

1 **Global climate disruption and regional climate shelters after the Toba
2 supereruption**

3
4 Benjamin A. Black^{1,2,3}, Jean-François Lamarque⁴, Daniel R. Marsh^{4,5}, Anja Schmidt^{6,7},
5 Charles Bardeen⁸

6
7
8
9 ¹*Earth and Atmospheric Science, City College of New York, New York, NY 10031.* ²*Earth*
10 *and Environmental Sciences, Graduate Center, City University of New York, New York,*
11 *NY 10017.* ³*Department of Earth and Planetary Sciences, Rutgers University, New*
12 *Brunswick, NJ (bblack@eps.rutgers.edu)* ⁴*Climate and Global Dynamics Lab, National*
13 *Center for Atmospheric Research, Boulder, CO.* ⁵*Faculty of Engineering and Physical*
14 *Sciences, University of Leeds, Leeds, UK* ⁶*Department of Chemistry, University of*
15 *Cambridge, Cambridge, UK.* ⁷*Department of Geography, University of Cambridge,*
16 *Cambridge, UK.* ⁸*Atmospheric Chemistry Observations and Modeling Lab, National*
17 *Center for Atmospheric Research, Boulder, CO.*

18
19
20
21 **Abstract**

22
23 The Toba eruption ~74,000 years ago was the largest volcanic eruption since the start of
24 the Pleistocene, and represents an important test case for understanding the effects of
25 large explosive eruptions on climate and ecosystems. However, the magnitude and
26 repercussions of climatic changes driven by the eruption are strongly debated. High-
27 resolution paleoclimate and archaeological records from Africa find little evidence for
28 disruption of climate or human activity in the wake of the eruption, in contrast with a

29 controversial link with a bottleneck in human evolution and climate model simulations
30 predicting strong volcanic cooling for up to a decade after a Toba-scale eruption. Here we
31 use a large ensemble of high-resolution Community Earth System Model (CESM1.3)
32 simulations to reconcile climate model predictions with paleoclimate records, accounting
33 for uncertainties in the magnitude of Toba sulfur emission with high and low emission
34 scenarios. We find a near-zero probability of annual-mean surface temperature anomalies
35 exceeding 4 °C in most of Africa, in contrast with near 100% probabilities of cooling this
36 severe in Asia and North America for the high sulfur emission case. The likelihood of
37 strong decreases in precipitation is low in most of Africa. Therefore, even Toba sulfur
38 release at the upper range of plausible estimates remains consistent with the muted
39 response in Africa indicated by paleoclimate proxies. Our results provide a probabilistic
40 view of the uneven patterns of volcanic climate disruption during a crucial interval in
41 human evolution, with implications for understanding the range of environmental impacts
42 from past and future super-eruptions.

43

44

45

46

47 **Significance statement**

48

49 The Younger Toba Tuff is the largest volcanic eruption of the past 2 million years, but its
50 climatic consequences have been strongly debated. Resolving this debate is important for
51 understanding environmental changes during a key interval in human evolution. This
52 work uses a large ensemble of global climate model simulations to demonstrate that the
53 climate response to Toba was likely to be pronounced in Europe, North America, and
54 central Asia and muted in the Southern Hemisphere. Our results reconcile the simulated
55 distribution of climate impacts from the eruption with paleoclimate and archaeological
56 records. This probabilistic view of climate disruption from Earth's most recent
57 supereruption underscores the uneven expected distribution of societal and environmental
58 impacts from future very large explosive eruptions.

59

60

61

62 **Main text**

63

64 The eruption of the Younger Toba Tuff from Toba caldera in Sumatra, Indonesia,
65 expelled a $\sim 2,800$ km 3 dense-rock equivalent volume of magma, generating an eruption
66 column and co-ignimbrite cloud that reached an altitude of 30-40 km (1, 2). As the
67 largest eruption of the past 2 million years, the Toba eruption represents an important
68 benchmark for understanding the climate consequences of supereruption-scale volcanism.

69 However, the environmental effects of the 73.88 ± 0.32 ka Toba eruption are strongly
70 contested, especially in Africa (3-7). The eruption occurred during a critical juncture in
71 hominin evolution, when early humans were poised to expand more broadly beyond
72 Africa (8). Ash from the eruption was transported thousands of kilometers, forming a
73 widely used chronologic marker for stratigraphic sections across Africa and Asia (9, 10).
74 The recent identification of Toba cryptotephra in two archaeological sites in southern
75 Africa demonstrates that early humans in these locations flourished through the eruption
76 interval (11). These records contrast with the controversial proposal that a severe
77 volcanic winter (12-14) decimated early humans (15). Tephrochronologically calibrated
78 records from Lake Malawi in Eastern Africa also reveal a striking lack of cooling or
79 ecological disruption directly following the eruption (4, 7), underscoring the discrepancy
80 between some model-based expectations and recorded climate effects from Toba.

81 Sulfate aerosols from large explosive eruptions are known to cause a net decrease
82 in downwelling shortwave radiative flux, with repercussions for Earth's surface
83 temperatures, ocean circulation, hydrology, and the large-scale circulation of the
84 atmosphere (16-18). However, aerosol-climate models suggest that there is a non-linear

85 relationship between the severity of these effects and increasing eruption size, with more
86 rapid aerosol settling and less efficient radiative interactions as aerosol sizes increase
87 with successively larger SO₂ emissions from explosive eruptions (19, 20). Estimated
88 sulfur emissions from the Toba eruption span two orders of magnitude, ranging from
89 70–6,600 Tg of SO₂, equivalent to approximately 10–360× the sulfur emissions from the
90 1991 eruption of Mt. Pinatubo (21, 22). Previous climate model simulations of the Toba
91 eruption have included single idealized simulations (23) and individual aerosol
92 simulations used to force a small climate ensemble with five ensemble members (3, 24).
93 Timmreck et al. (3) found a peak aerosol optical depth of ~14 around one year after the
94 eruption, and a maximum global-mean cooling of ~3.5 °C, with a maximum summertime
95 cooling of ~12 °C over northern hemisphere continental interiors. For comparison, the
96 estimated maximum global- annual-mean cooling after the 1991 eruption of Mt. Pinatubo
97 was ~0.5 °C (25).

98 Effects of Toba on regional climate in Africa are of particular interest because of
99 the potential implications for human populations there. Climatic variability in eastern and
100 southern Africa is dominated by changes in effective moisture and precipitation driven by
101 seasonal shifts in the intertropical convergence zone (ITCZ; (26, 27)). Rainfall in most of
102 eastern Africa is concentrated into the boreal spring “long rains” and boreal autumn
103 “short rains” of the east African monsoon (28). Just as warming due to increased
104 greenhouse gas emissions can intensify the global hydrological cycle (29), surface
105 cooling due to volcanic sulfate aerosols can temporarily spin down the hydrological
106 cycle, leading to a reduction in global-mean precipitation (17, 18), with significant
107 regional variability that is broadly inverted from the climate response expected under

108 future warming (30). Prior modeling of the climate response to the Toba eruption
109 identified a strong global precipitation anomaly, with the potential for disruption of the
110 Indian monsoon for the first two years after the eruption in addition to decreases in
111 precipitation and primary productivity in Africa (3, 24). Tropical eruptions may also
112 weaken the West African monsoon, one of several proposed mechanisms linking
113 explosive volcanic eruptions with El Niño-like events (31-34).

114 Significant uncertainties in the climate effects of prehistoric volcanic eruptions
115 arise from the magnitude of sulfur emissions, eruption time of year, background climate
116 state, and sulfur injection altitude. Background climate state is known to strongly
117 influence the climate effects of volcanic aerosols, including hemispheric bias in
118 dispersion of the aerosol cloud driven by shifts in stratospheric circulation (24, 35, 36).
119 Likewise, increasing masses of sulfur emission display a broad—though non-linear and
120 complex—correlation with increased cooling (37, 38). The effects of emissions altitude
121 include impacts on aerosol residence time (35, 37, 39). In this study we employ a large
122 ensemble comprising 42 simulations in which we consider a range in each of these
123 parameters (Table S1), including initialization from different climate background states
124 (at least 5 per sulfur emission scenario) branched from our control run, which does not
125 include the volcanic emissions. We also considered four different times of year for the
126 eruption (Table S1), to account for seasonal changes in stratospheric circulation and
127 aerosol dispersion. By bracketing a plausible range of possibilities for these key
128 parameters, this approach enables us to make a probabilistic assessment of the range of
129 climatic disruptions from Toba. We use the Community Earth System Model version 1.3
130 (CESM1.3), a three-dimensional (3-D) global climate model that couples atmosphere,

131 ocean, and sea-ice components (40). The atmospheric component of CESM1.3 is the
132 Whole Atmosphere Community Climate Model version 4 (WACCM) (41), which we
133 employ to simulate the physical and chemical impacts of the Toba eruption. WACCM is
134 a chemistry–climate model, with its top boundary located near 140-km geometric
135 altitude. It has a horizontal resolution of $1.9^\circ \times 2.5^\circ$ (latitude \times longitude), and variable
136 vertical resolution of 1.25 km from the boundary layer to near 1 hPa, 2.5 km in the
137 mesosphere, and 3.5 km in the lower thermosphere, above about 0.01 hPa. We use the
138 Community Aerosol and Radiation Model for Atmospheres (CARMA), a detailed
139 sectional aerosol microphysics model (42-44) within the CESM framework (see
140 Methods), to investigate both the global climate response to the Toba supereruption and
141 the regional climate response in southern and eastern Africa. This same model version
142 was recently used to simulate the climate impacts associated with soot release following
143 the Chicxulub impact (44). In particular, this model represents the oxidation of volcanic
144 SO_2 and the nucleation, coagulation, growth, and removal of sulfate aerosols (43).

