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ABSTRACT

Energy accounting is a fundamental problem in energy manage-

ment, defined as attributing global energy consumption to individ-

ual components of interest. In this paper, we take on this problem

at the application level, where the components for accounting are

application logical units, such as methods, classes, and packages.

Given a Java application, our novel runtime system Chappie pro-

duces an energy footprint, i.e., the relative energy consumption of

all programming abstraction units within the application.

The design of Chappie is unique in several dimensions. First,

relative to targeted energy profiling where the profiler determines

the energy consumption of a pre-defined application logical unit,

e.g., a specific method, Chappie is total: the energy footprint en-

compasses all methods within an application. Second, Chappie is

concurrency-aware: energy attribution is fully aware of the multi-

threaded behavior of Java applications, including JVM bookkeeping

threads. Third, Chappie is an embodiment of a novel philosophy for

application-level energy accounting and profiling, which states that

the accounting run should preserve the temporal phased power be-

havior of the application, and the spatial power distribution among

the underlying hardware system. We term this important property

as calmness. Against state-of-the-art DaCapo benchmarks, we show

that the energy footprint generated by Chappie is precise while

incurring negligible overhead. In addition, all results are produced

with a high degree of calmness.
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1 INTRODUCTION

Application-level energy management has emerged as an important

dimension of energy-efficient computing, with solutions sharing

a common premise: the logical units within an application matter

in energy management. In this paper, we revisit energy account-

ing, a fundamental problem that has been extensively studied at

the lower layers of the computing stack [20, 52]. Our new focus

is on the application level: determining the energy consumption

of individual application logical units given the total energy con-

sumption of the application. This problem subsumes important

questions in green software development, e.g., which methods con-

sume the most energy in an application, which methods lead the

underlying system to a higher-power state, or how to compare

the energy/power consumption of two methods. Answering these

questions systematically may significantly impact the state of the

art of energy-aware programming [8, 13, 16, 37, 49, 53], energy-

adaptive software framework design [14, 21, 30, 34, 39], energy

testing and debugging [12, 23, 27, 38, 40, 42], and energy-oriented

approximation [5, 11, 29, 47].

At first glance, the problem of application-level energy account-

ing may appear deceptively simple. To determine the energy con-

sumption of method𝑚, a naive approach may reduce it to a trivial

energymeasurement problem: onemay instrument𝑚 at its entrance

and exit program points, obtain a pair of energy readings from the

underlying hardware, and compute the difference of the two. This

naive approach however is flawed Ð or at best impractical Ð for

two reasons.

Accounting Totality. Important questions such as which method

consumes the most energy in an application requires the knowledge

of energy consumption for all methods in an application. Iterating

over everymethod with an instrumentation approach does not scale

for realistic applications; the overhead becomes unrealistically high

(see ğ2) when all methods are accounted for at the same time.

Multi-threading. More fundamentally, the instrumentation-based

approach is concurrency-oblivious, which may lead to significant

976

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409703
https://doi.org/10.1145/3368089.3409703


ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu

foo

bar

foo

Time

Garbage Collector

Figure 1: The Challenge of Accounting for the Energy Con-

sumption of Method foo with a Multi-threaded Application

over-accounting. This is particularly bad news for server-type ap-

plications where multi-threaded programs on parallel platforms are

the rule, not the exception. Consider Figure 1. The instrumentation-

based approachmay attribute the entire energy consumption during

the execution of foo to the method, without considering a portion

of such consumption results from the execution of bar, or even

another instance of foo. In addition, managed language runtimes

may have co-running Virtual Machine (VM) bookkeeping threads,

such as the garbage collector.

Beyond these two challenges in energy accounting system design,

a third one exists against producing high-quality results.

Disturbance. Any runtime system design that profiles the appli-

cation needs to ensure that the runtime profiling mechanisms do

not significantly alter the behavior of the original application. This

well-known problem is usually coped with through ensuring the

execution time overhead of the profile run is negligible compared

to the original run. Profiling for energy, however, introduces a new

layer of subtlety. The profiler behavior may alter the power state

of the underlying hardware, leading to two consequences. First, a

change in the power states is correlated with the CPU frequency

change, so that execution time is no longer a reliable indicator of

disturbance. Second, as energy is the accumulated effect of power,

the disturbance of power consumption alters the very behavior that

the profiler tries to a observe, challenging the validity of the results

from energy accounting.

1.1 Chappie

WepresentChappie, a total, concurrency-aware, disturbance-mitigated

application-level energy accounting system for Java applications.

With Chappie, the execution of each application can produce an

energy footprint, i.e., the relative energy consumption of all program-

ming logical units within the application. For example, Figure 2

is a top-10 energy footprint for a realistic Java application h2 [3].

It shows ValueDataType.compare is the most energy-consuming

method in the application. Furthermore, it shows the relative en-

ergy consumption difference between any pair of methods, such

as Page.binarySearch and ValueDataType.compareValues. In

addition to methods, Chappie is customizable so that the unit in an

energy footprint can be courser-grained as classes and packages,

or finer-grained as calling contexts to methods.

At its heart, Chappie is a novel sampling-based runtime system

that draws information frommultiple layers of the computing stack,

and composes it to provide the energy footprint. On the JVM level,

Chappie samples the per-thread call stacks, determining which

methods are currently executing at each sample. On the hardware

level, Chappie is able to sample the raw energy readings. When
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Aware vs Oblivious Attributed Energy Ratio

Me
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ValueDataType.getMemory
TransactionStore.getOperationId
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Figure 2: Method-Grained Energy Footprint for h2 (The X-

Axis represents the percentage of energy consumption con-

sumed by a particular method. The Y-Axis lists the methods

with top-10 energy consumption, with the most consuming

one at the top.)

multiple threads are active upon the receipt of a raw energy sample,

Chappie is able to distribute a share of the latter among all running

methods, each of which resides on the call stack of an active thread.

The core algorithm of Chappie combines the high-level informa-

tion with the lower-level one, with full awareness of concurrency.

Despite its cross-layer nature, Chappie is a lightweight design with

no modifications to the application code, the compiler, the JDK, the

JVM, the OS, or the hardware.

Another highlight of Chappie is it treats accounting disturbance

as a first-class concern. While overall execution time overhead and

overall energy consumption overhead may provide some insight

into how an accounting system may affect the application to be

accounted for, they are insufficient to quantify disturbance in energy

accounting.

1.2 Calm Energy Accounting

Chappie features calm energy accounting with a novel fine-grained

metric to ensure the accounting system does not temporally and

spatially disturb the energy behavior of the original application, so

that the energy footprint faithfully captures the characteristics of

the original application. To elaborate, let us consider the scenario

in Figure 3, where an application runs on a 2-core machine, CPU1

and CPU2, each of which may operate at two CPU frequencies, 1GHz

and 2GHz. The metric of calmness subsumes two ideas.

