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0. Introduction

Since the advent of free probability by Voiculescu, there has been significant inter-
est in studying free products of von Neumann algebras (see [2,4,9,5,10-12,7,13,14,1,
15,16] among others). A landmark result of Dykema expressed free products of finite-
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dimensional von Neumann algebras with tracial states in terms of interpolated free group
factors. Specifically, he proved:

Theorem (/2, Theorem 4.6]). Let A and B be hyperfinite von Neumann algebras equipped
with faithful normal tracial states ¢ and 1, respectively. Assume that dim(A) > 2,
dim(B) > 2, and dim(A) + dim(B) > 5. Then

(Aa¢) * (B’w) = (L(Ft)aT) eC

where C is finite-dimensional (possibly zero), and t can be computed directly from (A, ¢)
and (B,) using “free dimension.”

This theorem therefore established that free group factors were the “minimal” II; factors
that could appear in a free product of two von Neumann algebras with tracial states.

Later, Rddulescu [9] studied the free product (L(Z), ) * (M2(C), ) for ¢ a nontra-
cial state, and showed that it is a type IIIy factor with centralizer L(F.,) and discrete
core L(Fo) ® B(H). Dykema [5] and Ueda [16] (using different techniques) extended
Réadulescu’s result with the following theorem.

Theorem ([5, Theorem 3] and [16, Theorem 3]). Let A and B be two separable von
Neumann algebras equipped with faithful normal states ¢ and ¥ respectively, at least one
of which is not a trace. Assume that A and B are not one-dimensional, and are countable
direct sums of the following

(1) Type I factors
(2) Diffuse hyperfinite von Neumann algebras on which ¢ or 1 is a trace

Let (M, ) = (A, ¢)*(B,v). Then M = M@ C where C is finite-dimensional (possibly
zero) and, My is a type 11 factor. Defining po = @|am,, we have ME® = L(Fs), @o is
almost periodic, and the point spectrum of A, (the modular operator of ) is the group
generated by the point spectra of Ay and Ay.

Notably, the above theorem does not address how to determine when two different
My’s are isomorphic. Shlyakhtenko created a natural candidate for My when he con-
structed the (almost periodic) free Araki—Woods factors (T, ¢m), indexed by countable,
non-trivial subgroups H < R¥, and equipped with faithful normal states called free
quasi-free states [10]. Shlyakhtenko showed that for countable, non-trivial H < R,
(Tw,em) is a factor of type III for A € (0,1], and A # 1 if and only if H = (\).
In addition, it was shown that the point spectrum of A, is exactly H, the family
{(Tg,pr): H < RT} is closed under taking free products, H uniquely determines
(Tr,pn), (T)?" = L(Fw), and Ty has discrete core isomorphic to L(Fy) ® B(H).
Furthermore, Shlyakhtenko showed that the factor of Radulescu [9] is isomorphic to
(T, @) for some A € (0,1).
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These von Neumann algebras arise from a Fock space construction; namely, a modifi-
cation of Voiculescu’s free Gaussian functor [17]. In particular, the free quasi-free state
is given by the vacuum state and for H = (1) the construction yields a free group factor.
It is thus natural to assert that (T, @) are the non-tracial analogues of the free group
factors. This led to the following question posed by Shlyakhtenko:

Question (/10]). Suppose that (A, $), (B,v), and (Mo, o) are as in the above theorem.
Must (Mo, o) = (Ty, o) where H is the subgroup of R™ generated by the point spectra
of Ag and Ay ?

A partial answer to the above question was obtained by Houdayer [7] who identified
(M32(C), ¢) * (M2(C), ) with an almost periodic free Araki-Woods factor provided that
at least one of ¢ or v is not a trace. An essential step in his proof was to identify
(M2(C), ¢) = [C @ C] with an almost periodic free Araki-Woods factor (see Lemma 1.5
below). However, his methods required one to assume that the mass in C @ C was not
overly concentrated in a single summand, and this hypothesis prevents one from applying
his methods to free products of higher dimensional matrix algebras.

More evidence of a positive answer to Shlyakhtenko’s question was obtained by Ueda,
who showed in [16] that the discrete core of My as above is isomorphic to L(Fo, ) @ B(H).

Despite these breakthroughs, it was still unknown how to identify the following free
products with almost periodic free Araki-Woods factors (see Section 1.1 for an explana-
tion of the notation):

o M5(C) [(%@1@5} where % <a<p<l;

a,l—a
o (M,(C),o) = {(g & 1@/3] for ¢ non-tracial and n > 3;
o (M,(C),)*(M,,(C),) for arbitrary n and m and at least one of ¢ or ¢ non-tracial.

In this paper we answer Shlyakhtenko’s question in the affirmative, namely we prove
the following theorem (see Theorem 2.11).

Theorem A. Let (A, ¢) and (B, ) be two finite-dimensional von Neumann algebras with
faithful states ¢ and 1) respectively, both of which are at least two-dimensional. Assume
that at least one of ¢ or v is not a trace, and that up to unitary conjugation,

T Pi1st s Pik; M q5,1, 45,4
(4,6) =D M (C)  and  (B,y)=ED M,(C) .
i1 Qi1 kg j=1Bj.1, B¢,

J

Let H be the group generated by the point spectra of Ay and Ay. Then

(A#Z’)*(B,W = (THﬁOH)@C
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where C' is finite-dimensional (possibly zero) and can be determined explicitly from (A, )
and (B, ). See Theorem 2.11 below.

This theorem is extended to the hyperfinite case in the following Theorem (see The-
orem 3.13).

Theorem B. Let (A, ¢) and (B, ) be von Neumann algebras with normal faithful states
¢ and 1 with at least one of ¢ or ¥ not a trace. Assume further that dim(A), dim(B) > 2
and A and B are countable direct sums of algebras of the following types:

o separable type I factors with faithful normal states;
o0

o diffuse von Neumann algebras of the form ®(FZ,¢1) where each F; is finite-

n=1
dimensional and the state is the tensor product of the ¢;;

o (M,~)® (L(F;), ) with M a separable type I factor, finite or infinite-dimensional;
o (N,y)® (Tg,pq) with N a separable type I factor, finite or infinite-dimensional,
and G a countable, non-trivial subgroup of R.

Let (M, @) = (A, §)x(B, ). Then (M, ) = (Th, o )®C where H is the group generated
by the point spectra of Ay and Ay, and C is finite-dimensional and is determined exactly
as in Theorem 2.11 below.

The key to attacking this problem is a non-tracial free graph von Neumann algebra
M(T, ) constructed by the authors in [6]. Here I' = (V, E) is a finite, directed, connected
graph and p: E — R is a weighting on the edges. In [6] the authors identified M(T, i)
with an almost periodic free Araki-Woods factor (up to direct sum copies of C). The key
feature of this von Neumann algebra is that it is naturally expressed as amalgamated
free product (see Subsection 1.4 below). By converting a free product of the form

(4,(©).0)x |G €

to an amalgamated free product over the diagonal of M, (C) and using induction, we
can realize a corner of this free product as corner of some M(T', ). We then identify this
corner with M(T”, ") for some other graph I'” and edge weighting p’. Using standard free
product techniques of Dykema, we are able to extend the computation of M,,(C)*[C&C]
to free products of arbitrary finite-dimensional algebras. Along the lines of [2] and [3]
we then develop standard embeddings of almost periodic free Araki-Woods factors, and
use these to prove Theorem B.

The outline of the paper is as follows: In Section 1, we establish notation and re-
view some preliminaries and relevant results about free products. We also recall the
construction of the von Neumann algebra M(T', ). In Section 2, we work through the
computation of M, (C)[C & C] (including n = 2) and use this to prove Theorem A. We
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also extend this to a computation of B(H) x [C & C], where B(H) is equipped with an
arbitrary faithful normal state, and use this to prove a version of Theorem A that allows
infinite-dimensional type I factors in the direct summands. In Section 3, we develop a
hyperfinite matricial model for (T, ¢5) which fuses Shlyakhtenko’s matricial model for
(Tw, pm) [10] and Dykema’s model for (L(F;), ) [3]. We use this to develop the notion of
a standard embedding of free Araki-Woods factors and utilize this to prove Theorem B.
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1. Preliminaries
1.1. Some notation

Given the non-tracial nature of our analysis, it is important that we specify the positive
linear functionals involved in any free product. Toward that end, we establish some
common notation for positive linear functionals that will be frequently used:

o After [2,5] we use the following notation:
o For t > 0 and a projection p

p
C:=(Cp,9),

where ¢ is determined by ¢(p) = t. We may suppress either ‘¢’ or ‘p’ if they are
clear from context. In the context of a direct sum, if ¢ < 0 then we mean that the
summand should be omitted.

o For a1, -+ ,ay, >0 and py,--- ,p, orthogonal minimal projections of M, (C)

M. (C) = (M,(C), ),

Q1,00
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where ¢ is determined by ¢(z) = Tr(zA) where A = >""" | a;p;. We may suppress
any of ‘a;’ or ‘p;’ if they are clear from context.
o For ¢ > 0 and a von Neumann algebra A with identity element p and a state ¢

<A’Z¢>> = (A4,10).

We may suppress any of ‘t’, ‘p’, or ‘¢’ if they are clear from context (e.g. a 1Ty
factor and its canonical trace).
The above notations allow us to concisely express direct sums with explicit (and
sometimes implicit) weightings. E.g.:

P1 P2,92 Pp3
C o Mx(C) (A, ).
t1 327t‘2 tg

If t1 4+ so + to + t3 = 1 then the associated positive linear functional on this direct
sum is a state. However, it will often be notationally convenient to not demand such
normalization. If such an unnormalized direct sum appears in a free product, we will
ensure that each factor in the free product has the same total mass.

o Let H be a separable infinite-dimensional Hilbert space and {e; ;}i jen, a system of
matrix units for B(#H). For A € (0,1), after [10] we define a normal state ¥ : B(H) —
C by

N(1=A) ifi=j

0 otherwise

¥aleij) = {

If H is finite-dimensional so that B(H) = M, (C) is generated by matrix units
{ei,j}ﬁj;lo, for some n € N, we define a state ¢ : M, (C) — C by

NS iti=

0 otherwise

Ualeiy) == {

e For a von Neumann algebra A with a positive linear functional ¢ and a non-zero
projection p € A, denote

Py Lo
()= ¢(p)¢(p D).

1.2. Free Araki-Woods factors
We recall the main features of Shlyakhtenko’s almost periodic free Araki-Woods fac-

tors [10] that we will use in this paper. See [10] for the general construction, and [6] for
an overview of the construction.
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If A € (0,1), then the (unique) type III) almost periodic free Araki-Woods factor
(Tx, @) arises on the full Fock space of C2?, F(C?). If {u,v} is an orthonormal basis of
C?, then (T, px) C B(F(C?)) is the von Neumann algebra generated by

ya = L(u) + VA(v)*

with £(£) the creation operator for £ € C2, and ¢y is the vacuum state. We will call y, a
generalized circular element of parameter A. Using the polar decomposition of y,, it was
shown that

(T, 2) = (L(Z),7) * (B(H), 1) (1)

For any countable, non-trivial H < R, with generating set (\;);cr, Ai € (0,1),
Shlyakhtenko showed that the free product (M, ¢) = X, (Th,,¢x,) is a factor that
is independent of the generating set of H and the multiplicity of the generators in
the free product, and satisfies M¥ = L(F,,) (Recall that M? = {z € M : ¢(xy) =
p(yz) for all y € M} is the centralizer of ¢.). Furthermore the state ¢ is almost peri-
odic and A, has point spectrum H. Shlyakhtenko also showed that (M, ¢) is uniquely
determined by H.

We will denote (M, ¢) as (Ty, ¢u), and we will call ¢y the free quasi-free state on
Tyr. Note that (T, ¢pr) is of type IT1; if and only if H is not cyclic. Shlyakhtenko proved
the following additional structural results of the factors (T, vr).

Theorem (/10]).

o (Tu,pn)* (L(Fso),7) = (T, pu)-
o (Th;on) Z (L(Z), 1) * (Mn(C),4px) for any n > 2.
o (T, pn)* (Ty,on) = (Tg,eq) where G = (HU H').

The property in the first bullet point is known as free absorption, and will be re-
ferred to as such throughout the paper. A consequence of free absorption is that
(Tr, o) * (A, @) = (T, o) whenever A is a countable direct sum of finite-dimensional
von Neumann algebras, diffuse hyperfinite von Neumann algebras, and interpolated free
group factors where ¢ is a trace.

Moreover, one can choose (A, ¢) to be B(H) for H a separable Hilbert space and ¢
any faithful normal state (cf. Equation (1)). Indeed, note that if ¢ is a faithful normal
state on B(H), then ¢(z) = Tr(xy) where y is a positive trace-class operator with trace
1. We can therefore assume that after conjugating by a unitary, there is set of matrix
units {e; ;} and oy > 0 satisfying ¢(e; ;) = J; ;0.

Proposition 1.1. Assume that H is separable and that B(H) is equipped with a faith-
ful normal non-tracial state ¢ satisfying ¢(e; ;) = 0; 0 for a system of matriz units
{ei,j}i,jZO and a; > 0. Then



8 M. Hartglass, B. Nelson / Advances in Mathematics 382 (2021) 107656

where H < R is the subgroup generated {2—; i,7 > 0}.

