
Research article

Mikhail Tokman, Maria Erukhimova, Yongrui Wang, Qianfan Chen and Alexey Belyanin*

Generation and dynamics of entangled fermion–
photon–phonon states in nanocavities

https://doi.org/10.1515/nanoph-2020-0353
Received June 29, 2020; accepted August 22, 2020; published online
September 15, 2020

Abstract: We develop the analytic theory describing
the formation and evolution of entangled quantum states
for a fermionic quantum emitter coupled simultaneously
to a quantized electromagnetic field in a nanocavity and
quantized phonon or mechanical vibrational modes. The
theory is applicable to a broad range of cavity quantum
optomechanics problems and emerging research on plas-
monic nanocavities coupled to single molecules and other
quantum emitters. The optimal conditions for a tripartite
entanglement are realized near the parametric resonances
in a coupled system. The model includes dissipation and
decoherence effects due to coupling of the fermion,
photon, and phonon subsystems to their dissipative res-
ervoirs within the stochastic evolution approach, which is
derived from the Heisenberg–Langevin formalism. Our
theory provides analytic expressions for the time evolution
of the quantum state and observables and the emission
spectra. The limit of a classical acoustic pumping and the
interplay between parametric and standard one-photon
resonances are analyzed.

Keywords: cavity optomechanics; cavity quantum elec-
trodynamics; entanglement; quantum acoustics; quantum
information; quantum optics.

1 Introduction

There is a lot of recent interest in the quantum dynamics of
fermion systems coupled to both an electromagnetic (EM)
mode in a cavity and quantum or classical mechanical/
acoustic oscillations or phonon vibrations. This problem is
related to the burgeoning fields of cavity optomechanics
[1–3] and quantum acoustics [4–6]. Another example
where this situation can be realized is a molecule placed in
a plasmonic nanocavity [7, 8]. In this case, the fermion
system may comprise two or more electron states forming
an optical transition, whereas the phonon field is simply a
vibrational mode of a molecule. One can also imagine a
situation where a quantum emitter such as a quantum dot
(QD) or an optically active defect in a solid matrix is
coupled to the quantized phononmodes of a crystal lattice,
whichwould be an extension of an extremely active field of
research on phonon–polaritons or plasmon–phonon–
polaritons [9, 10] into a fully quantum regime.

Apart from the fundamental interest, the studies of
such systems are motivated by quantum information ap-
plications. Indeed, the presence of a classical or quantized
acoustic mode provides an extra handle to control the
quantum state of a coupled fermion–boson quantum sys-
tem. In the extreme quantum limit in which the fermionic
degree of freedomand all bosonic degrees of freedom (both
photons and phonons) are quantized, a strong enough
coupling between them leads to an entangled fermion–
photon–phonon state, which is a complex enough system
to implement basic gates for quantum computation or
other applications. Such a system has not been realized
experimentally. However, many ingredients have been
already demonstrated, such as strong coupling between a
nanocavity mode and a single molecule [11], numerous
examples of strong coupling between nanocavity modes
and a single fermionic quantum emitter such as a color
center [12] or a QD (see e.g., the studies by Yoshie et al. [13]
and Reithmaier et al. [14] for semiconductor cavity–QD
systems and the studies by Leng et al. [15], Bitton et al. [16],
and Park et al. [17] for plasmonic cavities), strong coupling
and entanglement of acoustic phonons [18, 19], resolving
the energy levels of a nanomechanical oscillator [6], or
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cooling a macroscopic system into its motional ground
state [20].

Interaction of three or more modes of oscillations,
whether they are classical or quantized, is strongly enhanced
close to the parametric resonance, which is therefore the
most interesting region to study. Fortunately for theorists,
the analysis near the parametric resonance is greatly
simplified because some form of a slowly varying amplitude
method for classical systems [21, 22] or the rotating wave
approximation (RWA) for quantum systems [23] can be
applied. Theuse of RWA restricts the coupling strength to the
values much lower than the characteristic energies in the
system, such as the optical transition or vibrational energy.
The emerging studies of the so-called ultra-strong coupling
regime [24] have to go beyond the RWA.Nevertheless, for the
vast majority of experiments, including nonperturbative
strong coupling dynamics and entanglement, the RWA is
adequate and provides some crucial simplifications that
allow one to obtain analytic solutions.

