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Abstract

The common view of emotional expressions is that certain configurations of facial-muscle movements reliably reveal certain

categories of emotion. The principal exemplar of this view is the Duchenne smile, a configuration of facial-muscle movements

(i.e., smiling with eye constriction) that has been argued to reliably reveal genuine positive emotion. In this paper, we formalized

a list of hypotheses that have been proposed regarding the Duchenne smile, briefly reviewed the literature weighing on these

hypotheses, identified limitations and unanswered questions, and conducted two empirical studies to begin addressing these

limitations and answering these questions. Both studies analyzed a database of 751 smiles observed while 136 participants

completed experimental tasks designed to elicit amusement, embarrassment, fear, and physical pain. Study 1 focused on

participants’ self-reported positive emotion and Study 2 focused on how third-party observers would perceive videos of these

smiles. Most of the hypotheses that have been proposed about the Duchenne smile were either contradicted by or only weakly

supported by our data. Eye constriction did provide some information about experienced positive emotion, but this information

was lacking in specificity, already provided by other smile characteristics, and highly dependent on context. Eye constriction

provided more information about perceived positive emotion, including some unique information over other smile characteris-

tics, but context was also important here as well. Overall, our results suggest that accurately inferring positive emotion from a

smile requires more sophisticated methods than simply looking for the presence/absence (or even the intensity) of eye

constriction.
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Introduction

Most dictionaries define the “smile” as a pleasant facial ex-

pression, and the smiley face has become the de facto symbol

of positive feelings in digital communication. This view of the

smile as synonymous with positive emotion aligns with the

belief that certain emotion categories are reliably revealed by

certain configurations of facial-muscle movements (called the

“common view of emotional expressions” by Barrett et al.,

2019). However, people also frequently smile when

experiencing unpleasant emotions such as embarrassment,

pain, and distress (e.g., Keltner, 1995; Kraut & Johnston,

1979; Landis, 1924; Prkachin & Solomon, 2008) and when

signaling interpersonal information like dominance or affilia-

tion (Martin et al., 2017; Rychlowska et al., 2017). The

smile’s ubiquity has led some researchers to conclude that it

has no reliable meaning and should not be considered a re-

flexive expression of positive emotion (e.g., Barrett et al.,

2019; Hunt, 1941; Klineberg, 1940; Tagiuri, 1968). Others

have argued that there are different types of smiles (e.g.,

Ekman, 1985; Ekman & Friesen, 1982).

Building on work by Duchenne (1862) and Darwin (1872),

Ekman et al. (1990) argued that a special type of smile, which

they named the “enjoyment” or “Duchenne” smile, is invol-

untarily triggered by positive emotion and is identifiable by its

configuration of facial-muscle movements. All smiles involve

the zygomaticus major muscle, which pulls the lip corners
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toward the ears. What defines a Duchenne smile is that it also

involves the orbicularis oculi (pars orbitalis) muscle, which

lifts the cheeks, narrows the eyes, and wrinkles the outer eye

corners (see Fig. 1). For readability, we will use “smile” to

refer to the former muscle and “eye constriction” to refer to the

latter. Ekman et al. (1990) argued that eye constriction is dif-

ficult to deliberately control and rarely occurs during smiles in

the absence of positive emotion; therefore, the Duchenne

smile is a reliable signal of genuine positive emotion. In con-

trast, smiles that lack this muscle (i.e., “nonenjoyment” or

“non-Duchenne” smiles) should be regarded as voluntary and

lacking genuine positive emotion, e.g., “false” smiles that

feign positive emotion or “miserable” smiles that mask/

express negative emotion (Ekman & Friesen, 1982). Frank

and Ekman (1993) argued that eye constriction is “the most

reliable, most robust, and most diagnostic marker for an en-

joyment smile,” and that “the enjoyment smile is lawful be-

havior and that its features operate more independent of con-

text than other types of smiles” (pp. 21–22). Furthermore,

Frank et al. (1993) argued that “a person is seen as more

positive when they display an enjoyment smile compared to

when they display a nonenjoyment smile, again independent

of the situation in which the smile is elicited” (p. 92). To

facilitate communication and testing, we formalized these

claims as numbered hypotheses in Table 1.

To evaluate these hypotheses, we turned to a recent litera-

ture review byGunnery and Hall (2015). This review conclud-

ed that people are more likely to produce Duchenne smiles

than non-Duchenne smiles when experiencing positive emo-

tion (e.g., Ekman et al., 1988; Jakobs et al., 1999; Matsumoto

& Willingham, 2009; Mehu et al., 2007) and that observers

tend to perceive Duchenne smiles as more positive than non-

Duchenne smiles (Gunnery & Ruben, 2016). However, it also

concluded that Duchenne smiles can be—and often are—

produced deliberately and therefore are not reliable signals

of genuine positive emotion (e.g., Gosselin et al., 2010;

Gunnery et al., 2013; Krumhuber & Manstead, 2009).

Finally, it suggested that other smile characteristics (e.g.,

smile intensity and duration) may be more important than

eye constriction in distinguishing positive emotion (Gunnery

&Ruben, 2016; Krumhuber &Manstead, 2009). Put succinct-

ly, it concluded that “people who feel happy are likely to

Duchenne smile, but those who Duchenne smile are not nec-

essarily happier” (p. 130).

Comparing these conclusions to the hypotheses in Table 1,

the review supported H1 that positive emotion reliably trig-

gers Duchenne smiles and H7 that Duchenne smiles are reli-

ably perceived as more positive, but contradicted H2 that

Duchenne smiles are difficult to deliberately control and H3

that Duchenne smiles rarely occur without positive emotion. It

therefore cast doubt on H4 that eye constriction reliably dis-

tinguishes positive emotion smiles and questioned H5 that eye

constriction is the best marker of positive emotion. It did not

directly speak to H6 or H8 regarding context-independence

(cf., Harris & Alvarado, 2005). There are thus important ques-

tions about the Duchenne smile still in need of answers. How

accurately can positive emotion be inferred from a Duchenne

or non-Duchenne smile? How does eye constriction compare

to other smile characteristics in revealing positive emotion?

To what extent does the relationship between Duchenne

smiles and positive emotion differ across contexts?

There are also limitations to the existing literature. First,

previous studies focused on the binary presence or absence of

eye constriction, but there are statistical (DeCoster et al., 2009)

and empirical (Messinger et al., 2012) reasons to suspect that

its dimensional intensity may be more informative. Second,

previous studies focused more on false smiles than on misera-

ble smiles, despite both being important in H4. Third, previous

studies often compared smiles across conditions without ac-

counting for the positive emotion reported in each condition.

As participants may vary in their experiences of experimental

tasks (e.g., finding a comedy clip underwhelming or delighting

in the challenge of convincingly faking a smile), it is important

to control for these variations. Finally, previous studies often

analyzed images of smiles, which are less informative/

representative than videos (Barrett et al., 2019).

