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Abstract—Research on facial action unit detection has shown
remarkable performances by using deep spatial learning models
in recent years, however, it is far from reaching its full capacity
in learning due to the lack of use of temporal information
of AUs across time. Since the AU occurrence in one frame is
highly likely related to previous frames in a temporal sequence,
exploring temporal correlation of AUs across frames becomes a
key motivation of this work. In this paper, we propose a novel
temporal fusion and AU-supervised self-attention network (a so-
called SAT-Net) to address the AU detection problem. First of
all, we input the deep features of a sequence into a convolutional
LSTM network and fuse the previous temporal information into
the feature map of the last frame, and continue to learn the AU
occurrence. Second, considering the AU detection problem is a
multi-label classification problem that individual label depends
only on certain facial areas, we propose a new self-learned
attention mask by focusing the detection of each AU on parts
of facial areas through the learning of individual attention mask
for each AU, thus increasing the AU independence without the
loss of any spatial relations. Our extensive experiments show that
the proposed framework achieves better results of AU detection
over the state-of-the-arts on two benchmark databases (BP4D
and DISFA).

I. INTRODUCTION

Facial action units (AUs) are facial muscle actions at cer-

tain facial locations defined by Facial Action Coding Sys-

tem (FACS) [1]. AU detection has been an essential task

for understanding facial behavior and mental activities. As

deep learning methods have shown strong ability in image

classification and many deep learning based models have been

proposed recently [2]. Thus, AU detection research has been

focused from traditional handcraft features to deep features.

More and more deep convolutional models have been adapted

to AU detection problems [3]. However, there are still several

drawbacks existing in the current approaches:

1) Because different facial action units appear in different

facial areas, one single AU’s occurrence just depends on

a region of interest, and most of the previous works have

focused on splitting feature maps into patches and used

separate convolution kernels for individual patch. One

drawback of such methods is the ignorance of the global

spatial relations or requirement of fusion of different ROIs

features at the end of the networks, thus greatly increasing

the complexity.

2) There are also some works that utilized attention maps

to enhance some AU center guided or expert knowledge

based regions. Although those methods have shown a

certain performance improvement, the handcraft attention

map needs the facial landmarks to be detected and cannot

be easily extended to other unregistered AU detection

problems. Therefore, it will be more efficient to apply

a self-learned attention technique with the supervision of

AU labels for learning the AU regions automatically.

3) Most existing approaches have not fully utilized the

temporal dependency of consecutive frames. Although for

temporal relation modeling, traditional fully connected

recurrent neural nets (FC-LSTM) can model the temporal

relation well in natural language processing and image

caption [4], [5]FC-LSTMs are not able to learn the spatial

relations simultaneously in image classification. 3D con-

volution [6] could be a remedy to alleviate the problem.

3D convolution extends one more kernel dimension to the

temporal domain and can extract the temporal features as

well as spatial features. However, it requires one more di-

mension for the kernel, thus greatly increasing the training

parameters and network complexity. More importantly,

unlike the sequence based classification problem that one

video has only one label, AU detection has to be based on

consecutive frames with every single frame being labeled,

hence extending one more dimension for kernels in the

temporal domain is not reasonable for such a task as the

training process is significantly slow.

To tackle the AU detection problems as above mentioned,

we propose to develop a new self-attention and temporal fusion

network (SAT-Net) to model the spatial-temporal relations.

The self-attention module is learned through the AU label

supervision and it does not require facial landmarks or prior

knowledge of AU locations. Our redesign of the input-output

of Convolutional LSTM [7] enables the model to learn the

temporal relations without losing any location information. The

synergy of the two modules makes a significant performance

boost when tested on two widely used databases.

The contribution of this paper is manifested in following

tow-fold:

• This is the first work to introduce the self-attention into

the AU detection task, which can focus on more important

facial areas with the supervision of AU labels automati-

cally. Our new design of the Conv-LSTM based temporal

learning scheme fits better to the temporal representations

of facial action unit.

• The light weighted self-attention and temporal learning

framework (SAT-Net) does not increase the network com-

plexity as compared to the baseline ResNet [8]. Impor-
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tantly, this new network is end to end trainable.

