

1 **Kinetic and Thermodynamic Control in Dynamic Covalent Synthesis**

2 Andrew J. Greenlee,^{†,‡} Chloe I. Wendell,^{†,‡} Morgan M. Cencer,[‡] Summer D. Laffoon,[‡] Jeffrey S.
3 Moore ^{*,‡,§}

4 [‡]Department of Chemistry, University of Illinois at Urbana–Champaign, 600 S Mathews Ave,
5 Urbana, Illinois 61801, United States

6 [#]Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–
7 Champaign, 405 N Mathews Ave, Urbana, Illinois 61801

8 **Keywords:** dynamic; covalent; reversible; kinetic; thermodynamic

9 **Abstract** In recent years, dynamic covalent chemistry (DCC) has seen the synthesis of
10 increasingly complex cyclooligomers, polymers, and diverse compound libraries. The reversible
11 formation of covalent bonds characteristic of DCC reactions favors thermodynamic product
12 distributions for simple unitopic reactions; however, kinetic effects are increasingly influential in
13 reactions of multitopic precursors. In this review, we explore the interplay between
14 thermodynamic and kinetic considerations when planning a DCC synthesis. Computational
15 models, typically based on reaction thermodynamics, have aided in predicting DCC reaction
16 outcomes with moderate success. A clear direction for the field is to develop more robust
17 computational tools informed by thermodynamic and kinetic driving forces that can predict
18 product distributions in DCC reactions.

19

20 **Dynamic covalent chemistry (DCC)** is an efficient synthetic strategy that utilizes
21 **multitopic** precursors designed to form **reversible** covalent bonds, combining advantages of **error**
22 **correction** during synthesis with the stability of a covalent compound as the final product. It has
23 enabled the synthesis of a variety of molecular architectures, often isolated as a single, discrete
24 species, including macrocycles [1], cages [2], and covalent organic frameworks [3,4]. A literature
25 survey on 1,100 papers acquired through a search of the term “dynamic covalent” indicates that
26 polymers are the most common target, followed by cages, macrocycles, and COFs [5]. Reversible
27 bonds commonly in use include imine, boronic ester, hydrazine, disulfide, alkyne, oxime and
28 alkene exchange, listed in order of their frequency. These structures have found applications in

29 host-guest chemistry [6], organic electronic materials [7], information storage and retrieval [8],
30 catalysis [9], biological applications [10], chemical sensing [11], and as building blocks for other
31 materials, such as nanofibers [12].

32 Most targets of DCC are constructed from a small number of different types of repeating
33 units. Thus, DCC is commonly a **cyclooligomerization** process. The combination of a bimolecular
34 oligomerization and intramolecular cyclization in the same reaction represents one challenge of
35 dynamic covalent synthesis. Another challenge stems from the multtopic nature of DCC
36 precursors. While the individual bond forming events are reversible, incorrectly joined structures
37 may require multiple bond breakages to release an incorrectly placed precursor. Some erroneous
38 structures fall out of **dynamic equilibrium** with the rest of the **reaction network**. This situation
39 conjures up the notion of covalent bond **avidity**. Nonetheless, overcoming these challenges
40 unleashes DCC's tremendous gain in synthetic efficiency reflected by the number of bonds made
41 per operational step. Moreover, DCC product yields may approach quantitative, whereas
42 cyclooligomerizations relying on strong irreversible bond formations tend to give low yields of
43 final product, presumably because error correction is key to synthetic success [13].

44 Due to the reversibility of each bond forming event, DCC is generally thought to operate
45 under **thermodynamic control**. The same literature survey mentioned above found that
46 thermodynamic products and pathways are mentioned twice as much as kinetic products and
47 pathways. However, as DCC advances to increasingly complex targets, there is good reason to
48 suggest that kinetic factors may become more important. In this regard, there is an analogy between
49 dynamic covalent synthesis and Levinthal's paradox for protein folding [14]. Levinthal's paradox
50 states that because of the very large number of degrees of freedom in an unfolded polypeptide
51 chain, the possible conformations are too vast to explore them all on the way to its native folded
52 state. In a similar vein, the concatenation of multtopic precursors gives rise to a large number of
53 structures on the way to the target product. These structures include polyhedra, polymers, and
54 networks, and they may have very similar energies. This suggests a flat landscape, but complexes
55 exhibiting covalent bond avidity are stabilized, which produces a vast landscape with somewhat
56 regular variation. Given the complexity of DCC reaction networks and associated energy
57 landscapes, synthetic intuition is unsuited to predict the outcome. Failures in experimental DCC
58 often come at a high cost because multtopic, complex precursors require considerable structural

59 optimization and synthetic overhead [9]. Predicting outcomes is therefore essential and may
60 require computational modeling to ensure a full understanding of the underlying factors that shape
61 the energy landscape.