To begin answering these questions and addressing these

limitations, we conducted two studies using a large database

of smiles observed while participants completed experimental

tasks designed to elicit amusement, embarrassment, fear, and

physical pain. Study 1 focused on participants’ self-reported

positive emotion and Study 2 focused on how third-party ob-

servers would perceive videos of these smiles. Both studies

analyzed expert measures of smile intensity, smile duration,

Table 1 Formalized hypotheses

regarding the Duchenne smile H1 Positive emotion reliably triggers the production of Duchenne smiles.

H2 Eye constriction is difficult to deliberately control and therefore Duchenne smiles are difficult

to counterfeit.

H3 Duchenne smiles rarely occur in the absence of positive emotion.

H4 Eye constriction reliably distinguishes between positive emotion smiles and false/miserable smiles.

H5 Of all the smile characteristics, eye constriction is the most reliable/diagnostic marker of positive emotion.

H6 The relationship between Duchenne smiles and experienced positive emotion is independent of context.

H7 Duchenne smiles are reliably perceived as more positive than non-Duchenne smiles.

H8 The relationship between Duchenne smiles and perceived positive emotion is independent of context.
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eye constriction presence, and eye constriction intensity.

Advanced statistical modeling techniques were used to ac-

count for shared variance among smile characteristics, to rep-

resent the amount of positive emotion reported or perceived,

and to assess the context-dependence of relationships.

Study 1

Our first study1 focused on participants’ production of facial

behavior and sought to answer three research questions. (1)

What are the zero-order relationships between self-reported

positive emotion and the smile characteristic variables: eye

constriction presence, eye constriction intensity, smile inten-

sity, and smile duration? That is, what is the strength of these

relationships when no other variables are controlled for? (2)

Are eye constriction presence and intensity predictive of self-

reported positive emotion when smile intensity and smile du-

ration are controlled for? (3) Do the relationships between

self-reported positive emotion and the smile characteristic var-

iables differ across emotional contexts/experimental tasks?

Data

To find examples of spontaneous facial behavior, we accessed

the BP4D+ multimodal spontaneous emotion database

(Zhang et al., 2016), which includes video recordings and

metadata from 140 participants during lab tasks intended to

elicit different emotions. Although participants experienced

ten total tasks, in this study, we focused on the four tasks that

have expert facial behavior coding. In the joke (amusement)

task, the participant was told a joke by the experimenter; in the

song (embarrassment) task, the participant was told to impro-

vise a rhyming song and sing it loudly; in the darts (fear) task,

darts were thrown by the experimenter at a dartboard located

near the participant’s head; and in the water (pain) task, the

participant submerged their hand into ice water for as long as

possible. The BP4D+ study was approved by the governing

institutional review board and all participants consented to

having their data used in further research and their images

published in scientific journals.

After each task, the participant rated how intensely they

had felt 14 different emotion categories during the task (and

could write in and rate additional, unlisted categories); each

category was rated on a six-point ordinal scale ranging from 0

(not at all) to 5 (extremely). To represent positive emotion, we

used participants’ self-reported responses to the question,

“How much did you feel happy, joyful, or amused?”

Participants’ facial behavior in each task video was obser-

vationally measured using the Facial Action Coding System

(FACS; Ekman et al., 2002), which provides detailed rules for

coding facial action units (AUs) corresponding to the move-

ment of different facial muscles. Each video was annotated by

one of five expert coders who had passed the official FACS

final test and had multiple years of coding experience. A pe-

riod of around 15 s was selected from each task video to be

annotated; this period corresponded to when the emotion elic-

itation was strongest (e.g., the period leading up to when the

participant removed their hand from the ice water). The coders

annotated each video frame during this period (at 25 fps) for

the presence and intensity of AU6 (orbicularis oculi, pars

orbitalis) and AU12 (zygomaticus major).2 AU presence

was annotated using a binary scale where 0 corresponded to

1
Note that an earlier version of Study 1 was previously published as a con-

ference paper (Girard et al., 2019).

2
FACS includes instructions for determining whether an image includes

AU6, AU12, or both (Ekman et al., 2002, pp. 188–193).

Fig. 1 Example images from Duchenne and non-Duchenne smiles in the BP4D+ dataset with smile intensity (SMI) and eye constriction intensity (ECI)

scores. These examples are typical in terms of intensity and the presence of additional action units
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the absence of the AU and 1 corresponded to its presence at

any intensity level. AU intensity was annotated using a six-

point ordinal scale where 0 corresponded to the absence of the

AU and 1 through 5 corresponded to the official FACS inten-

sity levels (i.e., trace, slight, marked, extreme, and maximum,

respectively).

As reported by Zhang et al. (2016), a subset of 94 task

videos was coded by two or more coders to assess the

frame-by-frame reliability of the AU presence annotations.

Inter-coder agreement was calculated using the generalized S

score (also called the Brennan-Prediger kappa coefficient;

Gwet, 2014), which adjusts for chance agreement and can

accommodate nominal or ordinal categories through different

weighting schemes. Scores above 0.60 and 0.80 were

interpreted as “good” and “very good,” respectively (Gwet,

2014). Inter-coder agreement for AU presence was good for

both AU6 (Snominal = 0.73) and AU12 (Snominal = 0.77).

Similarly, a subset of nine task videos was coded by two

coders to assess the reliability of the intensity annotations.

Inter-coder agreement for AU intensity was good for AU6

(Sordinal = 0.70) and very good for AU12 (Sordinal = 0.84).

We used the FACS codes from the BP4D+ database to

identify all smile events, which we defined as sequences of

consecutive video frames during which AU12 was coded as

present. We excluded one participant who was an outlier in

terms of age (i.e., 66 years old) but retained all others who

smiled at least once, resulting in a sample of 751 smile events

from 136 participants. The number of smile events per partic-

ipant ranged from 3 to 11 (M = 5.5, SD = 2.0), and the duration

of events ranged from 0.1 to 20.1 s (M = 6.0, SD = 5.3).

Participants were all students at Binghamton University. The

retained sample was 60% Female and 40%Male; 46%White,

34% Asian, 10% Latino/Hispanic, and 7% Black; and ages

ranged from 18 to 30 years (M = 20.2, SD = 2.5).

Model Formulation

In addition to providing descriptive statistics and a heteroge-

neous correlation matrix that accommodates ordinal variables

(Fox, 2019), we built several sets of regression models to

explore our research questions. To investigate our first re-

search question (i.e., to quantify the zero-order relationships

between self-reported positive emotion and the smile charac-

teristic variables), we estimated separate models in which self-

reported positive emotion was regressed on each smile char-

acteristic variable as a single predictor. Slopes in these single-

predictor models represent the strength of the overall relation-

ship between the predictor and self-reported positive emotion,

including any variance that predictor may share with the other

smile characteristic variables.