II. RELATED WORK

AU occurrence detection is a binary classification task by

using static facial images or image sequences to detect the

appearance of AUs. We summarize the previous works which

are highly related to this paper in two subsections, spatial based

detection and spatial-temporal based detection.

Detection with spatial information. For spatial features

learning, previous AU detection techniques can be divided into

two types, handcraft appearance and geometry based feature

representation and self-learning feature representation. The

former extracts the facial texture information which reflects

the magnitude and direction of facial surface, or features

that describe the facial deformation information. The latter

can automatically learn the representations from the training

data hierarchically utilizing modern deep learning techniques.

Valstar et al. [9] extracts Gabor wavelet features and then

classified by Adaboot and SVM. Zhao et al. [10] designed

a joint patch and multi-label learning (JPML) framework that

identified important facial patches’ SIFT features and utilized

AU occurrence relations to constrain the AU detection. Later

Zhao et al. [11] employed deep learning for AU detection by

extracting deep features with CNNs, dividing the facial images

into different regions, and training the kernels separately. Li

et al. [3] proposed EAC-Net by inserting an enhancement and

cropping layer to a VGG net, adding more weights to AU

centered facial areas, dividing features into regions according

to facial landmarks with separate convolution filters. Shao

et al. [12] developed a end-to-end deep learning framework:

JAA-Net, which utilized the correlations of AU detection and

face alignment, and refined the AU attention map to optimize

the local feature learning. Li et al. [13] proposed an AU

semantic relationship embedded representation learning (SR-

ERL) framework that utilized a multi-scale CNN for features

representation and a GGNN (Gated Graph Neural Network)

for AU semantic relationship learning. These methods have

significantly improved the AU detection accuracy with the

power of deep learning. However, these regional attention

or prior knowledge based methods require extra landmark

information; there is a lack of self-learned attention, and

importantly, they ignore the sequential frame wise relationship

in the temporal space.

Detection with spatial-temporal fusion. Valstar et al.

[14] first considered temporal dynamics in AU detection, and

they extracted geometrical features and introduced a hybrid

SVM/HMM classifier to model temporal information, and

they found that modeling temporal dynamics can significantly

increase the performance. As recurrent neural networks (RNN)

show powerful ability for temporal dependency modeling. Chu

et al. [15] have first introduced Long Short-Term Memory

(LSTM) to learn AU temporal relations, and combined CNNs

and LSTMs to model both spatial and temporal cues, with

adding both cues to generate frame-based AU detection. Ma

et al. [16] redefined AU partition rules with expert prior

knowledge and divided the facial areas into related groups,

different AU groups are separately learned to reduce the

interactions. Then they fused each AU group’s spatial-temporal

features with Convolutional LSTMs. The key issue is that they

ignored the global relationship of different AUs and fused the

temporal relations near the end of the network, where the

features maps’ location information is not preserved, as a re-

sult, there is no performance gain being achieved. Additionally

this framework also requires extra landmark information and

cannot be easily extend to other unregistered AUs detection

once the groups division is fixed. Romero et al. [17] leveraged

temporal relations by introducing an optical flow and textures

based two-stream network. Although it is effective in video

classification, such a network is heavy, hard to train, highly

dependent on the quality of optical flow images, and not end-

to-end trainable. Yang et al. [18] have applied a 3D convolution

into AU detection, in which two layers of 2D convolutional net

and 3D convolutional net have been used to extract spatial-

temporal features and spatial features, respectively, followed

by a fully connected layer. However, the 3D convolution has

much more parameters to train and can poorly model temporal

information for frame-based tasks such as AU detection.

III. SPATIAL-TEMPORAL LEARNING

A. Overview

Fig. 1: Structure of ConvLSTM, in ConvLSTM, all fully

connected layers are replaced with convolutional layers.

Convolutional neural networks (CNN) like ResNet [8] has

been proven effective on feature learning and classification.

Our SAT-net (Fig. 2) is adapted from ResNet and hence

inherits its spatial feature representation power. SAT-net mainly

consists of two components: temporal fusion and self-attention

module (Fig. 2 and Fig. 3). We employ Convolutional LSTM

(Conv-LSTM) [7] which extends the idea of LSTM and models

the spatial-temporal relations that have both input to state

and state-to-state transitions. We also develop a self-learned

attention module to improve the spatial learning process.