Temporal Calmness. The accounting run should preserve the

power phased behavior of the original application [19, 31], i.e., the

power consumption of an application may vary from timestamp to

timestamp and together they may form a pattern. This well-known

phenomenon results from time-dependent application character-

istics such as parallel vs. serial phases latent in multi-threaded

applications, and CPU-intensive vs. I/O-intensive phased behaviors.

The power variation is usually enabled by Dynamic Voltage and

Frequency Scaling (DVFS) [43], a standard feature supported by the

vast majority of CPUs and enabled as default by most operating

systems. In Figure 3b, observe that the accounting run drives both
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Figure 3: Temporal Power Disturbance (Figure (a) (b)) and Spatial Power Disturbance (Figure (c) (d))

CPU1 and CPU2 to operate at 2Ghz at an earlier timestamp than the

original application, as shown in Figure 3a. Even though the accu-

mulated energy of the two runs may well correspond, the two runs

do not exhibit the same power behavior, which we call temporal

power disturbance. In a nutshell, temporal power disturbance is a

symptom of the phased behavior change of the application.

Spatial Calmness. The accounting run should preserve the power

distribution behavior of the original run, i.e., the power consump-

tion of the underlying system may vary from CPU core to CPU core

and together they may form a pattern. This well-known phenom-

enon results from application characteristics such as symmetric

vs. asymmetric workloads, and the level of parallelism enabled by

the application-scheduler interaction. The power variation is again

enabled by DVFS, where a higher workload usually drives the CPU

to a higher frequency state Ð hence higher power consumption Ð

and vice versa. In Figure 3c, the power distribution between CPU1

and CPU2 are lopsided, whereas in Figure 3d, the two are more

balanced. Even though the accumulated energy of the two runs

may well correspond, which we call spatial power disturbance. In

essence, spatial power disturbance is a symptom of the workload

behavior change of the application.

We evaluate Chappie over 11 state-of-the-art DaCapo bench-

marks with diverse and realistic workloads. We show that Chappie

can successfully produce the energy footprint for all benchmarks.

By judiciously setting the sampling rates, Chappie can achieve

both temporal calmness and spatial calmness for all benchmarks.

When calmness is achieved, the time and energy overhead are neg-

ligible, with an average runtime overhead of 3.15±3.03% and an

average energy overhead is 0.84±1.09% across all benchmarks. We

further show that the produced energy footprints are precise: the

energy footprint converges when samples from additional runs are

included.

Contribution. This paper makes the following contributions:

• A novel and customizable energy accounting design that

produces an energy footprint, illustrating the relative energy

consumption of all program logic units.

• A sampling-based cross-layer design that allows for concurrency-

aware energy accounting for multi-threaded Java applica-

tions

• A novel calmness metric for quantifying power disturbance

in application-level energy accounting

• An evaluation demonstrating the effectiveness of Chappie

in understanding the energy behavior of realistic Java appli-

cation

Chappie is an open-source project, hosted at an (anonymous)

website https://github.com/pl-chappie/chappie.

2 CHAPPIE MOTIVATION

In this section, we briefly motivate the need for Chappie quantita-

tively.

Accounting Totality with Instrumentation. In order to support

totality in energy accounting, an instrumentation-based approach

would either need to iteratively instrument each method, or instru-

ment all methods at once. The former would lead to a large space

to consider. The latter approach, despite requiring few runs, may
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Table 1: Overhead with the Instrumentation-Based Ap-

proach (The łinstrumentation X%ž column shows the time

overhead when every method in the benchmark is instru-

mented and X% of the invocations are randomly selected to

take energy readings. The instrumentation was performed

through javassist [15]. All benchmarks appearing in this

section are from the DaCapo benchmark suite [9]. )

instrumentation 100% instrumentation 5%

sunflow 189x 164x

batik 118x 117x

xalan 30x 29x

h2 25x 16x

Table 2: Energy Over-Attribution due to Concurrency-

Oblivious Accounting (The first column lists top-consuming

h2 methods reported by Chappie, and the second column

reports the ratio of over-attribution if concurrency were ig-

nored. )

method name over-attribution

ValueDataType.compare 2.88x

Page.binarySearch 2.20x

MVMap.compare 5.82x

MVMap.binarySearch 9.27x

LocalResult.next 3.43x
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Figure 4: h2 Disturbance (The X-Axis represents different

sampling rates. The Y-Axis represents the normalized dif-

ference between the accounting run and the original non-

accounting run. Each group consists of three bars, the en-

ergy/time/power consumption. The error bars indicate stan-

dard deviation.)

lead to severe overhead. Table 1 shows the overhead of the latter

approach. Even with the aggressive omission of energy readings,

that approach still yields a significant overhead. A compiler-based

approach of selective instrumentation may help, but with the gap

being so large, it is unlikely such an approach would produce results

with practically viable overhead.

Note that even if the instrumentation-based approach can get

over the hurdle of long iteration or significant overhead, such an

approach is still fundamentally concurrency-oblivious: during the

execution between the method start and end, other methods may

be co-running.

Concurrency-Oblivious Accounting. To quantify the impact of

concurrency awareness, we construct an experiment to show how

much energy over-attribution could happen should Chappie ignore

multi-threading. As this experiment is only for motivation purposes,

we take the simple approach of assigning 100% of each energy

sample to a method if its host thread is active in that sampling

interval; when multiple threads are active, duplicated assignments

are possible. We show these results in Table 2. The take-away

message here is that a concurrency-oblivious energy accounting

design may lead to significant over-attribution of method energy

consumption.

Power Disturbance. Our investigation into calmness was moti-

vated by the counter-intuitive behavior of some benchmarks during

the early stage of the Chappie evaluation.

Our intuition was that the bookkeeping of accounting may carry

some overhead so the accounting run would be slower than the

original run. Some experiments however revealed an opposite trend.

As shown in Figure 4, if Chappie had set the sampling rate at 1

millisecond (ms), the execution of h2 would turn out to be nearly

18% faster than the original non-accounting run!

The key to resolving this baffling mystery is power consumption.

As it turns out, the sampling rate of 1ms would lead to nearly a

50% of power increase: the sampling-based approach periodically

łpokesž the application, preventing the application from sleeping

during downtime. In these scenarios, DVFS likely increases CPU

frequency to handle the higher workload, which in turn allows the

application to run faster.

