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mann algebras equipped with non-tracial states is isomorphic 
to a free Araki–Woods factor with its free quasi-free state pos-
sibly direct sum a finite-dimensional von Neumann algebra. 
This gives a complete answer to questions posed by Dykema 
in [5] and Shlyakhtenko in [10], which had been partially an-
swered by Houdayer in [7] and Ueda in [16]. We also extend 
this to suitable infinite-dimensional von Neumann algebras 
with almost periodic states.
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0. Introduction

Since the advent of free probability by Voiculescu, there has been significant inter-

est in studying free products of von Neumann algebras (see [2,4,9,5,10–12,7,13,14,1,

15,16] among others). A landmark result of Dykema expressed free products of finite-
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dimensional von Neumann algebras with tracial states in terms of interpolated free group 

factors. Specifically, he proved:

Theorem ([2, Theorem 4.6]). Let A and B be hyperfinite von Neumann algebras equipped 

with faithful normal tracial states φ and ψ, respectively. Assume that dim(A) ≥ 2, 

dim(B) ≥ 2, and dim(A) + dim(B) ≥ 5. Then

(A, φ) ∗ (B, ψ) ∼= (L(Ft), τ) ⊕ C

where C is finite-dimensional (possibly zero), and t can be computed directly from (A, φ)

and (B, ψ) using “free dimension.”

This theorem therefore established that free group factors were the “minimal” II1 factors 

that could appear in a free product of two von Neumann algebras with tracial states.

Later, Rădulescu [9] studied the free product (L(Z), τ) ∗ (M2(C), ψ) for ψ a nontra-

cial state, and showed that it is a type IIIλ factor with centralizer L(F∞) and discrete 

core L(F∞) ⊗ B(H). Dykema [5] and Ueda [16] (using different techniques) extended 

Rădulescu’s result with the following theorem.

Theorem ([5, Theorem 3] and [16, Theorem 3]). Let A and B be two separable von 

Neumann algebras equipped with faithful normal states φ and ψ respectively, at least one 

of which is not a trace. Assume that A and B are not one-dimensional, and are countable 

direct sums of the following

(1) Type I factors

(2) Diffuse hyperfinite von Neumann algebras on which φ or ψ is a trace

Let (M, ϕ) = (A, φ) ∗(B, ψ). Then M = M0 ⊕C where C is finite-dimensional (possibly 

zero) and, M0 is a type III factor. Defining ϕ0 = ϕ|M0
, we have Mϕ0

0
∼= L(F∞), ϕ0 is 

almost periodic, and the point spectrum of Δϕ (the modular operator of ϕ) is the group 

generated by the point spectra of Δφ and Δψ.

Notably, the above theorem does not address how to determine when two different 

M0’s are isomorphic. Shlyakhtenko created a natural candidate for M0 when he con-

structed the (almost periodic) free Araki–Woods factors (TH , ϕH), indexed by countable, 

non-trivial subgroups H < R+, and equipped with faithful normal states called free 

quasi-free states [10]. Shlyakhtenko showed that for countable, non-trivial H < R+, 

(TH , ϕH) is a factor of type IIIλ for λ ∈ (0, 1], and λ �= 1 if and only if H = 〈λ〉. 
In addition, it was shown that the point spectrum of ΔϕH

is exactly H, the family 

{(TH , ϕH) : H < R+} is closed under taking free products, H uniquely determines 

(TH , ϕH), (TH)ϕH ∼= L(F∞), and TH has discrete core isomorphic to L(F∞) ⊗ B(H). 

Furthermore, Shlyakhtenko showed that the factor of Rădulescu [9] is isomorphic to 

(Tλ, ϕλ) for some λ ∈ (0, 1).



M. Hartglass, B. Nelson / Advances in Mathematics 382 (2021) 107656 3

These von Neumann algebras arise from a Fock space construction; namely, a modifi-

cation of Voiculescu’s free Gaussian functor [17]. In particular, the free quasi-free state 

is given by the vacuum state and for H = 〈1〉 the construction yields a free group factor. 

It is thus natural to assert that (TH , ϕH) are the non-tracial analogues of the free group 

factors. This led to the following question posed by Shlyakhtenko:

Question ([10]). Suppose that (A, φ), (B, ψ), and (M0, ϕ0) are as in the above theorem. 

Must (M0, ϕ0) ∼= (TH , ϕH) where H is the subgroup of R+ generated by the point spectra 

of Δφ and Δψ?

A partial answer to the above question was obtained by Houdayer [7] who identified 

(M2(C), φ) ∗ (M2(C), ψ) with an almost periodic free Araki–Woods factor provided that 

at least one of φ or ψ is not a trace. An essential step in his proof was to identify 

(M2(C), φ) ∗ [C ⊕ C] with an almost periodic free Araki–Woods factor (see Lemma 1.5

below). However, his methods required one to assume that the mass in C ⊕ C was not 

overly concentrated in a single summand, and this hypothesis prevents one from applying 

his methods to free products of higher dimensional matrix algebras.

More evidence of a positive answer to Shlyakhtenko’s question was obtained by Ueda, 

who showed in [16] that the discrete core of M0 as above is isomorphic to L(F∞) ⊗B(H).

Despite these breakthroughs, it was still unknown how to identify the following free 

products with almost periodic free Araki–Woods factors (see Section 1.1 for an explana-

tion of the notation):

• M2(C)
α,1−α

∗
[

C
β

⊕ C
1−β

]

where 1
2 < α < β < 1;

• (Mn(C), φ) ∗
[

C
β

⊕ C
1−β

]

for φ non-tracial and n ≥ 3;

• (Mn(C), φ) ∗(Mm(C), ψ) for arbitrary n and m and at least one of φ or ψ non-tracial.

In this paper we answer Shlyakhtenko’s question in the affirmative, namely we prove 

the following theorem (see Theorem 2.11).

Theorem A. Let (A, φ) and (B, ψ) be two finite-dimensional von Neumann algebras with 

faithful states φ and ψ respectively, both of which are at least two-dimensional. Assume 

that at least one of φ or ψ is not a trace, and that up to unitary conjugation,

(A, φ) =

n
⊕

i=1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

and (B, ψ) =

m
⊕

j=1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

.

Let H be the group generated by the point spectra of Δφ and Δψ. Then

(A, φ) ∗ (B, ψ) ∼= (TH , ϕH) ⊕ C
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where C is finite-dimensional (possibly zero) and can be determined explicitly from (A, φ)

and (B, ψ). See Theorem 2.11 below.

This theorem is extended to the hyperfinite case in the following Theorem (see The-

orem 3.13).

Theorem B. Let (A, φ) and (B, ψ) be von Neumann algebras with normal faithful states 

φ and ψ with at least one of φ or ψ not a trace. Assume further that dim(A), dim(B) ≥ 2

and A and B are countable direct sums of algebras of the following types:

• separable type I factors with faithful normal states;

• diffuse von Neumann algebras of the form 

∞
⊗

n=1

(Fi, φi) where each Fi is finite-

dimensional and the state is the tensor product of the φi;

• (M, γ) ⊗ (L(Ft), τ) with M a separable type I factor, finite or infinite-dimensional;

• (N, γ′) ⊗ (TG, ϕG) with N a separable type I factor, finite or infinite-dimensional, 

and G a countable, non-trivial subgroup of R+.

Let (M, ϕ) = (A, φ) ∗(B, ψ). Then (M, ϕ) ∼= (TH , ϕH) ⊕C where H is the group generated 

by the point spectra of Δφ and Δψ, and C is finite-dimensional and is determined exactly 

as in Theorem 2.11 below.

The key to attacking this problem is a non-tracial free graph von Neumann algebra 

M(Γ, μ) constructed by the authors in [6]. Here Γ = (V, E) is a finite, directed, connected 

graph and μ : E → R is a weighting on the edges. In [6] the authors identified M(Γ, μ)

with an almost periodic free Araki–Woods factor (up to direct sum copies of C). The key 

feature of this von Neumann algebra is that it is naturally expressed as amalgamated 

free product (see Subsection 1.4 below). By converting a free product of the form

(Mn(C), φ) ∗
[

C
β

⊕ C
1−β

]

to an amalgamated free product over the diagonal of Mn(C) and using induction, we 

can realize a corner of this free product as corner of some M(Γ, μ). We then identify this 

corner with M(Γ′, μ′) for some other graph Γ′ and edge weighting μ′. Using standard free 

product techniques of Dykema, we are able to extend the computation of Mn(C) ∗[C⊕C]

to free products of arbitrary finite-dimensional algebras. Along the lines of [2] and [3]

we then develop standard embeddings of almost periodic free Araki–Woods factors, and 

use these to prove Theorem B.

The outline of the paper is as follows: In Section 1, we establish notation and re-

view some preliminaries and relevant results about free products. We also recall the 

construction of the von Neumann algebra M(Γ, μ). In Section 2, we work through the 

computation of Mn(C) ∗ [C ⊕C] (including n = 2) and use this to prove Theorem A. We 
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also extend this to a computation of B(H) ∗ [C ⊕ C], where B(H) is equipped with an 

arbitrary faithful normal state, and use this to prove a version of Theorem A that allows 

infinite-dimensional type I factors in the direct summands. In Section 3, we develop a 

hyperfinite matricial model for (TH , ϕH) which fuses Shlyakhtenko’s matricial model for 

(TH , ϕH) [10] and Dykema’s model for (L(Ft), τ) [3]. We use this to develop the notion of 

a standard embedding of free Araki–Woods factors and utilize this to prove Theorem B.
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1. Preliminaries

1.1. Some notation

Given the non-tracial nature of our analysis, it is important that we specify the positive 

linear functionals involved in any free product. Toward that end, we establish some 

common notation for positive linear functionals that will be frequently used:

• After [2,5] we use the following notation:

◦ For t > 0 and a projection p

p

C
t

:= (Cp, φ),

where φ is determined by φ(p) = t. We may suppress either ‘t’ or ‘p’ if they are 

clear from context. In the context of a direct sum, if t ≤ 0 then we mean that the 

summand should be omitted.

◦ For α1, · · · , αn > 0 and p1, · · · , pn orthogonal minimal projections of Mn(C)

p1,···pn

Mn(C)
α1,··· ,αn

:= (Mn(C), φ),
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where φ is determined by φ(x) = Tr(xA) where A =
∑n

i=1 αipi. We may suppress 

any of ‘αi’ or ‘pi’ if they are clear from context.

◦ For t > 0 and a von Neumann algebra A with identity element p and a state φ

p

(A, φ)
t

:= (A, tφ).

We may suppress any of ‘t’, ‘p’, or ‘φ’ if they are clear from context (e.g. a II1

factor and its canonical trace).

The above notations allow us to concisely express direct sums with explicit (and 

sometimes implicit) weightings. E.g.:

p1

C
t1

⊕
p2,q2

M2(C)
s2,t2

⊕
p3

(A, ϕ)
t3

.

If t1 + s2 + t2 + t3 = 1 then the associated positive linear functional on this direct 

sum is a state. However, it will often be notationally convenient to not demand such 

normalization. If such an unnormalized direct sum appears in a free product, we will 

ensure that each factor in the free product has the same total mass.

• Let H be a separable infinite-dimensional Hilbert space and {ei,j}i,j∈N0
a system of 

matrix units for B(H). For λ ∈ (0, 1), after [10] we define a normal state ψλ : B(H) →
C by

ψλ(ei,j) :=

{

λi(1 − λ) if i = j

0 otherwise
.

If H is finite-dimensional so that B(H) ∼= Mn(C) is generated by matrix units 

{ei,j}n−1
i,j=0, for some n ∈ N, we define a state ψλ : Mn(C) → C by

ψλ(ei,j) :=

{

λi (1−λ)
(1−λn) if i = j

0 otherwise
.

• For a von Neumann algebra A with a positive linear functional φ and a non-zero 

projection p ∈ A, denote

φp( · ) :=
1

φ(p)
φ(p · p).

1.2. Free Araki-Woods factors

We recall the main features of Shlyakhtenko’s almost periodic free Araki–Woods fac-

tors [10] that we will use in this paper. See [10] for the general construction, and [6] for 

an overview of the construction.
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If λ ∈ (0, 1), then the (unique) type IIIλ almost periodic free Araki–Woods factor 

(Tλ, ϕλ) arises on the full Fock space of C2, F(C2). If {u, v} is an orthonormal basis of 

C2, then (Tλ, ϕλ) ⊂ B(F(C2)) is the von Neumann algebra generated by

yλ = 
(u) +
√

λ
(v)∗

with 
(ξ) the creation operator for ξ ∈ C2, and ϕλ is the vacuum state. We will call yλ a 

generalized circular element of parameter λ. Using the polar decomposition of yλ, it was 

shown that

(Tλ, ϕλ) ∼= (L(Z), τ) ∗ (B(H), ψλ). (1)

For any countable, non-trivial H < R+ with generating set (λi)i∈I , λi ∈ (0, 1), 

Shlyakhtenko showed that the free product (M, ϕ) := ∗i∈I(Tλi
, ϕλi

) is a factor that 

is independent of the generating set of H and the multiplicity of the generators in 

the free product, and satisfies Mϕ ∼= L(F∞) (Recall that Mϕ = {x ∈ M : ϕ(xy) =

ϕ(yx) for all y ∈ M} is the centralizer of ϕ.). Furthermore the state ϕ is almost peri-

odic and Δϕ has point spectrum H. Shlyakhtenko also showed that (M, ϕ) is uniquely 

determined by H.

We will denote (M, ϕ) as (TH , ϕH), and we will call ϕH the free quasi-free state on 

TH . Note that (TH , ϕH) is of type III1 if and only if H is not cyclic. Shlyakhtenko proved 

the following additional structural results of the factors (TH , ϕH).

Theorem ([10]).

• (TH , ϕH) ∗ (L(F∞), τ) ∼= (TH , ϕH).

• (Tλ, ϕλ) ∼= (L(Z), τ) ∗ (Mn(C), ψλ) for any n ≥ 2.

• (TH , ϕH) ∗ (TH′ , ϕH′) ∼= (TG, ϕG) where G = 〈H ∪ H ′〉.

The property in the first bullet point is known as free absorption, and will be re-

ferred to as such throughout the paper. A consequence of free absorption is that 

(TH , ϕH) ∗ (A, φ) ∼= (TH , ϕH) whenever A is a countable direct sum of finite-dimensional 

von Neumann algebras, diffuse hyperfinite von Neumann algebras, and interpolated free 

group factors where φ is a trace.

Moreover, one can choose (A, φ) to be B(H) for H a separable Hilbert space and φ

any faithful normal state (cf. Equation (1)). Indeed, note that if φ is a faithful normal 

state on B(H), then φ(x) = Tr(xy) where y is a positive trace-class operator with trace 

1. We can therefore assume that after conjugating by a unitary, there is set of matrix 

units {ei,j} and αi > 0 satisfying φ(ei,j) = δi,jαi.

Proposition 1.1. Assume that H is separable and that B(H) is equipped with a faith-

ful normal non-tracial state φ satisfying φ(ei,j) = δi,jαi for a system of matrix units 

{ei,j}i,j≥0 and αi > 0. Then
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(L(Z), τ) ∗ (B(H), φ) ∼= (TH , ϕH),

where H < R+ is the subgroup generated { αi

αj
: i, j ≥ 0}.

Proof. Let K be a separable and infinite-dimensional Hilbert space containing an infinite 

orthonormal set (ξij)i,j∈N≥0
, and F(K) the full Fock space on K. Let ω be the state 

on B(F(K)) defined by ω(x) = 〈xΩ, Ω〉 with Ω the vaccum vector in F(K). Within 

(B(F(K)) ⊗B(H), ω ⊗φ), let L =
∑

i,j≥0

√
αi
(ξi,j) ⊗ei,j with 
(ξij) the creation operator. 

Then (B(H), φ) ∗ L(Z) is modeled by the sub von Neumann algebra M ⊂ (B(F(K)) ⊗
B(H), ω ⊗ φ) generated by L + L∗ and 1 ⊗ B(H), and L + L∗ is ∗-free from 1 ⊗ B(H)

[10]. From this, we see that e0,0Me0,0 = W ∗((
√

αi
(ξij) +
√

αj
(ξji)
∗) ⊗ e0,0 : i, j ≥ 0). 

From [10], this means that (e0,0Me0,0, (ω ⊗ φ)e0,0) ∼= (TH , ϕH).

We also note that if D is the diagonal of B(H), then (L(Z), τ) ∗ (D, φ) is a factor by 

[2]. Therefore, 1 ⊗ e0,0 has full central support in Mω⊗φ. Applying Lemma 1.7 below 

finishes the proof. �

This proposition spawns the following useful corollaries, which we will use extensively

Corollary 1.2. Assume that H is separable and that B(H) is equipped with a faithful state 

φ satisfying φ(ei,j) = δi,jαi for a system of matrix units {ei,j}i,j≥0 and αi > 0, and H

is a countable subgroup of R+. Then

(TH , ϕH) ∗ (B(H), φ) ∼= (TG, ϕG)

where G is the group generated by H and H ′ where H ′ = 〈 αi

αj
: i, j ≥ 0〉.