In particular, within Schrödinger’s description, the
equations of motion for the components of an infinitely
dimensional state vector |Ψ〉 that describes a coupled
fermion–boson system can be split into the blocks of low
dimensions if the RWA is applied. This is true even if the
dynamics of the fermion subsystem is nonperturbative,
e.g., the effects of saturation are important. Note that there
is no such simplification in the Heisenberg representation,
i.e., when solving the equations of motion

d
dt

ĝ � i
ℏ
[Ĥ, ĝ], (1)

where ĝ is the Heisenberg operator of a certain physical
observable g and Ĥ is the Hamiltonian of the system.
Operator-valued Eq. (1) is generally impossible to split into
smaller blocks, even within the RWA. This happens
because some matrix elements gAB(t) of the Heisenberg
operator are determined by states |A〉, |B〉 which belong to
different blocks that evolve independently in the Schrö-
dinger picture. The simplification could only be possible
for specially selected initial conditions in which the Hei-
senberg operator is determined on a “truncated” basis
belonging to only one of the independent blocks. The
Schrödinger’s approach also leads to fewer equations for
the state vector components than the approach based on
the von Neumann master equation for the elements of the
density matrix.

Obviously, the Schrödinger equation in its standard
form cannot be applied to describe open systems coupled
to a dissipative reservoir. In this case, the stochastic ver-
sions of the equation of evolution for the state vector
have been developed, e.g., the method of quantum jumps

[23, 25]. This method is optimal for numerical analysis in
the Monte-Carlo type schemes. Here, we formulate the
stochastic equation for the state vector derived from the
Heisenberg–Langevin approach which is more conducive
to the analytic treatment. Its key element is an assumption

that there exists the operator of evolution Û, which is
determined unambiguously not only by the parameters of
the dynamical system but also by the statistical properties
of a dissipative reservoir.

There were a number of theoretical studies of tripartite
entanglement in open optomechanical systems, either for
purely bosonic field modes or involving the atomic degree
of freedom (see, e.g., [26–32]). The existing studies are
based on either the Heisenberg–Langevin approach or the
master equation. In these cases, the analytic solution is
possible only after some drastic approximations such as
adiabatic elimination of some degrees of freedom or within
the linear perturbation theory, when the atomic pop-
ulations are unperturbed. The work closest to our model is
the study by Liao et al. [31], which considers tripartite
entanglement in the vicinity of a parametric resonance by
numerically solving the Lindblad master equation. The
present paper is different in several important aspects.
First, our work develops a new formalism based on the
stochastic evolution of the state vector,which allowedus to
obtain explicit analytic expressions for the evolution of the
quantum states and all relevant observables: field and
atom energies, emission spectra, etc. We were also able to
derive analytic criteria for the separation of resonances,
which is important for real experimental situations in
which the frequency of the phonons or mechanical oscil-
lations ismuch lower than the photon or electron transition
frequencies, so the parametric and one-photon resonances
can easily overlap.

Second, the study by Liao et al. [31] takes into account
only the dissipation in the atomic subsystem, whereas our
work includes relaxation andfluctuations in all subsystems:
electronic, EM, and phonon/mechanical. We were able to
write explicit expressions for the relaxation and noise terms
which include all relevant relaxation channels and ensure
that the system goes into a physically meaningful equilib-
rium in the absence of external excitation. Moreover, our
analysis takes into account both inelastic processes (dissi-
pation) and purely elastic decoherence processes.

The paper is structured as follows. Section II formu-
lates themodel and the Hamiltonian for coupled quantized
fermion, photon, and phonon fields in a nanocavity. Sec-
tion III derives the solution for the quantum states of a
closed system in the vicinity of a parametric resonance and
analyzes its properties. In Section IV, we provide the sto-
chastic equation describing the evolution of quantum
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states of an open system in contact with a dissipative
reservoir and describe the observables. In Section V, we
consider the case of a classical acoustic pumping. Section
VI describes the interplay of parametric and standard one-
photon resonances and provides the conditions under
which these resonances can be separated. Section VII gives
an example of manipulating entangled electron–photon
states by an acoustic pumping. Appendix contains the
derivation of the stochastic equation of evolution from the
Heisenberg–Langevin approach and compares with Lind-
blad density matrix formalism.

The focus of the paper is to provide analytic solutions for
the quantum dynamics in systems of coupled electron,
photon, and phonon excitations including dissipation and
decoherence effects. Here, we emphasize “analytic” which
means that we provide the expressions for the time evolution
of the state vector and observable quantities in the formwhich
shows explicitly the dependence on all experimental param-
eters: transition energies and frequencies, matrix elements of
the optical transitions, the spatial structure of the fieldmodes,
relaxation rates for all constituent subsystems, ambient tem-
peratures, etc. That iswhywe believe that the results obtained
in this paperwill beuseful for the experimentalistsworkingon
a broad range of nanophotonic systems.