Proof. Let K be a separable and infinite-dimensional Hilbert space containing an infinite
orthonormal set (&;)i jen.,, and F(K) the full Fock space on K. Let w be the state
on B(F(K)) defined by w(z) = (zQ,Q) with Q the vaccum vector in F(K). Within
(B(F(K)@B(H),w®¢),let L = Z Vail(& ;) ®e; j with £(€;;) the creation operator.
§,5>0

Then (B(H), ¢) * L(Z) is modeled %y the sub von Neumann algebra M C (B(F(K)) ®
B(H),w ® ¢) generated by L + L* and 1 ® B(H), and L + L* is *-free from 1 @ B(H)
[10]. From this, we see that egoMeo o = W*((\/ail(&ij) + /ajl(€5i)*) @ eon: 4,5 > 0).
From [10], this means that (eg,0Meg 0, (W ® ¢)°) = (TH, o).

We also note that if D is the diagonal of B(H), then (L(Z),7) * (D, ¢) is a factor by
[2]. Therefore, 1 ® eg o has full central support in M“®?. Applying Lemma 1.7 below
finishes the proof. O

This proposition spawns the following useful corollaries, which we will use extensively

Corollary 1.2. Assume that H is separable and that B(H) is equipped with a faithful state
¢ satisfying ¢(e; ;) = 0; jo; for a system of matriz units {e; ;}i j>0 and a; > 0, and H
is a countable subgroup of Ry. Then

(THaSOH) * (B(H)Wb) = (TGaSDG)

where G is the group generated by H and H' where H' = (%L : 4,5 > 0).

Proof. Using Proposition 1.1 and free absorption, we have
(B(H),¢) * (Tu,pr) = (B(H),d) * (L(Z),7) * (T, ou)
= (Tur,on) * (T, om) = (Tg, ) O

Corollary 1.3. Let H < RT be countable and non-trivial. Let cg > -+ > ay > -+ > 0
have the property that Z—; € H for any pairi,j > 0 (we are allowing for infinite or finite
sequences). Assume that H is separable and that B(H) is equipped with a faithful normal
non-tracial state ¢ satisfying ¢(e; ;) = d; ;i for a system of matriz units {e; ;}i j>o0-
Then

(Tw,on) = (T, on) @ (B(H), ¢).

Proof. Note from Corollary 1.2 that

12

(M,(,O) = (TH’QOH)*(B(,H)?qS) (TH’QOH)-
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By Lemma 1.7 (see below), this also establishes that (eg 0 Meg 0, 9°°) = (Ty, wn). This
completes the proof since

(M, p) = (e0,0Meg,0,p°) @ (B(H),4). O
1.8. References to existing results

For the convenience of the reader, we state here some existing results that will be
cited frequently in the present paper. Where appropriate, we have adapted the notation.
In particular, for M a von Neumann algebra and p € M a projection, we denote the
central support of p in M by z(p: M).

The first lemma concerns free products with respect to general states and follows
from the same proof as [2, Theorem 1.2] (see also [5, Proposition 5.1] and [7, Proposition
3.10]). In particular, we will frequently use the cases when either B(H) = C or B = 0.

Lemma 1.4. Let (A, ¢), (B, ), and (C,v) be von Neumann algebras equipped with faithful
normal states. Let H be a separable Hilbert space, equip B(H) with a faithful normal state
w, and let p € B(H)¥ be a minimal projection. If

(M, @) := [{(A, 9)@(B(H),w)} & (B, ¥)] * (C,v)
(N, ¢) = [(B(H),w) & (B, ¥)] * (C,v),

then

(pMp, ") = (pNp, ¢") * (A, ).
Moreover, z(p: M) = z(p: N).

Let A and B be von Neumann algebras with normal faithful states ¢ and v respec-
tively, and let 4 : A — B be a normal, injective von Neumann algebra homomorphism.
After [7, Definition 1.4], we say that 7 is a modular inclusion if it is state preserving and
if i(A) is globally invariant under the modular group o¥.

The next lemma was useful in helping determine the structure of the free graph von
Neumann algebras studied in [6] (see Subsection 1.4). It will also be useful in establish-
ing a suitable base case in our computation of free products of finite-dimensional von
Neumann algebras.

Lemma 1.5 ([7, Theorems 3.1 and 4.3]). Suppose o and 8 satisfy % < B < a< 1 with

oz>%, (mdlet/\zlea

W) 3(0)« G0 C | = (Tp)

a,l—a
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(2) Suppose (A, ¢) and (B, ) are two von Neumann algebras with faithful normal states,
and that there exist modular inclusions Ms(C) — A and ((g ® I(CB) — B. Then

a,l—a
(A7¢) * (Bad}) = (A’¢> * (371/}) * (T)\»QO)\)‘

The following lemma is a crucial ingredient for converting certain free products over
the scalars into amalgamated free products and vice-versa. Consequently, it lets us appeal
to our graph algebras in Subsection 1.4.

Proposition 1.6 (/7, Proposition 4.1]). Let (M, ¢) be a von Neumann algebra with a faith-
ful normal state, and B C M a von Neumann subalgebra with a ¢-preserving conditional
expectation By : M — B. Let (A,¢) be another von Neumann algebra with faithful
normal state, and Eo : (A, ) x (B,¢) — (B, ¢) the canonical ¢-preserving conditional
expectation. Set

(MvE) = (Mv El)*B((Aa/(/)) * (Ba¢)7E2)
Then if p = ¢po F,
(M, ) = (M, ¢) * (A,).

The following result appears in [6]. This lemma, combined with Lemma 1.4 enables us
to compute free products by examining suitable compressions. It will be used extensively.

Lemma 1.7 ([6, Lemmas 3.1 and 3.2]). spacer

(1) Let H be a countable multiplicative subgroup of R* and let p € (Ty)%* be a nonzero
projection. Then

(pTup, v) = (Th, on).

(2) Let M be a von Neumann algebra with almost-periodic faithful normal state ¢. Let
p € M¥ a projection such that (pMp, ¢P) = (T, em) for some non-trivial, countable
subgroup H of R™, and such that z := z(p: M¥?) = z(p: M). Then

(ZMa cpz) = (THWOH)
In particular, if z(p: M%) =1 then (M, ) = (TH, pu)-

1.4. Non-tracial graph algebras

In [6], a von Neumann algebra was constructed from a weighted graph. We will outline
the construction here.
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To begin, we let ' be a finite directed graph with vertex set V' and edge set E with
source and target maps s and t respectively. There is an involution on E, denoted op,
which satisfies s(e°P) = t(e) and t(e°P) = s(e) for all e € E. If e is a self-loop based at
v € V, then it is possible to have e°® = e, but we do not require this. Denote the space
of loops in I" by Ar.

We will also assume that I' comes equipped with an edge weighting 1 : £ — R™ such
that p(e)u(e®?) =1 for all e € E. For 0 = e1 --- e, € Ar, denote pu(o) = u(er) - - uley,).
In order to ensure that the von Neumann algebra we construct is non-tracial, we will
assume:

Jdo € Ar: (o) # 1.

We define A := ¢>°(V') and we let p, denote the indicator function on v € V. In [6],
the authors showed that there is a Fock space representation of a C*-algebra S(T', u)
generated by A and elements (Y¢)cer satisfying p,Yepw = 0y.s(e) = Ow,t(e)Ye and Y =
%Y‘eop. In addition, this Fock space representation produced a faithful conditional
expectation E : S(T', ) — A under which the C*-algebras C*(A4,Y%,Ysor) as f ranges
through all pairs (e, e°P) are free with amalgamation over A under E.

The key observation about the elements Y, that we will use in this paper is their dis-
tribution. Specifically, if we let ¢ be any faithful positive linear functional on S(T', i) that
is preserved by E, and let (M(T', 1), ¢) denote the von Neumann algebra generated by
S(T, u) via the GNS representation associated to ¢, then as a subalgebra of (M (T, ), @),

(L(Z),T) if ue) > 1

(L(Z),7) & C if ule) <1
B(Pa(ey)ile)  PPs(e))(L—u(e))

Il

(Ps(e) W (Y Y )Ps(e), #7)

If we let Y, = uc|Ye| be the polar decomposition, then u.u} = py(.) if and only if u(e) > 1
and ulu. = py( if and only if p(e) < 1.

The main result of [6] is identifying M(T', 1) with an almost periodic free Araki-Woods
factor under an appropriate positive linear functional, ¢. To construct ¢, we let I'ry be
a subgraph of I' maximal subject to the condition

w(io) =1 Vo € Ar,.

Note that while I'r, need not be unique, the condition p(e)u(e®?) = 1 implies it will
always contain every vertex of V. We define ¢ on A as follows:. Let * be a fixed vertex
of V, pick a € RT and declare ¢(p,) = . For any v € V, then define

o(po) = pler) - plen)a
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where e; - - - e, is any path in 'ty with source x and target v. We extend ¢ to be defined
on M(T', ) by pre-composing with E. Let A, be the modular operator of . By [6], we
have the following:

Theorem 1.8.

(1) ¢ is an almost periodic positive linear functional on M(T, ).

(2) M(Tzy, 1) € M(T, 1)*.

(3) Each Y. is an eigenoperator of A, with eigenvalue p(e)p(er)---p(en) such that
e1- - ey is a path in Ty with source t(e) and target s(e).

(4) Suppose that H := (u(c): o € Ar) < R* is non-trivial. Then

(M(T, 1)) = (T, o) @ D €,

veV

where 1, < p, is non-zero if and only if Z wu(e) < 1, in which case

ecE
s(e)=v

In particular, if

ecE
s(e)=v

for allv eV, then (M(T, 1), ) = (Tu, pu).

We will use this graphical picture of (T, @n) as a mechanism for realizing free prod-
ucts of certain finite-dimensional von Neumann algebras.

2. Free products of finite-dimensional von Neumann algebras

In this section we will compute free products of arbitrary finite-dimensional von Neu-
mann algebras (see Theorem 2.11). Our first step is to compute for «, 5 € (%, 1)

My (C Co C|.
a,21(—a) i |:ﬁ 1_18:|

In the case o > 3, this is done in [7, Theorem 3.1]. To handle the case o < 3, we will
appeal to the graphical picture of the free Araki-Woods factors from Subsection 1.4.
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This computation will serve as the base case for computing more general free products
of the form M, (C) *x [C & C].

2.1. Computing M2(C) % [C @ C]
Theorem 2.1. Suppose that % < a< B <1. Define

€11,€22 q
M, ) = My(C Ce C|.
(M) = 356« [E o

a,l—a

Then for A := 1?70‘ and vy 1= % + %, one has

(Tx, ) ify>1
M, ) = oy 23 , .
M. ¢) (Tx, x) ® M>(C) ify<1
it a(l=v),(1-a)(1—7)

In the second case, one has &; < e; A q fori € {1,2}.

Proof. We begin by writing (M, ) as an amalgamated free product so that we can
€11 €22

identify it with (a corner of) a free graph von Neumann algebra. Let D = C & 1(C be
« -
the diagonal of My(C) and let

€11,e22
FEy: Mg((C) — D

a,l—a

Es: [(&@ (C]*D—>D
B8 1-B

be the canonical state-preserving conditional expectations. From Proposition 1.6, we

(M, ) = ((1\521(_%)51> x ({ @Eﬁ} *D,Ez) ,¢> .

By [2], this free product is

have

N

€11,e22 gNe1r qNeaz
My(C),Ey | % C e M(LZ)® C ,Ey|.
al—a D \fta-l  (-p),a-p F-o
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Let ' = (V, E) be the following graph with edge weighting u:

€1 0 €3

1 2

€2

Let M (T, ) be the associated graph algebra. By choosing 'ty so that it contains e; and
es and declaring ¢(pg) := 1 — 3, we can find a faithful normal positive linear functional
¢ on M(T, u) satisfying:

p(pr) = P(p2) =1-o
Consider the following subalgebra of M (T, p):
N = W*(}/eu Uz, u3ap03p17p2)

P P
where u; is the polar part of Ye,. Set P =p; +ps and B = (C1 &) 1(C2 , and let
[0 —

Ep: PM(T,u)P — B

be a ¢f-preserving conditional expectation. Recall that Y.,, us, and usz are free with
amalgamation over W*(pg, p1, p2), and therefore

(PNP, EB) = (PW*(UQ,p()vplva)Pa EB) *p (PW*(Y:Emu&vaplapQ)Pa EB)

Since p(er) =1, it follows that ujus = pe and ugul = p; hence
€11,€22
(PW*(U27p07p17p2>P7 EB) = M2(C)7E1 )

a,l—a

where the isomorphism sends p; to e;;. Since p(e1) > 1, it follows that Y., Y, is diffuse
in poNpg and Y. Ye, has an atom of size 3+« — 1 in pyN'p;. Furthermore, uius = po
and wzuj is a projection of mass 1 — 5 under ps. Therefore

gner1 ghes2
(PW*()/CNUZ%vaplapQ)Pa EB) = C D MQ(L(Z)) D C ,EQ .
fro=l (-p)a-p Fre

Hence
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€11,€22 qAhe1r qNea2
(PNP,Ep) = | My(C),Ey | %p | C @ My(L(Z))® C B |,
al-a fro=l —a-p),a-p F-
and consequently
(PN'P,¢") = (M, ).
So it suffices to compute (PN P, ¢"). Observe that

(PN'P,¢") = (piNp1, ") @ Ms(C)

a,l—a

since p; and ps are equivalent in PN P, and so it further suffices to compute (p1Npy, $P1).
This will be accomplished by viewing piN'p; as living under py + p; rather than P.