145 Each simulation was run for 10 years, sufficiently long to capture the peak climate
146 impact in the atmosphere and upper ocean and the overall recovery (45). We consider
147 sulfur emissions of 200 and 2000 Tg SO_2 (see Methods for discussion). For comparison,
148 previous Toba aerosol simulations by Timmreck et al. (3, 24) and English et al. (23)
149 assumed 1700 Tg SO_2 and 2000 Tg SO_2 respectively. Uncertainties in the timing of the
150 Toba eruption relative to the Marine Isotope Stage 4/5 boundary translate to uncertainties
151 in the stadial or interstadial background climate state prior to the eruption (24, 46). We
152 consider boundary conditions appropriate for an interstadial climate state in our
153 simulations, neglecting possible differences in patterns of vegetation cover related to

154 stadal versus interstadial boundary conditions (24). Records of charcoal and plant fossils
155 in cores from Lake Malawi do not show large variations in vegetation across the Toba
156 interval (7). Within each ensemble, simulations were initialized from different states of a
157 108-year control run, spaced two years apart to ensure we capture different phases of the
158 El Niño Southern Oscillation (ENSO). This large ensemble approach permits us to
159 account for some of the uncertainties related to background climate state including the
160 phase of ENSO (36).

161

162 *2. Evolution of the Toba sulfate aerosol cloud*

163

164 Our simulations show strong ($>1\text{-}2$ °C) global-mean surface temperature changes
165 lasting a half-decade or more in response to a Toba eruption emitting 200-2000 Tg SO₂,
166 with significant regional variability in the simulated changes (see the following section).
167 Global-mean surface temperatures do not fully recover within the 10-year span of the
168 2000 Tg SO₂ simulations. In the ocean, the residual thermal effects of large-scale
169 volcanic eruptions have also been shown to extend to multi-decadal timescales (47). In all
170 simulations, the Toba eruption leads to peak aerosol optical depths and maximum surface
171 cooling 6-30 months after the eruption (Fig. 1). Aerosol optical depth (AOD) reaches
172 maximum monthly zonal mean values of 1-2 or 8-10 for 200 or 2000 Tg SO₂ emissions
173 respectively (Figures S1-S3). The global monthly mean AOD reaches a maximum value
174 of $\sim 1.5\text{-}2$ from 1-2 years after a 2000 Tg SO₂ release, and $\sim 0.4\text{-}0.7$ after a 200 Tg SO₂
175 release (Fig. 1, Figs. S1 and S2). Optical depth peaks earlier and aerosol sizes are slightly
176 smaller at 100 hPa for the lower (18-25 km) sulfur injection altitude (Figs. 1, S3, S4), and

177 the residence time of the aerosol cloud in this ensemble is shorter, consistent with
178 previous work (39), but the hemispheric transport of the aerosol cloud is not strongly
179 impacted by injection altitude (Figs. S2, S3; (35, 37)).

180 Extratropical eruptions generate larger aerosol loading in the hemisphere of
181 eruption. For tropical eruptions such as Toba, seasonal shifts in the large-scale Brewer-
182 Dobson circulation in the stratosphere further modulate the distribution of volcanic
183 aerosols (37, 48). Consequently, eruption seasonality can strongly influence forcing and
184 climate response (36). Hemispherically asymmetric forcing has been linked with
185 migration of the ITCZ away from the hemisphere with stronger volcanic forcing (49, 50)
186 and with divergent consequences for the El Nino Southern Oscillation (51). In line with
187 results from Toohey et al. (48), our simulations with September and December eruptions
188 show higher AOD in the northern hemisphere (Figs. S1,S3). AOD after the June eruption
189 ensemble is roughly hemispherically symmetric, while AOD following a March eruption
190 is stronger in the southern hemisphere (SH), though the March ensemble in particular
191 shows some spread among ensemble members (Fig. S3).

192 Maximum global-mean cooling is 2.3 ± 0.4 °C (1 s.d.) for 200 Tg SO₂ release, and
193 4.1 ± 0.3 °C (1 s.d.) for 2000 Tg SO₂ release (Figure 1), emphasizing the non-linearity of
194 the radiative effects of larger SO₂ release magnitude (3, 19). Maximum global-mean
195 cooling is somewhat sensitive to the time of year of the eruption; maximum cooling for a
196 September eruption is ~1 °C larger than for a March eruption (Fig. 1, Fig. S3). For all
197 ensembles, maximum global mean cooling is significant at the 2-sigma level (Fig. 1).
198 Cooling is much more protracted after 2000 Tg SO₂ release, with global-mean surface
199 temperature anomalies exceeding 2 °C spanning up to five years after the eruption.

200 Global-mean surface temperatures recover more slowly than AOD, in particular for the
201 2000 Tg SO₂ scenario, pointing to slow recovery of ocean heat content (47, 52). Global
202 mean cooling of ~1°C persists after 10 years in the 2000 Tg SO₂ cases.

203 For the 200 Tg SO₂ eruption scenarios, global-mean precipitation remains largely
204 within the range of natural variation (Fig. 2). For the 2000 Tg SO₂ eruption scenario,
205 however, precipitation shows a strong decline, with global mean precipitation that is
206 significantly (at the 2-sigma level) outside the range of natural variation lasting ~5 years
207 following the eruption (Fig. 2). This is consistent with slowing of the hydrological cycle
208 associated with a global cooling (53).

209

210 *3. Regional temperature response patterns and the role of the ocean in modulating the*
211 *climate response*

212

213 We next consider the regional climate response to a Toba-scale eruption, focusing
214 particular attention on Africa and India, where paleoclimate proxy and archaeological
215 records synchronized with Toba cryptotephra have been used to evaluate the
216 consequences of the eruption for climate and human populations (6-8, 10, 54). Our
217 simulations show that in the aftermath of a Toba-scale eruption, the regional climate
218 response in southern and eastern Africa is weaker than the global-mean response in terms
219 of both surface temperature and precipitation (Figures 3 and 4). Ultimately, this finding
220 implies that the full range of Toba emissions investigated here (from 200 Tg SO₂ to 2000
221 Tg SO₂) can be reconciled with the muted climate response observed in proxy records
222 from Africa and possibly India.

223 For the 200 Tg SO₂ simulations, NH temperature anomalies reach 4-5 °C (Fig.
224 S5), and regional temperature changes in the second year after the eruption are significant
225 with >90% confidence with the exception of some areas in Africa, Antarctica, and South
226 America in the high altitude emissions scenario (Figure S5). As expected, the most severe
227 global and regional temperature impacts occur for emissions of 2000 Tg SO₂. In that
228 case, we find widespread Northern Hemisphere (NH) cooling, regionally exceeding 8-10
229 °C (Fig. 3) in interior North America and Eurasia, consistent with the strong summertime
230 cooling in these regions found in prior simulations (20, 24). These changes are significant
231 with >90% confidence with the exception of some areas in Antarctica and Africa (Fig.
232 3A). The likelihood of annual-mean cooling greater than 4 °C in NH continental interiors
233 approaches 100% for the 2000 Tg SO₂ simulations (Figure 5).

234 For both sulfur emissions levels, we find a more muted surface cooling in
235 response to Toba in the Southern Hemisphere. Even in the March eruption scenario (Fig.
236 S6) in which distribution of the Toba aerosol cloud is primarily in the SH, the climate
237 signal in the SH is relatively weak. The likelihood of annual-mean SH cooling greater
238 than 4 °C is near-zero for both levels of sulfur release (Figure 5). In the absence of an
239 established critical threshold for ecosystem damage from transient cooling, the 4 °C
240 threshold was selected because it approximates the maximum cooling in Africa inferred
241 in previous Toba modeling studies (20, 24) and therefore represents a common point of
242 comparison for previous paleoclimate proxy studies (6, 7). For context, 4 °C cooling is
243 ~4× the magnitude of global warming from 1880-2012 (IPCC AR5). The muted cooling
244 in the Southern Hemisphere, which is consistent with prior work (32, 44, 55, 56),
245 highlights the role of the ocean in modulating the cooling (45, 57) from the stratospheric

246 volcanic aerosol cloud. In addition, the fact that the aerosol cloud is located over the
247 Northern Hemisphere in the majority of our simulations (Figs. S1-S3) leads to a more
248 strongly asymmetric response relative to, for example, CO₂ forcing. This is similar to the
249 asymmetry in the distribution of present-day anthropogenic tropospheric aerosols, which
250 are mostly concentrated in the Northern Hemisphere, and for which the climate response
251 is also concentrated in the Northern Hemisphere (58).