Themoral of the story is that accounting, if designed naively, may

introduce disturbance and significantly alter the energy behavior of

the original application. The good news is power disturbance will

be reduced as the sampling rate decreases: as sampling slows to

32ms, the power consumption difference between the accounting

run and the original run is only 3%.

3 CHAPPIE DESIGN

In this section, we provide a high-level specification for Chappie

runtime and metric design.

3.1 Runtime Design

On the top level, the Chappie runtime is specified by the Chap-

pieRuntime function in Algorithm 1. Here, Chappie continuously

samples raw energy consumption (Line 12) and JVM stack infor-

mation (Line 14) and combines the two to produce an attribution

(Line 17), i.e., how each logical unit of the monitored application

(such as a method) may be assigned with a portion of the energy

consumption reading obtained from the underlying system. Struc-

turally, each attribution A is a mapping from a logical application

unit LUnit to its share of energy consumption EType which is an

abstract representation of joules. Notation ∅ represents an empty

map.
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Algorithm 1 Chappie Sampling

1 typedef Tid Int // thread ID

2 typedef Etype Float // energy in joules

3 typedef Lunit String ∪ {⊥} // accounting logical unit

4 EPOCH : Int // VM sampling interval

5 A : Map<Lunit,Etype> // Output attribution

6 T : Set<Tid> // VM threads

7 V : Map<Tid,Lunit> // thread-indexed logical units

8 function ChappieRuntime

9 A ← ∅

10 loop at rate (EPOCH)

11 V ← ∅

12 𝜖 ← ESample()

13 for t in T do

14 V[t] ← Abstract(Stack(t))

15 𝛼 = | {t |V [t] ≠ ⊥} |

16 for v in V and v ≠ ⊥ do

17 A[v] ← A[v] + 𝜖 × 1
𝛼

18 function ESample : EType // obtain energy reading

19 function Stack(Tid) : Stack // obtain thread stack

20 function Abstract(Stack) : LUnit // transform stack to logical unit

The goal of each JVM sampling step (Line 14) is to obtain an

abstract representation (the Abstract function) of the runtime

stack of the running threads (the Stack function). The latter returns

either the runtime stack frame information if a thread is active, or

empty otherwise, with Abstract(∅) = ⊥ . Given an energy sample

𝜖 , the algorithmfirst counts the number of active threads𝛼 , and each

active thread Ð and its associated logical unit Ð will be attributed

with a fraction 1
𝛼 of 𝜖 . The share of energy attributed to each logical

unit is accumulated in A, at Line 17.

Chappie features an extensible and customizable design. De-

pending on how the Abstract function and the Lunit type are

concretized, the algorithm can express a variety of granularities in

application-level energy accounting. Our default implementation

supports energy accounting over deep application methods, which

assigns energy consumption to an application (i.e., non-library)

method when either the said method is at the stack top, or it is the

calling context to a library method that is at the stack top. Chappie

allows users to customize the Abstract function. Currently, addi-

tional versions have been implemented for context-sensitive method

energy accounting, and class/package/thread energy accounting

(see ğ5).

3.2 Metric Design

We now provide a rigorous definition for calmness. Its essence lies

upon the similarity between the runtime characteristics of an ac-

counting run against a reference run, i.e., the original application run

when the accounting system is not at work. To simplify the matter,

we first consider the idealized case where one instance of applica-

tion execution is sufficient to capture the runtime characteristics.

Let EPOCH represent the set of epochs in the form of N+, with the

first epoch of each run starting at epoch 1. Let CORE the set of CPU

cores and FREQ the set of observable CPU frequencies. Each run

benchmark workload methods total threads active threads execution time (s)

avrora large 576 71 69 175.98

batik large 924 9 8 17.41

biojava default 103 7 6 22.76

eclipse default 5423 706 18 59.14

graphchi huge 124 53 50 246.78

h2 large 3676 954 39 115.91

jython default 1426 7 6 10.63

pmd large 950 8 6 54.65

sunflow large 257 88 46 61.13

tomcat large 3214 109 106 27.0

xalan default 1071 47 46 9.0

Figure 5: Benchmark Statistics (Workload refers to the data

size specified by DaCapo for each benchmark. Methods

shows the number of unique methods appeared in the trace.

Total threads shows the number of the threads created

throughout the lifetime of the application. Active threads

shows the maximum number of the concurrent threads at

any epoch. )

benchmark rate batches PCC SE RMSE

avrora 64 6 0.9944 0.0145 0.0027

batik 8 2 0.9998 0.001 0.0005

biojava 128 3 0.9968 0.0139 0.022

eclipse 16 4 0.995 0.0019 0.0002

graphchi 16 5 0.9981 0.0089 0.0066

h2 32 2 0.9977 0.0046 0.0013

jython 32 2 0.998 0.0027 0.0005

pmd 16 2 0.9922 0.0079 0.0024

sunflow 64 2 0.9945 0.0088 0.004

tomcat 16 2 0.9999 0.0007 0.0004

xalan 16 2 0.9994 0.0013 0.0005

Figure 6: Accounting Parameters (Rate refers to the sam-

pling rate for each benchmark. Batches refers to the num-

ber of data collection runs for the accounting of each bench-

mark. PCC shows the correlation between the energy foot-

print produced from (n-1) batches and that produced from

n batches. SE shows the standard error of the PCC. RMSE

shows the root means square error. )

produces a set of samples 𝑆 ∈ P(EPOCH×CORE×FREQ), where

each sample ⟨𝑒; 𝑐; 𝑓 ⟩ intuitively says the CPU frequency of core 𝑐

at epoch 𝑒 is 𝑓 . First, let us introduce some auxiliary functions.

Definition 3.1 (Epoch Count). We say a run with samples 𝑆 con-

sists of 𝑒𝐶𝑜𝑢𝑛𝑡 (𝑆) epochs where 𝑒𝐶𝑜𝑢𝑛𝑡 (𝑆)
△
=

|𝑆 |
|CORE |

.

Definition 3.2 (Core Count). We say there are 𝑐𝐶𝑜𝑢𝑛𝑡 (𝑆, 𝑒, 𝑓 )

number of cores operating at frequency 𝑓 and epoch 𝑒 . where

𝑐𝐶𝑜𝑢𝑛𝑡 (𝑆, 𝑒, 𝑓 )
△
= |{𝑐 |⟨𝑒 ; 𝑐 ; 𝑓 ⟩ ∈ 𝑆}|. From now on, we use metavari-

able𝑚 ∈ [0..|CORE|] to represent the core count.