SAT-Net also has four blocks. Given an input x, T images

with resolution of H×W ×3, the spatial resolution of feature

maps going through each block is decreased by 2 times and

become more and more correlated to the tasks semantic space.

Noted that output M1 after the first two blocks fres1 has c1
number of feature maps in h1 × w1.
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Fig. 2: Structure of our proposed framework. SAT-Net stems from ResNet with 4 residual blocks. It is characterized by two

main components. Conv-LSTM: features generated from Res-Block-2 are sequentially fed into this module. The hidden state

of current frame is processed by the rest of residual blocks. Self-Attention: learning feature maps and attention masks at the

same time, after which attended features map are pooled for predictions.

B. Temporal Fusion

We would like to consider the temporal context among

consecutive frames. A natural choice is the family of recurrent

neural networks (RNN), LSTM for instance, which has strong

ability to model temporal patterns. Regarding AUs recogni-

tion task, previous works [15], [19] employ fully connected

long short-term memory (FC-LSTM) to learn the temporal

dependency. One drawback of FC-LSTM is that we need to

reduce the spatial dimensions for input at the risk of losing

location information. The spatial context is important for AUs

recognition, but is hard to be retrieved by LSTM. To remedy

this issue, we opt to use Conv-LSTM which directly takes

M1 as input and models the temporal relationship without

averaging out spatial context.

Detailed structure of Conv-LSTM [20] we employ is shown

in Fig. 1. Compared to FC-LSTM, where the gates it, ft, ot
are represented by activations of fully connected layers that

take in one dimensional vectors, Conv-LSTM use convolution

operations to deal with the inputs.

it = σ(Conv(xt;wxi) + Conv(ht−1;whi) + bi)

ft = σ(Conv(xt;wxf ) + Conv(ht−1;whf ) + bf )
(1)

Eq. 1 shows the input and forget gates where x0 = M1.

Noted that there is no need to reduce the inputs xt and hidden

states ht−1 from last cell as we are using convolutions. The

input gate it determines the amount of information accumu-

lated to the current cell state ct and the forget gate ft decides

how much information to forget about the last cell state ct−1,

as shown in Eq. 2.

ct = ft ⊙ ct−1 + it ⊙ c̃t where,

c̃t = tanh(Conv(xt;wxg) + Conv(ht−1;whg) + bg)
(2)

After update of the current cell state ct, we pass it through

tanh activation layer and further multiply with the an output

gate ot. Gate ot controls how much the current cell state ct to

be propagated to the hidden state ht.

ot = σ(Conv(xt;wxo) + Conv(ht−1;who) + bo)

ht = ot ⊙ tanh(ct)
(3)

In action recognition literature, Conv-LSTM is widely

adopted due to its superior performance to model spatial

and temporal relations [20], [21]. A typical task in action

recognition is video-based classification. One label is given

for each segment of frames. Therefore, every individual frame

in this segment will contribute to the same label. Under this

scenario, it makes sense to utilize hidden states of all frames

and find a way (i.e. concatenation, summation) to aggregate

them.

But AUs detection problem is formulated differently in

popular AU-related datasets. Every frames in the sequence

are annotated individually, though considering the temporal

context, with multi-labels w.r.t number of AUs. Therefore,

the occurrence of AUs is detected in a frame-based pattern.

How to successfully inject Conv-LSTM to the network for

AU recognition is open to discussion. In particular, what are

the inputs and how to deal with the outputs of Conv-LSTM

module are our main contributions.

We propose to feed M1 after the second residual block into

Conv-LSTM and use the hidden state of the current frame ht

for the rest of the residual blocks. Since the residual block

closer to data layer preserves more spatial information while

the one at the top of network is highly abstracted and aligned

to task space, if we consider temporal context at the very end

of spatial learning, as in [15], [19], the location information

of each frame and the state transition in pixel level between

frames will be lost. ht not only takes in the feature maps of

current frame xt which is a direct clue of the facial appearance,

but accounts h0 . . . ht−1 from the previous frames with cell

state transition. With the accumulation of state information,

every previous frame has impacts to the final Conv-LSTM

output.