D p
Set P’ = po + p1 and B’ = 1(?5 2] Cl, and let
Ep: PM(T,u)P' — B

be a ¢ l-preserving conditional expectation. Using the fact that usug is a partial isometry
and the decomposition of N as an amalgamated free product, it follows that

(P'NP',Ep:) = (P'W*(u2,us3,po, p1, p2) P, Ep/ )k g (P'W*(Ye, . po, p1,p2) P', Epr)

Po,T1 1=

p 1
=] My(C) @® C ,Ep|*p |M(L(Z)® C ,Ep|,
1-8, 12 (1-8)  a(l-1=5) 1-1-p  a=(1-h)

where in both factors of the free product, pg and p; are realized by:

1 0 0 0
poZ(O 0)@0 and p1:<0 1)@1.

Consider the second factor in the above free product. By Dykema’s picture [2] of the

isomorphism
Py Py
My(L(Z)® C =|C oC *[C @(C].
1-B8,1-8 a—(1-p5) 1-8 «@ 1-8 o

It follows that there is an isomorphism which maps p; to p; for i € {0,1}. Therefore, by
Proposition 1.6,

P’ Po,T1 pP1—T1
(PNP,¢p" ) = M) C) & C
-
1-8,125(1-p)  o(1-1=5)

*[(C @C}
1-8 «

Consider the following von Neumann subalgebra of P'A P’:
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P Po+71 pP1—"T1
(K97 ) = @ *{(C @(C}
(1-B)+12:(1-8)  a(-1=8y| [1-8

Let @ :=pg + r1. Then by Lemma 1.4, we have

Ppo,

(QNQ, ¢?) = L ) *(QKQ,4?).
1-B8, 12 (1-8)

Case 1: Assume « > 1. Note that this 1mphes 1 — B+ 125(1 = B) > a. In this case, Q

has full central support in X C (PN P’ ) . Furthermore, after computing QXQ we see
that

Po,T1
(QNQ,9%) 2(<1) g |2=0-8)  1-B+2(1-f)-a (a(l(—i)%i?

The right hand side accepts a trace-preserving inclusion of ((C 5 & 1(CB, so it follows
o =
1—a

from Lemma 1.5 and free absorption that

(QNQ, %) = (T, px).

Using Lemma 1.7 we see that (P’N'P’, o) 2 (T, ). Applying Lemma 1.7 again, we
obtain (p1Npy, ¢P1) = (T, ). Therefore

(M7(,0> = (PNP, d)P) = (plela(bpl) ®M2<(C) = (TA7()0)\)'

a,l—a

Case 2: Assume v < 1. In this case, define py := P’ — 2(Q: PPNP') = P' — 2(Q: K).
Then Py < p; is nonzero, minimal, and has mass a (1 — ). Computing QKQ in this case

yields
(@VQ. 6% = 3(@ | C e,
o (1— == (1-8) 1-8

The right hand side of this free product once again accepts a trace-preserving inclusion
of C & (Cﬁ. Arguing as above gives

= 01-8 1=
P
(ple17¢pl) = (TA7QO)\)@ C )
ay a(l—7y)
and tensoring gives
ei1,€22

(M,p) = (Tx,ox) & My(C) .
2l a(1=7),(1=a)(1-7)
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Note that by construction €;; < e;; for each i. Also note that 1 — ¢ is in the diffuse
summand of M, so by minimality, &; <¢q. O

Remark 2.2. One might hope to use this graphical picture in the case a > 3 and thereby
recover [7, Theorem 3.1]. However, this result was used directly in the above proof in
the form of Lemma 1.5. Thus the above theorem should be seen as an extension of [7,
Theorem 3.1] rather than a generalization.

By following the arguments of Theorem 4.3 in [7], we obtain the following corollary.

Corollary 2.3. Assume that % + % > 1. Suppose (A, d) and (B,y) are two von
Neumann algebras with faithful normal states, and that there exist modular inclusions

M5(C) — A and ((g ) 1(Cﬁ) — B. Then

a,l—a

2.2. Computing M, (C) = [C & C]

We will compute M, (C)*[C@C] in terms of almost periodic free Araki-Woods factors.
Before we do so, we need the following proposition.

Proposition 2.4. Let D = C @@ C be embedded down the diagonal of M, (C) with
03] Qn

(o3 PERRRIe D)

standard matriz units {e;;}. Let Eq be the canonical state-preserving conditional expec-
tation By : M,,(C) — D. Assume that A is a von Neumann algebra containing D with a

Q1O

conditional expectation Es: A — D. Define

(M,E) := (Mn(C),El)E(A,Eg),

01500050

€11, y€n—1,n—1

(N, E) = ( Mnfl((C) D egljiEl) E(A,EQ)

Q1,...,Qp v

€n—1,n—1  €n,n
Let P=¢ey_1p-1+epnand D= C & C . Then
Qn—1 Qn

€n—1,n—1:€nn

(PMP,E):( My(C) ,E1> *(PNP.E).

€n—1,n—1:€nn

Proof. Tt is straightforward to see that PMP is generated by My(C) and PN P. To
establish freeness, let w be an alternating word consisting of expectationless elements in

€n—1,n—1:€nn €n—1,n—1:€nn

M5(C) and PN P. Since all expectationless elements of Ms(C) are off-diagonal
matrices, we may assume (after taking linear combinations) that w is an alternating
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word in {€,_11,€nn—1} and (PN P)°°. Here C°° denotes the elements of C' with zero
expectation.
By Kaplansky density, we may assume that every element in (PN P)°° is of

[e]e]
€11, en—1,n—1 €nn
the form PzP where x is an alternating word in ( M,1(C) & C,E; and
Q1 ,en,0p On

A°°. Again, by taking linear combinations, we can assume that every element of
€11, en—1n—1  enn,
( M, 1(C) & C,E; appearing in z is in {e;; : ¢ # jand 1 < i,j < n — 1}.
A1,y Oy An
Regrouping shows that w is a linear combination of alternating words in {e;; : i # j}
and A°° which has expectation 0 by freeness. O

We now compute M, (C) x [C & C] via an induction argument with the base case
covered by the previous subsection. As in the previous subsection, we will understand
this free product as a particular subalgebra of a free graph von Neumann algebra. By
concatenating a pair of edges in the graph, we can witness this subalgebra as a corner of
a different free graph von Neumann algebra, and hence can determine its isomorphism
class.

Theorem 2.5. Let n > 2 and 1 > a1 > ag > -+ > oy, > 0 with ZZ‘L:1 a; = 1 and at least
one strict inequality amongst the a’s. Let B € [%, 1), and let v = 31", 1;—’8 Let H be

the multiplicative subgroup of R™ generated by {c;/aj : 1 <4,5 <n}. Then:

(1)

€1,1," en,n P (TH, @H) Zf7 >1
M,(C) x [(C ® C ] = R .
N N (Th,pu)® Mn(C)  ify<1
v Y10 Yn

In the case when v < 1, v; = a;(1 —7), and &; < e;; A p.

(2) Assume that v > 1. Suppose (A, d) and (B,1) are two von Neumann algebras with

faithful normal states, and that there exist modular inclusions M, (C) — A and
Q1,0 ,Qn

(Ce® C )< B. Then
B 1-8

Proof. We prove this by induction on n, with the base case (n = 2) handled by
Lemma 1.5, or Theorem 2.1 and Corollary 2.3. Set (M, ) to be the free product in
(1). Consider the following von Neumann subalgebra of M:
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€1,1," sen—1,n—1 €n,n

p
Mnfl(C) o C | x |:(C o C :| if ap > g
Q1,yeney Q1 Qn B 1-8
N, p) =
_61,1 €2,2,"" y€n,n P
C &M, 1(C)| * {(CGB (C} if a1 = g
@1 QAgyey iy B 1-8

We will compute (M, ) by way of computing (N, ).
We will prove the inductive step when a; > «s, then sketch the (minor) modifications
one must take into consideration when o; = as. Set Q@ =e11 + - +ep—1,n—1, and

From Lemma 1.4, we have
(QNQ.¢9) = (QNQ.¢%) + M1 (C)

To finish computing (N, ), we consider two cases:

Case 1: Assume oy +- - - +a,_1 > (3. In this case, @ has full central support in Ny (hence
in N?), and computing QNyQ yields

N 0 Qé\p Q/\E(ljfp) €11, 7671—(1;;1171
) = @ (L(Z ,T) D * Mn,
(Q Q 4 ) arttan—1—(1-5) ( (an) ) a1t tan—1—8 A1y 1a(n_1)

Note that the left factor always accepts a trace-preserving inclusion of C
a1t tan—1—(1-6)

ICB' fl1-p>a1+ 4+ a1 —(1—p), then it follows by appropriately partitioning
the identity of L(Z) that the left factor will accept a modular inclusion of C ® C where
BB

8= %(al +- -+ anp_1), and it will follow from the inductive hypothesis of (2) above, as
well as free absorption that

(QNQ, %) = (T, onv),

where H’ the multiplicative subgroup of R* generated by {a;/a; : 1 <i,j <n—1}.
We will therefore assume that 1 — 8 < a3+ -+ ap—1 — (1 — ). Let o/ = 2?2—11 1;_6
and let H' be as before. If 4/ > 1, then it follows from the inductive hypothesis of (2)

above, as well as free absorption that

(QNQ, %) = (T, onr).

If v < 1, then from the inductive hypothesis of (1) we have
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QAP €1,1,"" €n—1,n—1 g1, 5qn—1
C EB(C)* M, 1(C) =Tw 1) @ Mpu_1(C
(e, A g 2 )

where v, = a;(1 — ') and ¢; < e;; Ap < Q Ap. It follows from this, Lemmas 1.4 and
1.7, and free absorption that

QA(1—p)
C

(@ —QAPIN(Q — Q Np),p?~9"P) = ((L(Z),T) o ) « (Trr, pmr)

a1t tan—1—B
g (TH/ y @H’)
From the central support statement in Lemma 1.4 and Lemma 1.7 we have

41, ydn—1
(QNQ, ) = (Tur, o) & M,,_1(C).

’ ’
Y15 9 Yn—1

Since @ has full central support in A/ in either case, applying Lemma 1.7 again gives

(THHSDH’) if’yIZ 1
o~ g1, sqn—1
(N780)— (TH’;SDH’)QBMn—l((C) lf")//< 1
’y:/["A. 77’:‘1/71

Case 2: Assume oy + -+ ap_1 < 8. In this case, 1 — 2(Q : Np) is nonzero and minimal
in Mg, so it follows that 1 — 2(Q : V) is nonzero and minimal in A. Furthermore, it is
easy to see that 1 — 2(Q,Ny) = p A ey, n. The free product for QN Q becomes

Q/\p €1,1,"" en—-1,n—1
NQ, p9) = C o (L(Z),7)| * M,_1(C
@NQw™) =1 G 50! (17)3 ) al(,)

Letting v = Z?;ll 1;—?, ~vi = a;(1 —+') and arguing just as in Case 1, we see that

(Tr, ) ify =1
N , Q ~ g1, 5qn—1 . .
(QNQ.¢7) (Thr,onr) ® My—1(C) iy <1
Vi 7'772—1
Using Lemma 1.7, it follows that
(Trrs ) ® Cis, if 4/ > 1
W) = @

(Tur,on) © My (C)®  C . ify <1

’ ! R
Y1 V-1 an(1 an

We now proceed using our computations of (N, ¢) from Cases 1 and 2 above. Set
€1,1 €n,n

P=eipn-1+epnLet D=C &---® C | and let
(e 5] [a7%%
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€1,1,"" en—1,n—1 €n,n
FEq: Mn_l(C) e C —-D
Qp

Q1,00 Qn—1

FEy: [(CEB C]*D—)D
B 1-B

be the canonical state-preserving conditional expectations. By Proposition 1.6,

€1,1,"" én—1,n—1 €n,n p
W= ( Pt ’E1> 5 ([g @165} *D’EQ> ’
an D —

X150y Q0n—1

and

A1, ,Qn

(M, E) = ( Mn((C)nE1> * ({5 ® C ] *D,E2> .
D B B

It follows from Proposition 2.4 that

Qp_1,0n pPDP

(PMP,E) = (enz\};(éef’",El> % (PNP,E).

Note that from Equation (2) and Lemma 1.7,

(TH’7SOH’) ifa1+"'+an712/8, a,nd ’Y/Zl
dn—1

(TH’y‘PH’)@’Y/(C ifog 4+ a1 >4, andy' <1
n—1

Py ~ dn
(PNP’SO )_ (THHQOH/)EB (Cl 5 ifa1+"'+an71 <B, and ’Y/Z]_

awl(l_oj_n)
qn—1 Adn

(Twom)® C & C - ifor+-+an <p, andy <1
Yn—1 an(lf‘;in)

with ¢; < e; ;. Let I' = (V, E) be the following graph with edge weighting u:

1 ify >1 1 iff >
:u(el) = u(€3) = i 1:15
1

v ify <1 T o <1
. ~ 1-5
aiﬂ if ¥/ > 1 and a2 1
=0 ify'>1and 22 <1
plee) = 0 7 ju(es) =
7,(1:71 if v/ <1 and o >1
7,107[: if v/ <1 and 1;5 <1

pllig) =55 i#j, 1<ij<n-—1
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Notice that p(er)u(es)u(es)u(es) = an/an—1. We assign ¢ to M(T, u) by choosing I'1y
so that it contains eg, e, e3 and declaring that ¢(pg) = a,,—1. This forces ¢(ps) = .