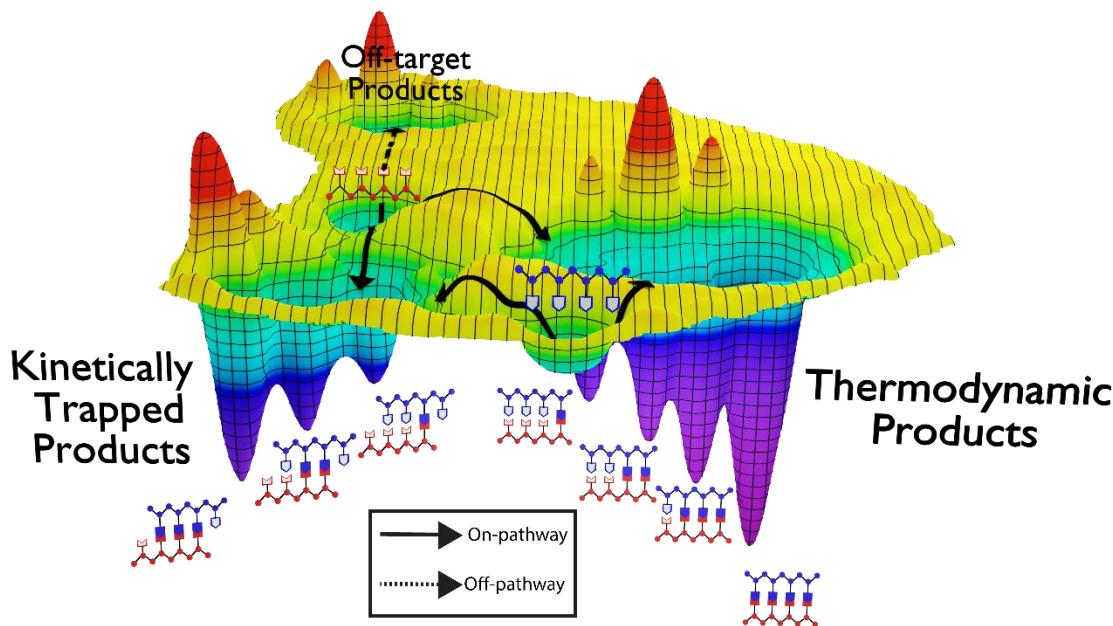
62 **Examples of Thermodynamically Controlled DCC**

63 The ability of dynamic systems to undergo reversible component exchange is key to the
64 utility of DCC. Under thermodynamic control, even off-pathway intermediates typically error
65 correct toward favorable product distributions on the timescale of the reaction (Figure 1) [15].
66 Work from the Swager group recently demonstrated the reversibility of S_NAr in the synthesis of
67 macrocycles and covalent organic frameworks from both free starting material and off-pathway
68 kinetic intermediates [16]. Accessing the product distribution regardless of entry point into the
69 reaction landscape is a necessary condition to classify the product distribution as a thermodynamic
70 equilibrium. In a second example, arylene ethynylene macrocycles are formed both by alkyne
71 metathesis cyclooligomerization and by depolymerization-macrocyclization of linear poly(arylene
72 ethynylene) species [17].

73

74 **Figure 1.** Reaction network of ladder formation under DCC. In-registry intermediates and
 75 products have correctly matched rungs where outer rungs bond to other outer rungs, and center
 76 rungs bond to other center rungs between two strands. Out-of-registry products have mismatched
 77 rung formation. Mismatched intermediates revert to free strands if rung scission is faster than
 78 intramolecular rung formation.

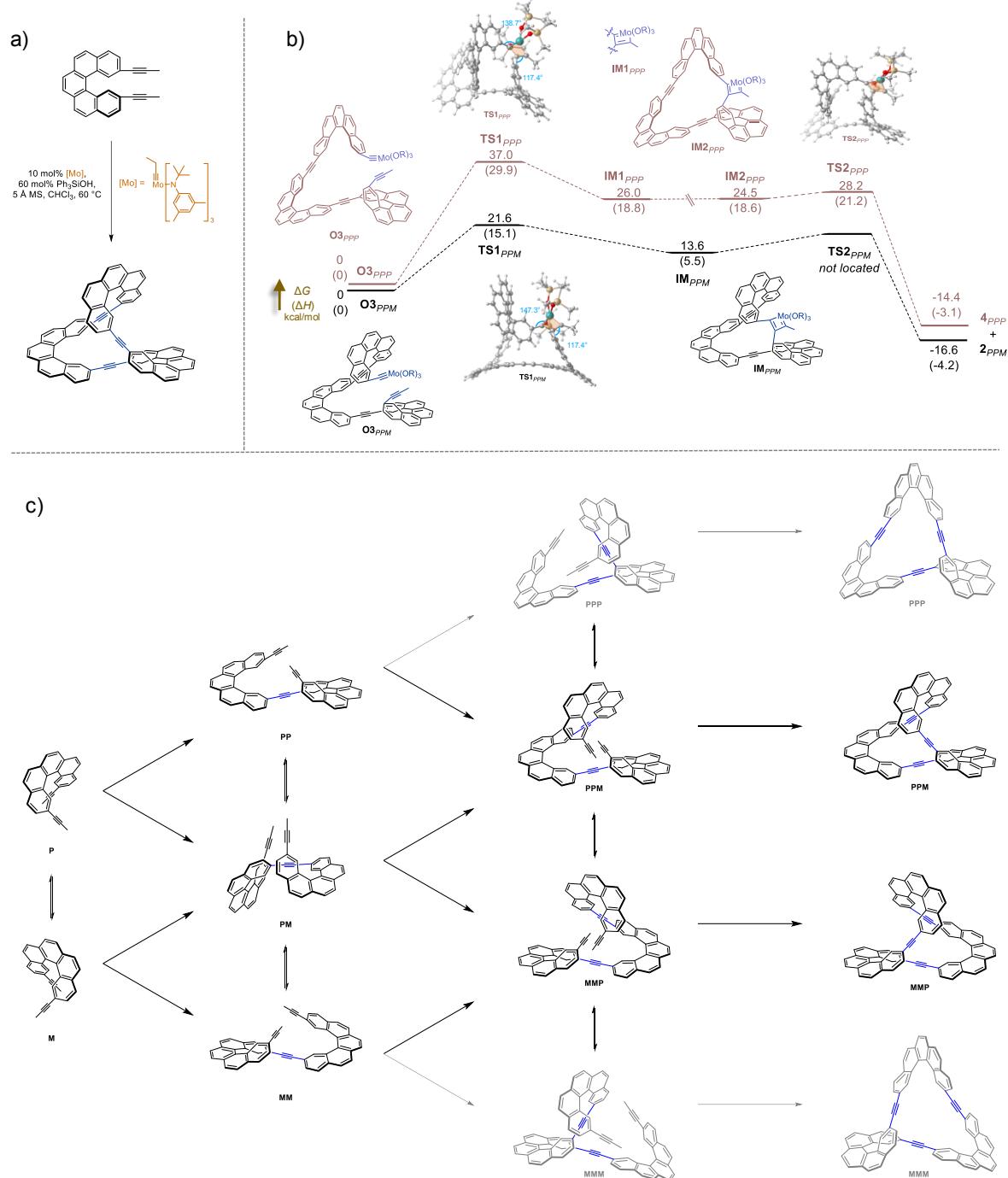
79 Systems under thermodynamic control favor distributions that maximize entropy by
 80 generating structures with the fewest possible number of building blocks while minimizing angle
 81 strain of the resultant structures. These principles have enabled the intuitive design of a wide
 82 variety of cyclic molecular architectures on the basis of precursor topicity and geometry [18].
 83 Furthermore, in systems with very flat energy landscapes, slight differences in thermodynamic
 84 stability lead to self-sorting and large amplifications of product concentrations, which can be