To study temporal calmness, we intuitively wish to characterize

how the power consumption Ð manifested by CPU frequencies

Ð łflows and ebbsž over time. We first introduce a function for

computing the CPU frequencies given a particular epoch 𝑒 in a

particular run. Observe that in our sample space, there are |CORE|

number of samples for each epoch, one from each core. Rather than

assuming a fixed distribution, we represent the frequencies as a

distribution to preserve generality. Specifically,
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(b) 32ms method sampling
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[2.25, 2.5)
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[1.0, 1.25)

(c) 1ms method sampling

Figure 7: Temporal Distribution of CPU Core Frequency for h2 (The X-Axis represents the epoch series of the benchmark

execution, with the first epoch and the last epoch indicates the beginning and end of execution. Each bar represents a particular

frequency range, whose height indicates the normalized number of CPU cores at that frequency at that epoch. For illustration,

we divide all frequencies into 8 ranges. For example, throughout the majority of (a), the orange bars show that 25% of cores

execute between 1.25 - 1.5 GHz, until the tail end, where 5% of cores execute at that range.)

Definition 3.3 (Temporal Characterization). We use𝑇𝐶 (𝑆) to com-

pute the temporal characterization for a run over samples 𝑆 . 𝑇𝐶 (𝑆)

computes to an element in EPOCH ↦→ (FREQ ↦→ [0, 1]), i.e.,

from each epoch to a frequency distribution . Formally, for each

𝑒 ∈ 𝑒𝐶𝑜𝑢𝑛𝑡 (𝑆) and each 𝑓 ∈ FREQ, 𝑇𝐶 (𝑆) (𝑒) (𝑓 )
△
=

𝑐𝐶𝑜𝑢𝑛𝑡 (𝑆,𝑒,𝑓 )
|CORE |

.

Indeed, if we treat the frequency at epoch 𝑒 in the sample space

𝑆 as a random variable, 𝑇𝐶 (𝑆) (𝑒) is its probability mass function

(PMF).

To study spatial calmness, we intuitively wish to characterize

how CPU frequencies łspread outž across cores. An intuitive repre-

sentation is to show which cores operate on each frequency. This

intuition carries some subtlety. First, there are 𝑒𝐶𝑜𝑢𝑛𝑡 (𝑆) number

of snapshots for the characterization of spreading out to be consid-

ered. The overall spatial characterization throughout an entire run

can be intuitively viewed as each epoch introducing an observation

characterizing how CPU frequencies are spread out for that epoch.

Second, scheduling is fundamentally non-deterministic and threads

may migrate from one another. For designing a comparative metric

like ours, this means that a comparative study for a fixed core’s

behavior is meaningless. What matters is how many cores operate

at a particular CPU frequency. With these two elaborations, we

define:

Definition 3.4 (Spatial Characterization). We use 𝑆𝐶 (𝑆) to com-

pute the spatial characterization for a run over samples 𝑆 . 𝑆𝐶 (𝑆)

computes to an element in FREQ × CCOUNT ↦→ [0, 1], i.e., a

frequency-coreCount bivariate distribution, defined as 𝑆𝐶 (𝑆) (𝑓 ,𝑚)
△
=

| {𝑒 |𝑚=𝑐𝐶𝑜𝑢𝑛𝑡 (𝑆,𝑒,𝑓 ) | } |
𝑒𝐶𝑜𝑢𝑛𝑡 (𝑆)

.

Indeed, if we treat both the frequency and the core count in the

sample space 𝑆 as a random variable, 𝑆𝐶 (𝑆) is their bivariate PMF.

Definition 3.5 (Calmness). We say an accounting run with sam-

ples 𝑆 is calm relative to a reference run with samples 𝑆0 iff:

• [Time Correspondence] 𝑒𝐶𝑜𝑢𝑛𝑡 (𝑆) ≈ 𝑒𝐶𝑜𝑢𝑛𝑡 (𝑆0)

• [Temporal Correspondence] for any 𝑒 such that 𝑒 <=

min(𝑒𝐶𝑜𝑢𝑛𝑡 (𝑆), 𝑒𝐶𝑜𝑢𝑛𝑡 (𝑆0)), 𝑇𝐶 (𝑆) (𝑒) ∽ 𝑇𝐶 (𝑆0) (𝑒)

• [Spatial Correspondence] 𝑆𝐶 (𝑆) ∽ 𝑆𝐶 (𝑆0)

where ≈ and ∽ abstractly represent the similarity between two

natural numbers and two distribution respectively, which we will

contretize in ğ4.

Time correspondence captures that the accounting run must

have similar execution time as the reference run. The temporal

correspondence and spatial correspondence enforce that the two

runs must have similar power characteristics. With energy being ac-

cumulated power over time, the criteria above together say that the

energy characteristics between the accounting run and reference

run are similar, the essence of calm energy accounting.

Multi-Iteration Runs. The discussion so far has idealistically as-

sumed that there is only one reference run and one accounting run.

As most experiments are repeated to take into the fundamental

non-determinism in the software-hardware stack, the reference run

(as well as the accounting run) may consist of multiple executions

of the application, each of which we call an iteration. Our calmness

metric can be defined for multi-iteration runs in a nearly identi-

cal manner as Definition 3.5, with small changes. Let us assume

a 𝑘-iteration run produces samples 𝑆1, . . . , 𝑆𝑘 respectively, we can

follow Definition 3.5 to construct the calmness metric over samples

𝑆1 ∪ · · · ∪ 𝑆𝑘 , with |CORE| redefined as the number of CPUs multi-

plied by 𝑘 . Intuitively, this implies we can conceptually view the

𝑘-iteration run as one parallel run of 𝑘 instances of the application

over 𝑘 times of physical CPUs. This formal view simplifies our

algorithm specification: we do not need to repeat all definitions we

introduced earlier for multi-iterations runs. Practically, this means

we can merge all the samples we collected from different iterations

by reusing the formal definition we have given for a single iteration.

For example, Fig. 8 shows the equivalent view of a three-iteration

run on a two-core machine (with CPU1 and CPU2) of an application
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Figure 8: A Multi-Iteration Run

app. Since both our reference run and profile run consist of multi-

iterations in our experiments, this view has been adopted in our

data analysis over calmness, to be reported in the next sections.

4 CHAPPIE IMPLEMENTATION

Thread Model Overview. We implement the Chappie runtime as a

thread of its own, in the same JVM runtime as the application being

accounted for. The top-level loop construct in the specification is

implemented with a timer. The thread periodically wakes up, with

no busy waiting.

The global structure T in the specification requires thread-safe

access. To prevent it from becoming a bottleneck, we implement

it with a delayed buffer. Whenever a thread is started (or exited),

an entry is added (or removed) from this delayed buffer to indicate

the change. Periodically at every epoch, the thread that runs the

Chappie runtimewill retrieve from the buffer and apply the changes

Ð adding a thread or removing a thread Ð to its exclusively held

T structure. As a result, T does not require synchronization, and

only the delayed buffer is implemented as a synchronized Queue.