2 A coupled quantized electron–
photon–phonon system: the
model

Consider a quantized electron system coupled to the
quantum EM field of a nanocavity and classical or quan-
tized vibrational (phonon) modes, see Figure 1 which
sketches two out of many possible scenarios.

Here, the electron transition energy is W, the photon
and phonon mode frequencies are ω and Ω, respectively.
The decay constants γ, μω, and μΩ of the electron, photon,
and phonon subsystems due to couplings to their respective
dissipative reservoirs are also indicated. Figure 1a sketches a
single molecule in a nanocavity formed by a nanotip and a
metal substrate. Here, the EM field is coupled to a transition
between electron states, and this coupling is modulated by
molecular vibrations. Figure 1b shows an electron transition
in a QD coupled to the EM field. The figure implies that it is a
QD which experiences mechanical or acoustic vibrations,
but our treatment below works for any mechanism of rela-
tive displacement between the electron system and the field
of anEMcavitymode, including the situationswhere it is the
wall of a nanocavity which experiences oscillations.

We start fromwriting down ageneral Hamiltonian for a
coupled quantized electron–photon–phonon system and
derive its various approximate forms: the RWA, small-
amplitude acoustic oscillations, classical versus quantum
phonon mode, etc.

2.1 The fermion subsystem

Consider the simplest version of the fermion subsystem:
two electron states |0〉 and |1〉 with energies 0 and W,
respectively. We will call it an “atom” for brevity, although
it can be electron states of a molecule, a QD, or any other

a

b

Figure 1: (a) A sketch of a molecule in a nanocavity created by a
metallic nanotip and a substrate; (b) A sketch of a quantum dot
coupled to optical andmechanical vibrationalmodes in a nanocavity.
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electron system. Introduce creation and annihilation op-

erators of the excited state |1〉, σ̂ � |0〉 〈1|, σ̂† � |1〉 〈0|, which
satisfy standard commutation relations for fermions:

σ̂† |0〉 � |1〉, σ̂ |1〉 � |0〉, σ̂σ̂ � σ̂†σ̂† � 0; [σ̂, σ̂†]+
� σ̂σ̂† + σ̂†σ̂ � 1.

The Hamiltonian of an atom is given as follows:

Ĥa � W σ̂†σ̂. (2)

We will also need the dipole moment operator,

d̂ � d(σ̂† + σ̂), (3)

where d � 〈1|d̂|0〉 is a real vector. For a finite motion, we
can always choose the coordinate representation of sta-
tionary states in terms of real functions.

2.2 Quantized EM modes of a cavity

We use a standard representation for the electric field
operator in a cavity:

Ê � ∑
i
[Ei(r) ĉi + E*

i (r) ĉi†], (4)

where ĉi†, ĉi are creation and annihilation operators for pho-
tons at frequency ωi ; the functions Ei(r) describe the spatial
structure of the EMmodes in a cavity. The functionsEi(r) and
the relationbetween themodal frequencyωi  andEi(r) canbe
found by solving the boundary value problem of the classical
electrodynamics [23]. The normalization conditions [33]

∫
V

∂[ω2
i ε(ωi, r)]
ωi∂ωi

E*
i (r)Ei(r)d3r � 4πℏωi (5)

ensure correct bosonic commutators [ĉi, ĉi†] � δij and the
field Hamiltonian in the form

Ĥem � ℏ∑
i
ωi(ĉi† ĉi + 1

2
). (6)

here,V is a quantization volume and ε(ω, r) is the dielectric
function of a dispersive medium that fills the cavity. Eq. (5)
is true for any fields satisfying Maxwell’s equations as long
as intracavity losses can be neglected and the flux of the
Poynting vector through the total cavity surface is zero (see
e.g., Refs. [33–36]). Of course the photon losses are always
important when calculating the decoherence rates and
fluctuations. What matters for Eq. (5) is that the effect of
losses on the spatial structure of the cavity modes is
insignificant. The latter is true as long as it makes sense to
talk about cavitymodes at all, whichmeans in practice that
the cavity Q-factor is at least around 10 or greater.

