSE, J., AND EDER, K.
Static analysis of energy consumption for llvm ir programs. In Proceedings of
the 18th International Workshop on Software and Compilers for Embedded Systems
(2015), SCOPES 15, pp. 12-21.

GUTIERREZ, I. L. M., PoLLOCK, L. L., AND CLAUSE, J. SEEDS: a software engineer’s
energy-optimization decision support framework. In 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014 (2014),
pp. 503-514.

Hao, S., L1, D., HALroND, W. G. J., AND GOVINDAN, R. Estimating android ap-
plications’ cpu energy usage via bytecode profiling. In Proceedings of the First
International Workshop on Green and Sustainable Software (2012), GREENS ’12,
pp- 1-7.

Hao, S., L1, D., HALFOND, W. G. J., AND GOVINDAN, R. Estimating mobile applica-

tion energy consumption using program analysis. In ICSE ’13 (2013), pp. 92-101.
Hirzer, M., AND CHILIMBIL, T. Bursty tracing: A framework for low-overhead

temporal profiling. In 4th ACM Workshop on Feedback-Directed and Dynamic

Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu

987

[29]

(30]

(31]

[32

[35

(36]

(38]

[39

[40

[41

[42

[43

[44

[46

[47

(48]

[49

o
=

[51

[52

Optimization (FDDO-4) (2001), pp. 117-126.

HorrMANN, H. Jouleguard: Energy guarantees for approximate applications. In
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,
pp. 198-214.

HorrmaNN, H,, S1DIROGLOU, S., CARBIN, M., MISAILOVIC, S., AGARWAL, A., AND
RINARD, M. Dynamic knobs for responsive power-aware computing. In ASPLOS
‘11

Isct, C., AND MARTONOSI, M. Identifying program power phase behavior using
power vectors. In In Workshop on Workload Characterization (2003).
JAYASEELAN, R., MITRA, T., AND L1, X. Estimating the worst-case energy consump-
tion of embedded software. In 12th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’06) (2006), pp. 81-90.

JiN, G., SoNgG, L., S, X., SCHERPELZ, J., AND LU, S. Understanding and detecting
real-world performance bugs. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (2012), PLDI *12, pp. 77-88.
KaNsAL, A., SAPONAS, S., BRusH, A. B., McKINLEY, K. S., MyTkowicz, T., AND
Z1oLA, R. The latency, accuracy, and battery (lab) abstraction: Programmer
productivity and energy efficiency for continuous mobile context sensing. In
OOPSLA *13, pp. 661-676.

KyroLA, A., BLELLOCH, G. E., AND GUESTRIN, C. Graphchi: Large-scale graph
computation on just a PC. In 10th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012
(2012), pp. 31-46.

Liu, K, PINTO, G., AND L1u, Y. D. Data-oriented characterization of application-
level energy optimization. In Proceedings of FASE 2015; JRAPL Home: http://kliu20.
github.io/jRAPL/.

Lucia, B., AND RANSFORD, B. A simpler, safer programming and execution model
for intermittent systems. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (2015), PLDI "15, pp. 575-585.
Ma, X., Huang, P., JiN, X, WANG, P, PARK, S., SHEN, D., ZHOU, Y., SAUL, L. K., AND
VOELKER, G. M. edoctor: Automatically diagnosing abnormal battery drain issues
on smartphones. In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation (2013), nsdi’13, pp. 57-70.

NoOBLE, B. D., SATYANARAYANAN, M., NARAYANAN, D., TirTON, J. E., FLINN,]., AND
WALKER, K. R. Agile application-aware adaptation for mobility. pp. 276-287.
PATHAK, A., Hu, Y. C., AND ZHANG, M. Bootstrapping energy debugging on
smartphones: A first look at energy bugs in mobile devices. HotNets-X ’11,
pp. 5:1-5:6.