252 In terms of zonal-mean annual-mean land surface temperature response, we find
253 that the largest impact in the Southern Hemisphere is approximately three times weaker
254 than in the Northern Hemisphere. This result holds true over the full range of SO₂
255 emission magnitudes (200-2000 Tg SO₂), indicating that this is likely a robust feature of
256 these simulations. Importantly, because the background climate in Africa is relatively
257 temperate, below-freezing temperatures are also much less frequent in Africa than in
258 North America or Asia (Fig. S7), even for the 2000 Tg SO₂ scenario.

259 Precipitation is another important factor in climate stability, with implications for
260 human activity and ecology (59). Parts of southern Africa and India show marked
261 regional decreases in precipitation in the case of the largest sulfur emission (Figs. 4, S8).
262 While the patterns of precipitation change do reflect a slight ITCZ shift away from the
263 hemisphere with more aerosol (49, 50), in most simulations there is significant aerosol in
264 both hemispheres, and the resulting pattern of ITCZ disruption is complex (Fig. S8).
265 Cooling of the surface ocean, which buffers temperatures on land but leads to a reduction
266 in evaporation (52), provides a potential explanation for the broadly complementary
267 patterns of precipitation and temperature change. The distribution of precipitation
268 changes is consistent with results from Timmreck et al. (24), who found significant

269 decreases in precipitation in the Ganges/Brahmaputra catchment in the first several years
270 after an eruption, followed by increases in years 4 to 5 after an eruption. Impacts on
271 precipitation are less pronounced (Fig. 2, Fig. 5) for the 200 Tg SO₂ simulation
272 ensembles.

273 In summary, we identify significant regional and hemispheric differences in
274 response to a Toba-scale eruption. The temperature response in Southern Africa is
275 notably smaller in amplitude than the global-mean response, especially in the 0-30 °S
276 latitudinal band. In conjunction with the relatively warm background climate of Africa,
277 this muted cooling only rarely causes temperatures below freezing (Fig. S7). In addition
278 to identifying this mild surface temperature response in Africa—even under the most
279 extreme emissions scenario—we also identify regions showing a more severe surface
280 temperature response, in particular in NH continental interiors. We therefore expand the
281 discussion in the next section to consider the potential implications for hominin
282 populations, using the full range of experiments.

283

284 *4. Comparison with records of paleoclimate and human activity*

285

286 The effects of the Toba eruption on both climate and hominin populations has
287 been strongly debated for decades (4, 5, 9, 11). Toba tephra and cryptotephra enable the
288 eruption interval to be pinpointed within paleoclimate and archeological records,
289 permitting temporally precise model-proxy comparisons of the climate and cultural
290 response to the eruption.

291 At the time of the Toba eruption 74 ka, southern and eastern Africa hosted
292 significant population centers for anatomically modern humans. Substantial controversy
293 surrounds the timing of human dispersal from Africa and thus which hominin populations
294 were present in India and other regions at the time of the Toba eruption (8, 54, 60, 61).
295 In southeast Asia, Middle Paleolithic cultures may have been well established in the
296 Jurreru and Middle Son River valleys (8, 54). Neanderthal populations in Europe were
297 on the eve of a decline that culminated around 40 ka, broadly coinciding with the
298 expansion of anatomically modern humans (62). The emerging archaeological consensus
299 points to striking continuity in hominin activity across the eruption interval in southern
300 Africa and India (8, 11, 54), contrary to early proposals of a volcanic winter that caused
301 a bottleneck in human evolution (15).

302 One possible interpretation of the archaeological consensus is that of hominin
303 resilience in the face of changing environmental conditions (8). An alternative
304 interpretation is that the environmental disruption due to Toba was modest. This
305 interpretation finds support from paleoclimate records from Lake Malawi, which do not
306 reveal any dramatic changes in the thermal structure of the lake across the Toba interval
307 even at sub-annual resolution (4). This apparently stable climate through the eruption
308 interval is at odds, however, with a cooling of ~4 °C or more predicted from previous
309 climate modeling studies (3, 14, 24).

310 Our simulations point to a third possibility: that Toba may have had strong
311 effects on surface temperatures, but not in the regions where anatomically modern
312 humans were thriving. We find that there is a <5% likelihood of annual-mean surface
313 cooling exceeding 4 °C across virtually all of sub-Saharan Africa and India, even in

314 response to 2000-Tg SO₂ emissions (Figure 5). This level of SO₂ emissions is an upper
315 bound on the estimated sulfur release from Toba (21, 22), and the chance of >4 °C
316 cooling after a 200 Tg SO₂ injection is even smaller. Because the muted climate response
317 in Africa—consistent with paleoclimate evidence—is a feature of both our 200 Tg SO₂
318 and 2000 Tg SO₂ simulations, our results do not allow us to independently exclude either
319 emissions scenario. In contrast with the modest changes in surface temperature in Africa,
320 both levels of sulfur emission are likely to cause strong cooling in Europe and Asia (Figs.
321 5 and S5).

322 Our simulations thus suggest that Africa and India could have served as shelters
323 from transient cooling in the aftermath of Toba. As discussed above, in the 2000 Tg SO₂
324 Toba scenario, strong reductions in precipitation are possible in India, with less
325 pronounced changes in precipitation in the 200 Tg SO₂ Toba scenario. If the Toba
326 eruption did indeed release 2000 Tg SO₂ rather than lower estimates—which remains
327 uncertain—it implies that the hominin populations inhabiting India continuously across
328 the eruption interval exhibited substantial resilience in the face of transient disruption to
329 precipitation patterns.

330 For all of our Toba scenarios, climate conditions in Europe and most of Asia are
331 predicted to be severe following the eruption. For the highest sulfur emissions we
332 considered, our simulations indicate annual-mean cooling of up to 10 °C in Europe and
333 Asia. Europe was home to significant populations of Neanderthals at this time, while the
334 related Denisovan lineage occupied southern Siberia (Figures 3A and 4A; (60, 63)).
335 Although the available archaeological evidence is insufficient to evaluate effects on

336 hominin populations in those regions, the effects of Toba on these populations thus merit
337 future investigation, in particular if Toba cryptotephra can be identified.

338

339 *5. Probabilistic climate effects of very large explosive eruptions*

340

341 In addition to the specific application to the Toba eruption ~74,000 years ago, our
342 large ensemble results also offer more general insights into large explosive tropical
343 eruptions. The range of sulfur emissions we consider, from 200 to 2000 Tg SO₂, would
344 be representative of a sulfur-rich explosive eruption with a Volcanic Explosivity Index of
345 7 to 8. The 1257 Samalas eruption injected an estimated 126-150 Tg SO₂ into the
346 stratosphere (64), whereas the Tambora eruption of 1815 released ~50-60 Tg SO₂ (57).
347 The 21.8 Ma Fish Canyon Tuff, the largest known silicic eruption, may have released
348 ~10⁴ Tg SO₂ (21).

349 Uncertainties and gaps in records of sulfur emissions for older eruptions challenge
350 precise determination of the frequency distribution of large-magnitude stratospheric
351 sulfur injections. However, the presence of at least two Plinian eruptions in the past
352 millennium with SO₂ release >100 Tg SO₂—Kuwea in 1453 and Samalas in 1257—
353 suggests that explosive eruptions with sulfur emissions within a factor of two of the lower
354 end of our simulated emissions range are likely to recur on millennial timescales.
355 Because of the complex effects of volcanic eruptions on the climate system, no shelter is
356 likely to be completely isolated from volcanically induced climate signals. However, our
357 simulations, in conjunction with other modeling studies (32, 57), indicate that southern
358 Africa and India are relatively insulated from the cooling caused by equatorial or

359 northern hemisphere large explosive volcanic eruptions, and therefore may have been
360 partial shelters from climatic stress related to prehistoric explosive volcanism.

361 We address the uncertainty in the background state of the stratospheric circulation
362 (66) by considering an ensemble spanning summer, fall, winter, and spring. We note that
363 the availability of paleorecords of eruption time of year would improve constraints on the
364 expected climate response. The Lake Challa record, which promises even higher
365 temporal resolution than the Lake Malawi record (4, 67), may enable determination of
366 the season of the Toba eruption.

367 In summary, our results indicate that regional changes in climate in response to
368 the Toba eruption have complex distributions and depart markedly from the magnitude of
369 global-mean signals. Large ensembles of climate simulations provide a valuable tool to
370 obtain probabilistic estimates of the distribution of expected climate impacts of eruptions.
371 Understanding regional climate response is necessary to relate volcanic perturbations to
372 proxies for local- to regional-scale climate, to understand temporal changes in climate
373 relevant to hominin evolution and migration, and to inform estimates of the climate
374 effects of large-scale sulfur release from future explosive eruptions.