2.3 The quantized phonon field

We assume that our two-level atom is dressed by a phonon
field which can be described by the displacement operator:

q̂ � ∑
i
q̂i ; q̂i � Qi(r)b̂i + Q*

i (r)b̂i
† (7)

here, b̂i and b̂i
† are annihilation and creation operators of

phonons, and the functions Qi(r) determine the spatial
structure of oscillations at frequencies Ωi. Expression (7)
can be used when the amplitude of oscillations is small
enough. One can always choose the normalization of
functions Qi(r) corresponding to standard commutation
relations for bosons, [b̂i, b̂j

†] � δij and a standard form for
the Hamiltonian of mechanical oscillations:

Ĥp � ℏ∑
i
Ωi  (b̂i

† b̂i + 1
2
). (8)

2.4 An atom coupled to quantized EM and
phonon fields

Now, we can combine all ingredients into a coupled
quantized system. Adding the interaction Hamiltonian
with a EM cavity mode in the electric dipole approxima-

tion, −d̂ ⋅ Ê, the Hamiltonian of an atom coupled to a single
mode EM field can be written as follows:

Ĥ � Ĥem + Ĥa − d(σ̂† + σ̂) ⋅ [E(r)ĉ + E*(r)ĉ†]
r�ra, (9)

where r � ra denotes the position of an atom inside the
cavity. The effect of “dressing” of the coupled atom–EM
field system by mechanical oscillations in its most general
form can be included by adding theHamiltonian of phonon
modes Ĥp and substituting ra ⇒ ra + q̂ in Eq. (9). This will
work for an arbitrary relative displacement of an atomwith
respect to the EM cavity mode. Keeping only one phonon
mode for simplicity, in which

q̂ � Q(r)b̂ + Q*(r)b̂†, (10)

and expanding in Taylor series in the vicinity of r � ra, we
obtain the total Hamiltonian,

Ĥ � Ĥem + Ĥa + Ĥp − (χσ̂†ĉ + χ*σ̂ĉ† + χσ̂ĉ + χ*σ̂†ĉ†)
−(η1σ̂

†ĉb̂ + η*
1 σ̂ĉ

†b̂† + η2σ̂
†ĉb̂†

+η*
2σ̂ĉ

†b̂ + η1σ̂ĉb̂ + η*
1 σ̂

†ĉ†b̂† + η2σ̂ĉb̂
† + η*

2σ̂
†ĉ†b̂) (11)

where

χ � d ⋅ E( )r�ra, η1 � d Q ⋅ ∇( )E[ ]r�ra, η2 � d Q* ⋅ ∇( )E[ ]r�ra.
Our model corresponds to the situation when the

amplitude of phonon (acoustic) or mechanical oscillations
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is much larger than the size of an atom. In this case, an
acoustic field shifts the potential well for electrons as a
whole, rather than deforming it. It is possible to have
an opposite situation when the acoustic field deforms
the potential well for electrons, thus modulating the
dipole moment of the optical transition. This will
change the expression for the effective constant of the
parametric coupling but will not change the resulting
Hamiltonian.

We can always take the functions E(r) and Q(r) to be
real at the position of an atom, but we cannot keep the
derivatives real at the same time if the modal structure

∝ eik⋅r. However, for ideal cavity modes, the latter is
possible. As we will see below, the best conditions for
electron–photon–phonon entanglement are reached in the
vicinity of the parametric resonance:

W
ℏ
≈ ω ± Ω. (12)

When the upper sign is chosen in Eq. (12), the RWA applied
to the Hamiltonian (11) yields the following equation:

Ĥ � Ĥem + Ĥa + Ĥp − (ησ̂†ĉb̂ + η*σ̂ĉ†b̂†) (13)

where η ≡ η1. For the lower sign in Eq. (12), the RWA
Hamiltonian is as follows:

Ĥ � Ĥem + Ĥa + Ĥp − (ησ̂†ĉb̂† + η*σ̂ĉ†b̂) (14)

where η ≡ η2.

2.5 An atom coupled to the quantized EM
field and dressed by a classical acoustic
field

For classical acoustic oscillations, the operator q̂ � Q(r)b̂ +
Q*(r)b̂† in Eq. (10) becomes a classical function

q � Q(r) e−iΩt + Q*(r) eiΩt (15)

where Q is a coordinate-dependent complex amplitude
of classical oscillations. Near the parametric reso-
nance (ω + Ω ≈ W

ℏ), the RWA Hamiltonian takes the
following form:

Ĥ � Ĥem + Ĥa − (Rσ̂†ĉe−iΩt +R*σ̂ĉ†eiΩt). (16)

where R � [d(Q ⋅ ∇)E]r�ra. The value of the acoustic fre-
quency Ω in Eq. (16) can be of either sign, corresponding to
the choice “±” in the parametric resonance condition Eq.
(12); when the sign of Ω changes from positive to nega-
tive, one should replace Q with Q* in the above expres-
sion for R.

Qualitatively, Hamiltonian (13) corresponds to the
decay of the fermionic excitation into a photon and
phonon; Hamiltonian (14) corresponds to the decay of a
photon into a phonon and fermionic excitation, whereas
Hamiltonian (16) describes parametric decay of a photon
into an atomic excitation and back, mediated by classical
acoustic oscillations.