C. Spatial Learning with Self-Attention

In vanilla ResNet, global average pooling (GAP) followed

by one fully connected (fc) layer is an effective strategy to
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derive categorical labels. Instead of flatting feature maps and

using multiple fc layers, GAP simply averages out spatial

information, hence proved more robust to spatial translations

and parameters efficient. But AUs detection is a multi-label

problem. One linear layer after shared feature maps is inad-

equate to represent different AUs. A prevalent solution is to

increase model capacities in account for each AU. [12], [13]

fall into this category. After a shared network as global context,

they tailed with parallel branches so that each AU has one

set of parameters that are updated independently. Although

proved effective, the number of parameters will be increased

dramatically w.r.t the number of AUs.

Fig. 3: Self-Attention Module in SA-Net/SAT-Net, C,N stand

for the number of input and output channels, h and w are the

spatial resolution of feature maps.

Inspired by the attention mechanism, we come up with a

workaround to learn attention maps while learning the features

of each AU. As elaborated in Fig. 3, self-attention module

has two streams. The upper one is to learn features for each

of the AUs with 1 × 1 convolutions, and the lower one use

one more set of 1 × 1 convolutions followed by sigmoid

activation for attention maps. Then we merge these two streams

by performing element wise multiplication. In terms of the

overall recognition pipeline, self-attention module is appended

after Res-Block-4, where attention maps are learnt in parallel

to highlight facial areas which best describe different AUs.

Therefore the attended feature maps are average pooled spatial-

wisely to give AU occurrence predictions.

One major advantage of our network is the number of train-

able parameters. Extra parameters accounting for the temporal

context are greatly reduced. Assuming a kernel size of K×K,

input channel I , and output channel O, our proposed network

has 4×K2
× (O+ I)× I parameters for 4 gates (omitting the

bias), which is 4 × (128 + 128) × 128 × 9 ≈ 1.2 million in

the experiments. Such temporal fusion module has much less

parameters than backbone ResNet-18 (11 million), as well as

peer works [16], which also models the temporal dependency

with Conv-LSTM: 4×(2048+256)×256×9 ≈ 21.2 million,

and [19] which uses FC-LSTM: 4 × (2048 + 512) × 512 ≈
5.2 million. Thus our proposed model is efficient on training

parameters.

D. Imbalanced Classification

Some of the AUs are likely to occur while some are under

representative. To balance the positive sampling rate of each

AUs, during the training stage, we add a weight wc to the

cross entropy loss [22] as shown in Eq. 4.

Loss = −
1

N

N∑

n=1

C∑

c=1

wcyn,c · logσ (xn,c)

+(1− yn,c) · log(1− σ(xn,c))

(4)

where C is the number of labels (AUs) considered, N is

the number of samples in mini-batch. xn,c is the output of

the network in the forward pass which is going through σ
activation and yn,c is the ground truth labels. wc is obtained

by computing the occurrence rate of each AU in the training

set.

IV. EXPERIMENTS

A. Datasets and Settings

We evaluate our approach on two benchmark datasets BP4D

[23] and DISFA [24]. They contain sequences with sponta-

neous emotions and labels that are manually annotated by

FACS coders. In align with peer works, we only consider

AUs which have occurrence rate greater than 5% in our

experiments.

BP4D. There are 23 female and 18 male subjects with di-

verse ethnicities and backgrounds in the BP4D data collection.

Each subjects are required to perform 8 tasks for a total of

328 emotional sequences. In each sequence, both 2D texture

images and 3D geometric models are provided. ∼ 140, 000
frames have valid AU occurrence codes.

DISFA. It contains 12 female and 15 male subjects. The

subjects are asked to watch videos while spontaneous facial

expressions are captured. One video is provided for each

subject. The video frames are labeled by 0−5 intensity values

with 0 means the absent of AU and 5 the most expressive. In

our experiments, we define the AU intensity greater or equal

than 2 as occurred and less than 2 as not. More than 100, 000
annotated images can be extracted from the videos. The data

imbalance issue is more severe than that of BP4D. Some AUs

have much more negative samples than positive ones.

Implementation Details. The whole framework is imple-

mented in PyTorch [25]. For pre-processing the data, we use

face detection tools to locate and crop the face which greatly

removes the backgrounds and then resize the input frames into

224 × 224 before feeding the networks. We augment input

frames by random horizontal flipping. Due to the dramatic in-

creasing of parameters introduced by extra dimension on tem-

poral, we choose ResNet-18 as our backbone which achieves

a good trade-off between accuracy and computing complexity.