To investigate our second research question (i.e., to deter-

mine if eye constriction presence and intensity predict self-

reported positive emotion above-and-beyond the other smile

characteristic variables), we estimated two related models

with multiple predictors. In Model 1A, we regressed self-

reported positive emotion on an ordinal variable representing

the smile’s intensity, a continuous variable representing the

smile’s standardized duration, and a binary variable (i.e., dum-

my code) representing eye constriction presence. In Model

1B, we replaced the eye constriction presence binary variable

with an ordinal variable representing eye constriction intensi-

ty. Slopes in these multiple regression models represent the

strength of the unique/partial relationship between a predictor

and self-reported positive emotion, controlling for all the other

predictor variables. For example, the slope of eye constriction

presence in Model 1A answers the question, “If the smile’s

intensity and duration are already known, how much does

learning whether it included eye constriction help us to predict

self-reported positive emotion?”

To investigate our third research question (i.e., to determine

if the relationships between self-reported positive emotion and

the smile characteristic variables differed across tasks), we

further modified Models 1A and 1B by adding moderation

by a nominal variable representing the task each smile oc-

curred during. In Model 2A, self-reported positive emotion

was regressed on task, smile intensity, smile duration, eye

constriction presence, and the interactions of task with smile

intensity, smile duration, and eye constriction presence. In

Model 2B, self-reported positive emotion was regressed on

task, smile intensity, smile duration, eye constriction intensity,

and the interactions of task with smile intensity, smile dura-

tion, and eye constriction intensity. These models allowed us

to estimate the effect of each smile characteristic variable in

each task (i.e., by adding the smile characteristic variable’s

main effect to the interaction effect of that same smile charac-

teristic variable and task).

Model Building

In building these models, several aspects of the data required

specialized treatment. First, the models included multiple ob-

servations (i.e., smile events) from each participant. To ac-

commodate this hierarchical structure, we used multilevel re-

gression models with a two-level structure, nesting smile

event observations (level 1) within participants (level 2).

Varying effects3 were estimated to allow participants to have

different average levels for variables (i.e., intercepts) and dif-

ferent relationships between variables (i.e., slopes). In

interpreting the results, we focused on the population-level

effects,4 which estimate the central tendencies of the distribu-

tion of varying effects (e.g., what is the typical intercept or

slope in the population?). Varying effects were added for all

smile characteristic variables in all models, but not for task or

3
Varying effects are also called “random effects.”

4
Population-level effects are also called “fixed effects.”
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the task-by-smile-characteristic interaction effects—there

were too few observations to support the estimation of

participant-varying task effects, so population-level task ef-

fects were estimated instead.

Second, the outcome variable (i.e., self-reported emotion)

was ordinal. To accommodate this non-normal distribution,

we used a form of ordinal regression called the “cumulative”

model, which assumes that the ordinal scores come from

discretization of a continuous latent variable and estimates K

thresholds to partition the latent variable into K + 1 observ-

able, ordered categories (Bürkner &Vuorre, 2019). This latent

variable then takes the place of the predicted variable in the

regression equation and the thresholds take the place of the

model intercept.

Third, many predictor variables (e.g., smile intensity) were

ordinal. To model these predictors, we used the monotonic

effects approach (Bürkner & Charpentier, 2020), which repre-

sents the relationship between an ordinal predictor and the

outcome variable as a piecewise linear curve where all com-

ponents have the same sign. The parameterization of each

monotonic effect has two parts: a scale parameter, which is

essentially a regression coefficient and can be interpreted as

the expected average distance between two adjacent ordinal

categories, and a vector of shape parameters, which form a

simplex5 and can be interpreted as the expected, normalized

distances between each pair of adjacent categories. In addition

to providing these intuitive interpretations, this approach also

allows (1) the data to inform the sign of the scale parameter,

(2) the distance between adjacent categories to differ, and (3)

interaction terms and varying effects involving one or more

ordinal predictors.

Finally, we had to incorporate all these approaches within

the samemodels, which required a particularly flexiblemodel-

ing framework. To do so, we implemented our models within

a Bayesian multilevel modeling framework (Gelman et al.,

2014; McElreath, 2016). In brief, Bayesian methods combine

existing knowledge about the probability of different param-

eter values (in the form of prior distributions) with observed

data to generate updated knowledge about the parameter

values (in the form of posterior distributions). Statistical infer-

ences can then be made using this updated knowledge (e.g.,

by estimating the central tendency and spread of the posterior

distributions). We estimated our models using the brms pack-

age (Bürkner, 2017, 2018) as a high-level interface to the Stan

platform for statistical computing (Gelman et al., 2015).

Model estimation was performed through Markov chain

Monte Carlo (Neal, 1993) via the No-U-Turn Sampler

(Hoffman & Gelman, 2014) algorithm, which converges

quickly in high-dimensional models and eliminates the need

for any hand-tuning. Full details about model estimation (e.g.,

number of chains and iterations) are provided in the

supplemental materials.

In setting the prior distributions for our model parameters,

we strove to exclude unreasonable values without ruling out

reasonable values (Gelman et al., 2014). For the slope param-

eters, we used normal priors (μ = 0, σ = 1) in order to apply

light regularization and deter overfitting. For the intercept pa-

rameters, we used Student’s t priors (ν = 3, μ = 0, σ = 5) in

order to reflect that we did not have substantive hypotheses

about these parameters. For the varying effects’ standard de-

viations, we used nonnegative Student’s t priors (ν = 3, μ = 0,

σ = 1) in order to reflect that negative standard deviations are

unreasonable. For the correlations between varying effects,

we used LKJ priors (η = 1) in order to assign equal probability

to all valid correlation matrices (Lewandowski et al., 2009).

Finally, for models including monotonic effects, we used

Dirichlet priors (α = 1) to assign equal probability to all valid

shape parameter simplexes (Bürkner & Charpentier, 2020).

Model Interpretation

In interpreting our model results, we had two primary goals.

First, we wanted to estimate the magnitude (i.e., size and sign)

of each important effect and the amount of precision (i.e.,

certainty) in these estimates. To accomplish these goals within

a Bayesian framework, we represented the magnitude of each

effect as the central tendency of its posterior distribution and

the precision of each effect as the spread of its posterior dis-

tribution. Specifically, we used the posterior median as our

measure of central tendency and the 89% highest density in-

terval (HDI) as our measure of spread. The posterior median

minimizes the expected absolute error and the 89% HDI is the

narrowest continuous interval that contains 89% of the poste-

rior density. The 89% HDI has become common in Bayesian

data analysis because it is more stable than the 95% HDI

(Kruschke, 2014) and because it highlights the arbitrariness

of such threshold conventions in the first place (McElreath,

2016). Finally, for each effect, we calculated the probability of

direction (pd), which varies from 50% to 100% and can be

interpreted as the probability that a parameter is strictly posi-

tive or negative (i.e., the proportion of the posterior

distribution that has the same sign as the median; Makowski

et al., 2019). We interpreted effects with pd values above 95%

as statistically “significant” and effects with pd values above

90% as “suggestive.” However, we appreciate the arbitrari-

ness of these cutoffs and encourage readers to carefully con-

sider the 89% HDIs and raw pd values.