Proof. Using Proposition 1.1 and free absorption, we have

(B(H), φ) ∗ (TH , ϕH) ∼= (B(H), φ) ∗ (L(Z), τ) ∗ (TH , ϕH)

∼= (TH′ , ϕH′) ∗ (TH , ϕH) ∼= (TG, ϕG) �

Corollary 1.3. Let H < R+ be countable and non-trivial. Let α0 ≥ · · · ≥ αn ≥ · · · > 0

have the property that αi

αj
∈ H for any pair i, j ≥ 0 (we are allowing for infinite or finite 

sequences). Assume that H is separable and that B(H) is equipped with a faithful normal 

non-tracial state φ satisfying φ(ei,j) = δi,jαi for a system of matrix units {ei,j}i,j≥0. 

Then

(TH , ϕH) ∼= (TH , ϕH) ⊗ (B(H), φ).

Proof. Note from Corollary 1.2 that

(M, ϕ) := (TH , ϕH) ∗ (B(H), φ) ∼= (TH , ϕH).
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By Lemma 1.7 (see below), this also establishes that (e0,0Me0,0, ϕe0,0) ∼= (TH , ϕH). This 

completes the proof since

(M, ϕ) = (e0,0Me0,0, ϕe0,0) ⊗ (B(H), φ). �

1.3. References to existing results

For the convenience of the reader, we state here some existing results that will be 

cited frequently in the present paper. Where appropriate, we have adapted the notation. 

In particular, for M a von Neumann algebra and p ∈ M a projection, we denote the 

central support of p in M by z(p : M).

The first lemma concerns free products with respect to general states and follows 

from the same proof as [2, Theorem 1.2] (see also [5, Proposition 5.1] and [7, Proposition 

3.10]). In particular, we will frequently use the cases when either B(H) = C or B = 0.

Lemma 1.4. Let (A, φ), (B, ψ), and (C, ν) be von Neumann algebras equipped with faithful 

normal states. Let H be a separable Hilbert space, equip B(H) with a faithful normal state 

ω, and let p ∈ B(H)ω be a minimal projection. If

(M, ϕ) := [{(A, φ)⊗̄(B(H), ω)} ⊕ (B, ψ)] ∗ (C, ν)

(N, ϕ) := [(B(H), ω) ⊕ (B, ψ)] ∗ (C, ν),

then

(pMp, ϕp) ∼= (pNp, ϕp) ∗ (A, φ).

Moreover, z(p : M) = z(p : N).

Let A and B be von Neumann algebras with normal faithful states φ and ψ respec-

tively, and let i : A → B be a normal, injective von Neumann algebra homomorphism. 

After [7, Definition 1.4], we say that i is a modular inclusion if it is state preserving and 

if i(A) is globally invariant under the modular group σψ.

The next lemma was useful in helping determine the structure of the free graph von 

Neumann algebras studied in [6] (see Subsection 1.4). It will also be useful in establish-

ing a suitable base case in our computation of free products of finite-dimensional von 

Neumann algebras.

Lemma 1.5 ([7, Theorems 3.1 and 4.3]). Suppose α and β satisfy 1
2 ≤ β ≤ α < 1 with 

α > 1
2 , and let λ = 1−α

α

(1) M2(C)
α,1−α

∗
[

C
β

⊕ C
1−β

]

∼= (Tλ, ϕλ).
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(2) Suppose (A, φ) and (B, ψ) are two von Neumann algebras with faithful normal states, 

and that there exist modular inclusions M2(C)
α,1−α

↪→ A and (C
β

⊕ C
1−β

) ↪→ B. Then

(A, φ) ∗ (B, ψ) ∼= (A, φ) ∗ (B, ψ) ∗ (Tλ, ϕλ).

The following lemma is a crucial ingredient for converting certain free products over 

the scalars into amalgamated free products and vice-versa. Consequently, it lets us appeal 

to our graph algebras in Subsection 1.4.

Proposition 1.6 ([7, Proposition 4.1]). Let (M, φ) be a von Neumann algebra with a faith-

ful normal state, and B ⊂ M a von Neumann subalgebra with a φ-preserving conditional 

expectation E1 : M → B. Let (A, ψ) be another von Neumann algebra with faithful 

normal state, and E2 : (A, ψ) ∗ (B, φ) → (B, φ) the canonical φ-preserving conditional 

expectation. Set

(M, E) = (M, E1)∗B((A, ψ) ∗ (B, φ), E2).

Then if ϕ = φ ◦ E,

(M, ϕ) ∼= (M, φ) ∗ (A, ψ).

The following result appears in [6]. This lemma, combined with Lemma 1.4 enables us 

to compute free products by examining suitable compressions. It will be used extensively.

Lemma 1.7 ([6, Lemmas 3.1 and 3.2]). spacer

(1) Let H be a countable multiplicative subgroup of R+ and let p ∈ (TH)ϕH be a nonzero 

projection. Then

(pTHp, ϕp
H) ∼= (TH , ϕH).

(2) Let M be a von Neumann algebra with almost-periodic faithful normal state ϕ. Let 

p ∈ Mϕ a projection such that (pMp, ϕp) ∼= (TH , ϕH) for some non-trivial, countable 

subgroup H of R+, and such that z := z(p : Mϕ) = z(p : M). Then

(zM, ϕz) ∼= (TH , ϕH).

In particular, if z(p : Mϕ) = 1 then (M, ϕ) ∼= (TH , ϕH).

1.4. Non-tracial graph algebras

In [6], a von Neumann algebra was constructed from a weighted graph. We will outline 

the construction here.
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To begin, we let Γ be a finite directed graph with vertex set V and edge set E with 

source and target maps s and t respectively. There is an involution on E, denoted op, 

which satisfies s(eop) = t(e) and t(eop) = s(e) for all e ∈ E. If e is a self-loop based at 

v ∈ V , then it is possible to have eop = e, but we do not require this. Denote the space 

of loops in Γ by ΛΓ.

We will also assume that Γ comes equipped with an edge weighting μ : E → R+ such 

that μ(e)μ(eop) = 1 for all e ∈ E. For σ = e1 · · · en ∈ ΛΓ, denote μ(σ) = μ(e1) · · · μ(en). 

In order to ensure that the von Neumann algebra we construct is non-tracial, we will 

assume:

∃σ ∈ ΛΓ : μ(σ) �= 1.

We define A := 
∞(V ) and we let pv denote the indicator function on v ∈ V . In [6], 

the authors showed that there is a Fock space representation of a C*-algebra S(Γ, μ)

generated by A and elements (Ye)e∈E satisfying pvYepw = δv,s(e) · δw,t(e)Ye and Y ∗
e =

1
√

μ(e)
Yeop . In addition, this Fock space representation produced a faithful conditional 

expectation E : S(Γ, μ) → A under which the C*-algebras C∗(A, Yf , Yfop) as f ranges 

through all pairs (e, eop) are free with amalgamation over A under E.

The key observation about the elements Ye that we will use in this paper is their dis-

tribution. Specifically, if we let φ be any faithful positive linear functional on S(Γ, μ) that 

is preserved by E, and let (M(Γ, μ), φ) denote the von Neumann algebra generated by 

S(Γ, μ) via the GNS representation associated to φ, then as a subalgebra of (M(Γ, μ), φ),

(ps(e)W
∗(YeY ∗

e )ps(e), φp) ∼=

⎧

⎪

⎨

⎪

⎩

(L(Z), τ) if μ(e) ≥ 1

(L(Z), τ)
φ(ps(e))μ(e)

⊕ C
φ(ps(e))(1−μ(e))

if μ(e) < 1 .

If we let Ye = ue|Ye| be the polar decomposition, then ueu∗
e = ps(e) if and only if μ(e) ≥ 1

and u∗
eue = pt(e) if and only if μ(e) ≤ 1.

The main result of [6] is identifying M(Γ, μ) with an almost periodic free Araki-Woods 

factor under an appropriate positive linear functional, ϕ. To construct ϕ, we let ΓTr be 

a subgraph of Γ maximal subject to the condition

μ(σ) = 1 ∀σ ∈ ΛΓTr
.

Note that while ΓTr need not be unique, the condition μ(e)μ(eop) = 1 implies it will 

always contain every vertex of V . We define ϕ on A as follows:. Let ∗ be a fixed vertex 

of V , pick α ∈ R+ and declare ϕ(p∗) = α. For any v ∈ V , then define

ϕ(pv) = μ(e1) · · · μ(en)α
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where e1 · · · en is any path in ΓTr with source ∗ and target v. We extend ϕ to be defined 

on M(Γ, μ) by pre-composing with E. Let Δϕ be the modular operator of ϕ. By [6], we 

have the following:

Theorem 1.8.

(1) ϕ is an almost periodic positive linear functional on M(Γ, μ).

(2) M(ΓTr, μ) ⊂ M(Γ, μ)ϕ.

(3) Each Ye is an eigenoperator of Δϕ with eigenvalue μ(e)μ(e1) · · · μ(en) such that 

e1 · · · en is a path in ΓTr with source t(e) and target s(e).

(4) Suppose that H := 〈μ(σ) : σ ∈ ΛΓ〉 < R+ is non-trivial. Then

(M(Γ, μ), ϕ) ∼= (TH , ϕH) ⊕
⊕

v∈V

rv

C,

where rv ≤ pv is non-zero if and only if 
∑

e∈E
s(e)=v

μ(e) < 1, in which case

ϕ(rv) = ϕ(pv)

⎡

⎢

⎢

⎣

1 −
∑

e∈E
s(e)=v

μ(e)

⎤

⎥

⎥

⎦

.

In particular, if

∑

e∈E
s(e)=v

μ(e) ≥ 1

for all v ∈ V , then (M(Γ, μ), ϕ) ∼= (TH , ϕH).

We will use this graphical picture of (TH , ϕH) as a mechanism for realizing free prod-

ucts of certain finite-dimensional von Neumann algebras.

2. Free products of finite-dimensional von Neumann algebras

In this section we will compute free products of arbitrary finite-dimensional von Neu-

mann algebras (see Theorem 2.11). Our first step is to compute for α, β ∈
(

1
2 , 1
)

M2(C)
α,1−α

∗
[

C
β

⊕ C
1−β

]

.

In the case α ≥ β, this is done in [7, Theorem 3.1]. To handle the case α < β, we will 

appeal to the graphical picture of the free Araki–Woods factors from Subsection 1.4. 
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This computation will serve as the base case for computing more general free products 

of the form Mn(C) ∗ [C ⊕ C].

2.1. Computing M2(C) ∗ [C ⊕ C]

Theorem 2.1. Suppose that 1
2 < α < β < 1. Define

(M, ϕ) :=
e11,e22

M2(C)
α,1−α

∗
[

q

C
β

⊕ C
1−β

]

.

Then for λ := 1−α
α

and γ := 1−β
α

+ 1−β
1−α

, one has

(M, ϕ) ∼=

⎧

⎪

⎨

⎪

⎩

(Tλ, ϕλ) if γ ≥ 1

(Tλ, ϕλ)
γ

⊕
e11,e22

M2(C)
α(1−γ),(1−α)(1−γ)

if γ < 1
.

In the second case, one has eii ≤ eii ∧ q for i ∈ {1, 2}.

Proof. We begin by writing (M, ϕ) as an amalgamated free product so that we can 

identify it with (a corner of) a free graph von Neumann algebra. Let D =
e11

C
α

⊕
e22

C
1−α

be 

the diagonal of M2(C) and let

E1 :
e11,e22

M2(C)
α,1−α

→ D

E2 :

[

q

C
β

⊕ C
1−β

]

∗ D → D

be the canonical state-preserving conditional expectations. From Proposition 1.6, we 

have

(M, ϕ) ∼=
((

e11,e22

M2(C)
α,1−α

, E1

)

∗
D

([

q

C
β

⊕ C
1−β

]

∗ D, E2

)

, ϕ

)

.

By [2], this free product is

(

e11,e22

M2(C)
α,1−α

, E1

)

∗
D

(

q∧e11

C
β+α−1

⊕ M2(L(Z))
(1−β),(1−β)

⊕
q∧e22

C
β−α

, E2

)

.
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Let Γ = (V, E) be the following graph with edge weighting μ:

1

e1
0 e3

2

e2

μ(e1) =
α

1 − β
μ(e2) = 1 μ(e3) =

1 − β

1 − α

Let M(Γ, μ) be the associated graph algebra. By choosing ΓTr so that it contains e1 and 

e3 and declaring φ(p0) := 1 − β, we can find a faithful normal positive linear functional 

φ on M(Γ, μ) satisfying:

φ(p1) = α φ(p2) = 1 − α.

Consider the following subalgebra of M(Γ, μ):

N := W ∗(Ye1
, u2, u3, p0, p1, p2)

where ui is the polar part of Yei
. Set P = p1 + p2 and B =

p1

C
α

⊕
p2

C
1−α

, and let

EB : PM(Γ, μ)P → B

be a φP -preserving conditional expectation. Recall that Ye1
, u2, and u3 are free with 

amalgamation over W ∗(p0, p1, p2), and therefore

(PN P, EB) ∼= (PW ∗(u2, p0, p1, p2)P, EB)∗B (PW ∗(Ye1
, u3, p0, p1, p2)P, EB)

Since μ(e1) = 1, it follows that u∗
2u2 = p2 and u2u∗

2 = p1 hence

(PW ∗(u2, p0, p1, p2)P, EB) ∼=
(

e11,e22

M2(C)
α,1−α

, E1

)

,

where the isomorphism sends pi to eii. Since μ(e1) > 1, it follows that Ye1
Y ∗

e1
is diffuse 

in p0N p0 and Y ∗
e1

Ye1
has an atom of size β + α − 1 in p1N p1. Furthermore, u∗

3u3 = p0

and u3u∗
3 is a projection of mass 1 − β under p2. Therefore

(PW ∗(Ye1
, u3, p0, p1, p2)P, EB) ∼=

(

q∧e11

C
β+α−1

⊕ M2(L(Z))
(1−β),(1−β)

⊕
q∧e22

C
β−α

, E2

)

.

Hence
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(PN P, EB) ∼=
(

e11,e22

M2(C)
α,1−α

, E1

)

∗D

(

q∧e11

C
β+α−1

⊕ M2(L(Z))
(1−β),(1−β)

⊕
q∧e22

C
β−α

, E2

)

,

and consequently

(PN P, φP ) ∼= (M, ϕ).

So it suffices to compute (PN P, φP ). Observe that

(PN P, φP ) ∼= (p1N p1, φp1) ⊗ M2(C)
α,1−α

since p1 and p2 are equivalent in PN P , and so it further suffices to compute (p1N p1, φp1). 

This will be accomplished by viewing p1N p1 as living under p0 + p1 rather than P .

Set P ′ = p0 + p1 and B′ =
p0

C
1−β

⊕
p1

C
α

, and let

EB′ : P ′M(Γ, μ)P ′ → B′

be a φP ′

-preserving conditional expectation. Using the fact that u2u3 is a partial isometry 

and the decomposition of N as an amalgamated free product, it follows that

(P ′N P ′, EB′) ∼= (P ′W ∗(u2, u3, p0, p1, p2)P ′, EB′)∗B′(P ′W ∗(Ye1
, p0, p1, p2)P ′, EB′)

∼=
(

p0,r1

M2(C)
1−β, α

1−α
(1−β)

⊕
p1−r1

C
α(1− 1−β

1−α
)
, EB′

)

∗B′

(

M2(L(Z))
1−β,1−β

⊕ C
α−(1−β)

, EB′

)

,

where in both factors of the free product, p0 and p1 are realized by:

p0 =

(

1 0
0 0

)

⊕ 0 and p1 =

(

0 0
0 1

)

⊕ 1.

Consider the second factor in the above free product. By Dykema’s picture [2] of the 

isomorphism

M2(L(Z))
1−β,1−β

⊕ C
α−(1−β)

∼=
[

p′
0

C
1−β

⊕
p′

1

C
α

]

∗
[

C
1−β

⊕ C
α

]

.

It follows that there is an isomorphism which maps pi to p′
i for i ∈ {0, 1}. Therefore, by 

Proposition 1.6,

(P ′N P ′, φP ′

) ∼=
[

p0,r1

M2(C)
1−β, α

1−α
(1−β)

⊕
p1−r1

C
α(1− 1−β

1−α
)

]

∗
[

C
1−β

⊕ C
α

]

.

Consider the following von Neumann subalgebra of P ′N P ′:



16 M. Hartglass, B. Nelson / Advances in Mathematics 382 (2021) 107656

(K, φP ′

) :=

[

p0+r1

C
(1−β)+ α

1−α
(1−β)

⊕
p1−r1

C
α(1− 1−β

1−α
)

]

∗
[

C
1−β

⊕ C
α

]

.

Let Q := p0 + r1. Then by Lemma 1.4, we have

(QN Q, φQ) ∼=
p0,r1

M2(C)
1−β, α

1−α
(1−β)

∗ (QKQ, φQ).

Case 1: Assume γ ≥ 1. Note that this implies 1 − β + α
1−α

(1 − β) ≥ α. In this case, Q

has full central support in K ⊂ (P ′N P ′)φP ′

. Furthermore, after computing QKQ we see 

that

(QN Q, φQ) ∼=
p0,r1

M2(C)
1−β, α

1−α
(1−β)

∗

⎡

⎣ C
α

1−α
(1−β)

⊕ C
1−β+ α

1−α
(1−β)−α

⊕ (L(Z), τ)
α(1− 1−β

1−α
)

⎤

⎦ .