Call Stack Sampling. Traditional approaches for accessing the

thread stacks Ð such as through the Thread.getStackTrace Ð

incur significant overhead. To circumvent this restriction, we resort

to a Hotspot VM API, the AsyncGetCallTrace method, to sample

the call stack, a method also used by popular profilers such as the

async profiler [2], which our implementation builds on. To integrate

with the async tool which supports asynchronous stack sampling,

we maintain a buffer to keep the stack samples, and use timestamps

to align them into each epoch.

The async profiler can sample both Java stacks and the native

stacks Ð the latter may result from either though JNI invocation or

JIT compilation Ð and Chappie can handle both as a result.

Hardware Energy Reading and CPU Affinity. We rely on Intel’s

RAPL [18] interface to obtain energy samples at the granularity

of CPU power domains (sockets). Energy samples were collected

using jRAPL [36], a Java library for interfacing with RAPL. We

are able to sample both CPU package and DRAM energy. As our

experimental platform consist of multiple sockets, we treat each

socket as a separate locale for attribution (Algorithm 1) and combine

data together. As the OS scheduler may migrate a thread from one

socket to another, we maintain the CPU affinity information to

keep track of the socket Ð and hence the locale of attribution Ð a

thread belongs to.

Metric Implementation. Predicate 𝑒 ≈ 𝑒 ′ in Definition 3.5 is im-

plemented as the normalized difference between 𝑒 and 𝑒 ′ is less

than 5%. The similarity between distributions (∽) is implemented

through the standard metric of Pearson’s Correlation Coefficient

(PCC) between the pair of distributions. Two distributions are con-

sidered similar iff their PCC > 0.85. In general, PCC above 0.7 is

considered strongly correlated.

The 𝑇𝐶 and 𝑆𝐶 functions both use PMFs to represent the distri-

butions. Although modern CPUs only publish a small number of

CPU frequencies, the observed CPU frequencies are much more

diverse. For example, in our experiments, we observed 225 distinct

frequencies in our data samples. This implies that if the original

PMF is used, there are a large number of elements in the vector

for PCC computation. This is a well-known problem, and we have

applied Freedman-Diaconis rule to bin similar frequencies together.

Temporal correspondence in Definition 3.5 relies on epoch-wise

distribution similarity. While time correspondence establishes that

the number of epochs for the reference run and those for the ac-

counting run are similar, a small difference may still exist. Defini-

tion 3.5 takes the approach of only considering the less number

of the epochs between the two runs. In practice, we found that if

an accounting run is (slightly) slower than the reference run, the

delayed effect w.r.t. the frequency behavior often exhibits gradu-

ally as time goes on. To capture this gradual shift, we use a simple

interpolation approach to make the two runs match on epochs: if

the number of epochs for the reference/accounting run is 𝑒0 and

𝑒 ′0 respectively, we adjust each raw sample in the accounting run

⟨𝑒; 𝑐; 𝑓 ⟩ to ⟨𝑒 ′; 𝑐; 𝑓 ⟩ where 𝑒 ′ = 𝑒 ×
𝑒′0
𝑒0
. Since 𝑒0 and 𝑒

′
0 are similar,

this adjustment only affects a small portion of samples.

5 CHAPPIE EVALUATION

5.1 Evaluation Methodology

We evaluated Chappie on a dual socket Intel E5-2630 v4 2.20 GHz

CPU server, with 10 cores in each socket and 64 DDR4 RAM. Hyper-

threading is enabled. The machine runs Debian 4.9 OS, Linux kernel

4.9, with the default Debian powersave governor. All experiments

were run with Java 11 on top of Hotspot VM build 11.0.2+9-LTS.

When each experiment is performed, the OS has no other workload.

Chappie is evaluated over the DaCapo benchmark suite [9], of

its recent version evaluation-git+8b7a2dc, released in June 2019.

This release includes state-of-the-art workloads such as graphchi

and biojava. As long(er)-running applications are more interesting

w.r.t. energy management, we focus on benchmarks whose execu-

tion time is around or above 10 seconds. Among the 13 benchmarks

that fit into this criterion, we excluded 2 of them: the majority of

application code of tradesoap and tradebeans is run in a new

process Ð as opposed to a new thread Ð whose accounting Chappie

currently does not support without modifying benchmark source

code.

The statistics of the benchmarks are shown in Figure 5. Here

the execution time refers to average the benchmark running time

over all of its iterations which we discuss shortly. The DaCapo

harness setup time is excluded. The benchmarks are realistic Java

applications with thousands of methods and diverse characteris-

tics in multi-threading, both in terms of total created threads and

concurrently running threads.

Figure 6 summarizes the parameter settings used for the account-

ing of each benchmark. Recall that calm energy accounting requires
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Figure 9: Spatial Distribution of CPU Core Frequency for h2 (The X-Axis shows the number of cores observing the same

frequency in the same epoch. The Y-Axis shows the probability that a frequency is observed. For illustration, we divide all

frequencies into 4 ranges. For example, the red bar on the 3rd tick on (c) says that there is a 15% chance that 3 cores run in

frequency range 2.5 - 3.0+ GHz at the same time. The sum of heights of all bars equals to 1.

minimal disturbance to the original benchmark, Chappie sets a dis-

tinct sampling rate (as defined by EPOCH in Algorithm 1) for each

benchmark to ensure calmness, shown in the rate column. The sec-

tion of this rate will be the focus of ğ5.2. To gain confidence in the

precision of the energy footprints, Chappie relies on a combination

of cold/hot executions to collect data: each batch is a distinct JVM

instance that subsumes iterations, i.e., hot execution instances of a

benchmark. We elaborate on the number of batches in Section 5.4.

With each batch, we perform 10 iterations by default and follow the

standard practice of discarding the data from the first 2 iterations.

As exceptions, we perform 30 iterations (and discard the first 2)

for sunflow and jython, because of the relatively large standard

deviation of their execution time (>10%) if fewer iterations are used

for data collection.

5.2 Achieving Calmness

In this section, we study how the calmness metric is used for deter-

mining the judicious sampling rate for each benchmark. Before we

present the result for all benchmarks, we begin with a visual elab-

oration on temporal correspondence and spatial correspondence,

the cornerstones of calmness.