Another goal was to quantify the proportion of variance in

the outcome variable explained by eachmodel. To accomplish

this goal, we calculated Bayesian R2 values using the ap-

proach described by Gelman et al. (2019). Because our

models in Study 1 were not Gaussian, we used the approach

of McKelvey and Zavoina (1975) to estimate the error

5
In this context, a simplex is a vector where each element is a real number

between 0 and 1 and all the elements add up to 1.
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variance given our logit link function (see the supplemental

materials for details); this approach yielded pseudo-R2 values

on the scale of the latent variables underlying our ordinal

variables. Note that, as described by Gelman et al. (2019),

the variance estimates contributing to the Bayesian R2 come

from the model rather than directly from the data (as in

frequentist versions of R2) because, “from a Bayesian perspec-

tive, a concept such as ‘explained variance’ can ultimately

only be interpreted in the context of a model” (p. 309).

Thus, differences in Bayesian R2 values between models

should be interpreted cautiously given the absence of a fixed

denominator.

Finally, to address the possibility of multicollinearity (i.e.,

near-perfect associations between predictors) leading to

instability/imprecision in our primary slope estimates, we cal-

culated variance inflation factors (VIFs) for the eye constric-

tion presence and intensity variables, remaining vigilant for

values greater than 5 (Sheather, 2009). These VIFs were cal-

culated from the pseudo-R2 values of supplemental models in

which the eye constriction variables were regressed on the

other predictor variables (using the same framework as

above, with the one deviation being that binary regression

was used to predict eye constriction presence; Bergtold

et al., 2010).

Results

We first examined the main study variables’ distributions

(Fig. 2) and then calculated their summary statistics by exper-

imental task (Table 2). Despite the limitations of this simple

summary approach (e.g., calculating the mean of ordinal var-

iables and aggregating all smiles observed during a task is not

ideal), it provided several useful pieces of information and

helped motivate our more sophisticated statistical models.

First, the results for self-reported positive emotion match what

we would expect based on theory (e.g., that amusement is

more positive than fear or pain) and serves as a basic manip-

ulation check. Second, it revealed that mean self-reported pos-

itive emotion and all smile characteristic variables ranked the

tasks in the same order: joke (amusement), song (embarrass-

ment), darts (fear), and then water (pain). The consistency of

the task ordering by different variables suggests that all these

variables are indexing similar information. Finally, the per-

centage of smiles that included eye constriction was much

higher than expected in the non-amusement tasks. Indeed,

most smiles included eye constriction, even when participants

reported feeling little or no positive emotion. As shown in

Fig. 3, when ignoring task and participant identity, eye con-

striction presence performed poorly as a diagnostic test of

positive emotion (Fletcher et al., 2014) with a sensitivity of

0.90 and a specificity of 0.20 (positive predictive value = 0.50,

negative predictive value = 0.69).

We next calculated correlations between the primary study

variables as further descriptive statistics. We interpreted cor-

relations as “negligible” when less than 0.1 in absolute value,

as “small” when between 0.1 and 0.3, as “medium” when

between 0.3 and 0.5, as “large” when between 0.5 and 0.9,

and as “almost perfect” when greater than 0.9. These results

are presented in Table 3 and show that all variables were

positively correlated with one another. The correlation be-

tween the two eye constriction variables was almost perfect;

the correlations with smile intensity were large for both eye

constriction variables; the correlations with smile duration

were medium for eye constriction presence and large for both

eye constriction intensity and smile intensity; and the correla-

tions with self-reported positive emotion were medium for

smile intensity and small for the other variables.

In the single-predictor models exploring our first research

question, all smile characteristic variables were significantly

and positively associated with self-reported positive emotion

(Table 4). The slopes are difficult to compare across predictors

because they are scaled differently. Instead, we consider the

amount of variance explained by each smile characteristic

predictor over-and-above that explained by the varying inter-

cepts alone. This value was roughly 13% for smile intensity,

20% for smile duration, 3% for eye constriction presence, and

8% for eye constriction intensity (noting again the caveat

about Bayesian R2 values having different denominators

Table 2 Summary statistics per

emotion-elicitation task Task Intended

emotion

SRPE

Mean (SD)

Smile

count

Duchenne

smile

count (%)

EC

intensity

Mean (SD)

Smile

intensity

Mean (SD)

Smile

duration

Mean (SD)

Joke Amusement 4.04 (1.17) 210 195 (95%) 3.94 (1.06) 3.14 (0.73) 9.48 (4.92)

Song Embarrassment 2.12 (1.52) 249 208 (87%) 3.65 (1.22) 2.99 (0.81) 8.96 (5.29)

Darts Fear 1.67 (1.34) 205 174 (85%) 3.36 (1.22) 2.63 (0.81) 5.48 (4.70)

Water Pain 1.04 (0.28) 87 58 (69%) 2.64 (1.20) 2.28 (0.90) 4.34 (5.06)

SRPE self-reported positive emotion, EC eye constriction. Self-report and intensity variables range from 0 to 5.

Duration is given in seconds
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across models). These results suggest that, in terms of zero-

order relationships, (1) Duchenne smiles were associated with

higher self-reported positive emotion than non-Duchenne

smiles, (2) the more intense the eye constriction in a smile,

the higher self-reported positive emotion tended to be, (3) both

smile intensity and smile duration were also important indica-

tors of self-reported positive emotion, seemingly evenmore so

than was eye constriction.

In the set of multiple regression models exploring our sec-

ond research question (Table 5, Figs. 4 and 5), the unique

effects of smile intensity and duration were significant but

the unique effects of eye constriction presence and intensity

were non-significant. These results suggest that, if smile in-

tensity and smile duration are already known, then learning

about the presence or intensity of eye constriction provides

very little new information about the participant’s self-

reported positive emotion. Given that the multicollinearity

diagnostic values for eye constriction presence in Model 1A

(VIF = 2.97) and eye constriction intensity in Model 1B

(VIF = 2.45) were well-below the threshold value of 5.00,

we discount the alternative explanation that the eye constric-

tion effects were nonsignificant due to problematic levels of

multicollinearity. Finally, even the best-performing Model 1B

only explained half of the variance in self-reported positive

emotion (i.e., Pseudo-R2 = 0.50), which indicates that infer-

ring felt positive emotion from these smile characteristics

was quite difficult.