Let I'g be the subgraph of I obtained by deleting the edges e4 and ej”. It follows from
Subsection 1.4 that

((po + p3)M (Lo, 1) (po + p3), PP +P2)

(Tw,onr) ifa;+- +a,_1 >0, andy >1
q/

(THUSOH’)EB /(C ifOél'i‘"""Oénleﬂ, and'y'<1
Tn-1

~ q//

(THUSOH’)EB (Cl 3 ifa1+~-~—|—ozn,1<ﬂ7 and’y'Zl’
O‘n(l_(;ﬁ)
ql q//

(THUSOH’)@ C o Cl 5 ifa1+"'+an71<ﬂ, and’y'<1
Vo1 an(1-1=8)

n

where ¢/ < pg and ¢” < p3. We immediately see that there is a state-preserving isomor-
phism

(PN'P, ") = ((po + p3) M(To, 1) (po + p3), 67 *72)

Po p3
sending e, —1,,—1 to po and ey, to ps. Let D' = C & C, and let uy be the polar part of
Ye.,. Note that uqu) = ps and ujus = po. It follows that

Po,P3
(PMP, ") = ((po + p3)M(To, 1) (po + p3), 9*°T73) s pr Ma(C)

Qn—1,0n

where uy is in the copy of Ms(C). From the geometry of the graph and the fact that
uquy = ps and ujus = po,

(en,nMen,na @en'n) = (pBW* (u4Y61 5 Y€2a }/ega (}/&,J‘)i,j7p07p17p2ap3)p3a ¢p3) .

The element u,Ye, has right support ps. As for the other support, note that from the
distribution of Y., , we see that

(L(Z),7) if v >1
(Pl (ua¥e, Yeyud)ps, ¢7%) = (L(% e C ify <1
an'yl, Ozn(l—’y/)

Hence the left support usYs, is p3 if v/ > 1, and otherwise is a projection of mass ;7'
under ps.
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Let IV = (E', V') be the following graph with edge weighting p':

3 W (e2) = p(ez) W (es) = p(es)

pliy) =plliy) =gt i#j, 1<i,j<n-—1

fi

We assign ¢’ to M(I, i) by choosing I'ty so that it contains e, e3 and declaring that
@' (p3) = . It follows that

((pl +p3)W*(Yflap1ap3)(p1 +p3), (¢’)P1+p3)
=~ ((pl +p3)W*(u4Y'el7pl7p3)(p1 _|_p3>7 ¢P1+p3)

(Yf13p17p3) — (7-’44}/(317]717]73),

and in particular, this mapping preserves the canonical conditional expectations onto
P1 P3

C @ C. Consequently,

(p3M (Flv /J',)p?n (@l)pS.) = (ng* (u4Ye1 ) }/eza Y€37 (Y&',j)i,j7p07p17p2ap3)p3a SOpB
= (en’nMen,m 906"’")-
Recall that H is the multiplicative subgroup of Rt generated by {a;/a;j : 1 <4,j < n}

and note that from our definition of v above, v =+ + 1;—5 It follows from Subsection
1.4 that

M . N MF/ , NP3 (THasDH) lf’YEl
(ennMenn, ) = (p3M(I, 1 )ps, (¢')7%) = (T, o) ® C ify>1"
any an (1=7y)
€1,15-€n,n
Tensoring with M,,(C) and using Corollary 1.3 gives the desired result, and proves (1)
a17”' 704n

in the case that oy > as.
If o1 = aw, let N be defined as at the beginning of the proof. Then oy < 1/2, so
it follows that €11 A (1 — ¢) = 0. This means that e; 1N eq; will contain at most one
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minimal projection. This observation means that the computation for PN P continues
exactly as above, and the graphical models for PN'P and PN P are still valid after we
redefine v/ = Y1, % and exchange any mention of «, and a,_; with a; and as
respectively.

The proof of (2) follows directly from the result of (1) as well as the proof of [7,
Lemma 1.5(2)]. O

2.8. Free products of finite-dimensional von Neumann algebras

We will use Theorem 2.5 to establish the requisite base cases/inductive steps for
computing the free product of any two finite-dimensional von Neumann algebras. The
following three propositions are the “building blocks” between Theorem 2.5 above, and
Theorem 2.11 below.

Proposition 2.6. Let 1 > a1 > as > -+ > «a, > 0 with Z?:l o =1, and let 1 > 1 >
Bo >+ > P >0 with 37" B = 1. Let

H=({aifoj : 1<i,j<n}U{Bi/B; : 1<i,j <m}) <RT,
and assume H is not trivial. Then

M, (C) * M,,,(C) = (Ty, ou)-

Q1,0 ,Qn B1sBm

Proof. We will show that Theorem 2.5.(2) can always be applied.

Case 1: Assume only one of the sets {o;/a; : 1 <4,j <n}or{8;/F; : 1 <i,j<m}is
non-trivial. Without loss of generality, we can assume it is the former. Consequently,

H={a;/a; : 1<i,j<n}),

and By = -+ = B = =. Set 8 := [2]L € [$,1), so that M,,(C) accepts a modular
B1,--sBm
inclusion of % &) I(CB. Note that a,, <1 — aq. It follows that

7

. 1‘%(1—@[”‘% ! }z(l—mmwn(n—l)},

1 (67 (651 1-— (65)

where the last inequality follows from an easy calculus exercise. Now, note that 1— 35 > %
(where this minimum is attained for m = 3 and the inequalilty is strict otherwise), and
since n > 2 we have v > 1. Thus we may apply Theorem 2.5.(2), free absorption, and
Proposition 1.1 to obtain
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M, (C) * My (C) = (Th,pH) * My (C) x M, (C)

A1, ,Qn B1,Bm B, Bm Q1,00
= (Th,pu) * Mp(C)
a17.“an
= (Tu, ¢u)-

Case 2: Assume both sets {a;/a; : 1 < 4,5 <n}and {#;/8; : 1 <1i,j < m} are non-
trivial. Now, either i— > 1 or g—" > 1. Without loss of generality, assume the former.
Let k € {1,...,m} be the smallest index such that 81 + -+ B > % Then k< m -1
since B, < % < %, which implies 81 + -+ + Bm_1 > % Set B:=p1+ -+ 0k € [%,1),
so that 1 — 8 > (,,. Then

Z 1_5>6_’”>1

n Oln

Letting H' = ({a;/c; : 1 <4,5 <n}), we may apply Theorem 2.5.(2), free absorption,
and Proposition 1.1 to obtain

M, (C) * My, (C) = (T o) * Mn(C) * My, (C)
Q1,0 ,0n B1,Bm Qp,y 0 BisBm
= (Tw pnr) * M (C)
B1,++Bm
= (Tw,en). O

Proposition 2.7. Let 1 > a1 > ag > -+ > a, > 0 with .0 o = 1, and let 1 >
Br > B > 2 By > 0 with 3500, B = 1. Let v = 331, LB Suppose H =
({aifaj = 1 <id,5 <n}). Then

€1,1, en,n P (Av 90) if7 >1

M,(C) *x|CeCa®---¢ C| = 1, enm ,

01 o B B B (A4,p)® M,(C) ifvy <1

¥ RIPRE

where (A, @) is an interpolated free group factor if a1 = -+ = ay, and is (Ty,py) if at
least one inequality in the «’s is strict. In the case when v < 1, v, = a;(1 — ), and
e i <eiNDp.
Proof. The case when a3 = -+ = «, is handled by [2]. We therefore assume that at

least one of the inequalities are strict. Moreover, note that the case m = 2 follows from
Theorem 2.5.(1).
If v > 1, then we claim there is a modular inclusion

oCo---0 C,

Cep C —
ﬂ 62 Bm

1-8

A
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where 8 € [£,1) and > 1=8 > 1. Indeed, if B > + then simply set 3 := f3;. Otherwise,

i=1 o«
let & € {1,...,m} be the largest index such that Sy + -+ + S > %, and set 3 :=
Br+-+++ Bm. Note that k£ > 2, since Bo+-+-+Bm = 1—51 > % Since Y 1, a% >n? >4,
it suffices to show g < %. If@ > %, then 5; < 1-p < i so that B < %. But then
Bk41+ -+ P =B — Br > % — % = %, contradicting our choice of k. Thus the claim
holds.

From Theorem 2.5.(2), free absorption, and Proposition 1.1 we have

€1,1," y€n,n D €1,1,"" »en,n D
M,(C) x| CpCoh---C|= M,(C) x|CpCa®---dC|x(Ty,
al,...(,az 5 B &J a1,~--(,a2 [51 52 &> Tasom)
€1,1,"" ,€n,n
& My(C) *(Tu,en)
A,y Oy
= (Ty,on)-

Now, if v < 1, let (M, ¢) be the free product in the statement of the proposition. By
Theorem 2.5.(1),

€1,1,""" en,n P 1-p €11, yen,n
(.0 = D€ x |E 0 €| = (T o) © 01y ()
Q1,40 1 —B1

with v; = a;(1 — ), and &;; < e;; A p. From Lemmas 1.4 and 1.7,

(L =p)M(L=p), " ") = (1 =pN (1 —p), ' F) * [gz @@ C] = (T, o)
We have z(1 — p: N¥) = 2(1 —p: N) = z(1 — p: M). As N¥ C M?, it follows that
2(1 —p: M?)=2(1 —p: N¥) and so from Lemma 1.7 we have that

€1,1,"" ,€n,n
ol Y1 Yn

as claimed. 0O

Proposition 2.8. Let 1 > a3 > -+ > a,, > 0 and H be as in the statement of Proposi-
tion 2.7. Let 1 > > 0. Let (B, ¢) be either (L(F), ) fort € [1,00] or (Tu/,pu:) for

some countable, non-trivial H'. Let v =1, 1;—’8 Then

€1,1, en,n q (A7<P) ify>1
M,(C) *|Ca& (B,¢)| = CeeCe ,
ala”'(7a7)l B (1—5) (A,cp)@ Mn(C) Zf’V <1
Y Y15 Y

where y; = o;(1—7), &, < e, ; AN(1—q). Here (A, p) = (L(Fs),T) for some s> 1 if H is
trivial and B is tracial, and otherwise (A, p) = (Ta, ¢a) where G is the group generated
by H and H'. If (B, ¢) is tracial, we interpret H' to be {1}.
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Proof. The case where H and H' are both trivial is handled in [2]. We will therefore
assume that at least one of H or H' is non-trivial. If 3 = 0, then this follows from
Proposition 1.1 or Corollary 1.2. Thus we further assume g > 0.

Let
€1,1,""" yn,n q
(M, )= My(C) = |Ca®(B,¢)
Q1,0 ,Qp B 1-8
N €1,1,""" yen,n q
,0):= My,(C) x|Ceqp C |.
W)= W@+ [g e &

Let 6 := " £ Sincey+6 =57 ,-L >4, we cannot have 7,6 < 1. We consider

=1 a; i=1 oy
three possible cases:

Case 1: Assume ~,d > 1. In this case, (N, ) is either (L(F;),7) for some s > 1 if
H is trivial [2], or is (T, ¢pm) from Theorem 2.5. Applying Lemmas 1.4 and 1.7, gives
(gMgq, ¢?) = (Tc, ¢c). Noting that z(q : N¥) = 1and N¥ C M¥, we obtain z(¢: M¥) =
1. We then apply Lemma 1.7 again to obtain (M, p) = (Tg, ¢q)-

Case 2: Assume v < 1 < 4. In this case,

P €1,15+,€n,n
(L(Fs),7)® My(C) if H={1}
N, p) = N T e
(Th,pu) ® My (C) if H# {1}
"Y 717“' 1’Y7’1r

for some s > 1 and &; < e; A (1 —q). Applying Lemmas 1.4 and 1.7, gives (¢Mgq, @) =
(Tg, ¢c)- Noting that 2(q : N¥¢) = 2(q : N) = 2(qg : M) = p, and N¥ C M?, we apply

€115--,€nn
Lemma 1.7 again to obtain M = (Tg, ¢g) ® M, (C) .
¥ Y1, Yn
Case 3: Assume § < 1 < ~. In this case,
P €1,15--:€n,n
(L), @ Mu(©) i H = {1)
~ 4 01, ,0n
(N’ (10) = p €1,1,--€n,n
(Th, o) ® Mn(C) if H # {1}
) 81y O

for some s > 1, §; = o;(1 — 0), and &; < e;; A ¢. In either case, we have z(q: N¥) = 1,
and hence z(gq: M¥) =1 since N¥ C M¥. By Lemma 1.4

(gMaq,¢?) = (¢Ngq,¢?) * (B, ¢)

If H is trivial, then H' is not. So free absorption gives (¢Mgq, p?) = (Tg,¢q), and
applying Lemma 1.7 as above gives (M, ¢) = (Tg, ¢a).
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If H is non-trivial, then by Lemma 1.7

h €1,15--,€n,n

To compute this, we study the following subalgebras of ¢ Mg:

(i) = | €0 | < (8,0

h €1,1--:€n,n
01, 40n

Note that (My,¢?) = (L(F,),7) for some r > 1 if H' is trivial, and otherwise is
(Tw',on). Applying Lemmas 1.4 and 1.7, we compute

(g — W)Ma(q — h),0*™") = ((q — )M (g — h), ") = y(g) ~ (Ta, ).