Figure 7 shows the temporal behavior of h2 under 3 different

settings: the reference run, the Chappie-accounting run under the

selected sampling rate 32ms, and the Chappie-accounting run if the

sampling rate were set at 1ms. Within each sub-figure, time elapses

from left to right. Its time-dependent variation is an illustration of

power phased behaviors. As one can see, the shape of the 32ms-

sampling result is significantly more similar to that of the reference

run, than the 1ms-sampling result. The temporal correspondence

definition in Def. 3.5 is intended to capture the similarity of the for-

mer (and the disimilarity of the latter). One interesting observation

is that the 1ms-sampling result shows more CPU cores are likely to

be driven into a higher frequency; this is consistent with our intu-

ition that a higher sampling rate may have significantly increased

activity in CPU cores, rendering them into higher frequencies due

to DVFS. Finally, observe that Figure 7(c) consists of fewer epochs,

because the run completes significantly faster than the reference

run.

Figure 7 shows the spatial behavior of h2 under the same 3 differ-

ent settings as earlier. Here, we care about how a frequency łspreads

outž across cores. If all cores have the same frequency at the same

time, it indicates a łperfectly balancedž power consumption across

cores. Within each sub-figure, this is indicated by the rightmost

point on the X-axis. As one can see, the shape of the 32ms-sampling

result is again significantly more similar to that of the reference

run, than the 1ms-sampling result. The spatial correspondence defi-

nition in Def. 3.5 is intended to capture the similarity of the former

(and the disimilarity of the latter). Specific to h2, the relative unbal-

ancedness is not surprising: h2 as an in-memory database is known

to be an I/O-intensive benchmark with a low degree of parallelism.

Finally, Figure 10 summarizes the 3 components used to de-

termine calmness: time overhead, temporal correspondence, and

spatial correspondence across all benchmarks. The full results in-

cluding standard deviation are deferred to the Appendix. If a data

point is missing, it means the data is out of the range (of our in-

terest). Based on our profiling calmness studies, we have selected

the sampling rate for each benchmark with results shown in the

second column of Figure 6.

5.3 Producing Energy Footprints

Method-Grained Accounting. The energy footprint reported by

Chappie can be of various logical units of abstraction. The default

unit, i.e., each entry in the energy footprint, is the deep application

method, as discussed in ğ3. In our reported data, a method is viewed

as a library method if it belongs to a class whose qualified name

starts with java, jdk, sun, and apache.commons. A method belong-

ing to any additional third-party library is treated as an application

method.

Fig. 11 illustrates a portion of this footprint Ð the top-10 energy-

consuming methods Ð for graphchi, a concrete instance of the
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Figure 10: A Summary of Benchmark Calmness (For both

sub figures, each line indicates a benchmark and the axis

indicates the method sampling rate.)

namesake data-intensive graph processing system [35]. The Da-

Capo’s benchmark implements ALS matrix factorization, an itera-

tive algorithm with graph traversal and updates. The energy foot-

print generated by Chappie corroborates the nature of this bench-

mark, with the top rankedmethod being ALSMatrixFactorization

.update. The next three highest-ranked methods are related to

graph traversal, withmethods ChiVertex.outEdge and ChiVertex

.inEdge for accessing the edges of a vertex, and DataBlockManager.

dereference for fetching the value associated with an edge.

It is interesting to observe that energy consumption and execu-

tion time do not always correspond. In graphchi, method ALSMatrix

Factorization.update has a higher normalized energy consump-

tion than its execution time, indicating that the system is in a

higher-power state. This method is mathematical in nature, and

our results can be intuitively explained through a well-known phe-

nomenon: with default governors, compute-intensive workloads

often lead the CPU to a higher-power state. As a counter example,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Normalized Energy Consumption

Me
th

od

BufferedDataInputStream.read
ChiVertex.addInEdge
MemoryShard.loadAdjChunk
FloatConverter.getValue
HugeDoubleMatrix.getRow
DataBlockManager.getRawBlock
ChiVertex.inEdge
DataBlockManager.dereference
ChiVertex.outEdge
ALSMatrixFactorization.update

time
energy

Figure 11: Top 10 Energy-Consuming Application Methods

for graphchi (Each green/red bar indicates the normalized

energy/time of a top consuming method. Energy is directly

computed by Chappie according to our algorithm specifica-

tion. Time is approximated by the number of samples mul-

tiplied by the length of the sampling interval. )

Page.binarySearch
[Cursor.min, Cursor.hasNext]
[MVMap.binarySearch, MVMap.binarySearch]
[MVMap.binarySearch, MVMap.get]
[MVMap.put, MVMap.put]
[MVMap.remove, MVMap.remove]

Figure 12: Context-Sensitive Method Accounting for top 10

energy-consuming method of h2. (Each slice with context

[X,Y] indicates that a method is called by Y which in turn is

called by X. Note that one of the calling context is recursive.)

MemoryShard.loadAdjChunk has a lower power, consistent with

the fact that this method is I/O-intensive.

Calling Context-Grained Accounting. Through providing differ-

ent concrete Abstract functions (see Section 3), Chappie is a gen-

eral framework that can be customized to account for programming

abstractions at different levels of granularity. For example, Chappie

can report method energy consumption in a context-sensitive man-

ner, i.e., accounting for different calling contexts separately. Fig. 12

provides a finer-grained view into two top consuming methods

for h2, an in-memory database. Our results show that the majority

of energy consumption for Page.binarySearch comes from the

(recursive) calling context of MVMap.binarySearch which aligns

with our understanding of binary search algorithms. This example

shows that Chappie at the context-sensitive granularity provides

additional context that paints a fine-grained picture for understand-

ing the energy behavior of h2.
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Figure 13: Top 10 Energy-Consuming Application Classes and Packages (Each green normalized energy of a top consuming

class or package. )

Class- and Package-Grained Accounting. Alternatively, Chappie

can be customized with an Abstract for Java class- and package-

level granularity. Figure 13 shows the result for batik, an Apache

toolkit for transforming and rendering Scalable Vector Graphics

(SVG) [1]. The DaCapo benchmark focuses on the use scenarios of

transforming SVG files into Portable Network Graphic (PNG) im-

ages and rendering them. Our results show that PNGImageEncoder

and StrokeShapePainter classes are responsible for a majority of

batik energy consumption, which happens to be aligned with the

main features of this application: transformation and rendering.

As classes are often the abstraction units for dividing program-

ming tasks among developers in large-scale software development,

Chappie class-level energy footprint provides insight on which

programmers are the critical link on developing energy-conscious

software. One granularity coarser, Chappie can further demon-

strate energy consumption at the package level. For batik, half of

its energy consumption results from PNG codec, as shown in the

package org.apache.batik.ext.awt.image.codec.png.