85 further improved by increased catalyst loading and thermal cycling [17,19-22]. The Cooper and
86 Moore groups demonstrated that small energetic differences arising from chiral recognition are
87 sufficient to direct the homochiral self-sorting of **dynamic covalent libraries (DCLs)** composed
88 of racemic building blocks [19,23]. Zhang and coworkers recently demonstrated the synthesis of
89 a cyclic porphyrin macrocycle via dynamic alkyne metathesis, which yielded the desired trimer in
90 82% compared to a mixture of trimer (18%) and dimer (20%) via a kinetically controlled cross-
91 coupling cyclooligomerization [24].

92 While design principles are generally reliable predictors of product topology and stability,
93 occasionally this thinking belies the nuances of DCC energy landscapes. Cooper and coworkers
94 recently designed a computational screening procedure to predict the outcomes of imine
95 condensation reactions based on product stability [25]. While most combinations of aldehyde and
96 amine precursors produced the predicted imine cages, several pairings of precursors led to
97 structures with unexpected topologies. In these cases, the less thermodynamically favored product
98 was observed, and the energetic preference for the predicted structures was determined to be small
99 (around 5 kJ mol⁻¹) compared to the observed products. The Zhang group reported similar
100 phenomena in the synthesis of arylene ethynylene cages [26]. Slight variations in monomer size
101 yielded structures with drastically different topologies, despite a consistent face-to-edge angle
102 between substrates. Taken together, these results suggest that intuitive design rules are unreliable
103 predictors of complex reaction outcomes, and that pathway-dependence may contribute to DCC
104 syntheses in largely unexplored ways. Advancing DCC as a robust and reliable synthetic approach
105 will likely benefit from extending the existing computational tools (*vide infra*).

106 Examples of Kinetically Controlled DCC

107 The reversible bonds used in DCC enable systems to undergo error correction. The faster the
108 rate of exchange, the less prone the resulting system is to kinetic traps (Figure 2). A ladder with
109 hydrogen bonded rungs demonstrates much higher fidelity (98% vs. 62%) than an imine-linked
110 ladder with an identical backbone, due in part to the high exchange rate of hydrogen bonding
111 [27,28]. However, while rapid exchange speed rescues a system from a putative kinetic trap, all
112 covalent bonds are susceptible to trapping under some circumstances. Rigid complex architectures,
113 such as COFs and cages, typically synthesized via DCC tend to be predisposed towards **kinetic**
114 **control** due to precursor multtopicity. Macrocycles with ditopic precursors require two bond


115 breakage events before a precursor is released. After the first bond breakage, the two resulting
116 reactive moieties are in close proximity and so have a faster rate of recombination than two
117 unlinked precursors, an effect which is exacerbated by the rigidity of the structures. If the rate of
118 bond reformation is faster than the breakage of the second bond, the macrocycle may behave as a
119 kinetic trap. Kinetic trap behavior is even more likely for structures which require three or four
120 bond breakages, where precursors are tritopic or tetratopic and the partially broken structures have
121 higher rigidity [2,29]. This covalent bond avidity is apparent in the synthesis of ladder compounds,
122 which generally have n-topic precursors, where n is the number of rungs. These studies show that
123 beyond a certain number of rungs the structures can no longer undergo error correction and tend
124 to form myriad mismatched products instead [8,30,31].