In the set of multiple regression models exploring our third

research question (Table 6), the effects of the smile character-

istic variables differed across tasks. In both models, the partial

association between smile intensity and self-reported positive

emotion was significant and positive in the joke (amusement)

task, suggestive and positive in the song (embarrassment)

task, nonsignificant in the darts (fear) task, and significant

and negative in the water (pain) task. Thus, when listening

to a joke, greater smile intensity indicated more positive emo-

tion, but when holding a hand in ice water, greater smile in-

tensity indicated less positive emotion. In both models, the

partial association between smile duration and self-reported

positive emotion was nonsignificant in the joke (amusement)

and song (embarrassment) tasks and significant and positive

in the darts (fear) and water (pain) tasks. Thus, when having

darts thrown nearby or holding a hand in ice water, longer

smiles indicated more positive emotion (and shorter smiles

indicated less positive emotion). Finally, both eye constriction

presence (in Model 2A) and eye constriction intensity (in

Model 2B) had the same pattern of partial association with

self-reported positive emotion: nonsignificant in the joke

(amusement), song (embarrassment), and darts (fear) tasks

but significant and negative in the water (pain) task. Thus,

when holding a hand in ice water, eye constriction indicated

less positive emotion.

Fig. 2 Histograms depicting the distributions of each study variable

Fig. 3 Contingency table and heatmap depicting the count (and

proportion) of smiles observed with and without eye constriction and

self-reported positive emotion
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Study 2

Our second study focused on how third-party observers

would perceive the smile events from the first study. It

sought to answer several research questions: (1) What are

the zero-order relationships between observer-rated posi-

tive emotion, self-reported positive emotion, eye constric-

tion presence, eye constriction intensity, smile intensity,

and smile duration? (2) Are eye constriction presence and

intensity predictive of observer-rated positive emotion

when smile intensity and smile duration are controlled

for? (3) Do the relationships between self-reported posi-

tive emotion and the smile characteristic variables differ

across emotional contexts/experimental tasks? (4) To

what extent did observer-rated positive emotion match

the smiling participants’ self-reported positive emotion?

Data

We analyzed the same 751 smile events from Study 1. Video

clips of each smile event were created by segmenting the

original task videos. This segmentation was accomplished

using the FFmpeg software program (2019), and care was

taken to encode the clips using settings that would maximize

their compatibility with web browsers (see the supplemental

materials). Audio tracks were not included in the video clips

because we wanted the perceptual ratings to reflect only the

visual appearance of the smiles.

Perceptual Ratings

The smile event video clips were separated into 20 roughly

equal groups. Observers were recruited using Prolific (www.

prolific.co) to view and rate all clips in each group. Observers

were required to have USA nationality, normal or corrected to

normal vision, English language fluency, no history of mild

cognitive impairment or dementia, and an approval rate of 90%

or higher across 10 or more previous submissions. Using the

formr platform (Arslan et al., 2020), observers signed a consent

form, provided some basic information about their own back-

ground and personality, and then viewed each clip in their

assigned group (presented in a randomized order) and provided

perceptual ratings about it on three scales. Task instructions

were presented before the first video clip and stated “After

watching each video, please rate how much the person in the

video seemed to be feeling the following: Amused (pleasantly

entertained or diverted as by something funny), Comfortable

(free from stress or tension), and Happy (enjoying or charac-

terized by well-being and contentment).” Ratings were made

on three separate, seven-point ordinal scales from 1 to 7 (see

the supplemental materials for further details about the rating

scales). Note that the observers were blinded to the fact that the

smiles were observed during different experimental tasks.

Four approaches were used simultaneously to ensure data

quality. First, observers were prescreened to have high ap-

proval ratings as previously stated. Second, the time each ob-

server took to complete the study was recorded and observers

who completed the study in less time than it would take to

Table 3 Heterogeneous

correlation matrix for the study

variables

1. ECP 2. ECI 3. SMI 4. SMD 5. SRPE 6. ORPE

1. Eye constriction presence

(ECP)

Polychoric Polychoric Polyserial Polychoric Polyserial

2. Eye constriction intensity

(ECI)

.97 Polychoric Polyserial Polychoric Polyserial

3. Smile intensity (SMI) .67 .69 Polyserial Polychoric Polyserial

4. Smile duration (SMD) .46 .51 .56 Polyserial Pearson

5. Self-reported PE (SRPE) .21 .27 .34 .26 Polyserial

6. Observer-rated PE (ORPE)* .49 .51 .57 .40 .34

PE positive emotion. Lower triangle contains correlation values. Upper triangle contains correlation types, *This

variable is described in Study 2

Table 4 Population-level effects

from the single-predictor models

predicting self-reported positive

emotion

Single predictor Median 89% HDI pd Pseudo-R2 89% HDI

None (intercept only) 0.24 [0.18, 0.30]

Smile intensity 0.61 [0.46, 0.77] 100% 0.37 [0.29, 0.45]

Smile duration 0.68 [0.50, 0.86] 100% 0.44 [0.37, 0.52]

Eye constriction presence 0.84 [0.44, 1.26] 100% 0.27 [0.20, 0.33]

Eye constriction intensity 0.38 [0.27, 0.51] 100% 0.32 [0.25, 0.40]
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watch all video clips were excluded. Third, observers were

asked to watch a brief video that showed a number, some

letters, and an image of a food item. Observers were required

to answer, in unstructured text, what was shown in the video;

those with unintelligible or incorrect answers were excluded.

Finally, at two points in the study (halfway and at the end),

observers were shown an “attention check” video, which be-

gan as a typical smile event video clip but then quickly

transitioned to showing text that instructed participants to fill

out a specific combination of answers (to prove they were

watching the video and paying attention). Observers who

failed one or both attention checks were excluded.

For each of the 20 groups of smile events, we recruited six

observers to serve as raters; thus, we began with a sample of

120 observers. Fifteen observers (13%) were excluded for one

or more of the above reasons and new observers were recruit-

ed to replace them. Additionally, six observers enrolled in two

different groups. As a result, we had a final sample of 114

included observers. Observers reported on their gender (71

women, 37 men, 2 non-binary, and 4 prefer not to answer),

age (min = 18,mdn = 26,max = 69), and education (2 less

than high school, 20 high school or equivalent, 38 some col-

lege, 42 college degree, and 12 graduate degree).

Inter-observer Reliability

The inter-observer reliability of the perceptual ratings was

estimated per rating scale using the agreement software

package (Girard, 2020), which uses the approach described

by Gwet (2014) to estimate variance components in the pres-

ence of missing data and optionally estimates average-score

intraclass correlation coefficients (ICCs) and bootstrapped

confidence intervals (CIs). Specifically, we used ICC model

2A6 and estimated the absolute agreement reliability of the

average of all six observers’ scores. This “planned missing

data” design (Graham et al., 2006) allowed us to use a two-

way ICC model without needing all observers to score all

videos.