We conduct subject-exclusive 3-fold cross-validation following

the same splitting protocol as in [15]–[17], [23]. We employ

stochastic gradient descent (SGD) as our optimizer with a

mini-batch size of 20, a Nesterov momentum of 0.9, and a

weight decay of 0.0002. The initial learning rate is 0.01 and

it decays 0.1 every 8 epochs until convergence.

Evaluation Metrics. We report the performance of proposed

framework in terms of F1-score. F1-score is formulated as

F1 = 2PR/(P + R), where P and R denote precision and

recall, respectively.
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AU JPML DRML CNN-LSTM EAC JAA LP ARConvLSTM SRERL ResNet T-Net SA-Net SAT-Net

1 32.6 36.4 31.4 39.0 47.2 43.4 48.0 46.9 50.8 45.9 52.0 [54.1]

2 25.6 41.8 31.1 35.2 44.0 38.0 43.2 45.3 45.4 43.9 45.1 [49.5]

4 37.4 43.0 71.4 48.6 54.9 54.2 53.1 55.6 56.2 55.8 [60.0] 58.3

6 42.3 55.0 63.3 76.1 77.5 77.1 76.9 77.1 77.1 76.5 [78.0] 77.7

7 50.5 67.0 77.1 72.9 74.6 76.7 78.4 [78.4] 76.6 76.8 76.9 77.7

10 72.2 66.3 45.0 81.9 [84.0] 83.8 82.8 83.5 82.3 82.6 83.8 83.6

12 74.1 65.8 82.6 86.2 86.9 87.2 [87.9] 87.6 86.7 86.8 87.3 86.5

14 65.7 54.1 [72.9] 58.8 61.9 63.3 67.7 60.6 57.2 59.5 61.0 63.2

15 38.1 36.7 33.2 37.5 43.6 45.3 45.6 52.2 49.3 [53.0] 49.5 49.1

17 40.0 48.0 53.9 59.1 60.3 60.5 63.4 [63.9] 60.5 62.8 61.0 61.8

23 30.4 31.7 38.6 35.9 42.7 48.1 47.9 47.1 48.1 [50.0] 47.5 48.7

24 42.3 30.0 37.0 35.8 41.9 54.2 [56.4] 53.3 50.0 48.5 47.6 49.3

Avg 45.9 48.3 53.2 55.9 60.0 61.0 62.6 62.9 61.7 61.8 62.5 [63.3]

TABLE I: Performance on BP4D

AU LSVM APL DRML EAC JAA ARConvLSTM SRERL ResNet SA-Net T-Net SAT-Net

1 10.8 11.4 17.3 41.5 43.7 26.9 [45.7] 29.8 32.3 36.6 41.2

2 10.0 12.0 17.7 26.4 46.2 24.4 [47.8] 29.3 33.1 32.5 33.1

4 21.8 30.1 37.4 [66.4] 56.0 58.6 59.6 56.6 62.3 64.9 63.0

6 15.7 12.4 29.0 50.7 41.4 49.7 47.1 [57.3] 52.2 53.1 56.4

9 11.5 10.1 10.7 [80.5] 44.7 34.2 [45.6] 35.5 33.3 35.8 43.0

12 70.4 65.9 37.7 [89.3] 69.6 71.3 73.5 71.8 71.2 74 73.1

25 12.0 21.4 38.5 [88.9] 88.3 83.4 84.3 84.6 84.0 82.2 82.9

26 22.1 26.9 20.1 15.6 58.4 51.4 43.6 55.2 59.6 55.7 [60.6]

Avg 21.8 23.8 26.7 48.5 56.0 50.0 55.9 52.5 53.5 54.3 [56.7]

TABLE II: Performance on DISFA

B. Comparison with state-of-art Methods

We compare our methods (T-Net, SA-Net, and SAT-Net)

with state-of-art image based (JPML [26], DRML [10],

EAC [3], JAA [12], LP [27], SRERL [13]) and sequence based

(CNN-LSTM [15], ARConvLSTM [16]) AU detection works

under the same 3-fold cross validation setting.