125
126 **Figure 2.** In reactions with complex energy landscapes, species can become kinetically trapped
127 even if reversible chemistry is used. Kinetic traps can persist if small barriers funnel material back
128 to the trapped structure rather than out of the kinetic trap and toward a thermodynamic minimum.
129 In the case of molecular ladders, out-of-registry products may be kinetic traps if rung scission is
130 immediately followed by reformation of the rung. Kinetic factors such as proximity-induced high
131 effective concentration prevent error correction in a dynamic system where the thermodynamic
132 product is desired.

133 Rigidity also influences reaction outcomes by rendering certain transition states geometrically
134 inaccessible. This is particularly relevant for reactions with conformationally restrictive transition
135 states, such as the transition state leading to the metallocyclobutadiene intermediate in alkyne
136 metathesis. Work in the Moore group to synthesize a molecular Möbius strip has demonstrated
137 total kinetic diastereoselectivity because only one of the two possible diastereomeric intermediates
138 could form the key metallocyclobutadiene transition state (Figure 3) [32].

139 Solubility is an ever-present consideration in the synthesis of complex architectures. Large
140 structures common in DCC have decreased kinetic solubility. Heavily conjugated structures are
141 common because they are rigid enough to be shape-persistent, but large, planar π surfaces
142 contribute to insolubility due to π - π stacking, removing the compound from dynamic equilibrium
143 and promoting its formation. Dichtel and coworkers developed a system which produces
144 macrocycle only when it is insoluble in the reaction solvent; dissolving the macrocycle and
145 bringing it back into dynamic equilibrium leads to conversion into polymer, the putative
146 thermodynamic product [1]. Many DCC syntheses are driven by precipitation [5,33-35]. Adding
147 solubilizing groups or changing the size and planarity of the π surface allows modulation of
148 solubility. Northrop and coworkers produce a planar and non-planar version of the same boronate
149 ester cage by inserting ethynylene units into a biaryl backbone with a 90° twist [33]. They
150 demonstrate that the more planar version is less soluble and more stable to protic solvents.

Figure 3. a) Alkyne metathesis of 2,13-bispropynyl helicene to form a C₂ symmetric molecular Möbius strip b) Energy profile demonstrating kinetic diastereoselectivity in macrocyclization c) reaction network showing intermediates leading to all possible stereoisomers. Structures in gray were not observed as products of the reaction.

152 **Supramolecular interactions** in solution also affect the product distribution in some
153 systems. The enthalpic benefit of the interactions themselves drive the equilibrium toward
154 compounds that promote more stabilizing supramolecular interactions.¹ In addition,
155 supramolecular structures that form between cages and other complex products affect exchange
156 rates. Dichtel and coworkers report an imine macrocycle that assembles into nanotubes which
157 prevent further imine exchange, and Otto and coworkers report a similar effect [12,37]. In the
158 synthesis of knots and catenanes from a DCL, multiple products are kinetically trapped as a result
159 of intramolecular π - π stacking in ambiphilic molecules, analogous to the hydrophobic effect in
160 protein folding [38].

161 While kinetic traps may introduce synthetic obstacles, they sometimes provide products in
162 higher yields than the same system under thermodynamic control (Box 1). In some cases, the
163 kinetic trap is also the thermodynamic product [2,45]. In other cases, the pathway-dependence of
164 kinetically controlled systems can be leveraged. Multiple products may be accessible from the
165 same precursors under different conditions, especially useful given the high synthetic overhead of
166 DCC precursors [12]. Otto and coworkers have provided evidence that mechanical agitation has a
167 strong influence on product distribution [11,36]. Slow addition of monomer has been demonstrated
168 to produce COFs with larger crystal domains than a single-addition protocol [46].

169 Kinetic control also allows improved information storage. Scott and coworkers show that a
170 high-fidelity synthesis of an information-bearing five rung imine ladder is only achieved by
171 increasing and then decreasing the concentration of scandium (III) triflate, commonly used to
172 promote imine exchange [31]. This sort of chemical annealing is reminiscent of thermal annealing
173 of DNA [31]. Keeping the concentration at the same low levels throughout the reaction leads to
174 mismatched byproducts instead; this dependence on pathway suggests that the information-bearing
175 ladders are kinetic products. Lehn and coworkers have developed libraries of acyl hydrazones and
176 imines generated from simple aldehyde, acyl hydrazine, and aniline building blocks [8]. In the
177 presence of metal cation with the appropriate coordination geometry, kinetically trapped species
178 were favored. Upon precipitation of the directing metals, the libraries were expected to return to
179 equilibrium, favoring formation of the more stable acyl hydrazone. However, because the
180 exchange rate of imines and acyl hydrazones is on the order of weeks, the composition of the DCL
181 remained unchanged on a relevant laboratory timescale, or until it was erased by thermal cycling.

182 Furthermore, the library could be trained to adopt an altered kinetic equilibrium through the
183 addition of a different metal cation, demonstrating the versatility of a simple system for
184 information storage. In this case, kinetic factors allow access not only to targeted materials, but
185 also to emergent properties from simple chemical systems.