We considered ICC values above 0.50 to be evidence of

“moderate” reliability, values above 0.75 to be evidence of

“good” reliability, and values above 0.90 to be evidence of

“excellent” reliability (Koo & Li, 2016). Based on their CIs,

the inter-observer reliability of the average of all six ob-

servers’ scores was good for the question about how amused

the smiling participant appeared to feel, ICC = 0.83, 95% CI:

[0.81, 0.84], moderate or good for the question about how

comfortable the smiling participant appeared to feel, ICC =

0.74 [0.71, 0.76], and good for how happy the smiling partic-

ipant appeared to feel, ICC = 0.82 [0.80, 0.84].

6
I n t e r - r a t e r r e l i a b i l i t y unde r ICC mode l 2A equa l s σ̂2

o= 
σ̂2o þ σ̂2r þ σ̂2

e

! "
=k

!
where bσ2

o is the estimated object (i.e., video)

variance, bσ2
r is the estimated rater variance, bσ2

e is the estimated residual
variance, and k is the number of raters whose scores are being averaged
per object.

Fig. 4 Conditional effects of smile duration, smile intensity, and eye

constriction presence in the prediction of self-reported positive emotion

in Model 1A (error bars show 89% HDIs). Note that, for visual clarity,

self-reported positive emotion is plotted on a continuous scale; however,

the model treated this variable as ordinal

Table 5 Population-level effects

from the multilevel models

predicting self-reported positive

emotion with covariates

Model 1A Model 1B

Parameter Median 89% HDI pd Median 89% HDI pd

Smile intensity 0.47 [+0.30, 0.63] 100% 0.43 [+0.25, 0.62] 100%

Smile duration 0.42 [+0.22, 0.63] 100% 0.41 [+0.20, 0.62] 99.9%

Eye constriction presence 0.01 [−0.48, 0.49] 51.0%

Eye constriction intensity 0.07 [−0.07, 0.20] 78.8%

Bayesian pseudo-R2 0.48 [+0.41, 0.55] 0.50 [+0.42, 0.58]

40 Affective Science  (2021) 2:32–47



Latent Variable Modeling

After averaging across observers, scores on the rating scales

were all highly inter-correlated (r = 0.80 for amused and com-

fortable, r = 0.87 for comfortable and happy, and r = 0.92 for

amused and happy). As such, we estimated a three-indicator

confirmatory factor analysis (CFA) model to capture their

shared variance.7 This analysis was conducted in a Bayesian

framework using the blavaan software package (Merkle &

Rosseel, 2018). All latent and manifest variables were stan-

dardized to zero mean and unit variance. Normal priors (μ = 0,

σ = 5) were used for manifest variable intercept and factor

loading parameters, and gamma priors (α = 1, β = 1) were

used for the manifest variable precision (i.e., residual standard

deviation) parameters. Like the Bayesian multilevel models,

the CFA model was estimated in Stan using the No-U-Turn

Sampler (full details in the supplemental materials).

The parameter estimates from the CFA model are provided

in Table 7. We used the approach of Garnier-Villarreal and

Jorgensen (2020) to evaluate model fit. The Bayesian

7
McNeish and Wolf (2020) provide compelling arguments for why this ap-

proach of estimating a CFA model with freely estimated factor loadings and

residuals is preferable to using a simpler approach, such as sum or mean

scores, even with highly inter-correlated indicators.

Table 6 Population-level effects

from the multilevel models

predicting self-reported positive

emotion moderated by task

Model 2A Model 2B

Parameter Median 89% HDI pd Median 89% HDI pd

Smile intensity

Joke (Amus.) Task 0.49 [+0.15, +0.86] 99.1% 0.53 [+0.11, +0.95] 98.4%

Song (Emba.) Task 0.47 [+0.02, +0.90] 93.7% 0.14 [−0.42, +0.69] 65.0%

Darts (Fear) Task −0.03 [−0.56, +0.50] 53.4% 0.05 [−0.53, +0.67] 55.1%

Water (Pain) Task −1.20 [−2.12, −0.29] 99.1% −0.95 [−1.92, +0.04] 95.3%

Smile duration

Joke (Amus.) Task 0.03 [−0.26, +0.32] 56.8% 0.02 [−0.28, +0.33] 53.2%

Song (Emba.) Task 0.18 [−0.14, +0.50] 82.2% 0.10 [−0.25, +0.44] 67.3%

Darts (Fear) Task 0.70 [+0.25, +1.14] 99.4% 0.74 [+0.29, +1.21] 99.5%

Water (Pain) Task 1.01 [+0.17, +1.82] 97.1% 1.20 [+0.31, +2.08] 98.4%

Eye constriction presence

Joke (Amus.) Task 0.11 [−0.59, +0.82] 59.7%

Song (Emba.) Task −0.58 [−1.42, +0.25] 86.6%

Darts (Fear) Task −0.53 [−1.50, +0.41] 81.3%

Water (Pain) Task −1.59 [−2.95, −0.13] 96.4%

Eye constriction intensity

Joke (Amus.) Task 0.03 [−0.20, +0.27] 58.9%

Song (Emba.) Task 0.15 [−0.18, +0.44] 75.8%

Darts (Fear) Task −0.24 [−0.61, +0.11] 86.9%

Water (Pain) Task −1.56 [−2.58, −0.66] 99.9%

Amus. amusement, Emba. embarrassment

Fig. 5 Conditional effects of smile duration, maximum smile intensity,

and eye constriction intensity in the prediction of self-reported positive

emotion in Model 1B (error bars show 89% HDIs). Note that, for visual

clarity, self-reported positive emotion is plotted on a continuous scale;

however, the model treated this variable as ordinal
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RMSEA fit index was 0.025 (scores below 0.050 are consid-

ered “good”), the adjusted Bayesian Γ̂ fit index was 0.989

(scores above 0.950 are considered “good”), the Bayesian

Mc fit index was 0.999 (scores above 0.900 are considered

“good”), and the Bayesian CFI fit index was 0.999 (scores

above 0.950 are considered “good”). Given the evidence of

good fit for this model, we extracted factor scores (i.e., latent

means) for use in later analyses (Devlieger & Rosseel, 2017).

Model Building and Interpretation

Our approach to model building and interpretation in Study 2

mirrored that from Study 1. That is, we built single-predictor

models and two sets of multiple regression models (one with-

out and one with moderation by task) using the Bayesian

multilevel modeling framework. There were two main differ-

ences to our approach in Study 2. First, to investigate our

fourth research question, we built an additional multilevel

model (using the same approach as in Study 1) in which

self-reported positive emotion was regressed on observer-

rated positive emotion. Second, for the other models, we re-

placed the ordinal outcome variable representing self-reported

positive emotion with a continuous outcome variable

representing observer-rated positive emotion (i.e., the factor

scores described above). As a result of this change, ordinal

regression and pseudo-R2 values were not necessary and

Gaussian regression and standardR2 values were used instead.

For the standard deviation of the Gaussian likelihood function

(i.e., the σ parameter), we used nonnegative Student’s t priors

(ν = 3, μ = 0, σ = 5).