The right hand side accepts a trace-preserving inclusion of C
α

1−α
(1−β)

⊕ C
1−β

, so it follows 

from Lemma 1.5 and free absorption that

(QN Q, φQ) ∼= (Tλ, ϕλ).

Using Lemma 1.7 we see that (P ′N P ′, ϕP ′

) ∼= (Tλ, ϕλ). Applying Lemma 1.7 again, we 

obtain (p1N p1, φp1) ∼= (Tλ, ϕλ). Therefore

(M, ϕ) ∼= (PN P, φP ) ∼= (p1N p1, φp1) ⊗ M2(C)
α,1−α

∼= (Tλ, ϕλ).

Case 2: Assume γ < 1. In this case, define p1 := P ′ − z(Q : P ′N P ′) = P ′ − z(Q : K). 

Then p1 ≤ p1 is nonzero, minimal, and has mass α (1 − γ). Computing QKQ in this case 

yields

(QN Q, φQ) ∼=
p0,r1

M2(C)
1−β, α

1−α
(1−β)

∗
[

C
α

1−α
(1−β)

⊕ (L(Z), τ)
1−β

]

.

The right hand side of this free product once again accepts a trace-preserving inclusion 

of C
α

1−α
(1−β)

⊕ C
1−β

. Arguing as above gives

(p1N p1, φp1) ∼= (Tλ, ϕλ)
αγ

⊕
p1

C
α(1−γ)

,

and tensoring gives

(M, ϕ) ∼= (Tλ, ϕλ)
γ

⊕
e11,e22

M2(C)
α(1−γ),(1−α)(1−γ)

.
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Note that by construction eii ≤ eii for each i. Also note that 1 − q is in the diffuse 

summand of M, so by minimality, eii ≤ q. �

Remark 2.2. One might hope to use this graphical picture in the case α ≥ β and thereby 

recover [7, Theorem 3.1]. However, this result was used directly in the above proof in 

the form of Lemma 1.5. Thus the above theorem should be seen as an extension of [7, 

Theorem 3.1] rather than a generalization.

By following the arguments of Theorem 4.3 in [7], we obtain the following corollary.

Corollary 2.3. Assume that 1−β
α

+ 1−β
1−α

≥ 1. Suppose (A, φ) and (B, ψ) are two von 

Neumann algebras with faithful normal states, and that there exist modular inclusions 

M2(C)
α,1−α

↪→ A and (C
β

⊕ C
1−β

) ↪→ B. Then

(A, φ) ∗ (B, ψ) ∼= (A, φ) ∗ (B, ψ) ∗ (Tλ, ϕλ).

2.2. Computing Mn(C) ∗ [C ⊕ C]

We will compute Mn(C) ∗[C⊕C] in terms of almost periodic free Araki-Woods factors. 

Before we do so, we need the following proposition.

Proposition 2.4. Let D =
e11

C
α1

⊕ · · · ⊕
enn

C
αn

be embedded down the diagonal of Mn(C)
α1,...,αn

with 

standard matrix units {eij}. Let E1 be the canonical state-preserving conditional expec-

tation E1 : Mn(C)
α1,...,αn

→ D. Assume that A is a von Neumann algebra containing D with a 

conditional expectation E2 : A → D. Define

(M, E) := (Mn(C)
α1,...,αn

, E1)∗
D

(A, E2),

(N , E) :=

(

e11,··· ,en−1,n−1

Mn−1(C)
α1,...,αn

⊕
enn

C
αn

, E1

)

∗
D

(A, E2).

Let P = en−1,n−1 + en,n and D′ =
en−1,n−1

C
αn−1

⊕
en,n

C
αn

. Then

(PMP, E) =

(

en−1,n−1,enn

M2(C) , E1

)

∗
D′

(PN P, E).

Proof. It is straightforward to see that PMP is generated by 
en−1,n−1,enn

M2(C) and PN P . To 

establish freeness, let w be an alternating word consisting of expectationless elements in 
en−1,n−1,enn

M2(C) and PN P . Since all expectationless elements of 
en−1,n−1,enn

M2(C) are off-diagonal 

matrices, we may assume (after taking linear combinations) that w is an alternating 
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word in {en−1,n, en,n−1} and (PN P )◦◦. Here C◦◦ denotes the elements of C with zero 

expectation.

By Kaplansky density, we may assume that every element in (PN P )◦◦ is of 

the form PxP where x is an alternating word in 

(

e11,··· ,en−1,n−1

Mn−1(C)
α1,...,αn

⊕
enn

C
αn

, E1

)◦◦

and 

A◦◦. Again, by taking linear combinations, we can assume that every element of 
(

e11,··· ,en−1,n−1

Mn−1(C)
α1,...,αn

⊕
enn

C
αn

, E1

)◦◦

appearing in x is in {ei,j : i �= j and 1 ≤ i, j ≤ n − 1}. 

Regrouping shows that w is a linear combination of alternating words in {ei,j : i �= j}
and A◦◦ which has expectation 0 by freeness. �

We now compute Mn(C) ∗ [C ⊕ C] via an induction argument with the base case 

covered by the previous subsection. As in the previous subsection, we will understand 

this free product as a particular subalgebra of a free graph von Neumann algebra. By 

concatenating a pair of edges in the graph, we can witness this subalgebra as a corner of 

a different free graph von Neumann algebra, and hence can determine its isomorphism 

class.

Theorem 2.5. Let n ≥ 2 and 1 > α1 ≥ α2 ≥ · · · ≥ αn > 0 with 
∑n

i=1 αi = 1 and at least 

one strict inequality amongst the α’s. Let β ∈ [ 1
2 , 1), and let γ =

∑n
i=1

1−β
αi

. Let H be 

the multiplicative subgroup of R+ generated by {αi/αj : 1 ≤ i, j ≤ n}. Then:

(1)

e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

p

C
β

⊕ C
1−β

]

∼=

⎧

⎪

⎨

⎪

⎩

(TH , ϕH) if γ ≥ 1

(TH , ϕH)
γ

⊕
e1,1,··· ,en,n

Mn(C)
γ1,··· ,γn

if γ < 1
.

In the case when γ < 1, γi = αi(1 − γ), and ei,i ≤ ei,i ∧ p.

(2) Assume that γ ≥ 1. Suppose (A, φ) and (B, ψ) are two von Neumann algebras with 

faithful normal states, and that there exist modular inclusions Mn(C)
α1,··· ,αn

↪→ A and 

(C
β

⊕ C
1−β

) ↪→ B. Then

(A, φ) ∗ (B, ψ) ∼= (A, φ) ∗ (B, ψ) ∗ (TH , ϕH).

Proof. We prove this by induction on n, with the base case (n = 2) handled by 

Lemma 1.5, or Theorem 2.1 and Corollary 2.3. Set (M, ϕ) to be the free product in 

(1). Consider the following von Neumann subalgebra of M:
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(N , ϕ) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[

e1,1,··· ,en−1,n−1

Mn−1(C)
α1,...,αn−1

⊕
en,n

C
αn

]

∗
[

p

C
β

⊕ C
1−β

]

if α1 > α2

[

e1,1

C
α1

⊕
e2,2,··· ,en,n

Mn−1(C)
α2,...,αn

]

∗
[

p

C
β

⊕ C
1−β

]

if α1 = α2

We will compute (M, ϕ) by way of computing (N , ϕ).

We will prove the inductive step when α1 > α2, then sketch the (minor) modifications 

one must take into consideration when α1 = α2. Set Q = e1,1 + · · · + en−1,n−1, and

(N0, ϕ) :=

[

Q

C
α1+···+αn−1

⊕
en,n

C
αn

]

∗
[

p

C
β

⊕ C
1−β

]

.

From Lemma 1.4, we have

(QN Q, ϕQ) ∼= (QN0Q, ϕQ) ∗
e1,1,··· ,en−1,n−1

Mn−1(C)
α1,...,αn−1

.

To finish computing (N, ϕ), we consider two cases:

Case 1: Assume α1 + · · ·+αn−1 ≥ β. In this case, Q has full central support in N0 (hence 

in N ϕ), and computing QN0Q yields

(QN Q, ϕQ) =

[

Q∧p

C
α1+···+αn−1−(1−β)

⊕ (L(Z), τ)
αn

⊕
Q∧(1−p)

C
α1+···+αn−1−β

]

∗
e1,1,··· ,en−1,n−1

Mn−1(C)
α1,...,αn−1

.

Note that the left factor always accepts a trace-preserving inclusion of C
α1+···+αn−1−(1−β)

⊕
C

1−β
. If 1 − β > α1 + · · · + αn−1 − (1 − β), then it follows by appropriately partitioning 

the identity of L(Z) that the left factor will accept a modular inclusion of C
β̃

⊕ C
β̃

where 

β̃ = 1
2 (α1 + · · · + αn−1), and it will follow from the inductive hypothesis of (2) above, as 

well as free absorption that

(QN Q, ϕQ) ∼= (TH′ , ϕH′),

where H ′ the multiplicative subgroup of R+ generated by {αi/αj : 1 ≤ i, j ≤ n − 1}. 

We will therefore assume that 1 − β ≤ α1 + · · · + αn−1 − (1 − β). Let γ′ =
∑n−1

i=1
1−β
αi

and let H ′ be as before. If γ′ ≥ 1, then it follows from the inductive hypothesis of (2) 

above, as well as free absorption that

(QN Q, ϕQ) ∼= (TH′ , ϕH′).

If γ′ < 1, then from the inductive hypothesis of (1) we have
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(

Q∧p

C
α1+···+αn−1−(1−β)

⊕ C
1−β

)

∗
e1,1,··· ,en−1,n−1

Mn−1(C)
α1,...,αn−1

∼= (TH′ , ϕH′) ⊕
q1,··· ,qn−1

Mn−1(C)
γ′

1,··· ,γ′
n−1

where γ′
i = αi(1 − γ′) and qi ≤ ei,i ∧ p ≤ Q ∧ p. It follows from this, Lemmas 1.4 and 

1.7, and free absorption that

(

(Q − Q ∧ p)N (Q − Q ∧ p), ϕQ−Q∧p
) ∼=
(

(L(Z), τ) ⊕
Q∧(1−p)

C
α1+···+αn−1−β

)

∗ (TH′ , ϕH′)

∼= (TH′ , ϕH′)

From the central support statement in Lemma 1.4 and Lemma 1.7 we have

(QN Q, ϕQ) ∼= (TH′ , ϕH′) ⊕
q1,··· ,qn−1

Mn−1(C)
γ′

1,··· ,γ′
n−1

.

Since Q has full central support in N ϕ in either case, applying Lemma 1.7 again gives

(N , ϕ) ∼=

⎧

⎪

⎨

⎪

⎩

(TH′ , ϕH′) if γ′ ≥ 1

(TH′ , ϕH′) ⊕
q1,··· ,qn−1

Mn−1(C)
γ′

1,··· ,γ′
n−1

if γ′ < 1
.

Case 2: Assume α1 + · · · + αn−1 < β. In this case, 1 − z(Q : N0) is nonzero and minimal 

in N0, so it follows that 1 − z(Q : N ) is nonzero and minimal in N . Furthermore, it is 

easy to see that 1 − z(Q, N0) = p ∧ en,n. The free product for QN Q becomes

(QN Q, ϕQ) =

[

Q∧p

C
α1+···+αn−1−(1−β)

⊕ (L(Z), τ)
1−β

]

∗
e1,1,··· ,en−1,n−1

Mn−1(C)
α1,...,αn−1

.

Letting γ′ =
∑n−1

i=1
1−β
αi

, γ′
i = αi(1 − γ′) and arguing just as in Case 1, we see that

(QN Q, ϕQ) ∼=

⎧

⎪

⎨

⎪

⎩

(TH′ , ϕH′) if γ′ ≥ 1

(TH′ , ϕH′) ⊕
q1,··· ,qn−1

Mn−1(C)
γ′

1,··· ,γ′
n−1

if γ′ < 1
.

Using Lemma 1.7, it follows that

(N , ϕ) ∼=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(TH′ , ϕH′) ⊕ C
αn(1− 1−β

αn
)

if γ′ ≥ 1

(TH′ , ϕH′) ⊕
q1,··· ,qn−1

Mn−1(C)
γ′

1,··· ,γ′
n−1

⊕ C
αn(1− 1−β

αn
)

if γ′ < 1
. (2)

We now proceed using our computations of (N , ϕ) from Cases 1 and 2 above. Set 

P = en−1,n−1 + en,n. Let D =
e1,1

C
α1

⊕ · · · ⊕
en,n

C
αn

, and let
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E1 :
e1,1,··· ,en−1,n−1

Mn−1(C)
α1,...,αn−1

⊕
en,n

C
αn

→ D

E2 :

[

C
β

⊕ C
1−β

]

∗ D → D

be the canonical state-preserving conditional expectations. By Proposition 1.6,

(N , E) ∼=
(

e1,1,··· ,en−1,n−1

Mn−1(C)
α1,...,αn−1

⊕
en,n

C
αn

, E1

)

∗
D

([

p

C
β

⊕ C
1−β

]

∗ D, E2

)

,

and

(M, E) ∼=
(

e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

, E1

)

∗
D

([

p

C
β

⊕ C
1−β

]

∗ D, E2

)

.

It follows from Proposition 2.4 that

(PMP, E) =

(

en−1,n−1,en,n

M2(C)
αn−1,αn

, E1

)

∗
P DP

(PN P, E).

Note that from Equation (2) and Lemma 1.7,

(PN P, ϕP ) ∼=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(TH′ , ϕH′) if α1 + · · · + αn−1 ≥ β, and γ′ ≥ 1

(TH′ , ϕH′) ⊕
qn−1

C
γ′

n−1

if α1 + · · · + αn−1 ≥ β, and γ′ < 1

(TH′ , ϕH′) ⊕
qn

C
αn(1− 1−β

αn
)

if α1 + · · · + αn−1 < β, and γ′ ≥ 1

(TH′ , ϕH′) ⊕
qn−1

C
γ′

n−1

⊕
qn

C
αn(1− 1−β

αn
)

if α1 + · · · + αn−1 < β, and γ′ < 1

with qi ≤ ei,i. Let Γ = (V, E) be the following graph with edge weighting μ:

0

1

2

3

e1

e2

e3

e4


1,1


i,j

n−1,n−1 μ(e1) =

{

1 if γ′ ≥ 1

γ′ if γ′ < 1
μ(e3) =

{

1 if 1−β
αn

≥ 1
αn

1−β
if 1−β

αn
< 1

μ(e2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

αn

αn−1
if γ′ ≥ 1 and 1−β

αn
≥ 1

1−β
αn−1

if γ′ ≥ 1 and 1−β
αn

< 1
αn

γ′αn−1
if γ′ < 1 and 1−β

αn
≥ 1

1−β
γ′αn−1

if γ′ < 1 and 1−β
αn

< 1

μ(e4) = 1

μ(
i,j) = αi

αj
, i �= j, 1 ≤ i, j ≤ n − 1
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Notice that μ(e1)μ(e2)μ(e3)μ(e4) = αn/αn−1. We assign φ to M(Γ, μ) by choosing ΓTr

so that it contains e1, e2, e3 and declaring that φ(p0) = αn−1. This forces φ(p3) = αn.

Let Γ0 be the subgraph of Γ obtained by deleting the edges e4 and eop
4 . It follows from 

Subsection 1.4 that

((p0 + p3)M(Γ0, μ)(p0 + p3), φp0+p3)

∼=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(TH′ , ϕH′) if α1 + · · · + αn−1 ≥ β, and γ′ ≥ 1

(TH′ , ϕH′) ⊕
q′

C
γ′

n−1

if α1 + · · · + αn−1 ≥ β, and γ′ < 1

(TH′ , ϕH′) ⊕
q′′

C
αn(1− 1−β

αn
)

if α1 + · · · + αn−1 < β, and γ′ ≥ 1

(TH′ , ϕH′) ⊕
q′

C
γ′

n−1

⊕
q′′

C
αn(1− 1−β

αn
)

if α1 + · · · + αn−1 < β, and γ′ < 1

,

where q′ ≤ p0 and q′′ ≤ p3. We immediately see that there is a state-preserving isomor-

phism

(PN P, ϕP ) ∼=
(

(p0 + p3)M(Γ0, μ)(p0 + p3), φp0+p3
)

sending en−1,n−1 to p0 and en,n to p3. Let D′ =
p0

C ⊕
p3

C, and let u4 be the polar part of 

Ye4
. Note that u4u∗

4 = p3 and u∗
4u4 = p0. It follows that

(PMP, ϕP ) ∼=
(

(p0 + p3)M(Γ0, μ)(p0 + p3), φp0+p3
)∗D′

p0,p3

M2(C)
αn−1,αn

where u4 is in the copy of M2(C). From the geometry of the graph and the fact that 

u4u∗
4 = p3 and u∗

4u4 = p0,

(en,nMen,n, ϕen,n) ∼=
(

p3W ∗(u4Ye1
, Ye2

, Ye3
, (Y�i,j

)i,j , p0, p1, p2, p3)p3, φp3
)

.