186 **Computational Studies**

187 Most efforts at rationally designing DCC systems have utilized thermodynamic modeling.
188 Computational predictions of reaction outcomes based on thermodynamic driving forces have been
189 used to design precursors and generally rely on the assumption that reactions will reach their
190 thermodynamic end point (Box 2). The most common approach to thermodynamic modeling uses
191 **DFT** to locate the energy of the various possible structures that could be formed in a given reaction
192 network. The lowest energy structure is then assigned as the expected product. For DCLs, a
193 common approach is to predict the equilibria in the library to understand the likely primary product
194 and how that will change when reaction conditions are modified [47]. Thermodynamic modeling
195 has also been widely used in designing molecular cages. The successful synthesis of a molecular
196 cage by DCC requires precursors with the proper geometry. Cages designed by solely accounting
197 for geometry have been moderately successful but some lack **permanent porosity** or fail to form
198 [4,26]. The Cooper group has developed a **computational workflow** that accounts for both aspects
199 [48]. Using this workflow combined with high throughput chemistry, they have synthesized a
200 large number of unique cages [49]. However, their results still revealed unexpected cages as well
201 as the failure of certain predicted cages to form at all[49,50]. While they attribute inconsistencies
202 between theoretical and experimental results to entropy and solvent influences, it is likely that
203 kinetic factors influenced the reaction outcome.

204 Kinetic modeling accounts for complex reaction networks and utilizes the rate coefficients
205 for each reaction to predict the concentrations of species in the reaction. One technique for kinetic
206 modeling involves manually calculating the reaction network and developing a master equation
207 for all species in solution [51]. Another approach is to use **rule-based modeling** to state the rules
208 of the reaction (e.g. changes in bonding or state) and to computationally generate the reaction
209 network [29]. A third approach ignores the reaction network, and uses **Monte Carlo algorithms**
210 to simulate the reaction [46,52,53]. Each of these approaches aims to predict the concentrations of
211 all species in solution thus indicating key intermediates and the rate determining step [51], as well

212 as the presence of any kinetic traps [29]. Kinetic simulations provide guidance on optimal reaction
213 conditions to increase the yield of the desired product [52]. Dichtel and coworkers recently utilized
214 kinetic Monte Carlo simulations to better inform the synthesis of boronic ester covalent organic
215 frameworks (COFs) [46,52,53]. Slow addition of monomer and inclusion of a competitive binder
216 slowed growth and delayed nucleation, promoting controlled growth rather than uncontrolled
217 nucleation of polycrystalline frameworks. These approaches yielded COFs with larger crystalline
218 domains than structures synthesized via typical procedures, as well as larger diameters, greater
219 uniformity of size, and higher signal to noise ratios in transient absorption and wide-angle x-ray
220 scattering spectra.

221 **Conclusion**

222 While dynamic covalent chemistry is a relatively young field, consensus has already
223 emerged around the importance of predicting reaction outcomes. Reversible covalent bonds
224 combine the stability of covalent products with rapid error correction. However, not all linkages
225 necessarily reversibly equilibrate and multitopicity of the resulting structures leads to complex
226 reaction networks and energy landscapes. Unfortunately, the high overhead required to conceive
227 of and develop precursors raises the cost of unpredictable outcomes [8]. Many researchers tend to
228 overemphasize thermodynamic factors when planning a synthesis based on reversible covalent
229 linkages even though the desired geometric complexity, rigidity, and extended conjugation often
230 subject the synthesis to kinetic control. In response, computation has enhanced human intuition.
231 New approaches have begun to incorporate kinetic factors into computation shedding light on COF
232 nucleation, ladder formation and trapping, and other processes with observable kinetic effects
233 [29,53]. However, few studies to date have incorporated both kinetic and thermodynamic factors
234 in computational prediction.

235 We envision a future where computational models will be vital to developing new
236 precursor structures. However, a new vision for a computational workflow which incorporates
237 thermodynamic and kinetic considerations, and is accessible to organic and materials chemists, is
238 sorely needed (Box 2). Developing and utilizing this new workflow will hopefully yield insights
239 about unobservable intermediates and rate constants, and aid in our understanding of the
240 fundamentals of DCC (outstanding questions). We hope that this will enable the synthesis of new
241 complex and responsive materials and libraries.

242 **Box items**

243 **Box 1. Dynamic Systemic Resolution**

244 **Dynamic Resolution**

245 In many biological and synthetic systems, molecular recognition events are triggered by a
246 slow, irreversible step which occurs due to a perturbation of a system previously under
247 thermodynamic control. This perturbation occurs either through internal or external selection, and
248 the resulting irreversible step removes kinetically trapped species from the dynamic pool, shifting
249 equilibrium to favor their formation. This phenomenon, referred to as dynamic systemic resolution
250 (DSR), is one way to combine the adaptive nature of thermodynamic control with the selectivity
251 of kinetic control [10]. As an extension of classical dynamic kinetic resolution, this technique has
252 been used for chiral resolution of epimers [40], as well as in biomimetic applications to amplify
253 strong binders in the presence of receptor molecules [41].

254 Unlike thermodynamic DCC syntheses, the selectivity of DSR arises from reaction kinetics
255 rather than product stability. Thus, the external kinetic stimulus must be chosen judiciously: it
256 must be selective enough to operate quickly on the fastest-responding component of the DCL
257 without directly affecting the rest of the DCL or halting the ongoing thermodynamic equilibrium
258 [15]. Osowa and Miljanić used irreversible oxidation to enable self-sorting of a DCL of imines
259 [42]. Slow oxidation of the imine species ensured that only the fastest-reacting amine and aldehyde
260 pairs were removed from the dynamic pool, enabling highly efficient resolution of three discrete
261 products from a library capable of producing nine different imines. Similar processes have been
262 reported by Rizzuto and Nitschke in the synthesis of imine-based coordination cages [43].
263 Antagonistic amplification of thermodynamically disfavored structures by kinetic requisition of
264 more reactive imines resulted in the self-assembly of heteroleptic cages inaccessible by
265 straightforward DCC synthesis. A major goal for DCC would be to use such DSR strategies to
266 access and amplify kinetically trapped structures with low symmetry and unique functionality [44].