5.4 Overhead and Precision

As a disturbance-mitigated approach, Chappie is fundamentally

overhead-averse: it selects a sampling rate only when calmness

is achieved, leading to minimal time overhead (according to time

correspondence in Def. 3.5) and minimal power/energy overhead

(according to temporal/spatial correspondence in Def. 3.5). For all

benchmarks operating at the selected sampling rate, the average

time overhead is 3.15±3.03% and the average energy overhead is

0.84±1.09%.

With multi-batch runs as part of the design, Chappie is also con-

structed with precision as an inherent goal. Intuitively, the ground

truth of energy consumption of a method is the accumulation of

the energy consumption from all of its instructions. This is equiva-

lent to a sampling-based approach where the number of samples

approaches infinity. One standard metric to study the approxima-

tion to the ground truth is the convergence of results, i.e., whether

introducing more samples may significantly change the results.

To achieve this goal, we study the extent that the energy footprint

may change when data from an additional batch are introduced.

Intuitively, if introducing additional batches of samples can lead to

little change in the energy footprint, convergence is achieved. We

compute the PCC between the data of n-1 batches and that of n

batches, and set the batch parameter for the benchmark as n if the

PCC is greater than 0.99. The batches column of Figure 6 shows the

batch setting for each benchmark. Most benchmarks require only 2

batches Ð the minimum number in a relational approach we take

Ð to achieve PCC > 0.99. The remaining benchmarks, e.g., avrora,

exhibit higher variability, but observe that each still converges to

our high PCC requirement within a limited number of batches.

6 RELATED WORK

Energy accounting is a classic problem at lower layers of the com-

puting stack. Examples include iCount [20] at the digital circuit

level and Currentcy [52] at the OS level. With the primary goal

of attributing a global energy budget to individual components,

totality is implicit in energy accounting solutions. This paper is a

systematic study of bringing energy accounting to the application

level, where the individual components at concern are methods,

calling contexts, classes, and packages.

At the application level, energy accounting and energy profiling

overlap in their overall goal of characterizing the runtime char-

acteristics of an application. While accounting is implicitly total,

profiling may or may not. This is why instrumentation remains a

viable approach in existing energy profilers as they many choose

to study the runtime characteristics of individual logical units one

by one. This approach is particularly common in empirical stud-

ies, where the energy consumption of specific program features

is reported based on instrumenting such features. With a feature

focus Ð e.g., the use of the concurrent collections API [25, 45], or

the impact of data access patterns [36] Ð instrumentation can be a

feasible solution as it can be placed for one code block at a time. In

this use scenario, Chappiemay be useful in improving the precision

of profiling by making the profiler concurrency-aware. Eprof [41]

accounts for smartphone energy consumption through tracking
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I/O system calls and pre-defined SDK-NDK routines, producing a

breakdown on important smartphone use scenarios related to the

use of 3G network, screen, etc. E-Android [23] is a profiler that de-

tects Android collateral energy consumption through tracing a set

of pre-defined energy-critical events. These energy profilers may

profile pre-defined application components, such as the software

component for 3G network interaction or screen tracking, but their

designs are geared toward physical components of the platform,

without a full account of general logical units as Chappie does.

Bokhari et al. [10] defines a conceptual energy profiling framework

for resampling in the presence of measurement inaccuracy. Earlier

energy profilers such as JouleTrack [48] and Powerscope [22] focus

on measurement framework design, addressing e.g., how to provide

high-rate energy samples and how to synchronize the execution

with the measurements.

Another key feature unique to Chappie is its systematic inves-

tigation into power disturbance. We are unaware of existing en-

ergy profilers that provide metrics to quantify and overcome it. In

non-energy profiler design, that a profiler may intervene and alter

the behavior of the original application is a basic fact, motivating

designers to reduce the overhead introduced by the profiler. For

non-energy profilers, say a memory consumption profiler, the effect

of power disturbance Ð if any Ð is of a lesser concern. This is in

contrast with energy profiling, power disturbance may alter the

very characteristic the profiler intends to capture. Sampling-based

non-energy profilers are standard [28, 51, 54].

One area Chappie may positively impact on is application-level

energy management and optimization, with solutions ranging from

energy-aware programming languages and energy-adaptive frame-

works. Several examples may demonstrate this synergy. Green [5]

relies on online energy accounting to perform QoS calibration.

PowerDial [30] and JouleGuard [29] may use energy feedback to

make control decisions. LAB [34] needs to continuously account

for energy consumption to balance latency, accuracy, and battery.

Eco [53] must track energy consumption to match the applica-

tion demand and the system resource supply. Aeneas [14] relies

on online energy readings to enable energy optimization guided

by reinforcement learning. With Chappie, these application-level

energy efforts can gracefully extend to the more complex use sce-

narios where the application may be multi-threaded, and multiple

applications may co-exist. Another area Chappie may provide es-

sential support for is energy testing and debugging, an emerging

research direction [6, 7, 12, 23, 27, 38, 40, 42, 46]. As energy and

performance often go hand in hand, this direction may unify with

performance bug studies [4, 17, 33, 44] to provide comprehensive

software lifecycle support for software non-functional properties.

The dual of energy accounting is energy analysis, a bottom-up

approach to determine the energy consumption of a program based

on its building blocks. With a bottom-up design principle, these

approaches are fine-grained by design. Instruction-level power anal-

ysis [50] may associate instructions with power profiles. Additional

designs exist to perform energy analysis in aWCET-like setting [32],

on the bytecode level [26], and the LLVM IR level [24] for instance.

Energy analysis has a nearly orthogonal interest in illuminating

program energy consumption to ours, and the two approaches may

name rate

1 2 4 8 16 32 64 128 256 512

avrora -28.47±5.99% -18.67±2.50% -14.13±1.33% -2.88±0.18% 7.78±0.48% 10.87±0.73% 7.95±0.76% 8.91±0.64% 11.17±0.86% 11.31±0.83%

batik 2.01±0.07% 1.10±0.05% -0.42±0.03% -2.06±0.08% -2.76±0.15% -3.48±0.16% -2.65±0.11% -8.17±0.31% -2.54±0.10% -6.18±0.25%

biojava 9.13±0.28% 8.72±0.32% 4.56±0.14% 4.58±0.15% 1.59±0.07% 2.16±0.07% -1.00±0.04% -1.11±0.04% -1.02±0.03% -1.63±0.05%

eclipse 0.82±0.02% -0.55±0.01% 0.04±0.00% -2.09±0.03% -2.45±0.05% -0.96±0.03% -0.06±0.00% 0.05±0.00% -0.06±0.00% -2.84±0.06%

graphchi 11.52±0.11% 12.61±0.13% 8.18±0.10% 6.92±0.07% 6.63±0.06% 2.99±0.03% 3.77±0.04% 3.21±0.03% 3.60±0.03% 1.62±0.02%