The last isomorphism follows from either Proposition 1.1 or Corollary 1.2, depending
on whether or not H' is trivial (which dictated the form of (M1, ¢?)). Now, z(q —
h: M£") = g since M?" is always a factor, and M¢" € ME". Thus Lemma 1.7 implies
(Mo, 09) = (Tg, vg). Applying Lemmas 1.4 and 1.7 again gives

(h’Mha Qph) = (hMQha ‘Ph) * (TH7 ‘PH) = (TGa @G)

Since z(h: /\/lfq) = ¢ and qu C (gMq)?", Lemma 1.7 implies (¢Mgq, ¢9) = (T, vc).
Finally, recall z(q: M¥) =1 so that (M, ¢) = (Tg, pc) as desired. O

Proposition 2.9. Let 1 > a3 > --- > a,, > 0 and H be as in the statement of Proposi-
tion 2.7. Let 1 > By > -+ > B, > 0, m > 2, and 8 > 0 satisfy f+ 37", B; = 1. Let
(B, ¢) be either (L(Fy), ) fort € [1,00] or (Ty:,pus) for some non-trivial H'. Let H"
be the group generated by {B3;/F; : 1 < 1,5 < m}. Let G be the group generated by H,
H', and H" (where we declare H' to be trivial if B = L(F;)). We have

€1,1," €n,n q Ta, if G is non-trivial
1 0 By B 8 (L(Fy),T) otherwise, for some s > 1

Proof. The case where H, H' and H" are all trivial is handled by [2], so we can assume
that at least one of H, H”, or H” is non-trivial. Let

€1,1," ,€n,n q
(MaQD) = Mn((c) * éwm((g)@(Bé(b)
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Case 1: Assume H is non-trivial. Denote

(C, ) := Myn(C) @ (B ).
Bi, 5 Bm B

Case l.a: Assume Y. 1=01 > 1. We claim there exists § € [1/2,1) satisfying

73

S % > 1 and a modular inclusion

Co C C, ).
Co C = (Cy)

Indeed, since B is diffuse, for some m’ > 1 we can split ¢ into orthogonal projections
Q- -, @ with masses ¥(q;) < B, and then we simply proceed as in the proof of
Proposition 2.7. Consequently, Theorem 2.5.(2) and Corollary 1.2 yield

(M,p) = Mn(C) *(C,0)) = (Ta,om) % Mn(C) # (Co4)) = (T, 0m) * (C, )

We compute this latter free product by considering the following subalgebras of M
(M, ) =T, pon) {C @é}
5 = 5 *
1 HyPH =595

(N2, @) := (T, o) *

q
€, (B,0)

So by Lemmas 1.4 and 1.7 we have

(qNQQ7¢q) = (quq7<pq) * (B7¢) = (TH7<)0H) * (Ba¢) = (T<H,H’>7L)0<H,H’>)a

where we appeal to free absorption for the last isomorphism if H’ is trivial. Since
2(q: N3) = z(q: NY) = 1 by virtue of Ny C N, it follows from Lemma 1.7 that

Nz, p) = (T¢w,m1y, P(a,m7y)- Appealing to the same lemma and using Corollary 1.2 we
have

(1= ML= q), 0" ™9) = ((1— gNa(1 - q), "~ V) é\@»ﬁ(g)

= (Tip,mrys oom,mry) * M (C)
Bl)“~ 7/8m

= (Ta, va)-

Finally, z2(1 — q: M) = 2(1 — q: N5) = 1 by virtue of N € M?, and hence Lemma 1.7
yields the claimed isomorphism class for (M, ).
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Case 1.b: Assume Y. =01 < 1. Then Y U= — 5™ B o 1 Since

a; g =1 oy

S ai > 4, it follows that < i and in particular 1 — g > % Consider the following

1=

subalgébras of M:

€1,1,""" ,€n,n q
My, )= M,(C C oC
M) = 1,©) x| € 0

€1,1,""" €n,n q
(M2790> = Mn<(c) * 1(95@(Bé¢)

From Theorem 2.5.(1) we have

My, ) = (Th, ou) © Mn(C),

Y10 Yn

j=1
absorption and tracking the central support of g, it follows from Lemmas 1.4 and 1.7
that

where v; = a;(1 — 2" %;5)) and the copy of M, (C) lies under 1 — ¢. Using free

(Ma, @) = (T, mry, em,ay) © Mn(C).
o

sIn

Applying Lemmas 1.4 and 1.7 again, we see that

((1 - q)M(l - Q)a @l_q) = (T(H,H/)MO(H,HU) D Mn((c) * Mm(c)
1=B—=(v1+-+7vn) RETMNERL B1,Bm

Now, the assumption Z:—L:l ﬂ < 1 implies that 87 > a3 > 7. Indeed, the second

oy
inequality is immediate from the definition of 71, and to see the first simply observe

1>

— (67} 71—0&1'

n
1-— 1-— 1-—
512 51> B1
@i
=1

Using the same reasoning, it must therefore be the case that ) ;n:l (kgﬁ > 1. Pro-
J
ceeding as in Case l.a, we can find 8’ € [3(1 — 8),1 — 3) satisfying ) e w >1
J
and a modular inclusion

Co C <= (Tyguy e uay) M (C),
T O ) R A S

and we can show that ((1—q)M(1—q), '™ %) = (T, pc). Noting that 2(1—q: M{) =1
and MY C M?, we may apply Lemma 1.7 to obtain the desired isomorphism result.

Case 2: Assume H is trivial. Then oy = -+ = o, = 1/n and Y1 | - = n?. Clearly we

never have 1 — 3,8 < #, so we consider three cases:
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Case 2.a: Assume 1 — 3,8 > 5. Let M; and M, be as in Case 1.b. By [2], (M1, )
is an interpolated free group factor equipped with its trace. In particular, z(q: MY) =
2(1—q: MYT) = 1. If H' is trivial, then by Lemma 1.4 (May, ) is also an interpolated
free group factor equipped with its trace. Otherwise, using Lemma 1.4, free absorption,
and Lemma 1.7 we see that (Ms,¢) = (T, ¢r/). The same approach applied to (1 —
q)M(1 — q) reveals the desired isomorphism class for (M, ¢).

Case 2.b: Assume that 1 — 3 < % < . Let M; and M, be as in Case 1.b. By [2],

n

(Mla SO) = (L(FT)a T) 52 Mn((c) 5
1_n(1—B),,2—n(1-B)

for some r > 1 and the copy of M,,(C) lies under ¢. Note that z(¢: MY{) =1, and from
Lemma 1.4 (and possibly free absorption)

(Tw/,opy) if H' is non-trivial
(gMag, ) = {

L(F,,),7) otherwise, for some r’ > 1.
(L(

It follows that

(Tw/,ons) if H' is non-trivial

(1= q)Ma(l—q), 9" 9) = {

(L(F,~),7) otherwise, for some " > 1,

where in the former case we have applied Lemma 1.7 twice, and in the latter case we
simply note that ¢ has full central support in Mj and hence in M. Applying Lemma 1.4
gives (1 — ¢)M(1 — q),¢*79) = (Tg, @) (recall G is assumed to be non-trivial), and
applying Lemma 1.7 once more gives the desired isomorphism.

Case 2.c: Assume that § < & <1 — . Let M, be as in Case 1.b, but now consider

n

€1,1,""" en,n q
M3z, ) := M,(C) x |[M,(C)aC|.
QL,c,Qn B1,,Bm B

By [2]

(Mla‘p)g(L(FT)vT)@ Mn((C) )

1 1
7B,y —npB

for some 7 > 1 and the copy of M,,(C) is under 1 — q. Thus z(1 — q: M) = 1. Since all

weights on the M,,(C) in M; are identical, it follows that there exists 8’ € [§(1—8),1—5)

satisfying > 7", %2_6, > 1 and a modular inclusion

Co C < (1-gMi(1—q),p 7).
€. 5 s (I=gMi(1—-q), ¢ )
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By Lemma 1.4 we have

(T=gM3(1—q),' ") = (1 —g)M1(1 —q), 0"~ )*é‘@(%)

It follows that

—or o | TEr @mr) if H” is non-trivial
(1= gMs(1—q), 0" = , .
(L(F,.),7) otherwise, for some r’ > 1
Indeed, the former case follows by Theorem 2.5.(2), Corollary 1.2, and free absorption,
while the latter case follows from [2]. From here we proceed exactly as in Case 2.b, and
obtain the desired isomorphism class for (M, ). O

In a similar manner, one can prove the following;:

Proposition 2.10. Let 1 > a3 > -+ > a,, > 0 and H be as in the statement of Propo-
sition 2.7. Let 1 > (B, > - >Bk>01>ﬁ“7 - 2> Bim; >0, my > 2 for all 1,
and B > 0 satisfy B+ Y. 151 Y >ty Bim; = 1. Let (B, ¢) be either (L(F;),7)
for t € [1,00] or (Tw/,pm’) for some non-trivial H'. Let H" be the group generated
by {Bii/Bik 1 <i< 1< 34k <m} Sety= Z?:l 1;51 and let G be the group
generated by H, H', and H" (where we declare H' to be trivial if B = L(F;)). We have

€1, 17 o ;en n q (A7 80) if’y Z 1
EB(C @@ M, @ (B,¢)| = 11, B
0417 0‘71 i= 151 17"751 ,m; B (A7<)0)@ Mn(@) Zf’}/< 1
Y1 U

where (A, ) is an interpolated free group factor if G is trivial, and is (Tg, pq) otherwise.
Here, 7; = a;(1 —7), and €;; < q1 N e;;.

Theorem 2.11. Let (A, ¢) and (B,) be finite-dimensional von Neumann algebras (both
with dimension at least two) equipped with faithful states ¢ and . Assume that at least
one of ¢ or v is not a trace, and that up to unitary conjugation,

o ps, 17“7171k m.o qj, 17“,qu
=D Mm(C and = M
= 1047_1 alk ] 1ﬁj17"7ﬁ]2

Let H be the group generated by the point spectra of Ay and Ay. Then

(A, 9) x (B,¢) = (Tu,pu) ®C

where C' is finite-dimensional (possibly zero). The central summands of C' are determined
exactly as in [5] as follows: C' can only be nonzero if either k; = 1 for some i or £; =1
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for some j. If k; = 1 for some i, then a nonzero central summand appears if and only if
there is an index j, satisfying v := Zl 1 1& < 1. This central summand is

i, qe;
My, (C)
Y15 Ye

where v = Bjx(1 —7) and @& < pi1 A gj k. An analogous remark holds for £; = 1.
Proof. Let Z(A) and Z(B) denote the centers of A and B respectively. If Z(A) and

Z(B) are both one-dimensional, then this result is simply Proposition 2.6. If only one
of the two is one-dimensional, say Z(A), then first compute (A, @) x (Z(B),v) using

Proposition 2.7. Let B have minimal central projections ¢q1,--- ,gm. For 7 =0,1,...,m,
set
k1, ,Qk ek qj+1 qm
(M, ) = @ Mg (C) @ C @---&C

k=1 Bk,1 'an L

Thus we have a chain of inclusions:
AxZ(B)=MoC My C---C My, =AxB.

At each step, we use Lemmas 1.4 and 1.7 and either Proposition 2.8 or 2.9 to compute
(gjM;q;, 9% ). Lemma 1.4 keeps track of the central support of g;, which by induction
will be in (A * B)?, and Lemma 1.7 (or the amplification formula) determines each
(M, ), including (4, ¢) * (B, ).

If Z(A) and Z(B) both have dimension at least two, let their minimal projections be
D1, Py and qi, -+, ¢m, respectively. We first compute (Z(A), ¢) x (Z(B), 1)) using
[2]. Then for i =0,1,...,nand j =0,1,...,m, set

topea, 717@ k:g pi+1

(M ijr ) @ Mk e C

qk,15° " 71119 zk qj+1 qm
=1 QL1500 kz

EB M, (C) & C o ot
e 1/6k17"7ﬂk2k

Here we have many chains of inclusions to potentially examine, e.g.
Z(A)*Z(B) =M070 CMLO (@R CMmO CMnJ cC--- CMn,m =AxB

We may consider any chain which increments exactly one index by one at each step.
We again use Lemmas 1.4 and 1.7 and either Proposition 2.8, 2.9, or 2.10 to compute
(gjMi jq;, 9% ) and/or (p;M; jpi, ¢P¥) inductively. Lemma 1.4 keeps track of the central
support of ¢;, which by induction will be in (A * B)?, Lemma 1.7 (or the amplification
formula), determines each (M, ;, ¢), including hence (A4, ¢) * (B,¢). O
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2.4. Computing B(H) = [C & C]

We can fairly easily extend the above result to allow finite direct sums of all separable
type I factors, but to do so we must first compute B(#) * [C & C] when B(#) is equipped
with an arbitrary faithful normal state ¢. We require slightly more general modular
inclusions than we have considered so far.

€11, 1€nn P
Proposition 2.12. Let i1,i2 : M,(C) & C — (A, ¢) be two modular inclusions, and
Q1,0 O v

assume that A® is a factor. Then there exists a unitary u € A® conjugating i1 to io

Proof. Since A? is a factor and the inclusions are modular (in particular state-
preserving), there exist partial isometries v, w € A? satisfying

1}*’U = il (611) ’UU* = ig(eu)

w*w = i1(p) ww™ = iy(p)

It is easy to check that u = iz(p)wit (p) + > ., ia(€i1)viq(e1;) does the job. O
The next proposition follows directly from the proof of [7, Theorem 4.3].
Proposition 2.13. Assume that 1 > a1 > as > -+ > ay,, > 0 with at least one inequality

amongst the o’s strict and let H = (5+ : 1 <4, <mn). Let v > 0. Let B € (0,1) be such
J
that

M, (C)aC

a1, 0 Y

*[(CEB (C}
B 1-8

is a factor (necessarily (T, pm)). If (A,¢) and (B,) are von Neumann algebras with
faithful states accepting the modular inclusions

MA(C)&C = (46)  and €& C - (Bv),

Q1,0 ,Qn 1-8

(Av(b)*(B?w)*(THaQDH)

iR

then (A, ¢) * (B, 1)

Assume that H is a separable infinite-dimensional Hilbert space, and ¢ a faithful
normal state on B(?). Recall that we can assume that—after conjugating by a unitary—
there is a set of matrix units {e; ;} satisfying ¢(e; ;) = &; 04, where o; > 0 and
Yoo =1

Theorem 2.14. Let H be a separable infinite-dimensional Hilbert space. Let ¢ be a faithful
normal state on B(H) such that ¢(e; ;) = 6; ja; for matriz units {e; ;}; jen and o; > 0.
If 6 € (0,1), then
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B0.0)+ [C0 € | = (Twon)
where H = (g—] 14,5 € N).