267 **Box 2. A computational workflow for synthetic design of DCC**

268 **Rational design** of DCC requires both thermodynamic and kinetic modeling and
269 consideration. Solely considering either thermodynamic or kinetic impacts on DCC will not allow
270 fully rational design, as both aspects influence DCC reactions. DCC needs a unified design

271 workflow that combines thermodynamic modeling for precursor design and kinetic modeling for
272 conditions optimization while confirming that the desired product can actually be reached given
273 the topicity of the precursor and kinetics of the type of DCC being used. The workflow should
274 include initial thermodynamic modeling used to find likely candidates for the desired product,
275 kinetic modeling to understand the reaction network leading to the predicted product, and possible
276 thermodynamic redesign of the precursor if kinetic modeling shows there are many traps between
277 precursor and product. The findings of the modeling are then applied to synthesis. We believe that
278 this unified workflow is the future of DCC.

279 **Glossary Terms**

280 **Avidity:** A measure of total binding strength between multtopic components.

281 **Computational workflow:** A defined sequence of computational tasks that produce a desired outcome.

282 **Cyclooligomerization:** A reaction that converts monomers to macrocycles with a finite number of
283 components.

284 **Density-functional theory (DFT):** A computational method used to model the electron density clouds of
285 atoms and molecules in order to investigate their electronic and nuclear structure and predict their
286 energies.

287 **Dynamic covalent chemistry (DCC):** A synthetic strategy typically utilizing reversible covalent bonds
288 and multtopic precursors in order to synthesize networks, cages, and other architectures which would be
289 difficult or impossible to synthesize in a stepwise manner.

290 **Dynamic covalent library:** Precursors designed to form a variety of different species via reversible
291 covalent bonds are mixed to study the resulting product distribution and its response to perturbation.

292 **Dynamic equilibrium:** The concentration of all species is constant because the forward and reverse
293 reactions are proceeding at equal rates. The system is at a thermodynamic minimum.

294 **Error correction:** The breakage of a bond which is incompatible with the system's intended product.
295 This process is vital for the synthesis of complex architectures by DCC.

296 **Kinetic control:** The outcome of the reaction is primarily determined by which product is formed at the
297 fastest rate and has the lowest activation energy of its formation, generally observed when the reaction is
298 irreversible.

299 **Monte Carlo algorithms:** A type of computational algorithm which uses repeated random sampling and
300 subsequent statistical analysis to obtain results for values which would otherwise be difficult to predict.

301 **Multitopic:** A precursor with multiple reactive sites which forms multiple bonds in the course of the
302 reaction or synthesis.

303 **Permanent porosity:** Cavities are present in a molecule or material that do not collapse when the original
304 hosts of the cavity (generally solvent molecules) are removed.

305 **Rational design:** The use of computer modeling to design a structure with specific desired properties,
306 rather than using chemical intuition.

307 **Reaction network:** The total set of reactants, products, and intermediates in a system, and all the
308 reactions that transform one into another.

309 **Reversible:** A reaction is reversible if the products react to reform starting material on a reasonable
310 laboratory timescale.

311 **Rule-based modeling:** A model is defined by a set of rules repeatedly applied to progressive reaction
312 conditions, allowing a complex model to be generated without specifying the system in its entirety.

313 **Supramolecular interactions:** Non-covalent interactions between molecules.

314 **Thermodynamic control:** The outcome of the reaction is primarily determined by which product is
315 lowest in energy, generally observed when the reaction is reversible. Despite the rapid formation of the
316 kinetic product, the thermodynamic product accumulates over time in a reversible reaction because the
317 reverse reaction is slower for a more stable product.

318 **445 wrds**

319 **Acknowledgements**

320 This work was supported by the U.S. National Science Foundation (CHE-1904180) and the NSF
321 GRFP (DGE-1746047) to S.D.L. The authors would like to thank Dorothy Loudermilk and Oleg
322 Davydovich for assistance in making figures.

323 **Author Contributions**

324 [†]These authors contributed equally to this work.