The element u4Ye1
has right support p2. As for the other support, note that from the 

distribution of Ye1
, we see that

(

p3W ∗(u4Ye1
Y ∗

e1
u∗

4)p3, φp3
)

=

⎧

⎪

⎨

⎪

⎩

(L(Z), τ)
αn

if γ′ ≥ 1

(L(Z), τ)
αnγ′

⊕ C
αn(1−γ′)

if γ′ < 1
.

Hence the left support u4Ye1
is p3 if γ′ ≥ 1, and otherwise is a projection of mass αnγ′

under p3.
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Let Γ′ = (E′, V ′) be the following graph with edge weighting μ′:

1

2

3

f1

e2

e3


1,1


i,j

n−1,n−1

μ′(f1) =

{

1 if γ′ ≥ 1

γ′ if γ′ < 1

μ′(e2) = μ(e2) μ′(e3) = μ(e3)

μ′(
i,j) = μ(
i,j) = αi

αj
, i �= j, 1 ≤ i, j ≤ n − 1

We assign φ′ to M(Γ′, μ′) by choosing ΓTr so that it contains e2, e3 and declaring that 

φ′(p3) = αn. It follows that

(

(p1 + p3)W ∗(Yf1
, p1, p3)(p1 + p3), (φ′)p1+p3

)

∼=
(

(p1 + p3)W ∗(u4Ye1
, p1, p3)(p1 + p3), φp1+p3

)

(Yf1
, p1, p3) �→ (u4Ye1

, p1, p3),

and in particular, this mapping preserves the canonical conditional expectations onto 
p1

C ⊕
p3

C. Consequently,

(p3M(Γ′, μ′)p3, (ϕ′)p3) ∼= (p3W ∗(u4Ye1
, Ye2

, Ye3
, (Y�i,j

)i,j , p0, p1, p2, p3)p3, ϕp3

∼= (en,nMen,n, ϕen,n).

Recall that H is the multiplicative subgroup of R+ generated by {αi/αj : 1 ≤ i, j ≤ n}
and note that from our definition of γ above, γ = γ′ + 1−β

αn
. It follows from Subsection 

1.4 that

(en,nMen,n, ϕen,n) ∼= (p3M(Γ′, μ′)p3, (φ′)p3) ∼=

⎧

⎨

⎩

(TH , ϕH) if γ ≥ 1

(TH , ϕH)
αnγ

⊕ C
αn(1−γ)

if γ > 1
.

Tensoring with 
e1,1,...,en,n

Mn(C)
α1,··· ,αn

and using Corollary 1.3 gives the desired result, and proves (1) 

in the case that α1 > α2.

If α1 = α2, let N be defined as at the beginning of the proof. Then α1 < 1/2, so 

it follows that e1,1 ∧ (1 − q) = 0. This means that e1,1N e1,1 will contain at most one 
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minimal projection. This observation means that the computation for PN P continues 

exactly as above, and the graphical models for PN P and PN P are still valid after we 

redefine γ′ =
∑n

i=2
1−β
αi

and exchange any mention of αn and αn−1 with α1 and α2

respectively.

The proof of (2) follows directly from the result of (1) as well as the proof of [7, 

Lemma 1.5(2)]. �

2.3. Free products of finite-dimensional von Neumann algebras

We will use Theorem 2.5 to establish the requisite base cases/inductive steps for 

computing the free product of any two finite-dimensional von Neumann algebras. The 

following three propositions are the “building blocks” between Theorem 2.5 above, and 

Theorem 2.11 below.

Proposition 2.6. Let 1 > α1 ≥ α2 ≥ · · · ≥ αn > 0 with 
∑n

i=1 αn
i = 1, and let 1 > β1 ≥

β2 ≥ · · · ≥ βm > 0 with 
∑m

j=1 βj = 1. Let

H = 〈{αi/αj : 1 ≤ i, j ≤ n} ∪ {βi/βj : 1 ≤ i, j ≤ m}〉 < R+,

and assume H is not trivial. Then

Mn(C)
α1,··· ,αn

∗ Mm(C)
β1,···βm

∼= (TH , ϕH).

Proof. We will show that Theorem 2.5.(2) can always be applied.

Case 1: Assume only one of the sets {αi/αj : 1 ≤ i, j ≤ n} or {βi/βj : 1 ≤ i, j ≤ m} is 

non-trivial. Without loss of generality, we can assume it is the former. Consequently,

H = 〈{αi/αj : 1 ≤ i, j ≤ n}〉 ,

and β1 = · · · = βm = 1
m

. Set β := � m
2 � 1

m
∈ [ 1

2 , 1), so that Mm(C)
β1,...,βm

accepts a modular 

inclusion of C
β

⊕ C
1−β

. Note that αn ≤ 1 − α1. It follows that

γ :=

n
∑

i=1

1 − β

αi

≥ (1 − β)

[

n − 1

α1
+

1

1 − α1

]

≥ (1 − β)[n + 2
√

n(n − 1)],

where the last inequality follows from an easy calculus exercise. Now, note that 1 −β ≥ 1
3

(where this minimum is attained for m = 3 and the inequalilty is strict otherwise), and 

since n ≥ 2 we have γ ≥ 1. Thus we may apply Theorem 2.5.(2), free absorption, and 

Proposition 1.1 to obtain
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Mn(C)
α1,··· ,αn

∗ Mm(C)
β1,···βm

∼= (TH , ϕH) ∗ Mm(C)
β1,···βm

∗ Mn(C)
α1,··· ,αn

∼= (TH , ϕH) ∗ Mn(C)
α1,···αn

∼= (TH , ϕH).

Case 2: Assume both sets {αi/αj : 1 ≤ i, j ≤ n} and {βi/βj : 1 ≤ i, j ≤ m} are non-

trivial. Now, either βm

αn
≥ 1 or αn

βm
≥ 1. Without loss of generality, assume the former. 

Let k ∈ {1, . . . , m} be the smallest index such that β1 + · · · + βk ≥ 1
2 . Then k ≤ m − 1

since βm ≤ 1
m

≤ 1
2 , which implies β1 + · · · + βm−1 ≥ 1

2 . Set β := β1 + · · · + βk ∈ [ 1
2 , 1), 

so that 1 − β ≥ βm. Then

γ :=
n
∑

i=1

1 − β

αi

≥ 1 − β

αn

≥ βm

αn

≥ 1.

Letting H ′ = 〈{αi/αj : 1 ≤ i, j ≤ n}〉, we may apply Theorem 2.5.(2), free absorption, 

and Proposition 1.1 to obtain

Mn(C)
α1,··· ,αn

∗ Mm(C)
β1,···βm

∼= (TH′,ϕH′) ∗ Mn(C)
α1,··· ,αn

∗ Mm(C)
β1,···βm

∼= (TH′,ϕH′) ∗ Mm(C)
β1,···βm

∼= (TH , ϕH). �

Proposition 2.7. Let 1 > α1 ≥ α2 ≥ · · · ≥ αn > 0 with 
∑n

i=1 αi = 1, and let 1 >

β1 ≥ β2 ≥ · · · ≥ βm > 0 with 
∑m

j=1 βj = 1. Let γ =
∑n

i=1
1−β1

αi
. Suppose H =

〈{αi/αj : 1 ≤ i, j ≤ n}〉. Then

e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

p

C
β1

⊕ C
β2

⊕ · · · ⊕ C
βm

]

∼=

⎧

⎪

⎨

⎪

⎩

(A, ϕ) if γ ≥ 1

(A, ϕ)
γ

⊕
e1,1,··· ,en,n

Mn(C)
γ1,··· ,γn

if γ < 1
,

where (A, ϕ) is an interpolated free group factor if α1 = · · · = αn and is (TH , ϕH) if at 

least one inequality in the α’s is strict. In the case when γ < 1, γi = αi(1 − γ), and 

ei,i ≤ ei,i ∧ p.

Proof. The case when α1 = · · · = αn is handled by [2]. We therefore assume that at 

least one of the inequalities are strict. Moreover, note that the case m = 2 follows from 

Theorem 2.5.(1).

If γ ≥ 1, then we claim there is a modular inclusion

C
β

⊕ C
1−β

↪→
p

C
β1

⊕ C
β2

⊕ · · · ⊕ C
βm

,



26 M. Hartglass, B. Nelson / Advances in Mathematics 382 (2021) 107656

where β ∈ [ 1
2 , 1) and 

∑n
i=1

1−β
αi

≥ 1. Indeed, if β1 ≥ 1
2 then simply set β := β1. Otherwise, 

let k ∈ {1, . . . , m} be the largest index such that βk + · · · + βm ≥ 1
2 , and set β :=

βk + · · ·+βm. Note that k ≥ 2, since β2 + · · ·+βm = 1 −β1 > 1
2 . Since 

∑n
i=1

1
αi

≥ n2 ≥ 4, 

it suffices to show β ≤ 3
4 . If β > 3

4 , then β1 ≤ 1 − β < 1
4 so that βk < 1

4 . But then 

βk+1 + · · · + βm = β − βk > 3
4 − 1

4 = 1
2 , contradicting our choice of k. Thus the claim 

holds.

From Theorem 2.5.(2), free absorption, and Proposition 1.1 we have

e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

p

C
β1

⊕ C
β2

⊕ · · · ⊕ C
βm

]

∼=
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

p

C
β1

⊕ C
β2

⊕ · · · ⊕ C
βm

]

∗ (TH , ϕH)

∼=
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗ (TH , ϕH)

∼= (TH , ϕH).

Now, if γ < 1, let (M, ϕ) be the free product in the statement of the proposition. By 

Theorem 2.5.(1),

(N, ϕ) :=
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

p

C
β1

⊕
1−p

C
1−β1

]

∼= (TH , ϕH)
γ

⊕
e1,1,··· ,en,n

Mn(C)
γ1,··· ,γn

with γi = αi(1 − γ), and ei,i ≤ ei,i ∧ p. From Lemmas 1.4 and 1.7,

(

(1 − p)M(1 − p), ϕ1−p
)

= ((1 − p)N (1 − p), ϕ1−p) ∗
[

C
β2

⊕ · · · ⊕ C
βm

]

∼= (TH , ϕH)

We have z(1 − p : N ϕ) = z(1 − p : N ) = z(1 − p : M). As N ϕ ⊂ Mϕ, it follows that 

z(1 − p : Mϕ) = z(1 − p : N ϕ) and so from Lemma 1.7 we have that

(M, ϕ) ∼= (TH , ϕH)
γ

⊕
e1,1,··· ,en,n

Mn(C)
γ1,··· ,γn

as claimed. �

Proposition 2.8. Let 1 > α1 ≥ · · · ≥ αn > 0 and H be as in the statement of Proposi-

tion 2.7. Let 1 > β ≥ 0. Let (B, φ) be either (L(Ft), τ) for t ∈ [1, ∞] or (TH′ , ϕH′) for 

some countable, non-trivial H ′. Let γ =
∑n

i=1
1−β
αi

. Then

e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

C
β

⊕
q

(B, φ)
1−β

]

∼=

⎧

⎪

⎨

⎪

⎩

(A, ϕ) if γ ≥ 1

(A, ϕ)
γ

⊕
e1,1,...,en,n

Mn(C)
γ1,··· ,γn

if γ < 1
,

where γi = αi(1 −γ), ei,i ≤ ei,i ∧ (1 − q). Here (A, ϕ) ∼= (L(Fs), τ) for some s > 1 if H is 

trivial and B is tracial, and otherwise (A, ϕ) ∼= (TG, ϕG) where G is the group generated 

by H and H ′. If (B, φ) is tracial, we interpret H ′ to be {1}.
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Proof. The case where H and H ′ are both trivial is handled in [2]. We will therefore 

assume that at least one of H or H ′ is non-trivial. If β = 0, then this follows from 

Proposition 1.1 or Corollary 1.2. Thus we further assume β > 0.

Let

(M, ϕ) :=
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

C
β

⊕
q

(B, φ)
1−β

]

(N , ϕ) :=
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

C
β

⊕
q

C
1−β

]

.

Let δ :=
∑n

i=1
β
αi

. Since γ + δ =
∑n

i=1
1

αi
≥ 4, we cannot have γ, δ < 1. We consider 

three possible cases:

Case 1: Assume γ, δ ≥ 1. In this case, (N , ϕ) is either (L(Fs), τ) for some s > 1 if 

H is trivial [2], or is (TH , ϕH) from Theorem 2.5. Applying Lemmas 1.4 and 1.7, gives 

(qMq, ϕq) ∼= (TG, ϕG). Noting that z(q : N ϕ) = 1 and N ϕ ⊂ Mϕ, we obtain z(q : Mϕ) =

1. We then apply Lemma 1.7 again to obtain (M, ϕ) ∼= (TG, ϕG).

Case 2: Assume γ < 1 ≤ δ. In this case,

(N , ϕ) ∼=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p

(L(Fs), τ)
γ

⊕
e1,1,...,en,n

Mn(C)
γ1,··· ,γn

if H = {1}
p

(TH , ϕH)
γ

⊕
e1,1,...,en,n

Mn(C)
γ1,··· ,γn

if H �= {1}

for some s > 1 and ei,i ≤ eii ∧ (1 − q). Applying Lemmas 1.4 and 1.7, gives (qMq, ϕ) ∼=
(TG, ϕG). Noting that z(q : N ϕ) = z(q : N ) = z(q : M) = p, and N ϕ ⊂ Mϕ, we apply 

Lemma 1.7 again to obtain M ∼= (TG, ϕG)
γ

⊕
e11,...,enn

Mn(C)
γ1,··· ,γn

.

Case 3: Assume δ < 1 ≤ γ. In this case,

(N , ϕ) ∼=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

p

(L(Fs), τ)
δ

⊕
e1,1,...,en,n

Mn(C)
δ1,··· ,δn

if H = {1}
p

(TH , ϕH)
δ

⊕
e1,1,...,en,n

Mn(C)
δ1,··· ,δn

if H �= {1}

for some s > 1, δi = αi(1 − δ), and ei,i ≤ ei,i ∧ q. In either case, we have z(q : N ϕ) = 1, 

and hence z(q : Mϕ) = 1 since N ϕ ⊂ Mϕ. By Lemma 1.4

(qMq, ϕq) ∼= (qN q, ϕq) ∗ (B, φ)

If H is trivial, then H ′ is not. So free absorption gives (qMq, ϕq) ∼= (TG, ϕG), and 

applying Lemma 1.7 as above gives (M, ϕ) ∼= (TG, ϕG).
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If H is non-trivial, then by Lemma 1.7

(qMq, ϕq) ∼=
[

h

(TH , ϕH) ⊕
e1,1,...,en,n

Mn(C)
δ1,··· ,δn

]

∗ (B, φ)

To compute this, we study the following subalgebras of qMq:

(M1, ϕq) =

[

h

C ⊕
q−h

C

]

∗ (B, φ)

(M2, ϕq) =

[

h

C ⊕
e1,1,...,en,n

Mn(C)
δ1,··· ,δn

]

∗ (B, φ)

Note that (M1, ϕq) ∼= (L(Fr), τ) for some r > 1 if H ′ is trivial, and otherwise is 

(TH′ , ϕH′). Applying Lemmas 1.4 and 1.7, we compute

((q − h)M2(q − h), ϕq−h) ∼= ((q − h)M1(q − h), ϕq−h) ∗
e1,1,...,en,n

Mn(C)
δ1,··· ,δn

∼= (TG, ϕG).

The last isomorphism follows from either Proposition 1.1 or Corollary 1.2, depending 

on whether or not H ′ is trivial (which dictated the form of (M1, ϕq)). Now, z(q −
h : Mϕq

1 ) = q since Mϕq

1 is always a factor, and Mϕq

1 ⊂ Mϕq

2 . Thus Lemma 1.7 implies 

(M2, ϕq) ∼= (TG, ϕG). Applying Lemmas 1.4 and 1.7 again gives

(hMh, ϕh) ∼= (hM2h, ϕh) ∗ (TH , ϕH) ∼= (TG, ϕG).

Since z(h : Mϕq

2 ) = q and Mϕq

2 ⊂ (qMq)ϕq

, Lemma 1.7 implies (qMq, ϕq) ∼= (TG, ϕG). 

Finally, recall z(q : Mϕ) = 1 so that (M, ϕ) ∼= (TG, ϕG) as desired. �

Proposition 2.9. Let 1 > α1 ≥ · · · ≥ αn > 0 and H be as in the statement of Proposi-

tion 2.7. Let 1 > β1 ≥ · · · ≥ βm > 0, m ≥ 2, and β > 0 satisfy β +
∑m

j=1 βj = 1. Let 

(B, φ) be either (L(Ft), τ) for t ∈ [1, ∞] or (TH′ , ϕH′) for some non-trivial H ′. Let H ′′

be the group generated by {βi/βj : 1 ≤ i, j ≤ m}. Let G be the group generated by H, 

H ′, and H ′′ (where we declare H ′ to be trivial if B = L(Ft)). We have

e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

Mm(C)
β1,··· ,βm

⊕
q

(B, φ)
β

]

∼=
{

(TG, ϕG) if G is non-trivial

(L(Fs), τ) otherwise, for some s > 1
.