Proof. For each n € N, (B(H), ¢) accepts a modular inclusion of

(A,9) = Ma(C) o,

Q1,0 ,Qn

where y =1 — (a1 + - - - + a5,). Choose n large enough so that

(“w+co c)

is a factor and so that for some i, j <n, St # 1. Let H' = (54 : 1 < 4,5 < n). It follows
J J
from Propositions 2.13 and 1.1 that

(B(H), ¢) * {(ﬁj @ 1(93} =~ (B(H), ¢) * [(g ® 1(96] * (Twrsonr)
~ (B(H),¢) * L(Z) % (Tur, onr7)
= (T, o) * (Tur,on)

12

(Tu, ¢m)
as claimed. O
2.5. Free products of finite direct sums of type I factors

Using the results of Proposition 2.13 and Theorem 2.14, one can prove the following
proposition in exactly the same manner as Propositions 2.6, 2.7, 2.8, and 2.9.

Proposition 2.15.

(i) Let A and B be separable type I factors, at least one of which is infinite-dimensional,
equipped with faithful normal states, ¢ and v respectively. Then

where H is the group generated by the point spectra of Ay and Ay.
(ii) Let H be a separable and infinite-dimensional Hilbert space, and let ¢ be a faithful
normal state on B(H). Then

BH.0)+ |00 €| = (T on)

QAn
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where H is the group generated by the point spectrum of Ag.

(iii) Let H be a separable and infinite-dimensional Hilbert space, and let ¢ be a faithful
normal state on B(H). Let (B,v) be either (L(F),7) fort > 1 or (Ty,on) for
some non-trivial H. Let 1 > ay > as > --->a, >0, n>1, and a > 0. Then

(B(H),¢) * | Myn(C) & (B, 1))

A1, ,0n &4

= (Ta, va)

where G is the group generated by Ay, Ay, and < :1<4,5 < n>

The next theorem follows from Proposition 2.15 and the proof of Theorem 2.11.

Theorem 2.16. Let (A, ¢) and (B, ) be finite direct sums of separable type I factors with
faithful mormal states ¢ and 1 respectively, both of which are at least two-dimensional.
Assume that at least one of ¢ or i is not a trace, and that up to unitary conjugation,

0 pi1, sz
R
—1 i1, 7041 ky;

mo gj,1,° "7!1] z

=D M,(C 69

,] 1 Bg 1, B],lij

where the H; and K; are infinite-dimensional. Let G be the group generated by the point
spectra of Ay and Ay. Then

(A?¢) * (Baw> = (TGNPG) S2) 07

where C' is finite-dimensional (possibly zero), and is determined exactly as in Theo-
rem 2.11.

3. Standard embeddings and inductive limits

In [5], the notion of “free subcomplementation” of (A, ) — (B, ) was defined and
used to prove Dykema’s theorem on the structure of free products of inductive limits of
finite-dimensional von Neumann algebras. In order to identify the type III summand of
such a free product with an almost periodic free Araki-Woods factor, the notion of a
standard embedding along the lines of [2] is needed for almost periodic free Araki-Woods
factors.

3.1. Hyperfinite matricial models

Lemma 3.1. Let R be the hyperfinite Iy factor, and let {y; };en be a free family of gener-
alized circular elements free from R. Let y; have parameter \; <1, H = (\;: i € N), and



M. Hartglass, B. Nelson / Advances in Mathematics 382 (2021) 107656 37

define (M, ) = W*(RU{y; }ien), Tx@m). Suppose p1,--- ,pn are equivalent projections
in R, and for j =1,...,n let u; € R satisfy uy = p1, uju; = p1, and ujuj = p;. Then
{wiyiug:i € N, j,k =1,...,n} is a free family of generalized circular elements (with
respective parameters ;) in (p1Mp1, pP?), which is also free from pi1Rp;.

Proof. We first recall Shlyakhtenko’s matricial model (see [10, Section 5]). Let H be an
infinite-dimensional Hilbert space, let F(#) denote the full Fock space over H, and let
N € N. Equip

B(F(H)) ® Mn(C)

with the state w ® tr. Let {{;:’k,n;’k: i €N, j,k=1,...,N} be an orthonormal family
in H. For each ¢ € N define

|6 0) + Vil )7 ] @ e

1

1
Yi= —
VN

N
7,k=
Then {Y;};en is a free family and free from My (C) with respect to w ® tr, and (V;,w ®
tr) ~q (yi, o) where ~4 means equality in moments.

We first assume 7(p1) = ¢ € Q \ {1}. Let
P= e11+--+teéqaq€ Mb(C)

Denote U; := P; and for j = 2,...,n set

Uj=e@G-1)at1,1 T €G-1)at2,2 T+ €ja,a-

Note that U;U; = P1, and {U;U;}}_; are orthogonal.

Now, for d € N, let {Y.(d)}ieN be as above for N = b<. Let Pl(d) = Pi®Iya-1 € Mypa(C),
and similarly define U J(dz)
have that {(U;d))*Yi(d)U,gd): i €N, j,k=1,...,n} is a free family of generalized cir-
cular elements (with respective parameters J\;), which is also free from Pl(d)Mbd ((C)Pl(d).
Let A € Mya(C). It follows that (P APy, {(U?) Y YU i €N, jk=1,...,n}) con-
verges in moments to (p1Ap1, {ujyiur: i € N, j,k=1,...,n}) in (p1Mp1, p"*) where we
picture p1 Ap; € Q= My(C), an ultra-weakly dense *-subalgebra of R. By freeness and

for j = 1,...,n. By mutual orthogonality of {&} .7} .}, we

ultra-weak continuity, it follows that p; Rp; is free from {u;yiuk: ieN, jk=1,...,n}
in (pyMp1,¢P), and moreover, the latter set is a free family of generalized circular
elements with respective parameters ;.

Next, we assume 7(p;) is irrational. Let {¢m}men C Q be a sequence converging
to 7(p1) from below. For j = 1,...,n, let (ujm JmeN C R be a sequence converging
*-strongly to u; and satisfying:

(M))*u(m)

o T((u; ) u) = s
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. pgm) — (ugm))*u(m) = =(u (m)) (m).
. ugm)(u(lm))*, e (m)( (m '))* are mutually orthogonal.

Then from our treatment of the rational case, we have that for each m € N,

{(u§-m)) ylu,(cm): i €N, j,k=1,...,n} is a free family of generalized circular elements
(with respective parameters \;) which are free from plm)Rpgm) in (pgm)/\/lpgm), gopgm).
Since *-strong convergence implies convergence in moments, we obtain the desired re-

sult. O

Lemma 3.2. Let R be the hyperfinite I factor, (y1,y2) a free pair of generalized circular
elements of parameter A < 1 that free from R, and p a nonzero projection in R. Then:

e py1 + (1 — p)ys is a generalized circular element of parameter \ and free from R;
o y1p+y2(1 —p) is a generalized circular element of parameter X and free from R;

o py1p+ (y2 — pyap) is a generalized circular element of parameter A and free from R.

Proof. We will treat the first claim, as the others follow by the same techniques. As in
the previous lemma, we first consider the case when 7(p) = ¢ € Q \ {1}. Let

P = 6171 +"'+6a,a-

For d € N, let {Yl(d), Y2(d)} be as in Shlyakhtenko’s matricial model for N = b®:

bd
) 1
V=75 X UG + VA 9 e
jk‘:l

Let P(d) Py ®Iy-1 € Mya(C). Then by mutual orthogonality of the {&! 7%, } we have

that Pl(d)Yl( )+ (1-— Pl(d))YQ(d) is a generalized circular element of parameter A which is
free from Mya(C). Let A € Mya(C). It follows that the moments of (A, Pl(d)Yl(d) +(1-

(d)) Q(d)) converge to the moments of (A4, py; + (1 — p)y2) where as above, we picture
pand A in @, M,(C). By ultra-weak continuity, it follows that py; + (1 — p)ys is a
generalized cn"cular element of parameter A which is free from R. For the case 7(p) is

irrational, we proceed exactly as in the previous lemma. O
Proposition 3.3. Let R be the hyperfinite 111 factor, and let p be a non-trivial projection

in R. Let y be a generalized circular element with parameter A € (0,1), free from R.
Then

W*(RU {pyp}) = W*(RU{y}).

Moreover, this isomorphism is state-preserving and restricts to the identity on R.
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Proof. We first note that if {y;};cn is a countably infinite family of freely independent
generalized circular elements all of parameter A, then

W (R U{yitien) = WH(RU{y}),

on account of (Ty,¢y) = K (T), ¢»), and of course this isomorphism is the identity

ieN

on R.
Let a € N such that a <
R summing to 1 such that p; := p, pa,...,p, are equivalent to p;, and pgy1 =< p1. Let

( =0l < a+ 1. Let p1,...,pq+1 be orthogonal projections in

Ui, ..., U1 € R be partial isometries implementing these (sub)equivalences such that
u;uj < p1. Observe that

M =W (RU{yi}ien) = W (RU{ujyiup: i €N, j,bk=1,...,a+1}).

By Lemma 3.1, {ujyzuk i € N, j,k=1,...,a} is a free family of generalized circular
elements with parameter A, which is free from p; Rp;.
Let g1 := u}uq11 < p1. Let

(a+1)7(p1)
ar(p1) +71(q1)

Consider the amplification R! of R. Let P € R! be a projection such that we can
identify R with PR!P. By Lemma 3.1, we can find a free family {yl(t)}ieN of generalized
circular elements of parameter A that are free from Rf, and which satisfy Pygt)P =y
for each ¢ € N. Let pffll € R? satisfy pt(lt}rl =1—(p1+ -+ pa). By our choice of ,

pg_l is equivalent to pi, so let uffj_l € R! be a partial isometry implementing this

((l?_l)*ugtll = p1). Moreover, we can choose this partial isometry so

that usz)rlq1 = ugq4+1. Consequently, for ¢ € N and j,k =1,...,n we have

equivalence (with (u

'3 t * t
Ug1Yilg = Q1( () ) yz( )

wiyitiay = iyl u éllql (3)
u:+1yiua+1 = QI(ug?-l) yl(t) g}r q1
Note that by Lemma 3.1,
fusy g, )y iyl )yl i e N Gk =1, 6}

is a free family of generalized circular elements of parameters A that is free from p; Rfp; =

p1Rp1 in (prMpy, oP1).
Now, let

a: NxNx{lrc —-Nx{l,...;,a} x{1,...,a}
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B:N—=Nx{1,...,a}
be bijections. If «(s,t,€) = (i,4,k) for s,t € N and € € {¢,r, c}, then set

€ P *
Yst = ujyiuk.

i

If 5(s) = (i,7) for s € N set

£ T
Ys,0 = U Yila+1 and Ys,0 = Ug1Yilly-

) )

Finally, set y< g 1= uj 1ystat1 for each s € N. With this notation, we therefore have
M =W*(R{ys,: e € {l,r,c}, s€ N, t € Np}).

For (s,t,e) € N x Ny x {¢,r,c}, define

yﬁ,tql + yﬁ,tH(pl - q) ife="+¢
Zor = Qs+ (1= @)Y ife=r.
qug,tql + [yg,t+1 - Q1y§,t+1(h] ife=c

Using Equations (3) and Lemma 3.2, it follows that {25,: € € {{,r,c}, s € N, t € No}
is a free family of generalized circular elements with parameter A\ which are free from
p1Rp1 in (prMp1, ¢P). We also note that

M =W*(R,{z5,: e € {{,r,c}, s€ N, t € Ng}).

Now, observe that by freeness and (T, ¢x) = XK (T, ¢x)
€N

lepl = W*(leplv {Zg,t: €c {67 T, C}, EES N) te NO}) = W*(lepl,Z),

where z = pizp; is a generalized circular element of parameter A\ that is free from
p1Rp1, and this state-preserving isomorphism restricts to the identity on p; Rp;. Call
this isomorphism 7. We then define ¥: M — W*(R, z) by

n
E uiy( uj TUR)U

J,k=1

It is easy to check that this is state-preserving and restricts to the identity on R. Finally,
to complete the proof, we appeal to Lemma 3.1 once more in order to realize z = p1 Zp;
for some generalized circular element with parameter A which is free from R. Hence
M = W*(R,p1Zp1) via a state-preserving isomorphism that restricts to the identity
on R. O
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Suppose H < R is non-trivial and has two generating sets: (\;);er and (Ay);er. Let
(yi)ier be a free generalized circular family free from R with each y; having parameter
A;. Similarly, let (y)ircr be a free generalized circular family free from R with each y;/
having parameter \;/. Since there is an isomorphism W*(RU(y;)icr) = W*(RU(yi )irer)
which is the identity on R, we obtain the following corollary:

Corollary 3.4. Suppose H < R is non-trivial and has two generating sets: (\;)icr and
(Air)ierr. Let J be a set disjoint from I and I', let X\j € (0,1) for each j € J, and let H'
be the group generated by H and (N\;)jecs. Let (yi)icrus be a free circular family free from
R with each y; having parameter \;. Similarly, let (y.)icrus be a free circular family
free from R with each yy having parameter A;. Let (pr)rerorus be a family of nonzero
projections in R. Then W*(RU (p;yipi)iciug) = W*(RU (pyyipir)irerrug) via a mapping
which is the identity on W*(R, (p;y;p;)ict)-

Recall from [3] that Dykema’s construction of the interpolated free group factors L(TF;)
consisted of the following ingredients

e The hyperfinite II; factor R;
o A family of projections (ps)ses in R;
o A free semicircular family (zs)ses.