Results on BP4D. Table I shows performance comparison on

BP4D dataset reported in percentage, our baseline network

is ResNet-18 pretrained with ImageNet, and the fully con-

nected layers is adapted to have 512 input channels and 12

output channel which is the number of AUs to detect. We

found that pretrained parameters are critical to performance

because of the low variance in AU detection datasets. Images

are very similar for each subject and sequences contain a

large portion of neutral faces, tending to overfit the training

set. For the following experiments, we always initialize the

network with ImageNet pretrained parameters. By fine-tuning

and balancing the positive negative loss, the baseline ResNet

can achieve an average F1 score of 61.7 across all AUs on

BP4D. And the score further improves from 61.7 to 62.5 with

the introduction of self-attention module (SA-Net). SA-Net

outperforms EAC [3] and LP [27] by 11.8%, 4.2% respectively,

in terms of the F1 score. Both of these two works use handcraft

landmark-based attention maps to attend to AU centered areas.

Such performance improvement demonstrates the benefit of

self-attention module. Compared to baseline ResNet, the T-

Net (with temporal fusion module only) does not show much

performance gain due to the lack of self-attention module.

However, the combination of temporal fusion and self-attention

module (SAT-Net) can greatly increase the F1 score and

achieves the best: 63.3% among the proposed networks in this

paper, 1.3% more than the SA-Net. Comparing to [15] and

ARConvLSTM [16] which also address the temporal depen-

dency. Our SAT-Net obtains the best performance and increases

by 19.0% and 0.6% respectively. We found the redesign of

input and output of temporal fusion model works better than

ARConvLSTM and FC-LSTM based CNN-LSTM [15] as well

as showing the performance boost by combining Conv-LSTM

and self-attention modules.

Results on DISFA. In DISFA dataset, AUs are annotated with

0 − 5 intensity levels, we treat frames with intensities equal

or larger than 2 as positive samples in our experiment in line

with compared works. Noticed that DISFA is more imbalanced

in terms of AUs occurrence rate than that of BP4D. One AU

could have around 10 times positive samples than the other,

leading to heavier performance fluctuation during the training

phase. From Table II, we can see that our proposed SA-Net

has increased F1 score from 52.5 to 53.5. Some of the less

representative AUs, such as AU1 and AU2, have remarkable

improvement with the help of self attention module. While T-

Net, taking advantage of Conv-LSTM, has larger performance

boost from 52.5 to 54.3. And the combination of self-attention

and temporal fusion further increases this value to 56.7. It

is a 13% improvement over ARConvLSTM [16] which also
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considers the temporal dependency, and 1.3% over JAA [12],

achieving the state-of-the-art result. It is worth noting that

the reason why temporal fusion has obvious performance

increment in DISFA than BP4D is that DISFA’s video of

each subject shows a more consistent affection status for each

task, which is different from videos in BP4D, where each

subject may experience varied emotions during each individual

task. Thus the videos’ continuous property with expressions’

consistency and regularity across subjects makes the DISFA

data easier to model for the temporal dependency.

C. Discussion

We first visualize the feature maps (the first 32 channels)

between SA-Net and SAT-Net in Fig. 4, which demonstrate

the impact of introduced Conv-LSTM module. Fig. 4a are

the activations after Res-Block-2 in SA-Net (same as baseline

ResNet) while Fig. 4b are the ones after we fuse the temporal

dependency with Conv-LSTM module. Comparing these two

figures, we can clearly see the differences. For feature maps in

Fig. 4a, most facial areas are dark. One can easily recognize

the edges and contours of the face, meaning that a smaller

percentage of pixels in each channel is considered important

by the neural network and thus activated for AU predictions.

Without any context from temporal domain, SA-Net can only

focus on various interpretations of spatial information for the

current frame therefore the activation maps are very sparse. In

contrast, temporal fused features (Fig. 4b) have evenly spread

values across all channels. Through the temporal learning

process, some general information like face shapes, contours

are averaged out. Those are considered less important on

revealing muscle movement. And the network could pay more

attention on the facial details. Fig. 4 indicates that the temporal

information is an effective supplement for the facial action unit

detection tasks.