Proof. The case where H, H ′ and H ′′ are all trivial is handled by [2], so we can assume 

that at least one of H, H ′′, or H ′′ is non-trivial. Let

(M, ϕ) :=
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

Mm(C)
β1,··· ,βm

⊕
q

(B, φ)
β

]

.
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Case 1: Assume H is non-trivial. Denote

(C, ψ) := Mm(C)
β1,··· ,βm

⊕
q

(B, φ)
β

.

Case 1.a: Assume 
∑n

i=1
1−β1

αi
≥ 1. We claim there exists β′ ∈ [1/2, 1) satisfying 

∑n
i=1

1−β′

αi
≥ 1 and a modular inclusion

C
β′

⊕ C
1−β′

↪→ (C, ψ).

Indeed, since B is diffuse, for some m′ ≥ 1 we can split q into orthogonal projections 

q1, . . . , qm′ with masses ψ(qj) ≤ βm and then we simply proceed as in the proof of 

Proposition 2.7. Consequently, Theorem 2.5.(2) and Corollary 1.2 yield

(M, ϕ) =
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗ (C, ψ) ∼= (TH , ϕH) ∗
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗ (C, ψ) ∼= (TH , ϕH) ∗ (C, ψ)

We compute this latter free product by considering the following subalgebras of M

(N1, ϕ) := (TH , ϕH) ∗
[

C
1−β

⊕
q

C
β

]

(N2, ϕ) := (TH , ϕH) ∗
[

C
1−β

⊕
q

(B, φ)
β

]

.

So by Lemmas 1.4 and 1.7 we have

(qN2q, ϕq) ∼= (qN1q, ϕq) ∗ (B, φ) ∼= (TH , ϕH) ∗ (B, φ) ∼= (T〈H,H′〉, ϕ〈H,H′〉),

where we appeal to free absorption for the last isomorphism if H ′ is trivial. Since 

z(q : N ϕ
2 ) = z(q : N ϕ

1 ) = 1 by virtue of N ϕ
1 ⊂ N ϕ

2 , it follows from Lemma 1.7 that 

(N2, ϕ) ∼= (T〈H,H′〉, ϕ〈H,H′〉). Appealing to the same lemma and using Corollary 1.2 we 

have

((1 − q)M(1 − q), ϕ1−q) ∼= ((1 − q)N2(1 − q), ϕ(1−q)) ∗ Mm(C)
β1,··· ,βm

∼= (T〈H,H′〉, ϕ〈H,H′〉) ∗ Mm(C)
β1,··· ,βm

∼= (TG, ϕG).

Finally, z(1 − q : M) = z(1 − q : N ϕ
2 ) = 1 by virtue of N ϕ

2 ⊂ Mϕ, and hence Lemma 1.7

yields the claimed isomorphism class for (M, ϕ).
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Case 1.b: Assume 
∑n

i=1
1−β1

αi
< 1. Then 

∑n
i=1

1−(1−β)
αi

=
∑n

i=1
β
αi

< 1. Since 
∑n

i=
1

αi
≥ 4, it follows that β < 1

4 and in particular 1 − β ≥ 1
2 . Consider the following 

subalgebras of M:

(M1, ϕ) :=
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

C
1−β

⊕
q

C
β

]

(M2, ϕ) :=
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

C
1−β

⊕
q

(B, φ)
β

]

.

From Theorem 2.5.(1) we have

(M1, ϕ) ∼= (TH , ϕH) ⊕ Mn(C)
γ1,··· ,γn

,

where γi = αi(1 −∑n
j=1

1−(1−β)
αj

) and the copy of Mn(C) lies under 1 − q. Using free 

absorption and tracking the central support of q, it follows from Lemmas 1.4 and 1.7

that

(M2, ϕ) ∼= (T〈H,H′〉, ϕ〈H,H′〉) ⊕ Mn(C)
γ1,··· ,γn

.

Applying Lemmas 1.4 and 1.7 again, we see that

((1 − q)M(1 − q), ϕ1−q) ∼=
[

(T〈H,H′〉, ϕ〈H,H′〉)
1−β−(γ1+···+γn)

⊕ Mn(C)
γ1,··· ,γn

]

∗ Mm(C)
β1,··· ,βm

.

Now, the assumption 
∑n

i=1
1−β1

αi
< 1 implies that β1 > α1 ≥ γ1. Indeed, the second 

inequality is immediate from the definition of γ1, and to see the first simply observe

1 >

n
∑

i=1

1 − β1

αi

≥ 1 − β1

α2
≥ 1 − β1

1 − α1
.

Using the same reasoning, it must therefore be the case that 
∑m

j=1
(1−β)−γ1

βj
≥ 1. Pro-

ceeding as in Case 1.a, we can find β′ ∈ [ 1
2 (1 − β), 1 − β) satisfying 

∑m
j=1

(1−β)−β′

βj
≥ 1

and a modular inclusion

C
β′

⊕ C
(1−β)−β′

↪→ (T〈H,H′〉, ϕ〈H,H′〉)
1−β−(γ1+···+γn)

⊕ Mn(C)
γ1,··· ,γn

,

and we can show that ((1 −q)M(1 −q), ϕ1−q) ∼= (TG, ϕG). Noting that z(1 −q : Mϕ
1 ) = 1

and Mϕ
1 ⊂ Mϕ, we may apply Lemma 1.7 to obtain the desired isomorphism result.

Case 2: Assume H is trivial. Then α1 = · · · = αn = 1/n and 
∑n

i=1
1

αi
= n2. Clearly we 

never have 1 − β, β < 1
n2 , so we consider three cases:
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Case 2.a: Assume 1 − β, β ≥ 1
n2 . Let M1 and M2 be as in Case 1.b. By [2], (M1, φ)

is an interpolated free group factor equipped with its trace. In particular, z(q : Mϕ
1 ) =

z(1 − q : Mϕ
1 ) = 1. If H ′ is trivial, then by Lemma 1.4 (M2, ϕ) is also an interpolated 

free group factor equipped with its trace. Otherwise, using Lemma 1.4, free absorption, 

and Lemma 1.7 we see that (M2, ϕ) ∼= (TH′ , ϕH′). The same approach applied to (1 −
q)M(1 − q) reveals the desired isomorphism class for (M, ϕ).

Case 2.b: Assume that 1 − β < 1
n2 ≤ β. Let M1 and M2 be as in Case 1.b. By [2],

(M1, ϕ) ∼= (L(Fr), τ) ⊕ Mn(C)
1
n

−n(1−β),··· , 1
n

−n(1−β)

,

for some r > 1 and the copy of Mn(C) lies under q. Note that z(q : Mϕ
1 ) = 1, and from 

Lemma 1.4 (and possibly free absorption)

(qM2q, ϕq) ∼=
{

(TH′ , ϕH′) if H ′ is non-trivial

(L(Fr′), τ) otherwise, for some r′ > 1.

It follows that

(

(1 − q)M2(1 − q), ϕ1−q
) ∼=
{

(TH′ , ϕH′) if H ′ is non-trivial

(L(Fr′′), τ) otherwise, for some r′′ > 1,

where in the former case we have applied Lemma 1.7 twice, and in the latter case we 

simply note that q has full central support in M1 and hence in M2. Applying Lemma 1.4

gives ((1 − q)M(1 − q), ϕ1−q) ∼= (TG, ϕG) (recall G is assumed to be non-trivial), and 

applying Lemma 1.7 once more gives the desired isomorphism.

Case 2.c: Assume that β < 1
n2 ≤ 1 − β. Let M1 be as in Case 1.b, but now consider

(M3, ϕ) :=
e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

Mm(C)
β1,··· ,βm

⊕
q

C
β

]

.

By [2]

(M1, ϕ) ∼= (L(Fr), τ) ⊕ Mn(C)
1
n

−nβ,··· , 1
n

−nβ

,

for some r > 1 and the copy of Mn(C) is under 1 − q. Thus z(1 − q : Mϕ
1 ) = 1. Since all 

weights on the Mn(C) in M1 are identical, it follows that there exists β′ ∈ [ 1
2 (1 −β), 1 −β)

satisfying 
∑m

k=1
(1−β)−β′

βk
≥ 1 and a modular inclusion

C
β′

⊕ C
(1−β)−β′

↪→ ((1 − q)M1(1 − q), ϕ1−q).
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By Lemma 1.4 we have

((1 − q)M3(1 − q), ϕ1−q) ∼= ((1 − q)M1(1 − q), φ1−q) ∗ Mm(C)
β1,··· ,βm

It follows that

((1 − q)M3(1 − q), ϕ1−q) ∼=
{

(TH′′ , ϕH′′) if H ′′ is non-trivial

(L(Fr′), τ) otherwise, for some r′ > 1

Indeed, the former case follows by Theorem 2.5.(2), Corollary 1.2, and free absorption, 

while the latter case follows from [2]. From here we proceed exactly as in Case 2.b, and 

obtain the desired isomorphism class for (M, ϕ). �

In a similar manner, one can prove the following:

Proposition 2.10. Let 1 > α1 ≥ · · · ≥ αn > 0 and H be as in the statement of Propo-

sition 2.7. Let 1 > β1 ≥ · · · ≥ βk > 0, 1 > βi,1 ≥ · · · ≥ βi,mi
> 0, mi ≥ 2 for all i, 

and β > 0 satisfy β +
∑k

i=1 βi +
∑�

i=1

∑mi

j=1 βj,mj
= 1. Let (B, φ) be either (L(Ft), τ)

for t ∈ [1, ∞] or (TH′ , ϕH′) for some non-trivial H ′. Let H ′′ be the group generated 

by {βi,j/βi,k : 1 ≤ i ≤ 
, 1 ≤ j, k, ≤ mi}. Set γ =
∑n

i=1
1−β1

αi
and let G be the group 

generated by H, H ′, and H ′′ (where we declare H ′ to be trivial if B = L(Ft)). We have

e1,1,··· ,en,n

Mn(C)
α1,··· ,αn

∗
[

k
⊕

i=1

qi

C
βi

⊕
�
⊕

i=1

Mmi
(C)

βi,1,··· ,βi,mi

⊕
q

(B, φ)
β

]

∼=

⎧

⎪

⎨

⎪

⎩

(A, ϕ) if γ ≥ 1

(A, ϕ) ⊕
e1,1,··· ,en,n

Mn(C)
γ1,··· ,γn

if γ < 1

where (A, ϕ) is an interpolated free group factor if G is trivial, and is (TG, ϕG) otherwise. 

Here, γi = αi(1 − γ), and ei,i ≤ q1 ∧ ei,i.

Theorem 2.11. Let (A, φ) and (B, ψ) be finite-dimensional von Neumann algebras (both 

with dimension at least two) equipped with faithful states φ and ψ. Assume that at least 

one of φ or ψ is not a trace, and that up to unitary conjugation,

(A, φ) =

n
⊕

i=1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

and (B, ψ) =

m
⊕

j=1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

.

Let H be the group generated by the point spectra of Δφ and Δψ. Then

(A, φ) ∗ (B, ψ) = (TH , ϕH) ⊕ C

where C is finite-dimensional (possibly zero). The central summands of C are determined 

exactly as in [5] as follows: C can only be nonzero if either ki = 1 for some i or 
j = 1
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for some j. If ki = 1 for some i, then a nonzero central summand appears if and only if 

there is an index j, satisfying γ :=
∑�j

l=1
1−αi,1

βj,l
< 1. This central summand is

q1,···q�j

M�j
(C)

γ1,··· ,γ�j

where γk = βj,k(1 − γ) and qk ≤ pi,1 ∧ qj,k. An analogous remark holds for 
j = 1.

Proof. Let Z(A) and Z(B) denote the centers of A and B respectively. If Z(A) and 

Z(B) are both one-dimensional, then this result is simply Proposition 2.6. If only one 

of the two is one-dimensional, say Z(A), then first compute (A, φ) ∗ (Z(B), ψ) using 

Proposition 2.7. Let B have minimal central projections q1, · · · , qm. For j = 0, 1, . . . , m, 

set

(Mj , ϕ) := (A, φ) ∗
[

j
⊕

k=1

qk,1,··· ,qk,�k

M�k
(C)

βk,1,··· ,βk,�k

⊕
qj+1

C ⊕ · · · ⊕
qm

C

]

.

Thus we have a chain of inclusions:

A ∗ Z(B) = M0 ⊂ M1 ⊂ · · · ⊂ Mm = A ∗ B.

At each step, we use Lemmas 1.4 and 1.7 and either Proposition 2.8 or 2.9 to compute 

(qjMjqj , ϕqj ). Lemma 1.4 keeps track of the central support of qj, which by induction 

will be in (A ∗ B)ϕ, and Lemma 1.7 (or the amplification formula) determines each 

(Mj , ϕ), including (A, φ) ∗ (B, ψ).

If Z(A) and Z(B) both have dimension at least two, let their minimal projections be 

p1, · · · , pn, and q1, · · · , qm, respectively. We first compute (Z(A), φ) ∗ (Z(B), ψ) using 

[2]. Then for i = 0, 1, . . . , n and j = 0, 1, . . . , m, set

(Mi,j , ϕ) :=

[

i
⊕

�=1

p�,1,··· ,p�,k�

Mki
(C)

α�,1,··· ,α�,k�

⊕
pi+1

C ⊕ · · · ⊕
pn

C

]

∗
[

j
⊕

k=1

qk,1,··· ,qk,�k

M�k
(C)

βk,1,··· ,βk,�k

⊕
qj+1

C ⊕ · · · ⊕
qm

C

]

.

Here we have many chains of inclusions to potentially examine, e.g.

Z(A) ∗ Z(B) = M0,0 ⊂ M1,0 ⊂ · · · ⊂ Mn,0 ⊂ Mn,1 ⊂ · · · ⊂ Mn,m = A ∗ B.

We may consider any chain which increments exactly one index by one at each step. 

We again use Lemmas 1.4 and 1.7 and either Proposition 2.8, 2.9, or 2.10 to compute 

(qjMi,jqj , ϕqj ) and/or (piMi,jpi, ϕ
pi) inductively. Lemma 1.4 keeps track of the central 

support of qi, which by induction will be in (A ∗ B)ϕ, Lemma 1.7 (or the amplification 

formula), determines each (Mi,j , ϕ), including hence (A, φ) ∗ (B, ψ). �
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2.4. Computing B(H) ∗ [C ⊕ C]

We can fairly easily extend the above result to allow finite direct sums of all separable 

type I factors, but to do so we must first compute B(H) ∗ [C ⊕C] when B(H) is equipped 

with an arbitrary faithful normal state φ. We require slightly more general modular 

inclusions than we have considered so far.

Proposition 2.12. Let i1, i2 :
e11,··· ,enn

Mn(C)
α1,··· ,αn

⊕
p

C
γ

→ (A, φ) be two modular inclusions, and 

assume that Aφ is a factor. Then there exists a unitary u ∈ Aφ conjugating i1 to i2

Proof. Since Aφ is a factor and the inclusions are modular (in particular state-

preserving), there exist partial isometries v, w ∈ Aφ satisfying

v∗v = i1(e11) vv∗ = i2(e11)

w∗w = i1(p) ww∗ = i2(p)

It is easy to check that u = i2(p)wi1(p) +
∑n

i=1 i2(ei1)vi1(e1i) does the job. �

The next proposition follows directly from the proof of [7, Theorem 4.3].

Proposition 2.13. Assume that 1 ≥ α1 ≥ α2 ≥ · · · ≥ αn > 0 with at least one inequality 

amongst the α’s strict and let H = 〈 αi

αj
: 1 ≤ i, j ≤ n〉. Let γ > 0. Let β ∈ (0, 1) be such 

that

[

Mn(C)
α1,··· ,αn

⊕ C
γ

]

∗
[

C
β

⊕ C
1−β

]

is a factor (necessarily (TH , ϕH)). If (A, φ) and (B, ψ) are von Neumann algebras with 

faithful states accepting the modular inclusions

Mn(C)
α1,··· ,αn

⊕ C
γ

↪→ (A, φ) and C
β

⊕ C
1−β

→ (B, ψ),

then (A, φ) ∗ (B, ψ) ∼= (A, φ) ∗ (B, ψ) ∗ (TH , ϕH).

Assume that H is a separable infinite-dimensional Hilbert space, and φ a faithful 

normal state on B(H). Recall that we can assume that—after conjugating by a unitary—

there is a set of matrix units {ei,j} satisfying φ(ei,j) = δi,jαi, where αi > 0 and 
∑∞

i=1 αi = 1.

Theorem 2.14. Let H be a separable infinite-dimensional Hilbert space. Let φ be a faithful 

normal state on B(H) such that φ(ei,j) = δi,jαi for matrix units {ei,j}i,j∈N and αi > 0. 

If β ∈ (0, 1), then
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(B(H), φ) ∗
[

C
β

⊕ C
1−β

]

∼= (TH , ϕH)

where H = 〈 αi

αj
: i, j ∈ N〉.