375

376 **Methods**

377

378 CESM 1.3 is a global climate model that includes detailed sub-models of the
379 Earth's atmosphere, oceans, land, and sea ice to comprehensively simulate coupled Earth
380 systems (40). For this work we include the high-top version of the atmosphere model,
381 the Whole Atmosphere Community Climate Model (WACCM; (68)), which extends
382 through 66 vertical levels to an altitude of approximately 140 km. To track the evolution
383 of the Toba aerosol cloud, we include the Community Aerosol and Radiation Model for
384 Atmospheres (CARMA), a three-dimensional sectional (binned) aerosol microphysical
385 model (42-44) that includes 30 aerosol size bins. WACCM/CARMA includes reactions
386 among sulfur-bearing species as tabulated in (43) with reaction rates from (69). The
387 model tracks oxidation of S-bearing gases (in this case SO_2) and nucleation to form
388 sulfate aerosols; condensational growth and coagulation; deposition and sedimentation
389 (see (37) for more detailed discussion of the model). Tracking these processes is critical
390 to accurately computing the radiative effects of very large eruptions because of self-
391 limiting microphysical and chemical processes (19). We completed 22 simulations with
392 2000 Tg SO_2 emissions and 20 simulations with 200 Tg SO_2 emissions in which we
393 varied sulfur release altitude, time of year of eruption, and background climate through
394 initialization from different states of the control run (see Table S1).

395 *Volcanic forcing.* The sulfur release from the Younger Toba Tuff (YTT) eruption is
396 uncertain. Constraints from petrology and ice core records each incorporate significant
397 unknowns (22). The YTT has been correlated with one of the largest sulfur peaks in the
398 GISP2 ice core, representing sulfur loading of 1100-2200 Tg SO_2 (70); however this
399 correlation is somewhat circular in that the attribution of the sulfate peak in the ice core is
400 primarily based on the expectation of strong YTT sulfur loading. More recent work has
401 identified several bipolar sulfate peaks in Greenland and Antarctic ice core records in the
402 interval 74.1–74.5 ka that are candidates to represent the YTT eruption (46, 71).
403 Petrologically, sulfur concentrations in the rhyolitic Toba magma are likely to be lower
404 than in more mafic magmatic systems like that of Mount Pinatubo (22). Indeed, sulfur
405 concentrations in YTT melt inclusions overlap with sulfur in matrix glasses (72). Owing
406 to the tendency of sulfur to partition into a coexisting fluid phase (73, 74), the sulfur
407 yield depends strongly on the extent of excess sulfur. Sulfur partitioning into a fluid
408 phase depends on oxygen fugacity (21). Scaillet et al. (21) argued that the YTT magma
409 chamber likely lacked an exsolved S-rich fluid, and therefore suggested limited sulfur
410 degassing of only ~70 Tg SO_2 . However, estimates of oxygen fugacity in the quartz-
411 bearing YTT magmas relative to the Ni-NiO buffer range from approximately $\Delta\text{NNO} =$
412 0.5 to +1.1 (75, 76). This corresponds to an order of magnitude variation in sulfur
413 partitioning between fluid and melt (21), implying sulfur from coexisting fluid could
414 potentially have been more important than recognized by (21).

415 Given uncertainties in YTT sulfur yields, and to explore the sensitivity of our
416 results to sulfur emissions, we therefore considered high and moderate sulfur injection
417 scenarios in our simulations. For consistency with the study of (23), we selected 2000 Tg
418 SO_2 as our high sulfur injection scenario and 200 Tg SO_2 as our more conservative sulfur
419 injection scenario. For comparison, these emissions scenarios respectively represent

420 ~100× and ~10× the estimated stratospheric sulfur injection of the 1991 eruption of
421 Mount Pinatubo in the Philippines. The 1257 Samalas eruption in Indonesia released
422 158 ± 12 Tg SO₂ (64), similar to the lower emissions scenario. Recent ice core-based
423 estimates for several candidate YTT layers range from ~150-350 Tg SO₂, bracketing this
424 lower emissions scenario (71). We recognize that the 2000 Tg SO₂ scenario may well
425 exceed the actual sulfur release from the YTT eruption. This is by design, and yields the
426 advantage that because this scenario represents the most extreme case, it enables us to
427 evaluate the potential for sheltered regional climates even assuming a very severe global
428 volcanic event.

429 Estimates of the YTT eruption column height range from 30-42 km (77). Based
430 on ash dispersal modeling with modern windfields, Costa et al. (77) inferred a best-fit
431 altitude of 42 km, and a best-fit duration of 15 hours. This high plume altitude is
432 consistent with recently reported mass-independent fractionation of sulfur in several
433 candidate YTT layers (71). In most simulations, we therefore distributed SO₂ emissions
434 between 35 and 40 km in the model, spanning 1.9 °S to 13.3 °N and 93.8 °E to 116.2 °E,
435 centered above the Toba caldera. Because sulfur emissions may be distributed over a
436 range in altitude, and to test sensitivity to altitude, we included an ensemble of ten 200 Tg
437 SO₂ simulations at 18-25 km altitude (Table S1).

438
439 *Statistical significance.* To test the statistical significance of surface temperature and
440 precipitation anomalies, we use a Wilcoxon ranked sum test, implemented as the
441 rankedsum function in MATLAB. For each grid cell, we compare the distribution of
442 monthly temperature and precipitation anomalies in Toba simulations with the
443 distribution of monthly temperature and precipitation anomalies relative to a monthly
444 climatology based on our 20-year control run. We specify a p-value of 0.1 for rejection of
445 the null hypothesis that these distributions cannot be distinguished from each other.

446
447
448
449
450 **Acknowledgments**

451 We acknowledge high-performance computing support from Cheyenne
452 (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems
453 Laboratory. The CESM project is supported primarily by the National Science
454 Foundation (NSF). This material is based upon work supported by the National Center
455 for Atmospheric Research (NCAR), which is a major facility sponsored by the NSF
456 under Cooperative Agreement 1852977. We thank Craig Feibel, Alan Robock, and
457 Michael Mills for helpful discussion. BAB acknowledges support from NSF grant EAR
458 2015322. AS acknowledges funding from NERC grant NE/S000887/1 (VOL-CLIM).

459
460
461

462 **Figures**
463
464

465 **Figure 1.** Global-mean aerosol optical depth and surface temperature anomaly following
466 200 and 2000 Tg SO₂ Toba eruption scenarios. Ensemble means are shown as black lines.
467 2-sigma variability of ± 0.4 °C in global mean monthly surface temperature in a 20 year
468 control run is also shown.

469
470
471
472

473 **Figure 2.** Global-mean precipitation anomaly following 200 and 2000 Tg SO₂ Toba
474 eruption scenarios. Gray shaded area shows natural variability, calculated as two standard
475 deviations of the monthly global temperature anomaly in a 20-year control run relative to
476 a monthly climatology.

477
478
479

480 **Figure 3.** Surface temperature anomalies on land in the second year following the Toba
481 eruption. A. Annual mean global map, represented as the mean over 20 ensemble
482 members for the 2000 Tg SO₂ Toba eruption scenario, with varying initial conditions.
483 Hominin ranges from (60) and key proxy record and archaeological sites mentioned in
484 the text are also shown. Hominin ranges are approximate, and incorporate significant
485 uncertainty, for example due to continuing debate regarding the timing of dispersal of
486 anatomically modern humans from Africa into Asia (61). B. Zonal means for 20
487 ensemble members for the 2000 Tg SO₂ scenario and 10 ensemble members for each 200
488 Tg SO₂ scenario. C. Annual mean map of Africa (inset region from A) D, Zonal means
489 on land for the region shown in C. In A and C, cross-hatched areas indicate temperature
490 anomalies that are not significant at the 90% level as determined with a Wilcoxon ranked
491 sum test, compared with a monthly climatology from a 20-year control simulation.

492
493
494

495 **Figure 4.** Precipitation anomalies on land in the second year following the Toba eruption.
496 A. Annual mean global map, averaging across 20 ensemble members for the 2000 Tg
497 SO₂ eruption scenario as in Figure 3A. B. Zonal means on land with annual zonal-mean
498 background precipitation on land shown as blue shaded areas. C. Enlargement of
499 precipitation anomalies in Africa. D. Zonal means on land for the region shown in C. In
500 A and C, cross-hatched areas indicate precipitation anomalies that are not significant at
501 the 90% level as determined with a Wilcoxon ranked sum test, compared with a monthly
502 climatology from a 20-year control simulation.

503
504
505
506

507
508

509 **Figure 5.** Likelihood of cooling and decreases in annual-mean precipitation reaching a
510 specified threshold across 20 ensemble members with 2000 Tg SO₂ (panels A and B), 10
511 ensemble members with 200 Tg SO₂ at 35-40 km (panels C and D) and 10 ensemble
512 members with 200 Tg SO₂ at 18-25 km (panels E and F). Panels A, C, and E show the
513 fraction of runs predicting at least 4 °C cooling; panels B, D, and F show the fraction of
514 runs predicting at least 40% decreases in precipitation on land for given regions.

515
516
517
518
519
520

521 **References**

522 1. Chesner CA & Luhr JF (2010) A Melt Inclusion Study of the Toba Tuffs, Sumatra, Indonesia.
523 *J Volcanol Geotherm Res* 197(1): 259-278.