The interpolated free group factor with parameter ¢ is given by

L(]Ft) = W*(R U (psxsps)sES)

where t = 1+ > ¢ 7(ps)?. Tt should be noted that if (x4 )y es is another free
semicircular family free from R and (ps)scs are any projections in R satisfying
t=1+ Zs/GS’ T(ps’)27 then W*(R7 (psxsps>s€S) and W*(Rv (ps’xs’ps’)s’es’) are iso-
morphic via an isomorphism which is the identity on R.

The presence of generalized circular elements with non-trivial parameters eliminates
(via free absorption) the need for a fixed value of > o 7(ps)?. We thus have the
following;:

Proposition 3.5. Let I and I’ be disjoint sets which are finite or countable, \; € (0,1)
foreachi e IUI', and H:=(\;:i €)= Ny :¢ €l). Let S, S, and T be finite or
countable (possibly empty) disjoint sets. Assume that we are given the following:

o Families of nonzero projections (ps)scs, (Ps')sres’s (Pt)ter, (¢i)ier, and (gir)irer
in R;

o A free semicircular family (zs)scs free from R;

o A free semicircular family (zs)scs free from R;

o A free semicircular family (xt)ier free from RU (z5)ses U (Ts)sress
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o A free family (y;)icr of generalized circular elements with respective parameters \;
that is free from RU (xs)scsuT;

o A free family (yi )irer of generalized circular elements with respective parameters ;s
that is free from RU (g )ses/ur-

Then

W* (R U (psirsps)SGSUT U (qzyqu)zel) = W* (R U (ps/xs’ps’)s/GS’UT U (qi’yi’Qi/)i’GI/)
via a state-preserving isomorphism which is the identity on W*(R U (pixipt)ter)-

Proof. From the proof of Proposition 3.3, we see that there is a state-preserving isomor-
phism
WHRU (pexepe)ier U (Pstsps)ses U (@iyidi)ier)
= W (RU (praep)ter U (Pssps)ses U (Yi)ier),
which is the identity on W*(R U (pizipt)ter U (PsZsps)ses). Let T’ be a countably
infinite set disjoint from S, S’, and T, and (2 )y e7 a free semicircular family free from

R U (2t)ter U (Ts)ses U (s )sres’ U (Yi)ier U (Yir)irer - By free absorption, there is a
state-preserving isomorphism

W*(RU (praipt)ter U (PsTsPs)ses U (Yi)ier)
= WH(RU (prepe)ter U (Pssps)ses U (Yi)ier U (@4 )perr)

which is the identity on W*(R U (pix¢pt)ter U (Dssps)ses). Via Dykema’s cutting and
pasting argument [3], there is a state-preserving isomorphism

W*(RU (pixepe)ter U (Dstsps)ses U (Yi)ier U (x¢)vrer)
= W (RU (pexept)ter U (Yi)ier U (2¢)pyer)

which is the identity on W*(RU(pixpt)terU(yi)icr)- Finally, by uniqueness of (Ty, ),
there is a state-preserving isomorphism

W*(RU (pezeps)ter U (Yi)ier U (2 )prerr)
=W (RU (pexepe)ter U (Yir Jirer s (T )prerr)

which is the identity on W*(RU (p:z:pt)ter U (24 )r e ). Composing these isomorphisms
gives a state-preserving isomorphism

WH(RU (pripe)ier U (Pswsps)ses U (@ividi)ier)
= W*(RU (pexepe)ter U (Yir )irer U (@p )prerr)
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which is the identity on W*(R U (prxipt)ter). Similarly, there is a state-preserving iso-
morphism

W*(RU (prxepe)ier U (s ToDs)sres U (GirYirqir )irer)
= W*(R U (ptxtpt)teT U (yi’)i/el/ U (mt’)t’eT’)

which is the identity on W*(R U (pizpt)ter). This completes the proof. O

Remark 3.6. Note that W*(R, (ptxtpt)ter, (DsTsPs)ses, (¢iYi¢i)icr) equipped with the
free product state 7 x @ is isomorphic to (Ty, vH).

Using freeness of the x’s from the y’s and Corollary 3.4, we can upgrade Proposition 3.5
to the following corollary which will be useful for our notions of standard embeddings
below.

Corollary 3.7. Let I, I', and J be disjoint sets which are finite or countable, and let
A € (0,1) foreacht € IUI'UJ and H :=(\;:i€IUJ)= Ny :¢ €l'"UJ). Let S,
S’ and T be finite or countable (possibly empty) disjoint sets. Assume that we are given
the following:

« Fumilies of nonzero projections (ps)scs, (psr)ocs's (peiers (aiict, (gi)ver, and
(¢5)jes in R;

o A free semicircular family (zs)ses free from R;

o A free semicircular family (zs)scs free from R;

o A free semicircular family (zi)ier free from RU (xs)ses U (Ts)sres;

o A free family (y;)icr of generalized circular elements with respective parameters \;
that is free from RU (xs)scs U (xt)ter;

o A free family (yi)ier of generalized circular elements with respective parameters ;s
that is free from RU (xg)ses U (x4)ter;

o A free family (y;)jes of generalized circular elements with respective parameters A;
that is free from RU (zs)ses U (Ts)sres U (@e)rer U (Yi)ier U (yir)ier;

Then
W*(RU (pssps)sesur U(qiyiGi)ierur) = W (RU (psxops)sresrur U (Qiryir @it )irerrur)

via a state-preserving isomorphism which is the identity on W*(R U (pixept)ter U
(49395)je7)-

3.2. Standard embeddings

With our hyperfinite matricial model for (Tw, ¢ ), we will proceed as in Section 4
of [2] and develop the notion of a “standard embedding” of almost periodic free Araki-
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Woods factors. After the definition, the proofs of Propositions 3.10, 3.11, and 3.12 follow
the proofs in Section 4 of [2] very closely.

Definition 3.8. Let H and H’ be non-trivial countable subgroups of R™ with H < H'.
We say that a modular inclusion o« : (T, or) — (Th/, pu) is a standard embedding if
there exist:

e Sets I CI', \; € (0,1) for all i € I’ such that H = (\; : i € I), and H' = (\y : i’ €
I');

e Sets S C S’, families of nonzero projections (ps)scss and (g;);er in the hyperfinite
IT; factor R;

o A free family {xs,y;: s € S, i € I'} free from R where x, is a semicircular operator,
and y; is a generalized circular element with parameter \;;

o State preserving isomorphisms

B (T, o) = W*(RU (pswsps)ses U (qiYigi)ier)
v (Tar, o) = W (RU (pstsps)sest U (Giyiti)ier)

so that v o a0 871 is the canonical inclusion.

If H = {1} (i.e. I is empty), then we replace (T, py) with L(F:, 7). If I’ is also
empty then this is just a repetition of the definition of standard embedding in [2].

Before proving properties about standard embeddings, we need to show that the
notion is independent of the generating sets of H and H’, the projections p, and g;, the
semicircular operators x5, and the generalized circular elements ;.

Proposition 3.9. Let H and H' be countable, non-trivial subgroups of R*, and suppose
that o : (Tg, o) = (T, en') is a standard embedding. Let I C I', (A;)ierr C (0,1),
S C S, (ps)sest (@i)icr, (Ts)ses', (Yi)ier, B, and v be as in Definition 3.8. Suppose:
o J CJ are sets disjoint from I', and (\;);es C (0,1) are such that H = (\;: j € J)
and H = (\ji: j' € J';
o T C T are sets disjoint from S’, and (pi)ier and (q;)jes are families of nonzero
projections in R;
o {x,y;:teT’, jeJ} is free from R where x4 is semicircular and y; is a generalized
circular element with parameter A;.

Then there exist state-preserving isomorphisms

0: (T, om) = W (RU (psxpt)ter U (459565 jes)
€: (Tar, o) = WH(RU (praspe)rer U (59595) jear)

so that eoaod~ 1 4s the canonical inclusion.
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Proof. It suffices to show there exist state-preserving isomorphisms ® and ¥ so that the
following diagram commutes:

i1

W*(RU (psxsps)ses U (qiyiGi)ier) s W*(RU (psxsps)ses' U (qiyiqi)icr)
) v
i2
W*(RU (proept)eer U (059595 )iet) — W*(RU (prwept)ier U (¢9545)je)

where i; and i3 are the canonical inclusions. Indeed, given such isomorphisms we simply
take § ;== P o [ and € := Vo ~.
Using Corollary 3.7, there is a state-preserving isomorphism

01: W*(RU (psxsps)ses U (qiyidi)ier)
i
W*(RU (pssps)ses U (pexepe)iernr U (4:%iqi)icr Y (459565) jeang ),

which is the identity on W*(RU(ps2sps)sesU(qiyiqi)icr)- There is also a state-preserving
isomorphism

02 : W (RU (pswsps)ses U (peaept)iernt U (6ividi)ier U (459595) jern.g)
!
W*(RU (praepi)ter U (¢59545) jer)

which is the identity on W*(RU(py @y ) e\ 1 U450 Y5: 457 ) jeg\g)- Set W := 6061, and
set @ to be the restriction of ¥ to W*(R U (psxsps)ses U (¢:¥iqi)icr). By construction,
the above diagram commutes. 0O

Proposition 3.10.

(i) Let Hy < Hy < Hjy be countable, non-trivial subgroups of Ry. If oy : (TH,,0m,) —
(Tw,, om,) and oz : (T, om,) — (THs, 0H,) are standard embeddings, then ag o aq
is a standard embedding.

(ii) Let Hy < Hy < H3 < --- < H,, < --- be countable, non-trivial subgroups of R,
and H = U H,. For each n € N, suppose that o, : (T, , vm,) = (TH, .\ PH,.. )

neN
is a standard embedding. Let (M, @) be the inductive limit von Neumann algebra of

the [(Th,,, pn, ), o). Then (M, @) = (T, ou).
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Proof. (i): Based on Proposition 3.9 and its proof, we may assume that there are count-
ablesets I C I, C I3, S C S, T C T/ with S" and T” disjoint, and \; € (0, 1) for each
i € I3 satisfying (\; : ¢ € I;) = H;. We can further assume that there are semicircu-
lar families (24)scs and (x4 )y e~ both free from R; free families (v;)icr, and (9i)ier,
of generalized circular elements with respective parameters \; that are free from each
other, (xs)ses, (¢)ter, and R; families of projections (ps)scs’ and (pg)ier in R; and
state-preserving isomorphisms

B (T, pm,) = WHRU (pstsps)ses U (Yi)ier,)
Y Ty, om,) = WHRU (pstsps)sest U (Yi)icr)
Y : (Thy, o) = WH(RU (praepe)ier U (Ji)ier,)

6 (Thy, oms) = WHRU (peoep)ier U (Ui)icts)

1 1

so that yoaj 0 7! and 6 o ap 0! are the canonical inclusions. Utilizing v o7~ 1, we

obtain an isomorphism
8 (T, ors) = WH(RU (pswsps)ses U (Brzebe)rernt U (¥i)icr, U (Gi)icrs\ 1)

where p; € W*(R U (pssps)ses' U (Yi)ier,)? and ag o o = 5 ' oio B (here i is the
canonical inclusion). Since W*(RU (ps2sps)ses U (¥i)ict,, )? is a factor, choose a unitary

ur € W (RU (pssps)ses U (Yi)ier,,)?

so that ufprus € R for each t € 7"\ T. Then R, (zs)scs’, and (ujzius)ier\7 is a free
family and is free from (y;)icr, and (9;)ier,. This means that ¢ is valued in

W*(RU (pszsps)ses U ((uiPrue) (uy zeue) (uy Prue)sernt U (Yi)ier, U (Ji)icrs\1o)

so that s o oy is standard.
(ii): This follows directly from the above proof and (ii) of [2, Proposition 4.3] O

Proposition 3.11. Let H < H' be countable, non-trivial subgroups of R, o : (T, o5) —
(Tu, or) a modular inclusion, and p € TH" a nonzero projection. Then « is a standard
embedding if and only if & |pryp i @ standard embedding.

Proof. It is straightforward to see that if « is a standard embedding, then

(a®id): (Ty, on) ® Afn(g) = (Tur s pnr) ® Z\lfn(C)

1
ey =

P RRE

is a standard embedding. It therefore suffices to prove that « being a standard embedding
implies « |p1yp is & standard embedding. Let I C I', S C S', (ps)ses’, (Gi)icrr, (Ts)sess
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(M)ier, (Wi)ier, B, and v be as in Definition 3.8. Without loss of generality, we can
assume that (after conjugating by unitaries in the centralizer) 8(p) € R and v(p) € R.
We will simply call these images p. We are allowed to assume that ps < p and ¢; < p for
all s € S'. a |pryp is therefore conjugate to the canonical inclusion

W*(pRp U (pstsps)ses U (aiyiti)ier) = W (pRp U (pswsps)ses' U (6:Yii)ier)
establishing that « |,7,, is a standard embedding. O

Proposition 3.12. Let H < R4 be a countable, non-trivial subgroup. The following are
standard embeddings:

(i) The canonical inclusion i : (A, @) — (A, ¢)*(B, 1)) where A is either an interpolated
free group factor with trace ¢, or an almost periodic free Araki—Woods factor with
free quasi-free state ¢, and B is either an interpolated free group factor with trace
¥, or an almost periodic free Araki—Woods factor with free quasi-free state ¥

(ii) the canonical inclusion j : (T,pn) < (Tu,emn) * (B,Y) where B is finite-
dimensional or B(H) for H separable and infinite-dimensional and b a faithful
normal state.