Proof. For each n ∈ N, (B(H), φ) accepts a modular inclusion of

(A, ψ) :=
e11,··· ,enn

Mn(C)
α1,··· ,αn

⊕ C
γ

,

where γ = 1 − (α1 + · · · + αn). Choose n large enough so that

(A, ψ) ∗
[

C
β

⊕ C
1−β

]

is a factor and so that for some i, j ≤ n, αi

αj
�= 1. Let H ′ = 〈 αi

αj
: 1 ≤ i, j ≤ n〉. It follows 

from Propositions 2.13 and 1.1 that

(B(H), φ) ∗
[

C
β

⊕ C
1−β

]

∼= (B(H), φ) ∗
[

C
β

⊕ C
1−β

]

∗ (TH′ , ϕH′)

∼= (B(H), φ) ∗ L(Z) ∗ (TH′ , ϕH′)

∼= (TH , ϕH) ∗ (TH′ , ϕH′)

∼= (TH , ϕH)

as claimed. �

2.5. Free products of finite direct sums of type I factors

Using the results of Proposition 2.13 and Theorem 2.14, one can prove the following 

proposition in exactly the same manner as Propositions 2.6, 2.7, 2.8, and 2.9.

Proposition 2.15.

(i) Let A and B be separable type I factors, at least one of which is infinite-dimensional, 

equipped with faithful normal states, φ and ψ respectively. Then

(A, φ) ∗ (B, ψ) ∼= (TH , ϕH)

where H is the group generated by the point spectra of Δφ and Δψ.

(ii) Let H be a separable and infinite-dimensional Hilbert space, and let φ be a faithful 

normal state on B(H). Then

(B(H), φ) ∗
[

C
α1

⊕ · · · ⊕ C
αn

]

∼= (TH , ϕH)
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where H is the group generated by the point spectrum of Δφ.

(iii) Let H be a separable and infinite-dimensional Hilbert space, and let φ be a faithful 

normal state on B(H). Let (B, ψ) be either (L(Ft), τ) for t ≥ 1 or (TH , ϕH) for 

some non-trivial H. Let 1 > α1 ≥ α2 ≥ · · · ≥ αn > 0, n ≥ 1, and α > 0. Then

(B(H), φ) ∗
[

Mn(C)
α1,··· ,αn

⊕ (B, ψ)
α

]

∼= (TG, ϕG)

where G is the group generated by Δφ, Δψ, and 
〈

αi

αj
: 1 ≤ i, j ≤ n

〉

.

The next theorem follows from Proposition 2.15 and the proof of Theorem 2.11.

Theorem 2.16. Let (A, φ) and (B, ψ) be finite direct sums of separable type I factors with 

faithful normal states φ and ψ respectively, both of which are at least two-dimensional. 

Assume that at least one of φ or ψ is not a trace, and that up to unitary conjugation,

(A, φ) =

n0
⊕

i=1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

⊕
n1
⊕

i=1

(B(Hi), φi) and

(B, ψ) =

m0
⊕

j=1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

⊕
m1
⊕

j=1

(B(Kj), ψi),

where the Hi and Kj are infinite-dimensional. Let G be the group generated by the point 

spectra of Δφ and Δψ. Then

(A, φ) ∗ (B, ψ) = (TG, ϕG) ⊕ C,

where C is finite-dimensional (possibly zero), and is determined exactly as in Theo-

rem 2.11.

3. Standard embeddings and inductive limits

In [5], the notion of “free subcomplementation” of (A, ϕ) ↪→ (B, ϕ) was defined and 

used to prove Dykema’s theorem on the structure of free products of inductive limits of 

finite-dimensional von Neumann algebras. In order to identify the type III summand of 

such a free product with an almost periodic free Araki–Woods factor, the notion of a 

standard embedding along the lines of [2] is needed for almost periodic free Araki–Woods 

factors.

3.1. Hyperfinite matricial models

Lemma 3.1. Let R be the hyperfinite II1 factor, and let {yi}i∈N be a free family of gener-

alized circular elements free from R. Let yi have parameter λi ≤ 1, H = 〈λi : i ∈ N〉, and 



M. Hartglass, B. Nelson / Advances in Mathematics 382 (2021) 107656 37

define (M, ϕ) = (W ∗(R∪{yi}i∈N), τ ∗ϕH). Suppose p1, · · · , pn are equivalent projections 

in R, and for j = 1, . . . , n let uj ∈ R satisfy u1 = p1, u∗
j uj = p1, and uju∗

j = pj. Then 

{u∗
j yiuk : i ∈ N, j, k = 1, . . . , n} is a free family of generalized circular elements (with 

respective parameters λi) in (p1Mp1, ϕp1), which is also free from p1Rp1.

Proof. We first recall Shlyakhtenko’s matricial model (see [10, Section 5]). Let H be an 

infinite-dimensional Hilbert space, let F(H) denote the full Fock space over H, and let 

N ∈ N. Equip

B(F(H)) ⊗ MN (C)

with the state ω ⊗ tr. Let {ξi
j,k, ηi

j,k : i ∈ N, j, k = 1, . . . , N} be an orthonormal family 

in H. For each i ∈ N define

Yi :=
1√
N

N
∑

j,k=1

[


(ξi
j,k) +

√

λi
(η
i
k,j)∗
]

⊗ ej,k

Then {Yi}i∈N is a free family and free from MN (C) with respect to ω ⊗ tr, and (Yi, ω ⊗
tr) ∼d (yi, ϕH) where ∼d means equality in moments.

We first assume τ(p1) = a
b

∈ Q \ {1}. Let

P1 := e1,1 + · · · + ea,a ∈ Mb(C)

Denote U1 := P1 and for j = 2, . . . , n set

Uj := e(j−1)a+1,1 + e(j−1)a+2,2 + · · · + eja,a.

Note that U∗
j Uj = P1, and {UjU∗

j }n
j=1 are orthogonal.

Now, for d ∈ N, let {Y
(d)

i }i∈N be as above for N = bd. Let P
(d)
1 = P1⊗Ibd−1 ∈ Mbd(C), 

and similarly define U
(d)
j for j = 1, . . . , n. By mutual orthogonality of {ξi

j,k, ηi
j,k}, we 

have that {(U
(d)
j )∗Y

(d)
i U

(d)
k : i ∈ N, j, k = 1, . . . , n} is a free family of generalized cir-

cular elements (with respective parameters λi), which is also free from P
(d)
1 Mbd(C)P

(d)
1 . 

Let A ∈ Mbd(C). It follows that (P1AP1, {(U
(d)
j )∗Y

(d)
i U

(d)
k : i ∈ N, j, k = 1, . . . , n}) con-

verges in moments to (p1Ap1, {u∗
j yiuk : i ∈ N, j, k = 1, . . . , n}) in (p1Mp1, ϕp1) where we 

picture p1Ap1 ∈⊗∞
i=1 Mb(C), an ultra-weakly dense ∗-subalgebra of R. By freeness and 

ultra-weak continuity, it follows that p1Rp1 is free from {u∗
j yiuk : i ∈ N, j, k = 1, . . . , n}

in (p1Mp1, ϕp1), and moreover, the latter set is a free family of generalized circular 

elements with respective parameters λi.

Next, we assume τ(p1) is irrational. Let {qm}m∈N ⊂ Q be a sequence converging 

to τ(p1) from below. For j = 1, . . . , n, let (u
(m)
j )m∈N ⊂ R be a sequence converging 

∗-strongly to uj and satisfying:

• τ((u
(m)
j )∗u

(m)
j ) = qm;



38 M. Hartglass, B. Nelson / Advances in Mathematics 382 (2021) 107656

• p
(m)
1 := (u

(m)
1 )∗u

(m)
1 = · · · = (u

(m)
n )∗u

(m)
n ;

• u
(m)
1 (u

(m)
1 )∗, . . . , u

(m)
n (u

(m)
n )∗ are mutually orthogonal.

Then from our treatment of the rational case, we have that for each m ∈ N, 

{(u
(m)
j )∗yiu

(m)
k : i ∈ N, j, k = 1, . . . , n} is a free family of generalized circular elements 

(with respective parameters λi) which are free from p
(m)
1 Rp

(m)
1 in (p

(m)
1 Mp

(m)
1 , ϕp

(m)
1 ). 

Since ∗-strong convergence implies convergence in moments, we obtain the desired re-

sult. �

Lemma 3.2. Let R be the hyperfinite II1 factor, (y1, y2) a free pair of generalized circular 

elements of parameter λ ≤ 1 that free from R, and p a nonzero projection in R. Then:

• py1 + (1 − p)y2 is a generalized circular element of parameter λ and free from R;

• y1p + y2(1 − p) is a generalized circular element of parameter λ and free from R;

• py1p + (y2 − py2p) is a generalized circular element of parameter λ and free from R.

Proof. We will treat the first claim, as the others follow by the same techniques. As in 

the previous lemma, we first consider the case when τ(p) = a
b

∈ Q \ {1}. Let

P := e1,1 + · · · + ea,a.

For d ∈ N, let {Y
(d)

1 , Y
(d)

2 } be as in Shlyakhtenko’s matricial model for N = bd:

Y
(d)

i =
1√
bd

bd

∑

j,k=1

[


(ξi
j,k) +

√
λ
(ηi

j,k)∗
]

⊗ ej,k

Let P
(d)
1 = P1⊗Ibd−1 ∈ Mbd(C). Then by mutual orthogonality of the {ξi

j,k, ηi
j,k} we have 

that P
(d)
1 Y

(d)
1 + (1 − P

(d)
1 )Y

(d)
2 is a generalized circular element of parameter λ which is 

free from Mbd(C). Let A ∈ Mbd(C). It follows that the moments of (A, P
(d)
1 Y

(d)
1 + (1 −

P
(d)
1 )Y

(d)
2 ) converge to the moments of (A, py1 + (1 − p)y2) where as above, we picture 

p and A in 
⊗∞

n=1 Mb(C). By ultra-weak continuity, it follows that py1 + (1 − p)y2 is a 

generalized circular element of parameter λ which is free from R. For the case τ(p) is 

irrational, we proceed exactly as in the previous lemma. �

Proposition 3.3. Let R be the hyperfinite II1 factor, and let p be a non-trivial projection 

in R. Let y be a generalized circular element with parameter λ ∈ (0, 1), free from R. 

Then

W ∗(R ∪ {pyp}) ∼= W ∗(R ∪ {y}).

Moreover, this isomorphism is state-preserving and restricts to the identity on R.
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Proof. We first note that if {yi}i∈N is a countably infinite family of freely independent 

generalized circular elements all of parameter λ, then

W ∗(R ∪ {yi}i∈N) ∼= W ∗(R ∪ {y}),

on account of (Tλ, ϕλ) ∼= ∗
i∈N

(Tλ, φλ), and of course this isomorphism is the identity 

on R.

Let a ∈ N such that a < 1
τ(p) ≤ a + 1. Let p1, . . . , pa+1 be orthogonal projections in 

R summing to 1 such that p1 := p, p2, . . . , pa are equivalent to p1, and pa+1 � p1. Let 

u1, . . . , ua+1 ∈ R be partial isometries implementing these (sub)equivalences such that 

u∗
j uj ≤ p1. Observe that

M := W ∗(R ∪ {yi}i∈N) = W ∗(R ∪ {u∗
j yiuk : i ∈ N, j, k = 1, . . . , a + 1}).

By Lemma 3.1, {u∗
j yiuk : i ∈ N, j, k = 1, . . . , a} is a free family of generalized circular 

elements with parameter λ, which is free from p1Rp1.

Let q1 := u∗
a+1ua+1 ≤ p1. Let

t :=
(a + 1)τ(p1)

aτ(p1) + τ(q1)
.

Consider the amplification Rt of R. Let P ∈ Rt be a projection such that we can 

identify R with PRtP . By Lemma 3.1, we can find a free family {y
(t)
i }i∈N of generalized 

circular elements of parameter λ that are free from Rt, and which satisfy Py
(t)
i P = yi

for each i ∈ N. Let p
(t)
a+1 ∈ Rt satisfy p

(t)
a+1 = 1 − (p1 + · · · + pa). By our choice of t, 

p
(t)
a+1 is equivalent to p1, so let u

(t)
a+1 ∈ Rt be a partial isometry implementing this 

equivalence (with (u
(t)
a+1)∗u

(t)
a+1 = p1). Moreover, we can choose this partial isometry so 

that u
(t)
a+1q1 = ua+1. Consequently, for i ∈ N and j, k = 1, . . . , n we have

u∗
a+1yiuk = q1(u

(t)
a+1)∗y

(t)
i uk

u∗
j yiua+1 = u∗

j y
(t)
i u

(t)
a+1q1 (3)

u∗
a+1yiua+1 = q1(u

(t)
a+1)∗y

(t)
i u

(t)
a+1q1

Note that by Lemma 3.1,

{u∗
j y

(t)
i uk, (u

(t)
a+1)∗y

(t)
i uk, u∗

j y
(t)
i u

(t)
a+1, (u

(t)
a+1)∗y

(t)
i u

(t)
a+1 : i ∈ N, j, k = 1, . . . , a}

is a free family of generalized circular elements of parameters λ that is free from p1Rtp1 =

p1Rp1 in (p1Mp1, ϕp1).

Now, let

α : N × N × {
, r, c} → N × {1, . . . , a} × {1, . . . , a}
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β : N → N × {1, . . . , a}

be bijections. If α(s, t, ε) = (i, j, k) for s, t ∈ N and ε ∈ {
, r, c}, then set

yε
s,t := u∗

j yiuk.

If β(s) = (i, j) for s ∈ N set

y�
s,0 := u∗

j yiua+1 and yr
s,0 := u∗

a+1yiuj .

Finally, set yc
s,0 := u∗

a+1ysua+1 for each s ∈ N. With this notation, we therefore have

M = W ∗(R, {yε
s,t : ε ∈ {
, r, c}, s ∈ N, t ∈ N0}).

For (s, t, ε) ∈ N × N0 × {
, r, c}, define

zε
s,t :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

y�
s,tq1 + y�

s,t+1(p1 − q1) if ε = 


q1yr
s,r + (p1 − q1)yr

s,t+1 if ε = r

q1yc
s,tq1 +

[

yc
s,t+1 − q1yc

s,t+1q1

]

if ε = c

.

Using Equations (3) and Lemma 3.2, it follows that {zε
s,t : ε ∈ {
, r, c}, s ∈ N, t ∈ N0}

is a free family of generalized circular elements with parameter λ which are free from 

p1Rp1 in (p1Mp1, ϕp1). We also note that

M = W ∗(R, {zε
s,t : ε ∈ {
, r, c}, s ∈ N, t ∈ N0}).

Now, observe that by freeness and (Tλ, ϕλ) ∼= ∗
i∈N

(Tλ, φλ)

p1Mp1 = W ∗(p1Rp1, {zε
s,t : ε ∈ {
, r, c}, s ∈ N, t ∈ N0}) ∼= W ∗(p1Rp1, z),

where z = p1zp1 is a generalized circular element of parameter λ that is free from 

p1Rp1, and this state-preserving isomorphism restricts to the identity on p1Rp1. Call 

this isomorphism γ. We then define γ̃ : M → W ∗(R, z) by

γ̃(x) =
n
∑

j,k=1

ujγ(u∗
j xuk)u∗

k.

It is easy to check that this is state-preserving and restricts to the identity on R. Finally, 

to complete the proof, we appeal to Lemma 3.1 once more in order to realize z = p1Zp1

for some generalized circular element with parameter λ which is free from R. Hence 

M ∼= W ∗(R, p1Zp1) via a state-preserving isomorphism that restricts to the identity 

on R. �
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Suppose H < R+ is non-trivial and has two generating sets: (λi)i∈I and (λi′)i∈I′ . Let 

(yi)i∈I be a free generalized circular family free from R with each yi having parameter 

λi. Similarly, let (y′
i)i′∈I′ be a free generalized circular family free from R with each yi′

having parameter λi′ . Since there is an isomorphism W ∗(R∪(yi)i∈I) ∼= W ∗(R∪(yi′)i′∈I′)

which is the identity on R, we obtain the following corollary:

Corollary 3.4. Suppose H < R+ is non-trivial and has two generating sets: (λi)i∈I and 

(λi′)i∈I′ . Let J be a set disjoint from I and I ′, let λj ∈ (0, 1) for each j ∈ J , and let H ′

be the group generated by H and (λj)j∈J . Let (yi)i∈I∪J be a free circular family free from 

R with each yi having parameter λi. Similarly, let (y′
i)i′∈I′∪J be a free circular family 

free from R with each yi′ having parameter λi′ . Let (pk)k∈I∪I′∪J be a family of nonzero 

projections in R. Then W ∗(R∪(piyipi)i∈I∪J ) ∼= W ∗(R∪(pi′yi′pi′)i′∈I′∪J ) via a mapping 

which is the identity on W ∗(R, (pjyjpj)j∈J ).

Recall from [3] that Dykema’s construction of the interpolated free group factors L(Ft)

consisted of the following ingredients

• The hyperfinite II1 factor R;

• A family of projections (ps)s∈S in R;

• A free semicircular family (xs)s∈S .