AU 1 AU 2 AU 4 AU 6

Inner Brow Raiser Outer Brow Raiser Brow Lowerer Cheek Raiser

AU 7 AU 10 AU 12 AU 14

Lid Tightener Upper Lip Raiser Lip Corner Puller Dimpler

AU 15 AU 17 AU 23 AU 24

Lip Corner Depressor Chin Raiser Lip Tightener Lip Pressor

TABLE III: Corresponding AU index in Fig. 5

Fig. 5 shows the the effectiveness of attention maps gen-

erated by SA-Net and SAT-Net on BP4D. Both figures show

the attention module works well for two networks. Attention

of AU1, AU2 and AU4 focus on the upper face near eyes

which is related to the eyebrow muscle movement, and the

followings focus on the middle and lower facial area which is

consistent with the place where the corresponding AUs appear.

From Fig. 5a, attention map generated without temporal fusion,

we can see the high value weights in eye and brow area for

AU1, AU2, and AU4, which are Inner Brow Raiser, Outer brow

raiser and brow lower, and the values in the background and

other facial areas are almost 0. The same for AU6 representing

cheek raiser and the attention maps exclude the area nears eyes

which is reasonable. For AU12, 14, 15, 17, 23, 24: AUs appears

around lip, the attention maps are able to correctly show high

weight values around lip and mouth area. As the self-learned

attention has no ground truth bounding box of action unit areas,

the attention does not appear exactly around AU centers and

inevitably covers some unrelated pixels. However background

noisy pixels are successfully excluded in both attention maps.

And because our self-attention is placed following the last

convolution layer, the feature map reception field are quite

large therefore some AUs’ attention are quite similar, however

still focus on correct part of the face. Fig. 5b shows the

attention maps generated with temporal fusion module, where

we can observe that the attention map expands compared with

Fig. 5a (attention maps from SA-Net). Which is also consistent

with what we have observed from Fig. 4, where the feature

maps show the temporal fusion makes feature maps expand due

to the cell state information transfer of the sequence previous

frames then information is fused into the last frame’s feature

maps. The last frame’s features describe more information than

a single frame thus cause the expansion.

To utilize the temporal information, we also consider the

number of frames to use for each training step. Table IV and

Table V show the AU occurrence frame length in two datasets,

and we treat two continuous frames having 0 intensity as the

AU end signal. The first three AUs are around 25 frames, and

the following six AUs gather in 40-70 and the last three AUs

are around 19 frames. In the SAT-Net, we use a frame sequence

of 16 frames to train and test because 16 frames can cover the

least median frames(18) that an AU will occur. Using more

frames will cover some non-occurring AUs and thus introduce

noise.

AU 1 2 4 6 7 10 12 14 15 17 23 24

Median 25 28 25 54 45 48 72 42 18 19 18 21

TABLE IV: AU occurrence median frames on BP4D

AU 1 2 4 6 9 12 25 26

Median 22 25 23 84 45 82 85 33

TABLE V: AU occurrence median frames on DISFA

V. CONCLUSION

In this paper, we have proposed a novel light weighted spa-

tial self-attention and temporal fusion network specifically for

facial action unit detection. Our network utilized the least train-

ing parameters but achieves the state-of-the-art performance.

Different from previous works that utilize prior knowledge

based handcraft attention mechanism, we developed an AU

label supervised self-learned attention module to enable the

network to learn to pay more attention to different facial areas

for the corresponding AUs. We have also proposed to use

Conv-LSTM module to fuse the temporal information into AU

detection problems and proved to be feasible with temporal

information as a supplement in facial action unit detection.

Our proposed network is evaluated on both BP4D database

and DISFA database, and experimental results show that the

proposed SAT-Net outperforms most of the handcraft attention

based networks as well as temporal fusion networks, achieving
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(a) SA-Net feature maps (b) SAT-Net feature maps

Fig. 4: Visualizations of feature maps with and without Conv-LSTM module.

(a) SA-Net attention maps (b) SAT-Net attention maps

Fig. 5: Self-attention maps with the supervision of AU labels

the state-of-the-art performance on BP4D and DISFA. Our

experiments have also explained how attention and temporal

fusion work inside the network.
Our future work will address the data unbalance issue from

the datasets in order to improve the training of our network.

And avoiding overfitting is also critical for stable training in

AU detection, which will be explored in our future work.

Moreover, to make the attention module more stable, we will

further explore landmark information so as to supervise the

attention training along with the self-learning based on the

supervision of labeled AUs.
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