325 **Notes**

326 The authors declare no competing financial interest.

327 **References**

- 328 1. Chavez, A. D. et al. (2018) Equilibration of imine-linked polymers to hexagonal macrocycles driven
329 by self-assembly. *Chem. - A Eur. J.* 24, 3989–3993.
- 330 2. Lee, S. et al. (2016) Kinetically trapped tetrahedral cages via alkyne metathesis. *J. Am. Chem. Soc.*
331 138, 2182–2185.
- 332 3. Niu, J. et al. (2018) Single-crystal x-ray diffraction structures of covalent organic frameworks.
333 *Science* 52, 48–52.
- 334 4. Gasparini, G.; Dal Molin, M.; Lovato, A.; Prins, L. J. (2012) Dynamic Covalent Chemistry;
335 *Supramolecular Chemistry: From Molecules to Nanomaterials*. (Gale, P. A., Steed, J.W. and
336 Barbour, L.J., eds) John Wiley and Sons, Ltd.
- 337 5. The literature survey was completed by downloading all the unique articles found on SciFinder with
338 the search term “dynamic covalent”. Once the non-searchable documents were removed, 1102 papers
339 remained. These papers were text searched for various phrases using the command line tool ‘grep’. If
340 a paper mentioned a specific structure (e.g. cage or polymer) ten or more times, it was considered to
341 be the target structure. The specific percentages of target structures were: 55.4% polymer, 7.5%
342 cages, 7.3% macrocycle, 4% dynamic covalent library, 3.5% covalent or metal-organic framework,
343 1% ladder, 21.3% did not include any of these structures at least ten times. If a paper mentioned a
344 specific chemistry ten or more times, it was considered to be the primary chemistry of the paper. The
345 specific percentages of chemistries were: 22.5% imine, 14.0% boronic ester, 11.8% hydrazone
346 exchange, 7.7% sulfide exchange, 4.3% metathesis (alkyne, olefin, or imine), 1.8% alkyne metathesis,
347 1.7% oxime exchange, and 1.2% olefin metathesis.
- 348 6. Slater, A. G. et al. (2018) A solution-processable dissymmetric porous organic cage. *Mol. Syst. Des.*
349 *Eng.* 3, 223–227.
- 350 7. Savino, C. et al. (2020) Electronic spectroscopy of 2-phenyl-1,3,2-benzodioxaborole and its
351 derivatives: Important building blocks of covalent organic frameworks. *J. Phys. Chem. A* 124, 529–
352 537.
- 353 8. Holub, J. et al. (2016) Training a constitutional dynamic network for effector recognition: Storage,
354 recall, and erasing of information. *J. Am. Chem. Soc.* 138, 11783–11791.
- 355 9. Turcani, L. et al. (2019) Machine learning for organic cage property prediction. *Chem. Mater.* 31,
356 714–727.
- 357 10. Herrmann, A. (2014) Dynamic combinatorial/covalent chemistry: a tool to read, generate and
358 modulate the bioactivity of compounds and compound mixtures. *Chem. Soc. Rev.* 43, 1899–1933.

359 11. Evans, J. et al. (2017) Application of computational methods to the design and characterisation of
360 porous molecular materials. *J. Chem. Soc. Rev.* 46, 3286–3301.

361 12. Pal, A. et al. (2015) Controlling the structure and length of self-synthesizing supramolecular polymers
362 through nucleated growth and disassembly. *Angew. Chem. Int. Ed.* 54, 7852–7856.

363 13. Mastalerz, M. (2018) Porous shape-persistent organic cage compounds of different size, geometry,
364 and function. *Acc. Chem. Res.* 51, 2411–2422.

365 14. Dill, K. A. and Chan, H. S. (1997) From Levinthal to pathways to funnels. *Nat. Struct. Biol.* 4, 10.

366 15. Zhang, W. and Jin, Y., eds (2017) *Principles of Dynamic Covalent Chemistry*; John Wiley & Sons,
367 Ltd.

368 16. Ong, W. J. and Swager, T. M. (2018) Dynamic self-correcting nucleophilic aromatic substitution.
369 *Nat. Chem.* 10, 1023–1030.

370 17. Gross, D. E.; Moore and Moore, J. S. (2011) Arylene–Ethynylene macrocycles via depolymerization–
371 macrocyclization. *Macromolecules* 44, 3685–3687.

372 18. Moneypenny, T. P. et al. (2018) Product distribution from precursor bite angle cariation in multtopic
373 alkyne metathesis: Evidence for a putative kinetic bottleneck. *J. Am. Chem. Soc.* 140, 5825–5833.

374 19. Sisco, S. W. and Moore, J. S. (2014) Homochiral self-sorting of BINOL macrocycles. *Chem. Sci.* 5,
375 81–85.

376 20. Liu, X. and Warmuth, R. (2006) Solvent Effects in Thermodynamically Controlled Multicomponent
377 Nanocage Syntheses. *J. Am. Chem. Soc.* 128, 14120–14127.

378 21. Wei, T. et al. (2017) Long, self-assembled molecular ladders by cooperative dynamic covalent
379 reactions. *Polym. Chem.* 8, 520–527.

380 22. Elliott, E. L. et al. (2011) Covalent assembly of molecular ladders. *Chem. Commun.* 129, 4512-4513.

381 23. Greenaway, R. L. et al. (2019) From concept to crystals via prediction: Multi-component organic
382 cage pots by social self-sorting. *Angew. Chem. Int. Ed.* 58, 16275–16281.

383 24. Yu, C. et al. (2016) Synthesis of cyclic porphyrin trimers through alkyne metathesis
384 cyclooligomerization and their host-guest binding study. *Org. Lett.* 18, 2946–2949.

385 25. Greenaway, R. L. et al. (2018) High-throughput discovery of organic cages and catenanes using
386 computational screening fused with robotic synthesis. *Nat. Commun.* 9, 2849.

387 26. Wang, Q. et al. (2016) Dynamic covalent synthesis of aryleneethynylene cages through alkyne
388 metathesis: Dimer, tetramer, or interlocked complex? *Chem. Sci.* 7, 3370–3376.