PAaTHAK, A, Hu, Y. C., AND ZHANG, M. Where is the energy spent inside my
app?: Fine grained energy accounting on smartphones with eprof. In Proceedings
of the 7th ACM European Conference on Computer Systems (2012), EuroSys ’12,
pp- 29-42.

PATHAK, A., JINDAL, A., Hu, Y. C., AND MIDKIFF, S. P. What is keeping my phone
awake?: Characterizing and detecting no-sleep energy bugs in smartphone apps.
In MobiSys ’12, pp. 267-280.

PERING, T., BURD, T., AND BRODERSEN, R. The simulation and evaluation of
dynamic voltage scaling algorithms. In Proceedings of the 1998 International
Symposium on Low Power Electronics and Design (New York, NY, USA, 1998),
ISLPED ’98, Association for Computing Machinery, p. 76-81.

PiNTO, G., CANINO, A., CASTOR, F.,, XU, G. H., AND L1u, Y. D. Understanding and
overcoming parallelism bottlenecks in forkjoin applications. In Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software Engineering,
ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017 (2017), pp. 765-775.
PinTO, G., L1y, K., CASTOR, F., AND L1U, Y. D. A comprehensive study on the
energy efficiency of java thread-safe collections. In International Conference on
Software Maintenance and Evolution (ICSME 2016) (2016).

SaHIN, C., PoLLOCK, L., AND CLAUSE, J. How do code refactorings affect energy
usage? In Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (New York, NY, USA, 2014), ESEM ’14,
Association for Computing Machinery.

SAMPSON, A., DIETL, W., FORTUNA, E., GNANAPRAGASAM, D., CEZE, L., AND GROSS-
MAN, D. Ener]J: Approximate data types for safe and general low-power compu-
tation. In PLDI’11.

SINHA, A., AND CHANDRAKASAN, A. P. Jouletrack-a web based tool for software
energy profiling. In Proceedings of the 38th Design Automation Conference (IEEE
Cat. No.01CH37232) (2001), pp. 220-225.

SORBER, J., KosTADINOV, A., GARBER, M., BRENNAN, M., CORNER, M. D., AND
BERGER, E. D. Eon: a language and runtime system for perpetual systems. In
SenSys "07, pp. 161-174.

TIWARI, V., MALIK, S., WOLFE, A., AND LEE, M. T.. Instruction level power analysis
and optimization of software. In Proceedings of 9th International Conference on
VLSI Design (1996), pp. 326-328.

WHALEY, J. A portable sampling-based profiler for java virtual machines. In
Proceedings of the ACM 2000 Conference on Java Grande (New York, NY, USA,
2000), JAVA "00, ACM, pp. 78-87.

ZENG, H,, E1Ls, C. S, LEBECK, A. R., AND VAHDAT, A. Currentcy: A unifying
abstraction for expressing energy management policies. In In Proceedings of the

http://kliu20.github.io/jRAPL/
http://kliu20.github.io/jRAPL/

Calm Energy Accounting for Multithreaded Java Applications ESEC/FSE °20, November 8-13, 2020, Virtual Event, USA

USENIX Annual Technical Conference (2003), pp. 43-56. [54] Znuang, X., SERRANO, M. J., CaIN, H. W., aAND CHor, J.-D. Accurate, efficient,
[53] Znu, H.S., LN, C., AND L1v, Y. D. A programming model for sustainable software. and adaptive calling context profiling. SIGPLAN Not. 41, 6 (June 2006), 263-271.
In ICSE’15 (2015), pp. 767-777.

988

	Abstract
	1 Introduction
	1.1 Chappie
	1.2 Calm Energy Accounting

	2 Chappie Motivation
	3 Chappie Design
	3.1 Runtime Design
	3.2 Metric Design

	4 Chappie Implementation
	5 Chappie Evaluation
	5.1 Evaluation Methodology
	5.2 Achieving Calmness
	5.3 Producing Energy Footprints
	5.4 Overhead and Precision

	6 Related Work
	7 Conclusion
	References