The interpolated free group factor with parameter t is given by

L(Ft) := W ∗(R ∪ (psxsps)s∈S)

where t = 1 +
∑

s∈S τ(ps)2. It should be noted that if (xs′)s′∈S′ is another free 

semicircular family free from R and (ps′)s′∈S are any projections in R satisfying 

t = 1 +
∑

s′∈S′ τ(ps′)2, then W ∗(R, (psxsps)s∈S) and W ∗(R, (ps′xs′ps′)s′∈S′) are iso-

morphic via an isomorphism which is the identity on R.

The presence of generalized circular elements with non-trivial parameters eliminates 

(via free absorption) the need for a fixed value of 
∑

s′∈S′ τ(ps′)2. We thus have the 

following:

Proposition 3.5. Let I and I ′ be disjoint sets which are finite or countable, λi ∈ (0, 1)

for each i ∈ I ∪ I ′, and H := 〈λi : i ∈ I〉 = 〈λi′ : i′ ∈ I ′〉. Let S, S′, and T be finite or 

countable (possibly empty) disjoint sets. Assume that we are given the following:

• Families of nonzero projections (ps)s∈S, (ps′)s′∈S′ , (pt)t∈T , (qi)i∈I , and (qi′)i′∈I′

in R;

• A free semicircular family (xs)s∈S free from R;

• A free semicircular family (xs′)s∈S′ free from R;

• A free semicircular family (xt)t∈T free from R ∪ (xs)s∈S ∪ (xs′)s′∈S′ ;
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• A free family (yi)i∈I of generalized circular elements with respective parameters λi

that is free from R ∪ (xs)s∈S∪T ;

• A free family (yi′)i′∈I′ of generalized circular elements with respective parameters λi′

that is free from R ∪ (xs′)s′∈S′∪T .

Then

W ∗(R ∪ (psxsps)s∈S∪T ∪ (qiyiqi)i∈I) ∼= W ∗(R ∪ (ps′xs′ps′)s′∈S′∪T ∪ (qi′yi′qi′)i′∈I′)

via a state-preserving isomorphism which is the identity on W ∗(R ∪ (ptxtpt)t∈T ).

Proof. From the proof of Proposition 3.3, we see that there is a state-preserving isomor-

phism

W ∗(R ∪ (ptxtpt)t∈T ∪ (psxsps)s∈S ∪ (qiyiqi)i∈I)

∼= W ∗(R ∪ (ptxtpt)t∈T ∪ (psxsps)s∈S ∪ (yi)i∈I),

which is the identity on W ∗(R ∪ (ptxtpt)t∈T ∪ (psxsps)s∈S). Let T ′ be a countably 

infinite set disjoint from S, S′, and T , and (xt′)t′∈T ′ a free semicircular family free from 

R ∪ (xt)t∈T ∪ (xs)s∈S ∪ (xs′)s′∈S′ ∪ (yi)i∈I ∪ (yi′)i′∈I′ . By free absorption, there is a 

state-preserving isomorphism

W ∗(R ∪ (ptxtpt)t∈T ∪ (psxsps)s∈S ∪ (yi)i∈I)

∼= W ∗(R ∪ (ptxtpt)t∈T ∪ (psxsps)s∈S ∪ (yi)i∈I ∪ (xt′)t′∈T ′)

which is the identity on W ∗(R ∪ (ptxtpt)t∈T ∪ (psxsps)s∈S). Via Dykema’s cutting and 

pasting argument [3], there is a state-preserving isomorphism

W ∗(R ∪ (ptxtpt)t∈T ∪ (psxsps)s∈S ∪ (yi)i∈I ∪ (xt′)t′∈T ′)

∼= W ∗(R ∪ (ptxtpt)t∈T ∪ (yi)i∈I ∪ (xt′)t′∈T ′)

which is the identity on W ∗(R∪(ptxtpt)t∈T ∪(yi)i∈I). Finally, by uniqueness of (TH , ϕH), 

there is a state-preserving isomorphism

W ∗(R ∪ (ptxtpt)t∈T ∪ (yi)i∈I ∪ (xt′)t′∈T ′)

∼= W ∗(R ∪ (ptxtpt)t∈T ∪ (yi′)i′∈I′ , (xt′)t′∈T ′)

which is the identity on W ∗(R∪(ptxtpt)t∈T ∪(xt′)t′∈T ′). Composing these isomorphisms 

gives a state-preserving isomorphism

W ∗(R ∪ (ptxtpt)t∈T ∪ (psxsps)s∈S ∪ (qiyiqi)i∈I)

∼= W ∗(R ∪ (ptxtpt)t∈T ∪ (yi′)i′∈I′ ∪ (xt′)t′∈T ′)
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which is the identity on W ∗(R ∪ (ptxtpt)t∈T ). Similarly, there is a state-preserving iso-

morphism

W ∗(R ∪ (ptxtpt)t∈T ∪ (ps′xs′ps′)s′∈S′ ∪ (qi′yi′qi′)i′∈I′)

∼= W ∗(R ∪ (ptxtpt)t∈T ∪ (yi′)i′∈I′ ∪ (xt′)t′∈T ′)

which is the identity on W ∗(R ∪ (ptxtpt)t∈T ). This completes the proof. �

Remark 3.6. Note that W ∗(R, (ptxtpt)t∈T , (psxsps)s∈S , (qiyiqi)i∈I) equipped with the 

free product state τ ∗ ϕH is isomorphic to (TH , ϕH).

Using freeness of the x’s from the y’s and Corollary 3.4, we can upgrade Proposition 3.5

to the following corollary which will be useful for our notions of standard embeddings 

below.

Corollary 3.7. Let I, I ′, and J be disjoint sets which are finite or countable, and let 

λi ∈ (0, 1) for each i ∈ I ∪ I ′ ∪ J and H := 〈λi : i ∈ I ∪ J〉 = 〈λi′ : i′ ∈ I ′ ∪ J〉. Let S, 

S′, and T be finite or countable (possibly empty) disjoint sets. Assume that we are given 

the following:

• Families of nonzero projections (ps)s∈S, (ps′)s′∈S′ , (pt)t∈T , (qi)i∈I , (qi′)i′∈I′ , and 

(qj)j∈J in R;

• A free semicircular family (xs)s∈S free from R;

• A free semicircular family (xs′)s∈S′ free from R;

• A free semicircular family (xt)t∈T free from R ∪ (xs)s∈S ∪ (xs′)s′∈S′ ;

• A free family (yi)i∈I of generalized circular elements with respective parameters λi

that is free from R ∪ (xs)s∈S ∪ (xt)t∈T ;

• A free family (yi′)i′∈I′ of generalized circular elements with respective parameters λi′

that is free from R ∪ (xs′)s′∈S′ ∪ (xt)t∈T ;

• A free family (yj)j∈J of generalized circular elements with respective parameters λj

that is free from R ∪ (xs)s∈S ∪ (xs′)s′∈S′ ∪ (xt)t∈T ∪ (yi)i∈I ∪ (yi′)i′∈I′ ;

Then

W ∗(R ∪ (psxsps)s∈S∪T ∪ (qiyiqi)i∈I∪I′′) ∼= W ∗(R ∪ (ps′xs′ps′)s′∈S′∪T ∪ (qi′yi′qi′)i′∈I′∪I′′)

via a state-preserving isomorphism which is the identity on W ∗(R ∪ (ptxtpt)t∈T ∪
(qjyjqj)j∈J).

3.2. Standard embeddings

With our hyperfinite matricial model for (TH , ϕH), we will proceed as in Section 4 

of [2] and develop the notion of a “standard embedding” of almost periodic free Araki–
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Woods factors. After the definition, the proofs of Propositions 3.10, 3.11, and 3.12 follow 

the proofs in Section 4 of [2] very closely.

Definition 3.8. Let H and H ′ be non-trivial countable subgroups of R+ with H ≤ H ′. 

We say that a modular inclusion α : (TH , ϕH) → (TH′ , ϕH′) is a standard embedding if 

there exist:

• Sets I ⊂ I ′, λi ∈ (0, 1) for all i ∈ I ′ such that H = 〈λi : i ∈ I〉, and H ′ = 〈λi′ : i′ ∈
I ′〉;

• Sets S ⊂ S′, families of nonzero projections (ps)s∈S′ and (qi)i∈I′ in the hyperfinite 

II1 factor R;

• A free family {xs, yi : s ∈ S′, i ∈ I ′} free from R where xs is a semicircular operator, 

and yi is a generalized circular element with parameter λi;

• State preserving isomorphisms

β : (TH , ϕH) → W ∗(R ∪ (psxsps)s∈S ∪ (qiyiqi)i∈I)

γ : (TH′ , ϕH′) → W ∗(R ∪ (psxsps)s∈S′ ∪ (qiyiqi)i∈I′)

so that γ ◦ α ◦ β−1 is the canonical inclusion.

If H = {1} (i.e. I is empty), then we replace (TH , ϕH) with L(Ft, τ). If I ′ is also 

empty then this is just a repetition of the definition of standard embedding in [2].

Before proving properties about standard embeddings, we need to show that the 

notion is independent of the generating sets of H and H ′, the projections ps and qi, the 

semicircular operators xs, and the generalized circular elements yi.

Proposition 3.9. Let H and H ′ be countable, non-trivial subgroups of R+, and suppose 

that α : (TH , ϕH) → (TH′ , ϕH′) is a standard embedding. Let I ⊂ I ′, (λi)i∈I′ ⊂ (0, 1), 

S ⊂ S′, (ps)s∈S′ , (qi)i∈I′ , (xs)s∈S′ , (yi)i∈I′ , β, and γ be as in Definition 3.8. Suppose:

• J ⊂ J ′ are sets disjoint from I ′, and (λj)j∈J ′ ⊂ (0, 1) are such that H = 〈λj : j ∈ J〉
and H ′ = 〈λj′ : j′ ∈ J ′〉;

• T ⊂ T ′ are sets disjoint from S′, and (pt)t∈T ′ and (qj)j∈J ′ are families of nonzero 

projections in R;

• {xt, yj : t ∈ T ′, j ∈ J ′} is free from R where xt is semicircular and yj is a generalized 

circular element with parameter λj.

Then there exist state-preserving isomorphisms

δ : (TH , ϕH) → W ∗(R ∪ (ptxtpt)t∈T ∪ (qjyjqj)j∈J )

ε : (TH′ , ϕH′) → W ∗(R ∪ (ptxtpt)t∈T ′ ∪ (qjyjqj)j∈J ′)

so that ε ◦ α ◦ δ−1 is the canonical inclusion.
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Proof. It suffices to show there exist state-preserving isomorphisms Φ and Ψ so that the 

following diagram commutes:

W ∗(R ∪ (psxsps)s∈S ∪ (qiyiqi)i∈I)

i1

W ∗(R ∪ (psxsps)s∈S′ ∪ (qiyiqi)i∈I′ )

Φ

W ∗(R ∪ (ptxtpt)t∈T ∪ (qjyjqj)j∈J )

i2

W ∗(R ∪ (ptxtpt)t∈T ′ ∪ (qjyjqj)j∈J′ )

Ψ

where ii and i2 are the canonical inclusions. Indeed, given such isomorphisms we simply 

take δ := Φ ◦ β and ε := Ψ ◦ γ.

Using Corollary 3.7, there is a state-preserving isomorphism

θ1 : W ∗(R ∪ (psxsps)s∈S′ ∪ (qiyiqi)i∈I′)

↓
W ∗(R ∪ (psxsps)s∈S ∪ (ptxtpt)t∈T ′\T ∪ (qiyiqi)i∈I ∪ (qjyjqj)j∈J ′\J),

which is the identity on W ∗(R∪(psxsps)s∈S ∪(qiyiqi)i∈I). There is also a state-preserving 

isomorphism

θ2 : W ∗(R ∪ (psxsps)s∈S ∪ (ptxtpt)t∈T ′\T ∪ (qiyiqi)i∈I ∪ (qjyjqj)j∈J ′\J)

↓
W ∗(R ∪ (ptxtpt)t∈T ′ ∪ (qjyjqj)j∈J ′)

which is the identity on W ∗(R∪(pt′xt′pt′)t′∈T ′\T ∪(qj′yj′qj′)j∈J ′\J). Set Ψ := θ2◦θ1, and 

set Φ to be the restriction of Ψ to W ∗(R ∪ (psxsps)s∈S ∪ (qiyiqi)i∈I). By construction, 

the above diagram commutes. �

Proposition 3.10.

(i) Let H1 ≤ H2 ≤ H3 be countable, non-trivial subgroups of R+. If α1 : (TH1
, ϕH1

) →
(TH2

, ϕH2
) and α2 : (TH2

, ϕH2
) → (TH3

, ϕH3
) are standard embeddings, then α2 ◦ α1

is a standard embedding.

(ii) Let H1 ≤ H2 ≤ H3 ≤ · · · ≤ Hn ≤ · · · be countable, non-trivial subgroups of R+, 

and H =
⋃

n∈N

Hn. For each n ∈ N, suppose that αn : (THn
, ϕHn

) → (THn+1
, ϕHn+1

)

is a standard embedding. Let (M, ϕ) be the inductive limit von Neumann algebra of 

the [(THn
, ϕHn

), αn]. Then (M, ϕ) ∼= (TH , ϕH).
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Proof. (i): Based on Proposition 3.9 and its proof, we may assume that there are count-

able sets I1 ⊂ I2 ⊂ I3, S ⊂ S′, T ⊂ T ′ with S′ and T ′ disjoint, and λi ∈ (0, 1) for each 

i ∈ I3 satisfying 〈λi : i ∈ Ij〉 = Hj . We can further assume that there are semicircu-

lar families (xs)s∈S′ and (xt′)t′∈T ′′ both free from R; free families (yi)i∈I2
and (ỹi)i∈I3

of generalized circular elements with respective parameters λi that are free from each 

other, (xs)s∈S′ , (xt)t∈T , and R; families of projections (ps)s∈S′ and (pt)t∈T ′ in R; and 

state-preserving isomorphisms

β : (TH1
, ϕH1

) → W ∗(R ∪ (psxsps)s∈S ∪ (yi)i∈I1
)

γ : (TH2
, ϕH2

) → W ∗(R ∪ (psxsps)s∈S′ ∪ (yi)i∈I2
)

γ : (TH2
, ϕH2

) → W ∗(R ∪ (ptxtpt)t∈T ∪ (ỹi)i∈I2
)

δ : (TH3
, ϕH3

) → W ∗(R ∪ (ptxtpt)t∈T ′ ∪ (ỹi)i∈I3
)

so that γ ◦ α1 ◦ β−1 and δ ◦ α2 ◦ γ−1 are the canonical inclusions. Utilizing γ ◦ γ−1, we 

obtain an isomorphism

δ : (TH3
, ϕH3

) → W ∗(R ∪ (psxsps)s∈S′ ∪ (ptxtpt)t∈T ′\T ∪ (yi)i∈I2
∪ (ỹi)i∈I3\I2

),

where pt ∈ W ∗(R ∪ (psxsps)s∈S′ ∪ (yi)i∈I2
)ϕ and α2 ◦ α1 = δ

−1 ◦ i ◦ β (here i is the 

canonical inclusion). Since W ∗(R∪(psxsps)s∈S′ ∪(yi)i∈I2
, )ϕ is a factor, choose a unitary

ut ∈ W ∗(R ∪ (psxsps)s∈S′ ∪ (yi)i∈I2
, )ϕ

so that u∗
t ptut ∈ R for each t ∈ T ′ \ T . Then R, (xs)s∈S′ , and (u∗

t xtut)t∈T ′\T is a free 

family and is free from (yi)i∈I2
and (ỹi)i∈I3

. This means that δ is valued in

W ∗(R ∪ (psxsps)s∈S′ ∪ ((u∗
t ptut)(u

∗
t xtut)(u

∗
t ptut)t∈T ′\T ∪ (yi)i∈I2

∪ (ỹi)i∈I3\I2
)

so that α2 ◦ α1 is standard.

(ii): This follows directly from the above proof and (ii) of [2, Proposition 4.3] �

Proposition 3.11. Let H ≤ H ′ be countable, non-trivial subgroups of R+, α : (TH , ϕH) →
(TH′ , ϕH′) a modular inclusion, and p ∈ T ϕH

H a nonzero projection. Then α is a standard 

embedding if and only if α |pTH p is a standard embedding.

Proof. It is straightforward to see that if α is a standard embedding, then

(α ⊗ id) : (TH , ϕH) ⊗ Mn(C)
1
n

,..., 1
n

→ (TH′ , ϕH′) ⊗ Mn(C)
1
n

,..., 1
n

is a standard embedding. It therefore suffices to prove that α being a standard embedding 

implies α |pTH p is a standard embedding. Let I ⊂ I ′, S ⊂ S′, (ps)s∈S′ , (qi)i∈I′ , (xs)s∈S′ , 
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(λi)i∈I′ , (yi)i∈I′ , β, and γ be as in Definition 3.8. Without loss of generality, we can 

assume that (after conjugating by unitaries in the centralizer) β(p) ∈ R and γ(p) ∈ R. 