524 2. Costa A, Smith VC, Macedonio G & Matthews NE (2014) The Magnitude and Impact of the
525 Youngest Toba Tuff Super-Eruption. *Frontiers in Earth Science* 2: 16.

526 3. Timmreck C, *et al* (2010) Aerosol Size Confines Climate Response to Volcanic Super -
527 eruptions. *Geophys Res Lett* 37(24)

528 4. Lane CS, Chorn BT & Johnson TC (2013) Ash from the Toba Supereruption in Lake Malawi
529 shows no Volcanic Winter in East Africa at 75 Ka. *Proc Natl Acad Sci U S A* 110(20): 8025-
530 8029.

531 5. Roberts RG, Storey M & Haslam M (2013) Toba Supereruption: Age and Impact on East
532 African Ecosystems. *Proc Natl Acad Sci U S A* 110(33): E3047.

533 6. Jackson LJ, Stone JR, Cohen AS & Yost CL (2015) High-Resolution Paleoecological Records
534 from Lake Malawi show no Significant Cooling Associated with the Mount Toba Supereruption
535 at Ca. 75 Ka. *Geology* 43(9): 823-826.

536 7. Yost CL, Jackson LJ, Stone JR & Cohen AS (2018) Subdecadal Phytolith and Charcoal
537 Records from Lake Malawi, East Africa Imply Minimal Effects on Human Evolution from the ~
538 74 Ka Toba Supereruption. *J Hum Evol* 116: 75-94.

539 8. Petraglia M, *et al* (2007) Middle Paleolithic Assemblages from the Indian Subcontinent before
540 and After the Toba Super-Eruption. *Science* 317(5834): 114-116.

541 9. Williams MA, *et al* (2009) Environmental Impact of the 73 Ka Toba Super-Eruption in South
542 Asia. *Palaeogeogr , Palaeoclimatol , Palaeoecol* 284(3-4): 295-314.

543 10. Lane C, *et al* (2011) Cryptotephra from the 74 Ka BP Toba Super-Eruption in the Billa
544 Surgam Caves, Southern India. *Quaternary Science Reviews* 30(15-16): 1819-1824.

545 11. Smith EI, *et al* (2018) Humans Thrived in South Africa through the Toba Eruption about
546 74,000 Years Ago. *Nature* 555(7697): 511-515.

547 12. Rampino MR & Self S (1992) Volcanic Winter and Accelerated Glaciation Following the
548 Toba Super-Eruption. *Nature* 359(6390): 50-52.

549 13. Bekki S, *et al* (1996) The Role of Microphysical and Chemical Processes in Prolonging the
550 Climate Forcing of the Toba Eruption. *Geophys Res Lett* 23(19): 2669-2672.

551 14. Robock A, *et al* (2009) Did the Toba Volcanic Eruption of ~ 74 Ka BP Produce Widespread
552 Glaciation?. *Journal of Geophysical Research: Atmospheres* 114(D10)

553 15. Ambrose SH (2000) Volcanic Winter in the Garden of Eden: The Toba Supereruption and the
554 Late Pleistocene Human Population Crash. *Volcanic Hazards and Disasters in Human Antiquity*
555 345: 71.

556 16. Robock A (2000) Volcanic Eruptions and Climate. *Rev Geophys* 38(2): 191-219.

557 17. Ramanathan V, Crutzen PJ, Kiehl JT & Rosenfeld D (2001) Aerosols, Climate, and the
558 Hydrological Cycle. *Science* 294(5549): 2119-2124.

559 18. Santer BD, *et al* (2015) Observed Multivariable Signals of Late 20th and Early 21st Century
560 Volcanic Activity. *Geophys Res Lett* 42(2): 500-509.

561 19. Pinto JP, Turco RP & Toon OB (1989) Self-limiting Physical and Chemical Effects in
562 Volcanic Eruption Clouds. *Journal of Geophysical Research: Atmospheres (1984–2012)* 94(D8):
563 11165-11174.

564 20. Timmreck C, *et al* (2010) Aerosol Size Confines Climate Response to Volcanic Super-
565 eruptions. *Geophys Res Lett* 37(24)

566 21. Scaillet B, Clément B, Evans BW & Pichavant M (1998) Redox Control of Sulfur Degassing
567 in Silicic Magmas. *Journal of Geophysical Research: Solid Earth* 103(B10): 23937-23949.

568 22. Oppenheimer C (2002) Limited Global Change due to the Largest Known Quaternary
569 Eruption, Toba \approx 74 Kyr BP?. *Quaternary Science Reviews* 21(14-15): 1593-1609.

570 23. English JM, Toon OB & Mills MJ (2013) Microphysical Simulations of Large Volcanic
571 Eruptions: Pinatubo and Toba. *Journal of Geophysical Research: Atmospheres* 118(4): 1880-
572 1895.

573 24. Timmreck C, *et al* (2012) Climate Response to the Toba Super-Eruption: Regional Changes.
574 *Quaternary International* 258: 30-44.

575 25. McCormick MP, Thomason LW & Trepte CR (1995) Atmospheric Effects of the Mt Pinatubo
576 Eruption. *Nature* 373(6513): 399-404.

577 26. Goddard L & Graham NE (1999) Importance of the Indian Ocean for Simulating Rainfall
578 Anomalies Over Eastern and Southern Africa. *Journal of Geophysical Research: Atmospheres*
579 104(D16): 19099-19116.

580 27. Scholz CA, *et al* (2007) East African Megadroughts between 135 and 75 Thousand Years
581 Ago and Bearing on Early-Modern Human Origins. *Proc Natl Acad Sci U S A* 104(42): 16416-
582 16421.

583 28. Yang W, Seager R, Cane MA & Lyon B (2015) The Annual Cycle of East African
584 Precipitation. *J Clim* 28(6): 2385-2404.

585 29. Held IM & Soden BJ (2006) Robust Responses of the Hydrological Cycle to Global
586 Warming. *J Clim* 19(21): 5686-5699.

587 30. Iles CE, Hegerl GC, Schurer AP & Zhang X (2013) The Effect of Volcanic Eruptions on
588 Global Precipitation. *Journal of Geophysical Research: Atmospheres* 118(16): 8770-8786.

589 31. Sigl M, *et al* (2015) Timing and Climate Forcing of Volcanic Eruptions for the Past 2,500
590 Years. *Nature* 523(7562): 543-549.

591 32. Pausata FS, Zanchettin D, Karamperidou C, Caballero R & Battisti DS (2020) ITCZ Shift and
592 Extratropical Teleconnections Drive ENSO Response to Volcanic Eruptions. *Science Advances*
593 6(23): eaaz5006.

594 33. Khodri M, *et al* (2017) Tropical Explosive Volcanic Eruptions can Trigger El Niño by
595 Cooling Tropical Africa. *Nature Communications* 8(1): 1-13.

596 34. McGregor S, *et al* (2020) The Effect of Strong Volcanic Eruptions on ENSO. *El Niño
597 Southern Oscillation in a Changing Climate* : 267-287.

598 35. Aquila V, Oman LD, Stolarski RS, Colarco PR & Newman PA (2012) Dispersion of the
599 Volcanic Sulfate Cloud from a Mount Pinatubo-like Eruption. *Journal of Geophysical Research:
600 Atmospheres (1984–2012)* 117(D6)

601 36. Stevenson S, Fasullo JT, Otto-Bliesner BL, Tomas RA & Gao C (2017) Role of Eruption
602 Season in Reconciling Model and Proxy Responses to Tropical Volcanism. *Proc Natl Acad Sci U
603 S A* 114(8): 1822-1826.

604 37. Marshall L, *et al* (2019) Exploring how Eruption Source Parameters Affect Volcanic
605 Radiative Forcing using Statistical Emulation. *Journal of Geophysical Research: Atmospheres*
606 124(2): 964-985.

607 38. Toohey M, *et al* (2019) Disproportionately Strong Climate Forcing from Extratropical
608 Explosive Volcanic Eruptions. *Nature Geoscience* 12(2): 100-107.

609 39. Dai Z, Weisenstein D & Keith D (2018) Tailoring Meridional and Seasonal Radiative Forcing
610 by Sulfate Aerosol Solar Geoengineering. *Geophys Res Lett* 45(2): 1030-1039.

611 40. Hurrell JW, *et al* (2013) The Community Earth System Model: A Framework for
612 Collaborative Research. *Bull Am Meteorol Soc* 94(9): 1339-1360.

613 41. Marsh DR, *et al* (2013) Climate Change from 1850 to 2005 Simulated in CESM1 (WACCM).
614 *J Clim* 26(19): 7372-7391.

615 42. Toon O, Turco R, Westphal D, Malone R & Liu M (1988) A Multidimensional Model for
616 Aerosols: Description of Computational Analogs. *J Atmos Sci* 45(15): 2123-2144.

617 43. English J, Toon O, Mills M & Yu F (2011) Microphysical Simulations of New Particle
618 Formation in the Upper Troposphere and Lower Stratosphere. *Atmos. Chem. Phys* 11(17): 9303-
619 9322.

620 44. Bardeen CG, Garcia RR, Toon OB & Conley AJ (2017) On Transient Climate Change at the
621 Cretaceous-Paleogene Boundary due to Atmospheric Soot Injections. *Proc Natl Acad Sci U S A*
622 114(36): E7415-E7424.