Proof. (i) Let R and R’ be two free copies of the hyperfinite II; factor and S, S’, I
and I’ disjoint sets. (I (resp. I’) will be empty if A (resp. B) is an interpolated free
group factor.) Suppose \; € (0,1) for all ¢ € I, Ay € (0,1) for all ¥ € I’, and that
H = () :i€l). Let (2;)ier, (zi)ircr, be free families of semicircular elements, free
from each other and RU R’. Let (ps)ses, and (g;);es be families of projections in R, and
(ps')sres’, and (gi)irep be families of projections in R'. Finally, let (v;)icr and (yi)ier
be free families of generalized circular elements, free from each other, (x;)icr, (xi)iecr,
and R U R’. Assume that y; has parameter \; for i € I UI’. We need to show that the
inclusion

W*(RU (pszsps)ses U (aiyivi)icr) = W (RU R' U (pszsps)sesus U (qiviyi)icrur)

is standard. Note by [3, Corollary 3.6] that there is a semicircular element € W*(RUR)
which is free from R and satisfies W*(R U {z}) = W*(RU R'). Let (uy)secs and
(vir)irer be families of unitaries in W*(R U {z}) satisfying Dy := ulpsuy € R and
Qi = v/qyv; € R. Let Ty = ul,xyuy and ¥y = v}yv;. Therefore, the inclusion above
can be realized as the canonical inclusion

W*(RU (psxsps)ses U (¢iyivi)ier)
!

W*(RUR'U (pstsps)ses U (P - Tor - Do )sresr U (GiYiYi)icr, (@ - T - Ui )irerr)
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which is standard.
(ii) Choose n large enough so that

M, (C) + (B.v)

is a factor (necessarily (L(IF;),7) or (Th+,¢n')). Recall that (Tw, o) = (Ty, o) ®
M,,(C) and let p be a minimal projection in M, (C). Note from Lemma 1.4 that
1

1

n " on

(T, ) * (B, Y)p=p |(Tu, on) ® My(C)

1 1
m

*(B,¢)p

=p ll\fn(c) * (B,Y)| pxp(Tw,on)p-

1.1
n’ n

It follows from (i) that j |,7,p is standard, hence j is standard from Proposition 3.11. O
3.3. Free products of some hyperfinite and other von Neumann algebras

We will use standard the embedding techniques above to extend Theorem 2.16.

Theorem 3.13. Let (A, @) and (B,v) be von Neumann algebras with at least one of ¢
or ¢ not a trace. Assume further that dim(A),dim(B) > 2 and A and B are countable
direct sums of algebras of the following types:

o Separable type I factors with faithful normal states;

o0

o Diffuse von Neumann algebras of the form ®(F¢,¢i) where each F; is finite-

dimensional and the state is the tensor productn5} the ¢;;
o (M,~)® (L(Fy), 7) with M a separable type I factor, finite or infinite-dimensional;
o (N,7)® (Tg,pq) with N a separable type I factor, finite or infinite-dimensional,
and G a countable, non-trivial subgroup of R.

Let (M, p) = (A, ¢)x(B, ). Then (M, ) = (Tu, or)®C where H is the group generated
by the point spectra of Ay and Ay, and C is finite-dimensional and is determined exactly
as in Theorem 2.11.

Note that the class of von Neumann algebras in the second bullet point contains all
hyperfinite, diffuse, finite von Neumann algebras as well as the Powers factors (Ry, ¢x)
of type I1II,, and tensor products of Powers factors. Furthermore observe that the class of
von Neumann algebras in the last two bullet points contains the interpolated free group
factors with traces and separable free Araki-Woods factors with free quasi-free states,
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but is larger in general as tensor products are allowed where ~ is not a trace and the
point spectrum of A,/ need not be a subset of G.

Before we prove the above theorem, we first use standard embeddings to upgrade
Theorem 2.16 to handle infinite direct sums:

Lemma 3.14. Let (A, ¢) and (B,v) be von Neumann algebras with faithful states ¢ and
¥, respectively, of the following form (up to unitary conjugation):

O i1, sz 0
i e D ond
i=1 X1 Qi kg i=1
oo q117"7q32 S

@, e B

] 1/3]17"7/612 j:l

Where the H; and K; are separable infinite-dimensional Hilbert spaces. We assume at
least one of ¢ or 1 is not a trace, that both A and B are at least two-dimensional, and
allow either to be finite-dimensional by having the corresponding weights be zero. Let G
be the group generated by the point spectra of Ay and Ay. Then

(A,9) * (B,v) = (Te,pc) ® C

where C is finite-dimensional (possibly zero) and is determined exactly as in Theo-
rem 2.11.

Proof. Define Iy C N as the subset of i € N such that either k; = 1 and there exists
j € N such that Y 7_, 1;ak1 < 1, or there exists j € N such that ¢; = 1 such that
Js

> or_1 1-5i1 < 1. Note that I must be a finite set. Define Jo similarly. Up to relabeling,

Qg k
we may assume [y = {1,...,N} and Jy = {1,..., M} for some N,M € N, and then
define

N pig, ,zn M qﬂl""q”
Aof@ M, (C and  By:=@P M,(C) ,
1(1117",@Lk j= 1531,":63@

and let g4 and ¢p denote their respective identities. Let K be sufficiently large so that
if p4 and pp are the respective identities of

Di 1y \Dik; o 7,
@ M, (C) ® @ (B(/Hi);@) and
I=NAK+1 Y07 %k =Ny K41 i
o0 95,157 545, 00 7,
D Mm@ e D BE) ),
j:M+K+1,Bj,1,"',B]‘,gj j=M+K+1 5]'

then ¢(pa) <1 —14(gp) and ¢(pp) <1 — ¢(ga). Define
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NAK p; o, ,qu N+K

(A1, ¢) =P M (C) @ @ o C

=1 Qg 17"7 z,ki

M+K qj1,- qje M+K

(B1,9) = @ My, ( ® @ ®C.

j=1 Bj1,- ’57 ¢ j=1

Increasing K if necessary, we assume that at least one of the summands in either A; or
B; is non-tracial. Let H,; denote the subgroup of R* generated by

{%:193N+K+s—1, 1sJ',k§ki},
Q|

{%;1§j§M+K+t—l, léz}ké&}v
jk

as well as the point spectra of Ay, and A,p]. fori <i< N+K+s—landj < M+K+t—1.
If we let C be as in the statement of the lemma, then by Theorem 2.11 we have

P
<A17¢> * <B1>'(/J) = (TH1,1790H1,1> ®C.

Moreover, pa,pp < P by our choice of K. Now, for n,m > 2 define

N+K p; g, ,Zh N+K NtK+4n—1, 5, PAn
(An,9) = P My, (C @EB < C@C)@C
i=1 azlv"’(’»k i=N+K+1
M+K qj, 1,“,qu M+K M+K+n=1, g, PB.n
(Bn,¥) = @ My, (C @EB Dune | @ Cedle'd,
j=1 Bi1, By j=1 9; j=M+K+1
where
pi=Dpi1+ -+ Dik p; is the identity of B(H;)
QG =qj1+ -+ g, is the identity of B(K;)

PAn =pa— (PN+K+1+ DNt K4n-1) — PNigir T+ F DN Kn_1)

PBn =08 — (Qmyrt1+ -+ auskin—1) = @uraxe1 + F Qs g in_1)-

By Lemma 1.4 we have

PN+K+1 PNiK+1 PA,2

pa (A2, 0) * (Br,¥)|pag = pag (A, ¢) * (B,Y)|lpaax| C @& C @ C

Hence it follows from Propositions 3.11 and 3.12 that the canonical inclusion of (Aj, @) *
(B1,v) into (Aa, ¢)*(B1,) is a standard embedding. Iterating this argument, we obtain
that the canonical inclusions
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(A’m (b) * (anw) — (AnJrlv qb) * (Bna'(/}) — (An+1, (b) * (Bn+1; 'L/J)

are standard embeddings. By Proposition 3.10, we therefore have

(A(l’l)aQS) * (B(ljl)ad}) = (TH1,1v90H1,1) ®C,

where
NAK p;q, 7;DL k N+K > pi > D;
(0D.0) = B (€)@ b Do @ Co P ¢
i=1 ‘11317“70‘% i=N+K+1 i=N+K+1

M+K 45,1, »qg Z M+K o0 q; 0 ﬁj
(B, ) = 69 My, ( @69 pue @ e @ C
B, ,BJ ¢ 8 j=M+K+1 j=M+K+1

Next, for n > 2 define

N+K+n-1 Pi, 15 5 Pik; N+K+n-1 P

i D; x Pi > p;

(AmVg) = P Mu(C) e P BH)ee P Ce H C
i=1 R i=1 i i=N+K+n i=N+K+n

) N+K+n Pi 1, Dik; N+K+n—1 P; o i o Bs

(A2, g) - 69 Mo (©)' e @@ BH).ee P Ce @ C
Qiyly s Qik i=1 Vi i=N+K+n+1 i=N+K+n

M+K+n—1 Q5,15 545.45 M+K+n—1 qj [e%e) 4 (e’ aj

B™Y gy = @ M, C)e P BK))e P Co f C
j=1  BiiyBey j=1 9; j=M+K+n j=M+K+n

M+K+n qj,1, 145,45 M+K+n—1 q; oo 4 00 g,

(B™y):= @ M,C)e @ BK)v)e H Co H C
j=1 BBy j=1 5j J=M+K+n+1l  j=M+K+n

By Lemma 1.4 for i = N + K + 1 we have

Pi,15--5Pi k;

pi [(A%2,6) « (BED, )| pi = pi [(AMD,6) « (BED )| pix My, (€)'

Qg 100 Ky

As above, we have that the canonical inclusion of (A1), ¢) % (B ) into (A2, ¢)
(B 4)) is a standard embedding. Iterating yields that the canonical inclusions

(AT ¢) 5 (B ) — (A™2) ¢) 5 (BU™D 1))
— (ALY gy 5 (B )
= (AT, 9) 5 (BU2), ) o (ATHRY, 6) 5 (B, 45)

are standard embeddings. Appealing to Proposition 3.10 concludes the proof. O



52 M. Hartglass, B. Nelson / Advances in Mathematics 382 (2021) 107656

Proof of Theorem 3.13. Write

o0 [o ] o0 o0 o0 o0
A=Pre@re@r: B=@DB,; oD B, DB,
i=1 i=1 i=1 j=1 j=1 j=1

where {A;} consists of all the type I factor direct summands of A, {A; ;} consists of all

diffuse summands of the form ®(Fk, ¢y) for Fy, finite-dimensional, and {As;} consists

k=1
of the summands which are of the form

e (M,~) ® L(F;) with M a separable type I factor, finite or infinite-dimensional;
e (N,7) ® (Tg,pg) with N a separable type I factor, finite or infinite-dimensional,
and G a nontrivial countable subgroup of R..

The {By;}, {B1,;}, and {Bs ;} are defined similarly. For the collections {A¢;} and
{By,;} define Iy and Jy as in Lemma 3.14. Set

Av=PAviePa, e @PM.(C)  Bi=PBo;o@Bi,; P M, (C)
i=1 i=1 j=1 =1

i€l jel

where A/l,i is a finite-dimensional subalgebra of A; ; with dimension large enough so that
its minimal projections have mass smaller than

1=y [ > 1g,,
j=1

The state on each M, (C) is tracial, the identity on M,,(C) is the identity on A, ;, the
inclusion of M, (C) into Ay ; is modular, and n; is large enough so that the summand
My, (C) is in the diffuse summand of A; x By. Similar statements hold for the Bj ; and
M, (C). These conditions ensure that A; x By has the predicted finite-dimensional C.
By Lemma 3.14 we know

(Ala¢) * (Bl,w) = (THlvlaSDHl,l) S Ca

where H) 1 is the subgroup of R™ generated by the point spectra of Ay, and Ay, .
We then proceed to build back up to A and B by tensoring the summands A} ; and B ;
by appropriate finite-dimensional algebras, one at a time, as well as by tensoring von

Neumann algebras of the form

e (M,~) ® L(IFy) with M a separable type I factor, finite or infinite-dimensional (first
tensor with M, then tensor with L(F;));
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e (N,7) ® (Tg,pq) with N a separable type I factor, finite or infinite-dimensional,
and G a nontrivial countable subgroup of R (first tensor with N, then tensor with

(Ta, ¢a);
on each M, (C) and each M,,;(C) and using

M (C)@(L(F (1+n~2(t—1))),7) = (L(F,),7)  and  My(C)®(Te,vc) = (Te, ve)

geaay geeny

3=
3=
3=
3=

for G non-trivial. Lemma 1.4 together with Propositions 3.11 and 3.12 ensure the canon-
ical inclusions are standard embeddings on the orthogonal complement of C'. The result
then follows from Proposition 3.10. O

Remark 3.15. It should be noted that, by Theorem 7.2 in [8], there are hyperfinite von
Neumann algebras equipped with non-almost periodic states whose free product is not
a free Araki-Woods factor of any kind. Given Theorem 3.13 above, it is natural to
conjecture that the free product of injective von Neumann algebras is a free Araki-Woods
factor plus a finite-dimensional von Neumann algebra if and only if both injective von
Neumann algebras are equipped with almost periodic states.
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