We will simply call these images p. We are allowed to assume that ps ≤ p and qi ≤ p for 

all s ∈ S′. α |pTH p is therefore conjugate to the canonical inclusion

W ∗(pRp ∪ (psxsps)s∈S ∪ (qiyiqi)i∈I) ↪→ W ∗(pRp ∪ (psxsps)s∈S′ ∪ (qiyiqi)i∈I′)

establishing that α |pTH p is a standard embedding. �

Proposition 3.12. Let H < R+ be a countable, non-trivial subgroup. The following are 

standard embeddings:

(i) The canonical inclusion i : (A, φ) ↪→ (A, φ) ∗(B, ψ) where A is either an interpolated 

free group factor with trace φ, or an almost periodic free Araki–Woods factor with 

free quasi-free state φ, and B is either an interpolated free group factor with trace 

ψ, or an almost periodic free Araki–Woods factor with free quasi-free state ψ

(ii) the canonical inclusion j : (TH , ϕH) ↪→ (TH , ϕH) ∗ (B, ψ) where B is finite-

dimensional or B(H) for H separable and infinite-dimensional and ψ a faithful 

normal state.

Proof. (i) Let R and R′ be two free copies of the hyperfinite II1 factor and S, S′, I

and I ′ disjoint sets. (I (resp. I ′) will be empty if A (resp. B) is an interpolated free 

group factor.) Suppose λi ∈ (0, 1) for all i ∈ I, λi′ ∈ (0, 1) for all i′ ∈ I ′, and that 

H = 〈λi : i ∈ I ′〉. Let (xi)i∈I , (xi′)i′∈I′ , be free families of semicircular elements, free 

from each other and R ∪ R′. Let (ps)s∈S , and (qi)i∈I be families of projections in R, and 

(ps′)s′∈S′ , and (qi′)i′∈I′ be families of projections in R′. Finally, let (yi)i∈I and (yi′)i′∈I′

be free families of generalized circular elements, free from each other, (xi)i∈I , (xi′)i′∈I′ , 

and R ∪ R′. Assume that yi has parameter λi for i ∈ I ∪ I ′. We need to show that the 

inclusion

W ∗(R ∪ (psxsps)s∈S ∪ (qiyiyi)i∈I) → W ∗(R ∪ R′ ∪ (psxsps)s∈S∪S′ ∪ (qiyiyi)i∈I∪I′)

is standard. Note by [3, Corollary 3.6] that there is a semicircular element x ∈ W ∗(R∪R′)

which is free from R and satisfies W ∗(R ∪ {x}) = W ∗(R ∪ R′). Let (us′)s′∈S′ and 

(vi′)i′∈I′ be families of unitaries in W ∗(R ∪ {x}) satisfying ps′ := u∗
s′ps′us′ ∈ R and 

qi′ := v∗
i′qi′vi ∈ R. Let xs′ = u∗

s′xs′us′ and yi′ = v∗
i′yi′vi. Therefore, the inclusion above 

can be realized as the canonical inclusion

W ∗(R ∪ (psxsps)s∈S ∪ (qiyiyi)i∈I)

↪→

W ∗(R ∪ R′ ∪ (psxsps)s∈S ∪ (ps′ · xs′ · ps′)s′∈S′ ∪ (qiyiyi)i∈I , (qi′ · yi′ · yi′)i′∈I′)
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which is standard.

(ii) Choose n large enough so that

Mn(C)
1
n

,··· , 1
n

∗ (B, ψ)

is a factor (necessarily (L(Ft), τ) or (TH′ , ϕH′)). Recall that (TH , ϕH) ∼= (TH , ϕH) ⊗
Mn(C)

1
n

,··· , 1
n

and let p be a minimal projection in Mn(C). Note from Lemma 1.4 that

p(TH , ϕH) ∗ (B, ψ))p = p

[

(TH , ϕH) ⊗ Mn(C)
1
n

,··· , 1
n

]

∗ (B, ψ)p

= p

[

Mn(C)
1
n

,··· , 1
n

∗ (B, ψ)

]

p ∗ p(TH , ϕH)p.

It follows from (i) that j |pTH p is standard, hence j is standard from Proposition 3.11. �

3.3. Free products of some hyperfinite and other von Neumann algebras

We will use standard the embedding techniques above to extend Theorem 2.16.

Theorem 3.13. Let (A, φ) and (B, ψ) be von Neumann algebras with at least one of φ

or ψ not a trace. Assume further that dim(A), dim(B) ≥ 2 and A and B are countable 

direct sums of algebras of the following types:

• Separable type I factors with faithful normal states;

• Diffuse von Neumann algebras of the form 

∞
⊗

n=1

(Fi, φi) where each Fi is finite-

dimensional and the state is the tensor product of the φi;

• (M, γ) ⊗ (L(Ft), τ) with M a separable type I factor, finite or infinite-dimensional;

• (N, γ′) ⊗ (TG, ϕG) with N a separable type I factor, finite or infinite-dimensional, 

and G a countable, non-trivial subgroup of R+.

Let (M, ϕ) = (A, φ) ∗(B, ψ). Then (M, ϕ) ∼= (TH , ϕH) ⊕C where H is the group generated 

by the point spectra of Δφ and Δψ, and C is finite-dimensional and is determined exactly 

as in Theorem 2.11.

Note that the class of von Neumann algebras in the second bullet point contains all 

hyperfinite, diffuse, finite von Neumann algebras as well as the Powers factors (Rλ, φλ)

of type IIIλ, and tensor products of Powers factors. Furthermore observe that the class of 

von Neumann algebras in the last two bullet points contains the interpolated free group 

factors with traces and separable free Araki–Woods factors with free quasi-free states, 
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but is larger in general as tensor products are allowed where γ is not a trace and the 

point spectrum of Δγ′ need not be a subset of G.

Before we prove the above theorem, we first use standard embeddings to upgrade 

Theorem 2.16 to handle infinite direct sums:

Lemma 3.14. Let (A, φ) and (B, ψ) be von Neumann algebras with faithful states φ and 

ψ, respectively, of the following form (up to unitary conjugation):

(A, φ) =

∞
⊕

i=1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

⊕
∞
⊕

i=1

pi

(B(Hi), φi)
γi

and

(B, ψ) =
∞
⊕

j=1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

⊕
∞
⊕

j=1

qj

(B(Kj), ψj)
δj

.

Where the Hi and Kj are separable infinite-dimensional Hilbert spaces. We assume at 

least one of φ or ψ is not a trace, that both A and B are at least two-dimensional, and 

allow either to be finite-dimensional by having the corresponding weights be zero. Let G

be the group generated by the point spectra of Δφ and Δψ. Then

(A, φ) ∗ (B, ψ) = (TG, ϕG) ⊕ C

where C is finite-dimensional (possibly zero) and is determined exactly as in Theo-

rem 2.11.

Proof. Define I0 ⊂ N as the subset of i ∈ N such that either ki = 1 and there exists 

j ∈ N such that 
∑n

k=1
1−αi,1

βj,k
< 1, or there exists j ∈ N such that 
j = 1 such that 

∑n
k=1

1−βj,1

αi,k
< 1. Note that I0 must be a finite set. Define J0 similarly. Up to relabeling, 

we may assume I0 = {1, . . . , N} and J0 = {1, . . . , M} for some N, M ∈ N, and then 

define

A0 :=

N
⊕

i=1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

and B0 :=

M
⊕

j=1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

,

and let qA and qB denote their respective identities. Let K be sufficiently large so that 

if pA and pB are the respective identities of

∞
⊕

i=N+K+1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

⊕
∞
⊕

i=N+K+1

pi

(B(Hi), φi)
γi

and

∞
⊕

j=M+K+1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

⊕
∞
⊕

j=M+K+1

qj

(B(Kj), ψj)
δj

,

then φ(pA) < 1 − ψ(qB) and ψ(pB) < 1 − φ(qA). Define
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(A1, φ) :=

N+K
⊕

i=1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

⊕
N+K
⊕

i=1

pi

(B(Hi), φi)
γi

⊕
pA

C

(B1, ψ) :=
M+K
⊕

j=1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

⊕
M+K
⊕

j=1

qj

(B(Kj), ψj)
δj

⊕
pB

C .

Increasing K if necessary, we assume that at least one of the summands in either A1 or 

B1 is non-tracial. Let Hs,t denote the subgroup of R+ generated by

{

αi,j

αi,k

: 1 ≤ i ≤ N + K + s − 1, 1 ≤ j, k ≤ ki

}

,

{

βj,i

βj,k

: 1 ≤ j ≤ M + K + t − 1, 1 ≤ i, k ≤ 
j

}

,

as well as the point spectra of Δφi
and Δψj

for i ≤ i ≤ N +K+s −1 and j ≤ M +K+t −1. 

If we let C be as in the statement of the lemma, then by Theorem 2.11 we have

(A1, φ) ∗ (B1, ψ) ∼=
P

(TH1,1
, ϕH1,1

) ⊕ C.

Moreover, pA, pB ≤ P by our choice of K. Now, for n, m ≥ 2 define

(An, φ) :=

N+K
⊕

i=1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

⊕
N+K
⊕

i=1

pi

(B(Hi), φi)
γi

⊕
(

N+K+n−1
⊕

i=N+K+1

pi

C ⊕
pi

C

)

⊕
pA,n

C

(Bn, ψ) :=
M+K
⊕

j=1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

⊕
M+K
⊕

j=1

qj

(B(Kj), ψj)
δj

⊕

⎛

⎝

M+K+n−1
⊕

j=M+K+1

qj

C ⊕
qj

C

⎞

⎠⊕
pB,n

C ,

where

pi = pi,1 + · · · + pi,ki
pi is the identity of B(Hi)

qj = qj,1 + · · · + qj,�j
qj is the identity of B(Kj)

pA,n = pA − (pN+K+1 + · · · + pN+K+n−1) − (pN+K+1 + · · · + pN+K+n−1)

pB,n = pB − (qM+K+1 + · · · + qM+K+n−1) − (qM+K+1 + · · · + qM+K+n−1).

By Lemma 1.4 we have

pA,1 [(A2, φ) ∗ (B1, ψ)] pA,1
∼= pA,1 [(A1, φ) ∗ (B1, ψ)] pA,1 ∗

[

pN+K+1

C ⊕
pN+K+1

C ⊕
pA,2

C

]

Hence it follows from Propositions 3.11 and 3.12 that the canonical inclusion of (A1, φ) ∗
(B1, ψ) into (A2, φ) ∗(B1, ψ) is a standard embedding. Iterating this argument, we obtain 

that the canonical inclusions
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(An, φ) ∗ (Bn, ψ) ↪→ (An+1, φ) ∗ (Bn, ψ) ↪→ (An+1, φ) ∗ (Bn+1, ψ)

are standard embeddings. By Proposition 3.10, we therefore have

(A(1,1), φ) ∗ (B(1,1), ψ) ∼= (TH1,1
, ϕH1,1

) ⊕ C,

where

(A(1,1), φ) :=

N+K
⊕

i=1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

⊕
N+K
⊕

i=1

pi

(B(Hi), φi)
γi

⊕
∞
⊕

i=N+K+1

pi

C ⊕
∞
⊕

i=N+K+1

pi

C

(B(1,1), ψ) :=

M+K
⊕

j=1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

⊕
M+K
⊕

j=1

qj

(B(Kj), ψj)
δj

⊕
∞
⊕

j=M+K+1

qj

C ⊕
∞
⊕

j=M+K+1

qj

C.

Next, for n ≥ 2 define

(A(n,1), φ) :=
N+K+n−1
⊕

i=1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

⊕
N+K+n−1
⊕

i=1

pi

(B(Hi), φi)
γi

⊕
∞
⊕

i=N+K+n

pi

C ⊕
∞
⊕

i=N+K+n

pi

C

(A(n,2), φ) :=
N+K+n
⊕

i=1

pi,1,··· ,pi,ki

Mki
(C)

αi,1,··· ,αi,ki

⊕
N+K+n−1
⊕

i=1

pi

(B(Hi), φi)
γi

⊕
∞
⊕

i=N+K+n+1

pi

C ⊕
∞
⊕

i=N+K+n

pi

C

(B(n,1), ψ) :=

M+K+n−1
⊕

j=1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

⊕
M+K+n−1
⊕

j=1

qj

(B(Kj), ψj)
δj

⊕
∞
⊕

j=M+K+n

qj

C⊕
∞
⊕

j=M+K+n

qj

C

(B(n,2), ψ) :=

M+K+n
⊕

j=1

qj,1,··· ,qj,�j

M�j
(C)

βj,1,··· ,βj,�j

⊕
M+K+n−1
⊕

j=1

qj

(B(Kj), ψj)
δj

⊕
∞
⊕

j=M+K+n+1

qj

C⊕
∞
⊕

j=M+K+n

qj

C.

By Lemma 1.4 for i = N + K + 1 we have

pi

[

(A(1,2), φ) ∗ (B(1,1), ψ)
]

pi
∼= pi

[

(A(1,1), φ) ∗ (B(1,1), ψ)
]

pi ∗
pi,1,...,pi,ki

Mki
(C)

αi,1,...,αi,ki

.

As above, we have that the canonical inclusion of (A(1,1), φ) ∗ (B(1,1), ψ) into (A(1,2), φ) ∗
(B(1,1), ψ) is a standard embedding. Iterating yields that the canonical inclusions

(A(n,1), φ) ∗ (B(m,1), ψ) ↪→ (A(n,2), φ) ∗ (B(m,1), ψ)

↪→ (A(n+1,1), φ) ∗ (B(m,1), ψ)

↪→ (A(n+1,1), φ) ∗ (B(m,2), ψ) ↪→ (A(n+1,1), φ) ∗ (B(m+1,1), ψ)

are standard embeddings. Appealing to Proposition 3.10 concludes the proof. �
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Proof of Theorem 3.13. Write

A =

∞
⊕

i=1

A0,i ⊕
∞
⊕

i=1

A1,i ⊕
∞
⊕

i=1

A2,i B =

∞
⊕

j=1

B0,j ⊕
∞
⊕

j=1

B1,j ⊕
∞
⊕

j=1

B2,j

where {A0,i} consists of all the type I factor direct summands of A, {A1,j} consists of all 

diffuse summands of the form 

∞
⊗

k=1

(Fk, φk) for Fk finite-dimensional, and {A2,i} consists 

of the summands which are of the form

• (M, γ) ⊗ L(Ft) with M a separable type I factor, finite or infinite-dimensional;

• (N, γ′) ⊗ (TG, ϕG) with N a separable type I factor, finite or infinite-dimensional, 

and G a nontrivial countable subgroup of R+.

The {B0,j}, {B1,j}, and {B2,j} are defined similarly. For the collections {A0,i} and 

{B0,j} define I0 and J0 as in Lemma 3.14. Set

A1 :=
∞
⊕

i∈1

A0,i ⊕
∞
⊕

i=1

A′
1,i ⊕

∞
⊕

i=1

Mni
(C) B1 =

∞
⊕

j∈1

B0,j ⊕
∞
⊕

j=1

B′
1,j ⊕

∞
⊕

j=1

Mmj
(C)

where A′
1,i is a finite-dimensional subalgebra of A1,i with dimension large enough so that 

its minimal projections have mass smaller than

1 − ψ

⎛

⎝

∞
∑

j=1

1B0,j

⎞

⎠ .

The state on each Mni
(C) is tracial, the identity on Mni

(C) is the identity on A2,i, the 

inclusion of Mni
(C) into A2,i is modular, and ni is large enough so that the summand 

Mni
(C) is in the diffuse summand of A1 ∗ B1. Similar statements hold for the B′

1,j and 

Mmj
(C). These conditions ensure that A1 ∗ B1 has the predicted finite-dimensional C. 

By Lemma 3.14 we know

(A1, φ) ∗ (B1, ψ) ∼= (TH1,1
, ϕH1,1

) ⊕ C,

where H1,1 is the subgroup of R+ generated by the point spectra of Δφ|A1
and Δψ|B1

. 

We then proceed to build back up to A and B by tensoring the summands A′
1,i and B′

1,j

by appropriate finite-dimensional algebras, one at a time, as well as by tensoring von 

Neumann algebras of the form

• (M, γ) ⊗ L(Ft) with M a separable type I factor, finite or infinite-dimensional (first 

tensor with M , then tensor with L(Ft));
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• (N, γ′) ⊗ (TG, ϕG) with N a separable type I factor, finite or infinite-dimensional, 

and G a nontrivial countable subgroup of R+ (first tensor with N , then tensor with 

(TG, ϕG);

on each Mni
(C) and each Mmj

(C) and using

Mn(C)
1
n

,..., 1
n

⊗(L(F(1+n−2(t−1))), τ) ∼= (L(Ft), τ) and Mn(C)
1
n

,..., 1
n

⊗(TG, ϕG) ∼= (TG, ϕG)

for G non-trivial. Lemma 1.4 together with Propositions 3.11 and 3.12 ensure the canon-

ical inclusions are standard embeddings on the orthogonal complement of C. The result 

then follows from Proposition 3.10. �

Remark 3.15. It should be noted that, by Theorem 7.2 in [8], there are hyperfinite von 

Neumann algebras equipped with non-almost periodic states whose free product is not 

a free Araki–Woods factor of any kind. Given Theorem 3.13 above, it is natural to 

conjecture that the free product of injective von Neumann algebras is a free Araki–Woods 

factor plus a finite-dimensional von Neumann algebra if and only if both injective von 

Neumann algebras are equipped with almost periodic states.
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