389 27. Elliott, E. L. et al. (2011) Covalent ladder formation becomes kinetically trapped beyond four rungs.
390 *Chem. Commun.* 47, 5028-5030.

391 28. Swain, J. A. et al. (2018) H-Bonded Duplexes based on a Phenylacetylene Backbone. *J. Am. Chem.*
392 *Soc.* 140, 11526–11536.

393 29. Cencer, M. M. et al. (2020) Quantifying error correction through a rule-based model of strand escape
394 from an n -rung ladder. *J. Am. Chem. Soc.* 142, 162–168.

395 30. Furgal, J. C. et al. (2019) . Accessing sequence specific hybrid peptoid oligomers with varied pendant
396 group spacing. *Eur. Polym. J.* 118, 306–311.

397 31. Leguizamon, S. C. and Scott, T. F. (2020) Sequence-selective dynamic covalent assembly of
398 information-bearing oligomers. *Nat. Commun.* 11, 1–10.

399 32. Jiang, X. and Laffoon, S. D. et al. (2020) Kinetic control in the synthesis of a Möbius
400 tris((ethynyl)[5]helicene) macrocycle using alkyne metathesis. *J. Am. Chem. Soc.* 142, 6493–6498.

401 33. Smith, M. K. et al. (2015) The dynamic assembly of covalent organic polygons: Finding the optimal
402 balance of solubility, functionality, and stability. *Eur. J. Org. Chem.* 13, 2928–2941.

403 34. Chavez, A. D. et al. (2016) Discrete, hexagonal boronate ester-linked macrocycles related to two-
404 dimensional covalent organic frameworks. *Chem. Mater.* 28 (14), 4884–4888.

405 35. Ortiz, M. et al. (2017) Poly(aryleneethynylene)s: Properties, applications and synthesis through
406 alkyne metathesis. *Topics Curr. Chem.* 375, 69.

407 36. Komáromy, D. et al. (2017) Self-assembly can direct dynamic covalent bond formation toward
408 diversity or specificity. *J. Am. Chem. Soc.* 139, 6234–6241.

409 37. Strauss, M. J. et al. (2020) Supramolecular polymerization provides non-equilibrium product
410 distributions of imine-linked macrocycles. *Chem. Sci.* 11, 1957–1963.

411 38. Ponnuswamy, N. et al. (2014) Homochiral and meso figure eight knots and a solomon link. *J. Am.*
412 *Chem. Soc.* 136, 8243–8251.

413 39. Klotzbach, S. and Beuerle, F. (2015) Shape-controlled synthesis and self-sorting of covalent organic
414 cage compounds. *Angew. Chem. Int. Ed.* 54, 10356–10360.

415 40. Simón, L. et al. (2010) Synthesis of a chiral artificial receptor with catalytic activity in michael
416 additions and its chiral resolution by a new methodology. *Org. Biomol. Chem.* 8, 1763.

417 41. Larsson, R. et al. (2004) Catalytic self-screening of cholinesterase substrates from a dynamic
418 combinatorial thioester library. *Angew. Chem. Int. Ed.* 43, 3716–3718.

419 42. Osowska, K. and Miljanić, O. Š. (2011) Oxidative kinetic self-sorting of a dynamic imine library. *J.*
420 *Am. Chem. Soc.* 133, 724–727.

421 43. Rizzuto, F. J. and Nitschke, J. R. (2020) Narcissistic, integrative, and kinetic self-sorting within a
422 system of coordination cages. *J. Am. Chem. Soc.* 142, 7749–7753.

423 44. Yan, Y. et al. (2016) Kinetic Trapping – a strategy for directing the self-assembly of unique
424 functional nanostructures. *Chem. Commun.* 52, 11870–11884.

425 45. Castano, I. et al. (2019) Chemical Control over Nucleation and Anisotropic Growth of Two-
426 Dimensional Covalent Organic Frameworks. *ACS Cent. Sci.* 5, 1892–1899.

427 46. Li, J. et al. (2014) Catenanes from catenanes: quantitative assessment of cooperativity in
428 combinatorial catenation. *Chem. Sci.* 5, 4968-4974.

429 47. Berardo, E. et al. (2018) Computationally-inspired discovery of an unsymmetrical porous organic
430 cage. *Nanoscale* 10, 22381-22388

431 48. Greenaway, R. L. et al. (2018) High-throughput discovery of organic cages and catenanes using
432 computational screening fused with robotic synthesis. *Nat. Commun.* 9, 2849.

433 49. Greenaway, R. L. et al. (2019) From concept to crystals via prediction: multi-component organic cage
434 pots by social self sorting. *Ang. Chem. Int. Ed.* 58, 16275-16281

435 50. Matsumura, Y. et al. (2017) A reaction model in the self-assembly process of octahedron shaped
436 coordination capsules. *Phys. Chem. Chem. Phys.* 19, 20338-20342

437 51. Li, H. et al. (2020) Nucleation-elongation dynamics of two-dimensional covalent organic
438 frameworks. *J. Am. Chem. Soc.* 142, 1367-1374

439 52. Li, H. et al. (2017) Nucleation and growth of covalent organic frameworks from solution: The
440 example of COF-5. *J. Am. Chem. Soc.* 139, 16310–16318.

441 53. Evans, A. M. et al. (2018) Seeded growth of single-crystal two-dimensional covalent organic
442 frameworks. *Science* 361, 52–57.