623 45. Gupta M & Marshall J (2018) The Climate Response to Multiple Volcanic Eruptions
624 Mediated by Ocean Heat Uptake: Damping Processes and Accumulation Potential. *J Clim* 31(21):
625 8669-8687.

626 46. Svensson A, *et al* (2013) Direct Linking of Greenland and Antarctic Ice Cores at the Toba
627 Eruption (74 Ka BP). *Climate of the Past* 9(2): 749-766.

628 47. Gleckler P, *et al* (2006) Krakatoa's Signature Persists in the Ocean. *Nature* 439(7077): 675-
629 675.

630 48. Toohey M, Krüger K, Niemeier U & Timmreck C (2011) The Influence of Eruption Season
631 on the Global Aerosol Evolution and Radiative Impact of Tropical Volcanic Eruptions.
632 *Atmospheric Chemistry and Physics* 11(23): 12351-12367.

633 49. Haywood JM, Jones A, Bellouin N & Stephenson D (2013) Asymmetric Forcing from
634 Stratospheric Aerosols Impacts Sahelian Rainfall. *Nature Climate Change* 3(7): 660-665.

635 50. Colose CM & LeGrande AN (2016) Hemispherically Asymmetric Volcanic Forcing of
636 Tropical Hydroclimate during the Last Millennium. *Earth System Dynamics* 7(3): 681.

637 51. Sun W, *et al* (2019) How Northern High-Latitude Volcanic Eruptions in Different Seasons
638 Affect ENSO. *J Clim* 32(11): 3245-3262.

639 52. Church JA, White NJ & Arblaster JM (2005) Significant Decadal-Scale Impact of Volcanic
640 Eruptions on Sea Level and Ocean Heat Content. *Nature* 438(7064): 74-77.

641 53. Held IM & Soden BJ (2006) Robust Responses of the Hydrological Cycle to Global
642 Warming. *J Clim* 19(21): 5686-5699.

643 54. Clarkson C, *et al* (2020) Human Occupation of Northern India Spans the Toba Super-
644 Eruption~ 74,000 Years Ago. *Nature Communications* 11(1): 1-10.

645 55. Tabor CR, Bardeen CG, Otto-Bliesner BL, Garcia RR & Toon OB (2020) Causes and
646 Climatic Consequences of the Impact Winter at the Cretaceous-Paleogene Boundary. *Geophys
647 Res Lett* 47(3): e60121.

648 56. Fasullo JT, Otto-Bliesner BL & Stevenson S (2019) The Influence of Volcanic Aerosol
649 Meridional Structure on Monsoon Responses Over the Last Millennium. *Geophys Res Lett*
650 46(21): 12350-12359.

651 57. Fasullo JT, *et al* (2017) The Amplifying Influence of Increased Ocean Stratification on a
652 Future Year without a Summer. *Nature Communications* 8(1): 1-10.

653 58. Samset BH, *et al* (2018) Aerosol Absorption: Progress Towards Global and Regional
654 Constraints. *Current Climate Change Reports* 4(2): 65-83.

655 59. Brown SC, Wigley TM, Otto-Bliesner BL, Rahbek C & Fordham DA (2020) Persistent
656 Quaternary Climate Refugia are Hospices for Biodiversity in the Anthropocene. *Nature Climate
657 Change* 10(3): 244-248.

658 60. Bae CJ, Douka K & Petraglia MD (2017) On the Origin of Modern Humans: Asian
659 Perspectives. *Science* 358(6368): 10.1126/science.aai9067.

660 61. Mellars P, Gori KC, Carr M, Soares PA & Richards MB (2013) Genetic and Archaeological
661 Perspectives on the Initial Modern Human Colonization of Southern Asia. *Proc Natl Acad Sci U
662 SA* 110(26): 10699-10704.

663 62. Higham T, *et al* (2014) The Timing and Spatiotemporal Patterning of Neanderthal
664 Disappearance. *Nature* 512(7514): 306-309.

665 63. Douka K, *et al* (2019) Age Estimates for Hominin Fossils and the Onset of the Upper
666 Palaeolithic at Denisova Cave. *Nature* 565(7741): 640-644.

667 64. Vidal CM, *et al* (2016) The 1257 Samalas Eruption (Lombok, Indonesia): The Single Greatest
668 Stratospheric Gas Release of the Common Era. *Scientific Reports* 6: 34868.

669 65. Manning JG, *et al* (2017) Volcanic Suppression of Nile Summer Flooding Triggers Revolt
670 and Constrains Interstate Conflict in Ancient Egypt. *Nature Communications* 8(1): 1-9.

671 66. Zanchettin D, *et al* (2013) Background Conditions Influence the Decadal Climate Response to
672 Strong Volcanic Eruptions. *Journal of Geophysical Research: Atmospheres* 118(10): 4090-4106.

673 67. Verschuren D, Olago DO, Rucina SM, Odhengo PO & ICDP DeepCHALLA Consortium
674 (2013) DeepCHALLA: Two Glacial Cycles of Climate and Ecosystem Dynamics from Equatorial
675 East Africa. *Scientific Drilling* 15: 72-76.

676 68. Garcia R, Marsh D, Kinnison D, Boville B & Sassi F (2007) Simulation of Secular Trends in
677 the Middle Atmosphere, 1950â€“2003. *Journal of Geophysical Research: Atmospheres* 112(D9)

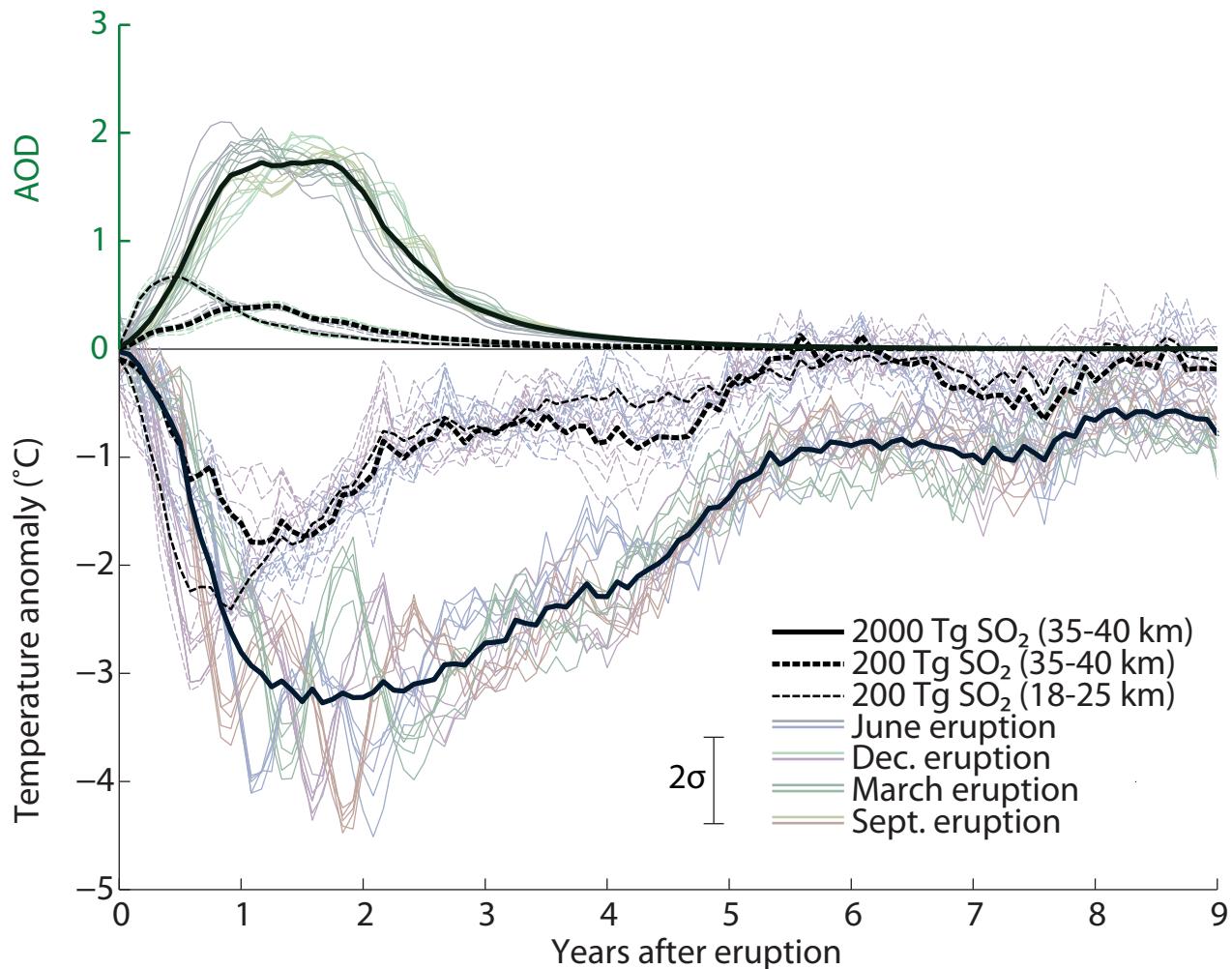
678 69. Sander S, *et al* (2006) . *Chemical Kinetics and Photochemical Data for use in Atmospheric
679 Studies Evaluation Number 15*

680 70. Zielinski GA, Mayewski PA, Meeker LD, Whitlow S & Twickler MS (1996) A 110,000-Yr
681 Record of Explosive Volcanism from the GISP2 (Greenland) Ice Core. *Quatern Res* 45(2): 109-
682 118.