h2 -15.63±0.25% -12.63±0.25% -4.66±0.05% -5.61±0.09% -3.51±0.05% -3.15±0.05% -2.24±0.02% -1.75±0.02% -1.96±0.02% -1.93±0.02%

jython 12.86±2.55% 9.40±1.85% 9.32±1.78% 6.44±1.25% 4.07±0.80% 2.59±0.50% -0.53±0.10% -1.91±0.36% -1.51±0.29% -4.20±0.82%

pmd 9.79±0.38% 8.06±0.37% 5.07±0.15% 3.98±0.11% 0.92±0.02% 0.78±0.01% 2.43±0.05% -0.75±0.01% 0.39±0.01% -1.20±0.03%

sunflow 1.94±0.45% 16.58±3.53% 1.76±0.41% 11.96±2.86% 7.93±1.82% 19.05±4.02% 1.12±0.25% 5.79±1.33% 14.62±3.06% -1.12±0.25%

tomcat 0.10±0.00% 0.26±0.00% 0.29±0.00% 0.30±0.00% 0.39±0.00% 0.10±0.00% -0.08±0.00% -0.21±0.00% -0.13±0.00% -0.66±0.01%

xalan 0.61±0.02% -0.81±0.03% -1.46±0.06% -1.37±0.05% -2.91±0.11% -3.61±0.14% -2.44±0.09% -4.29±0.16% -4.64±0.19% -4.04±0.17%

(a) Overhead

name rate

1 2 4 8 16 32 64 128 256 512

avrora 0.79±0.01 0.64±0.01 0.65±0.01 0.83±0.01 0.78±0.01 0.87±0.01 0.93±0.01 0.93±0.01 0.95±0.00 0.95±0.01

batik 0.86±0.03 0.88±0.02 0.91±0.02 0.89±0.02 0.91±0.02 0.91±0.02 0.89±0.02 0.90±0.02 0.90±0.02 0.89±0.02

biojava 0.93±0.01 0.94±0.01 0.95±0.01 0.98±0.01 0.99±0.00 1.00±0.00 0.99±0.00 0.99±0.00 1.00±0.00 1.00±0.00

eclipse 0.98±0.01 0.98±0.01 0.98±0.01 0.98±0.01 0.98±0.00 0.99±0.00 0.98±0.00 0.98±0.00 0.99±0.00 0.99±0.00

graphchi 0.75±0.01 0.78±0.01 0.82±0.01 0.86±0.01 0.85±0.01 0.82±0.01 0.85±0.01 0.89±0.00 0.87±0.01 0.88±0.00

h2 0.75±0.02 0.81±0.01 0.90±0.01 0.90±0.01 0.90±0.01 0.94±0.01 0.94±0.01 0.94±0.01 0.93±0.01 0.95±0.01

jython 0.98±0.01 0.98±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 1.00±0.00 1.00±0.00 1.00±0.00

pmd 0.95±0.01 0.95±0.01 0.96±0.01 0.93±0.01 0.94±0.01 0.96±0.01 0.96±0.01 0.96±0.01 0.97±0.01 0.96±0.01

sunflow 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.97±0.01 0.97±0.01 0.98±0.01 0.98±0.01

tomcat 1.00±0.01 0.96±0.03 0.96±0.02 0.95±0.02 0.95±0.02 0.92±0.03 0.94±0.02 0.91±0.03 0.94±0.02 0.95±0.02

xalan 1.00±0.02 1.00±0.01 1.00±0.01 0.98±0.03 0.96±0.04 0.98±0.02 0.95±0.03 0.99±0.02 0.99±0.01 0.97±0.02

(b) Temporal Correspondence

name rate

1 2 4 8 16 32 64 128 256 512

avrora 0.08±0.12 -0.03±0.13 -0.27±0.12 0.10±0.13 0.70±0.10 0.86±0.07 0.89±0.06 0.98±0.02 0.97±0.04 0.95±0.04

batik 0.69±0.10 0.77±0.08 0.80±0.08 0.80±0.08 0.80±0.08 0.87±0.06 0.82±0.07 0.87±0.06 0.86±0.06 0.90±0.05

biojava 0.32±0.13 0.33±0.14 0.41±0.14 0.36±0.16 0.35±0.17 0.59±0.14 0.46±0.16 0.82±0.10 0.85±0.09 0.88±0.08

eclipse 0.78±0.10 0.72±0.11 0.75±0.10 0.87±0.07 0.95±0.05 0.94±0.05 0.91±0.06 0.94±0.05 0.90±0.06 0.93±0.05

graphchi 0.85±0.06 0.85±0.06 0.87±0.06 0.93±0.05 0.95±0.04 0.98±0.03 0.97±0.03 0.99±0.02 1.00±0.01 0.99±0.01

h2 0.04±0.12 0.16±0.12 0.50±0.10 0.47±0.11 0.77±0.08 0.91±0.05 0.94±0.04 0.97±0.03 0.96±0.04 0.97±0.03

jython 0.80±0.09 0.80±0.09 0.83±0.08 0.86±0.07 0.90±0.07 0.92±0.07 0.83±0.09 0.94±0.06 0.87±0.09 0.87±0.09

pmd 0.60±0.11 0.75±0.08 0.69±0.09 0.62±0.09 0.78±0.08 0.79±0.07 0.91±0.05 0.90±0.05 0.95±0.04 0.93±0.04

sunflow 0.48±0.12 0.46±0.13 0.39±0.13 0.49±0.13 0.47±0.13 0.61±0.13 0.87±0.08 0.92±0.07 0.97±0.06 0.96±0.06

tomcat 0.58±0.18 0.80±0.11 0.95±0.05 0.97±0.04 0.96±0.04 0.98±0.03 0.98±0.03 0.98±0.03 0.97±0.04 0.98±0.03

xalan 0.68±0.20 0.68±0.17 0.89±0.12 0.90±0.10 0.88±0.12 0.75±0.18 0.95±0.06 0.93±0.08 0.76±0.16 0.88±0.09

(c) Spatial Correspondence

Figure 14: Calmness Statistics (Rate refers to the sampling

rate. )

follow a classic duality in software research, reasoning vs. monitor-

ing. Practically, it is unclear how related work adapt to scenarios

with multi-threaded executions.

7 CONCLUSION

Chappie is a novel runtime design for application-level energy

accounting of multi-threaded Java applications with calmness as a

new metric to quantify power disturbance in energy accounting.

The project repository contains all data for all benchmarks, and a

report for additional figures covering all benchmarks.
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APPENDIX

The detailed data on runtime overhead, temporal correspondence,

and spatial correspondence, with standard deviation information,

are reported in Figure 14.
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