Results

The final row in Table 3 provides the correlations involving

observer-rated positive emotion. Just as with self-reported

positive emotion, all these correlations were positive. Using

the same interpretive heuristics as in Study 1, the correlations

with observer-rated positive emotion were large for smile in-

tensity and eye constriction intensity and medium for smile

duration, eye constriction presence, and self-reported positive

emotion.

In the single-predictor models exploring our first research

question (regarding zero-order relationships), all smile char-

acteristic variables were significantly and positively associat-

ed with observer-rated positive emotion (Table 8). The

amount of variance explained by each smile characteristic

predictor, over-and-above that explained by the varying inter-

cepts alone, was roughly 30% for smile intensity, 24% for

smile duration, 10% for eye constriction presence, and 28%

for eye constriction intensity (noting again the caveat about

Bayesian R2 values having different denominators across

models). These results suggest that, in terms of zero-order

relationships, (1) Duchenne smiles were perceived as more

positive than non-Duchenne smiles, (2) more intense eye con-

striction was perceived as more positive than less intense eye

constriction, (3) more intense smiles were perceived as more

positive than less intense smiles, and (4) longer smiles were

perceived as more positive than shorter smiles.

In the set of multiple regression models exploring our sec-

ond research question, the unique/partial effects of smile in-

tensity, smile duration, eye constriction presence, and eye

constriction intensity were all significant (Table 9, Figs. 6

and 7). These results suggest that each of these variables

added reliable new information to the prediction of observer-

rated positive emotion, even when the other variables were

already known. The combination of varying intercepts, smile

intensity, smile duration, and eye constriction intensity (i.e.,

Model 3B) explained a little more than half of the variance

in observer-rated positive emotion (R2 = 0.54). Thus, ob-

servers’ perceptions of positive emotion were likely being

substantially influenced by other, unmeasured cues as well.

Multicollinearity was not problematic for the eye constriction

slopes in either Model 3A (VIF = 2.98) or Model 3B (VIF =

2.45).

Table 7 Results from the Bayesian confirmatory factor analysis model

Parameter Median 89% HDI

Amused factor loading 0.92 [0.88,0.97]

Comfortable factor loading 0.87 [0.82,0.91]

Happy factor loading 1.00 [0.96,1.04]

Amused residual SD 0.15 [0.14,0.16]

Comfortable residual SD 0.25 [0.22,0.27]

Happy residual SD 0.00 [0.00,0.01]

RMSEA = 0.025, bΓadj ¼ 0:989, Mc = 0.999, CFI = 0.999

Table 8 Population-level effects

from the single-predictor models

predicting observer-rated positive

emotion

Single predictor Median 89% HDI pd R2 89% HDI

None (intercept only) 0.10 [0.04, 0.16]

Smile intensity 0.48 [0.41, 0.56] 100% 0.40 [0.34, 0.45]

Smile duration 0.42 [0.35, 0.48] 100% 0.34 [0.27, 0.40]

Eye constriction presence 0.91 [0.76, 1.06] 100% 0.20 [0.14, 0.26]

Eye constriction intensity 0.31 [0.27, 0.36] 100% 0.38 [0.32, 0.44]
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In the set of multiple regression models exploring our third

research question (Table 10), the unique/partial effects of the

smile characteristic variables differed across tasks. In both

models (i.e., controlling for eye constriction presence and in-

tensity), the partial association between smile intensity and

observer-rated positive emotion was significant and positive

in the joke (amusement), song (embarrassment), and darts

(fear) tasks but was nonsignificant in the water (pain) task.

In Model 4A, the partial association between smile duration

and observer-rated positive emotion was significant and pos-

itive in the joke (amusement) and song (embarrassment) tasks

only; in Model 4B, these effects were not significant, although

the effect was suggestive and positive in the song

(embarrassment) task. In Model 4A, the partial association

between eye constriction presence and observer-rated positive

emotion was non-significant in all tasks, although it was sug-

gestive and positive in the song (embarrassment) task. In

Model 4B, the partial association between eye constriction

intensity and observer-rated positive emotion was significant

and positive in the joke (amusement), song (embarrassment),

and darts (fear) tasks but significant and negative in the water

(pain) task. Thus, more intense smiles were perceived as more

positive than less intense smiles when those smiles occurred

while listening to a joke, singing a silly song, or having darts

thrown nearby but not when those smiles occurred while hold-

ing a hand in ice water. Similarly, smiles with more intense

eye constriction were perceived as more positive than smiles

with less intense eye constriction when those smiles occurred

while listening to a joke, singing a silly song, or having darts

thrown nearby, but the opposite was true when the smile oc-

curred while holding a hand in ice water. Because the ob-

servers were blind to what task the smiles came from, these

differences were likely due to unmeasured context-specific

behavioral cues.

Finally, the Bayesian multilevel model found that the

population-level estimate of the effect of observer-rated posi-

tive emotion was significant and positive (0.90, 89% HDI:

[0.72, 1.09], pd = 100% ). This model explained a little less

than half of the variance in self-reported positive emotion

(R2 = 0.44 [0.36, 0.51]). Untrained third-party observers thus

performed similarly to, though a little worse than, Models 1A

and 1B in predicting self-reported positive emotion and they

too left a substantial amount of variance unexplained.

General Discussion

The common view of emotional expressions is that certain

configurations of facial-muscle movements reliably reveal cer-

tain categories of emotion (Barrett et al., 2019). The principal

exemplar of this view is the Duchenne smile, a configuration

of facial-muscle movements (i.e., smiling with eye constric-

tion) that has been argued to reliably reveal positive emotion.

We formalized a list of hypotheses that have been proposed

Table 9 Population-level effects

from the multilevel models

predicting observer-rated positive

emotion with covariates

Model 3A (Presence) Model 3B (Intensity)

Parameter Median 89% HDI pd Median 89% HDI pd

Smile intensity 0.37 [0.28, 0.45] 100% 0.32 [0.22, 0.51] 100%

Smile duration 0.16 [0.09, 0.23] 100% 0.10 [0.04, 0.18] 99.1%

Eye constriction presence 0.22 [0.06, 0.36] 98.9%

Eye constriction intensity 0.13 [0.08, 0.19] 100%

Bayesian R2 0.49 [0.43, 0.55] 0.54 [0.48, 0.59]

Fig. 6 Conditional effects of smile duration, smile intensity, and eye constriction presence in the prediction of observer-rated positive emotion in Model

3A (error bars show 89% HDIs)
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regarding the Duchenne smile (Table 1), briefly reviewed the

literature to identify limitations and unanswered questions, and

conducted two empirical studies to advance the literature.

Study 1 supported H1 that positive emotion reliably trig-

gers the production of Duchenne smiles: 90% of the smiles

that occurred when positive emotion was reported included

eye constriction. However, contrary to H3 that Duchenne

smiles rarely occur in the absence of positive emotion, eye

constriction was also present in 80% of the smiles that

occurred when positive emotion was not reported.