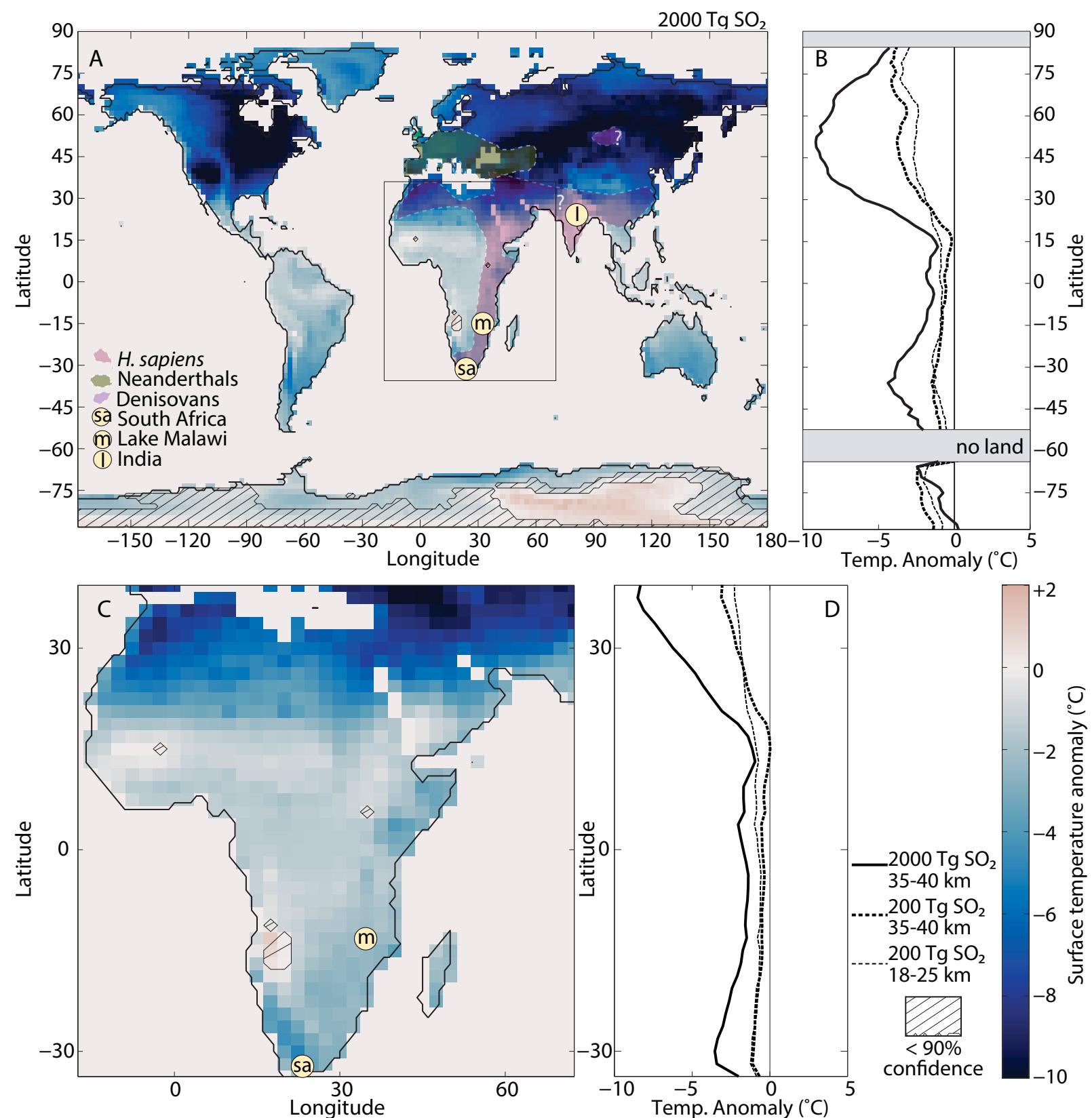
683 71. Crick L, *et al* (2021) New Insights into the~ 74 Ka Toba Eruption from Sulfur Isotopes of
684 Polar Ice Cores. *Climate of the Past Discussions* : 1-28.

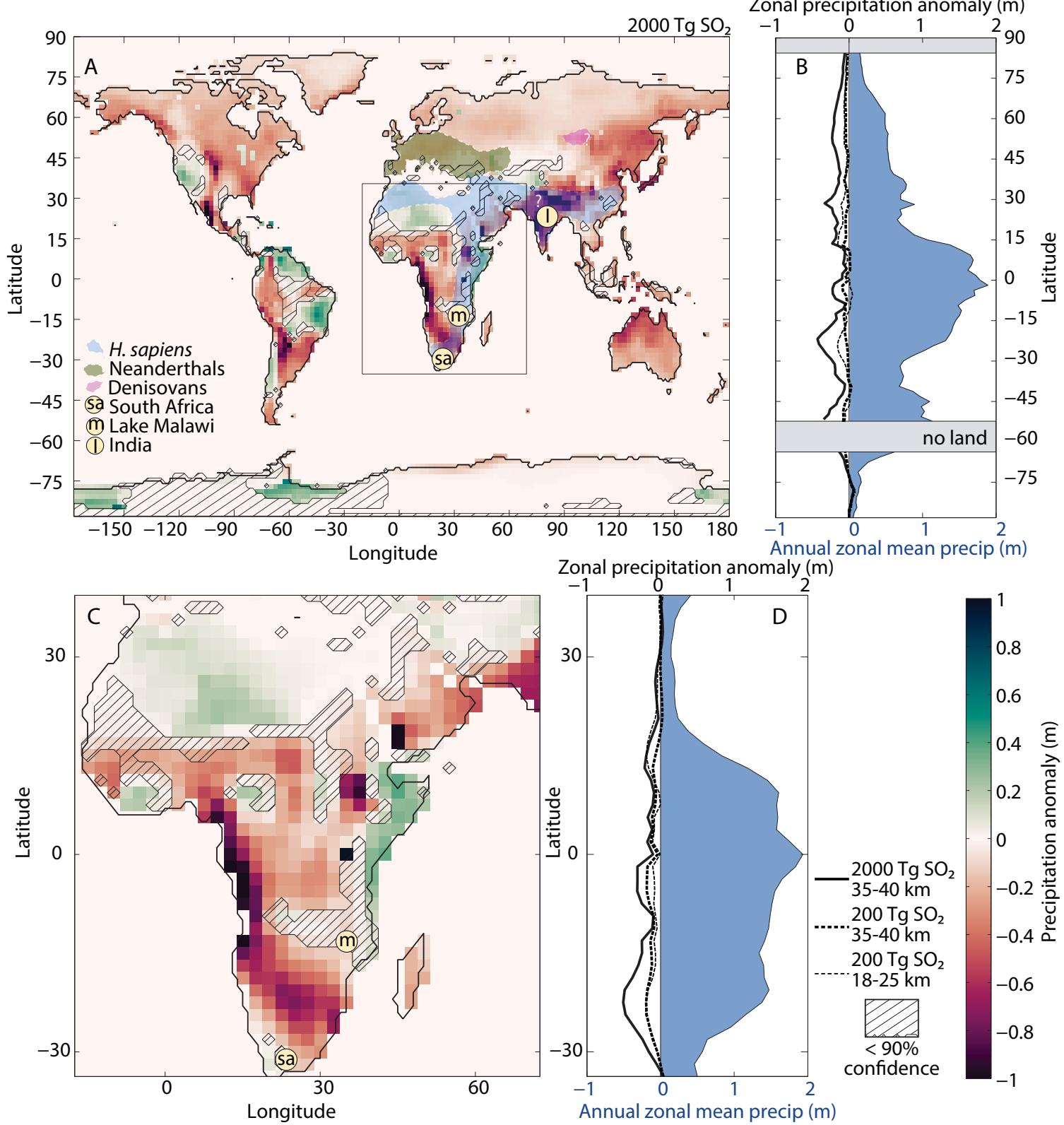
685 72. Chesner CA & Luhr JF (2010) A Melt Inclusion Study of the Toba Tuffs, Sumatra, Indonesia.
686 *J Volcanol Geotherm Res* 197(1): 259-278.

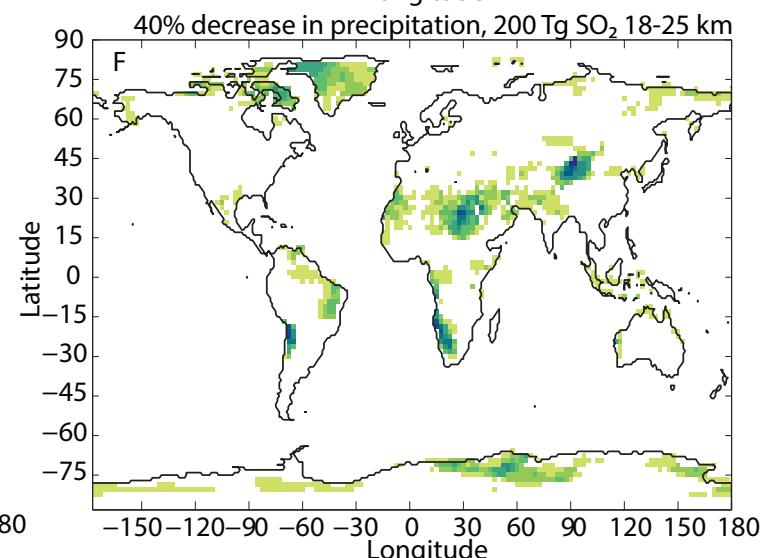
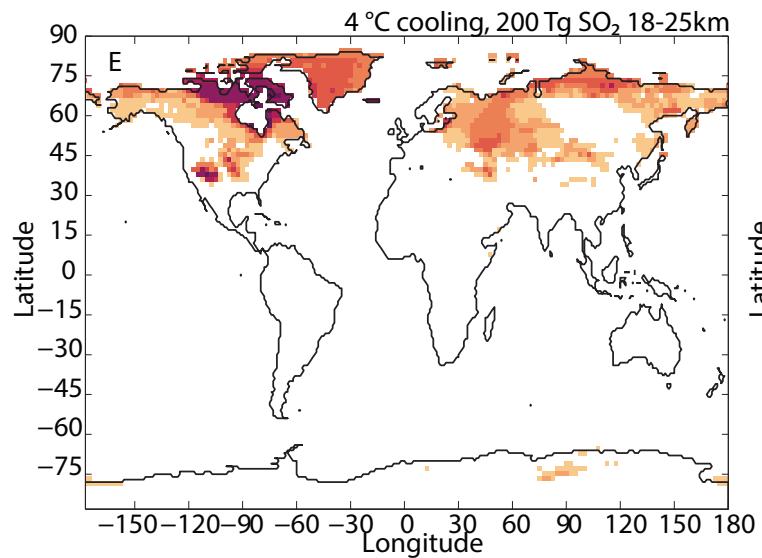
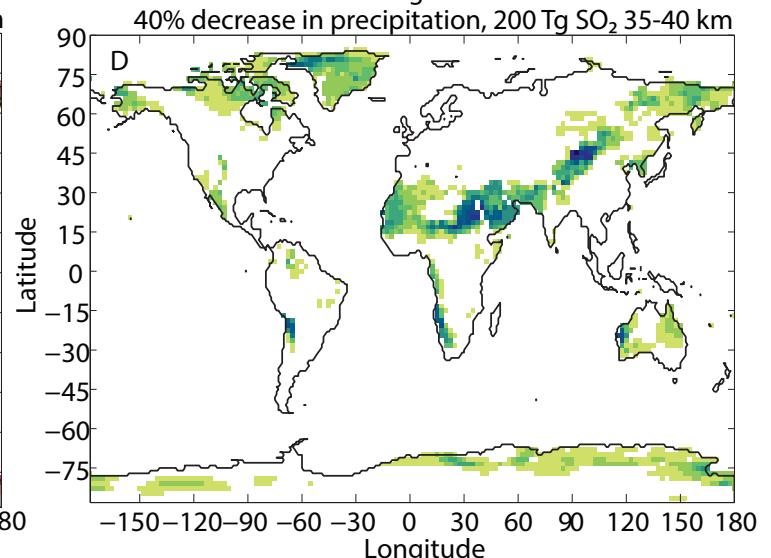
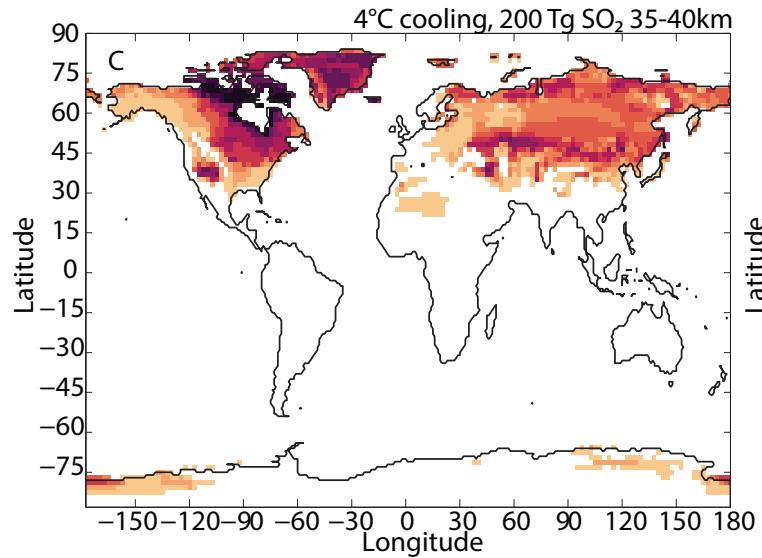
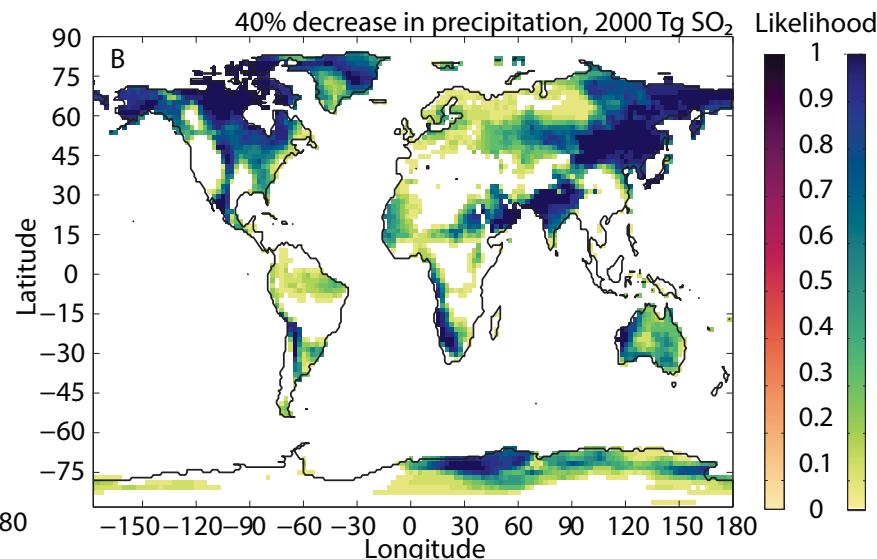
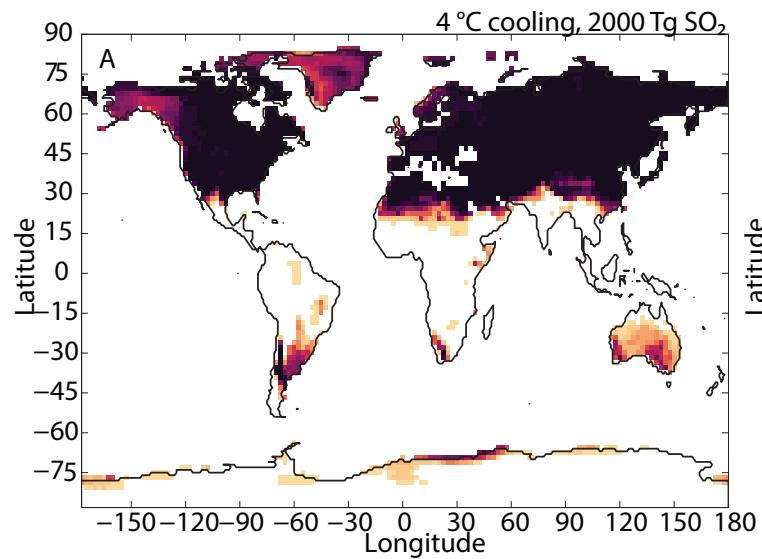
687 73. Keppler H (1999) Experimental Evidence for the Source of Excess Sulfur in Explosive
688 Volcanic Eruptions. *Science* 284(5420): 1652-1654.


689 74. Shinohara H (2008) Excess Degassing from Volcanoes and its Role on Eruptive and Intrusive
690 Activity. *Rev Geophys* 46(4)

691 75. Smythe DJ & Brenan JM (2016) Magmatic Oxygen Fugacity Estimated using Zircon-Melt
692 Partitioning of Cerium. *Earth Planet Sci Lett* 453: 260-266.


693 76. Chesner CA (1998) Petrogenesis of the Toba Tuffs, Sumatra, Indonesia. *J Petrol* 39(3): 397-
694 438.


695 77. Costa A, Smith VC, Macedonio G & Matthews NE (2014) The Magnitude and Impact of the
696 Youngest Toba Tuff Super-Eruption. *Frontiers in Earth Science* 2: 16.







697