Furthermore, eye constriction presence only explained 27%

of the variance in self-reported positive emotion and eye con-

striction intensity only explained 32%. Thus, results only

weakly supported H4 that eye constriction reliably distin-

guishes between positive emotion and false/miserable smiles.

Eye constriction provided some information about positive

emotion, but far less than what we would consider “lawful

behavior.” These results are consistent with previous findings

that Duchenne smiles occurred at similar (and high) rates in

both spontaneous and deliberate conditions (Krumhuber &

Manstead, 2009).

Study 1 contradicted H5 that eye constriction is a more

reliable marker of positive emotion than other smile charac-

teristics. Smile intensity and duration explained more variance

in self-reported positive emotion than did eye constriction and

were significant predictors of positive emotion even when

controlling for eye constriction presence and intensity. In con-

trast, the effects of eye constriction presence and intensity

were both nonsignificant when controlling for smile intensity

and duration. These results suggest that, of the information

that eye constriction provided about self-reported positive

emotion, nearly all was shared with smile intensity and dura-

tion. These results are consistent with previous findings that

Duchenne smile perception studies had smaller effect sizes

when controlling for smile intensity (Gunnery & Ruben,

2016) and that training observers to focus on smile duration

led to higher accuracy in distinguishing spontaneous and

posed smiles than training them to focus on eye constriction

(Ruan et al., 2020).

Study 1 also contradicted H6 that the positive relationship

between Duchenne smiles and experienced positive emotion

is context-independent. When examining this relationship in

each experimental task separately, the only significant partial

effect was negative. Thus, when holding a hand in ice water,

eye constriction during smiling was associated with less self-

reported positive emotion. This result is consistent with re-

search linking eye constriction and pain (Kunz et al., 2019)

and may be viewed by some to support the theory that eye

constriction signals strong emotional intensity/arousal in both

positive and negative contexts8 (e.g., Fridlund, 1994; Malek

et al., 2019; Messinger et al., 2012). Interestingly, the effects

of smile intensity and duration also varied by task. That none

of these smile characteristics was a reliable marker of positive

emotion in all tasks suggests that context is critically impor-

tant when inferring positive emotion from smiles.

Study 2 supported H7 that Duchenne smiles are perceived

as more positive. Eye constriction presence and intensity ex-

plained 20% and 38% of the variance in observer-rated posi-

tive emotion, respectively. When controlling for smile inten-

sity and duration, the associations between observer-rated

positive emotion and eye constriction presence and intensity

were still significant. This pattern of results—non-significant

effects in Study 1 (reported emotion) and significant effects in

Study 2 (perceived emotion)—is consistent with Fernández-

Dols and Ruiz-Belda’s (1997) argument that the Duchenne

smile is an “artistic truth” (i.e., a widely shared belief/

convention borne out by perception studies) but not an “opti-

cal truth” (i.e., an empirical association borne out by produc-

tion studies).

Study 2 only weakly supported H8 that the positive rela-

tionship between Duchenne smiles and perceived positive

emotion is context-independent. The partial effect of eye con-

striction presence was non-significant in all four tasks (though

suggestive and positive in the song/embarrassment task). The

partial effect of eye constriction intensity was significant and

Fig. 7 Conditional effects of smile duration, smile intensity, and eye constriction intensity in the prediction of observer-rated positive emotion in Model

3B (error bars show 89% HDIs)

8
Testing this theory is beyond the scope of this paper (and would require

looking beyond just smiles). However, we note that the non-significant partial

effects of eye constriction in the joke task are problematic for this theory.
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positive in three tasks but was significant and negative in the

fourth. The perceived positivity of a smile with eye constric-

tion thus did depend on its context.

The following limitations should be considered while

interpreting these results. First, all participants were students

at an American university and all observers were American;

future work with other populations is needed. Second, we

examined behavior in a controlled laboratory setting, which

may differ from behavior in more naturalistic settings. Third,

only a single positive context and emotion was examined;

future work on other positive contexts and emotions is needed.

Finally, experienced positive emotion was measured using a

single self-report item after each task, which may have been

influenced by subject effects (Weber & Cook, 1972) and may

not have described all moments within that task equally well.

In conclusion, we found that most of the hypotheses that

have been proposed about the Duchenne smile were either

contradicted by or only weakly supported by our data. Eye

constriction did provide some information about experienced

positive emotion, but this information was lacking in specific-

ity, already provided by other smile characteristics, and highly

dependent on context. The best support we found for the

Duchenne smile was that it was perceived as more positive

(although this also depended on context). Overall, our results

suggest that accurately inferring positive emotion from a smile

will require more sophisticated methods than simply looking

for the presence or absence (or even the intensity) of a single

facial-muscle movement. We believe that success in this en-

deavor will require the careful synthesis of additional behav-

ioral and contextual information.
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Table 10 Population-level effects

from the multilevel models

predicting observer-rated positive

emotion moderated by task

Model 4A (Presence) Model 4B (Intensity)

Parameter Median 89% HDI pd Median 89% HDI pd

Smile intensity

Joke (Amus.) Task 0.41 [+0.29, 0.54] 100% 0.31 [+0.19, +0.44] 100%

Song (Emba.) Task 0.35 [+0.22, 0.48] 100% 0.26 [+0.13, +0.39] 99.9%

Darts (Fear) Task 0.41 [+0.25, 0.57] 100% 0.34 [+0.19, +0.51] 99.9%

Water (Pain) Task 0.03 [−0.17, 0.22] 60.6% 0.11 [−0.11, +0.30] 79.4%

Smile duration

Joke (Amus.) Task 0.11 [+0.01, 0.21] 95.9% 0.03 [−0.08, +0.12] 66.7%

Song (Emba.) Task 0.15 [+0.05, 0.24] 99.5% 0.10 [+0.00, +0.19] 94.6%

Darts (Fear) Task 0.04 [−0.09, 0.17] 69.8% −0.02 [−0.14, +0.11] 58.3%

Water (Pain) Task −0.02 [−0.19, 0.14] 57.5% −0.06 [−0.22, +0.12] 70.5%

Eye constriction presence

Joke (Amus.) Task 0.22 [−0.08, 0.52] 87.4%

Song (Emba.) Task 0.21 [−0.02, 0.44] 92.2%

Darts (Fear) Task 0.19 [−0.06, 0.43] 88.9%

Water (Pain) Task 0.17 [−0.13, 0.47] 81.1%

Eye constriction intensity

Joke (Amus.) Task 0.18 [+0.11, +0.25] 100%

Song (Emba.) Task 0.14 [+0.06, +0.22] 99.7%

Darts (Fear) Task 0.14 [+0.07, +0.22] 99.8%

Water (Pain) Task −0.20 [−0.35, −0.03] 97.9%

Amus. amusement, Emba. embarrassment
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