3 Parametric resonance in a closed
system

When the system is closed and there is no dissipation, the
general analytic solution to the dynamics of coupled fer-
mions, photons, and phonons can be obtained in the RWA.
We write the state vector as follows:

Ψ � ∑
∞

α,n�0
(Cαn0|α〉 |n〉 |0〉 + Cαn1|α〉 |n〉 |1〉). (17)

here, Greek letters denote phonon states, Latin letters
denote photon states, and numbers 0, 1 describe fermion
states. We will keep the same sequence of symbols
throughout the paper:

Cphonon photon fermion  |phonon〉 |photon〉 |fermion〉.

Next, we substitute Eq. (17) into the Schrödinger
equation,

iℏ
∂

∂t
|Ψ〉 � Ĥ|Ψ〉 (18)

where Ĥ is the RWA Hamiltonian. For definiteness, we
consider the vicinity of the parametric resonance with a
plus sign, ω + Ω ≈ W

ℏ , which corresponds to the Hamilto-
nian (13). In this case, the equations for the coefficients in
Eq. (17) can be separated into the pairs of coupled
equations

d
dt
( Cαn0

C(α−1)(n−1)1
) + ( iωα, n −iΩ(α,n)*

R

−iΩ(α,n)
R iωα, n − iΔ

)( Cαn0

C(α−1)(n−1)1
) � 0,

(19)
and a separate equation for the lowest energy state:

C
⋅

000 + iω0,0C000 � 0, (20)

where

Ω(α,n)
R � η

ℏ

���
αn

√
, ωα, n � Ω(α + 1

2
) + ω(n + 1

2
), 

Δ � Ω + ω −W
ℏ
.

Note that approximate Eqs. (19) and (20) preserve the norm
exactly:
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|C000|2 + ∑
∞,∞

α�1,n�1
(|Cαn0|2 +

∣∣∣∣C(α−1)(n−1)1
∣∣∣∣2)

� ∑
∞,∞

α�0,n�0
(|Cαn0|2 + |Cαn1|2) � const.

The solution to Eq. (20) is trivial: C000(t) �
C000(0) exp ( −iω0,0t). The solution to Eq. (19) takes the
following form:

( Cαn0

C(α−1)(n−1)1
) � Ae−Λ

(α,n)
1 t( 1

a(α,n)
1

) + Be−Λ
(α,n)
2 t( 1

a(α,n)
2

), (21)

where the constants A and B are determined from initial
conditions. Here, the eigenvalues Λ(α,n)

1,2 and eigenvec-

tors ( 1

a(α,n)
1,2

) of the matrix of coefficients in Eq. (19) are

given as follows:

Λ(α,n)
1,2 � iωα, n − iδ(α,n)1,2 , a(α,n)

1,2 � δ(α,n)1,2

Ω(α,n)*
R

, (22)

where

δ(α,n)1,2 � Δ
2
±

����������
 
Δ2

4
+ ∣∣∣∣Ω(α,n)

R

∣∣∣∣2√
. (23)

Figure 2 shows the eigenfrequencies of the system
given by Eq. (22) with α � n � 1, shifted byω1,1|Δ�0. One can
see the anticrossing with splitting by 2Ω(1,1)

R at the para-
metric resonance.

As an example, consider an exact parametric reso-

nanceW
ℏ � Ω + ω and the simplest initial stateΨ0 � |0〉|0〉|1〉

corresponding to the initially excited atom in a cavity. In
this case, the only nonzero amplitudes are C001 and C110:

( C110

C001
) � 1

2
 e−i(ω1,1−

∣∣∣∣Ω(1,1)
R

∣∣∣∣)t( e−iθ

1
)

+ 1
2
e−i(ω1,1+

∣∣∣∣Ω(1,1)
R

∣∣∣∣)t(−e−iθ
1
), (24)

where

ω1,1 � Ω(1 + 1
2
) + ω(1 + 1

2
),Ω(1,1)

R � η
ℏ
� ∣∣∣∣Ω(1,1)

R

∣∣∣∣eiθ.
The resulting state vector is given as follows:

Ψ �e−iω1,1t[ie−iθsin(∣∣∣∣Ω(1,1)
R

∣∣∣∣t)|1〉 |1〉 |0〉
+ cos(∣∣∣∣Ω(1,1)

R

∣∣∣∣t)|0〉 |0〉 |1〉]. (25)

This is clearly an entangled electron–photon–phonon
state, which is not surprising. In the absence of dissipation,
any coupling between these subsystems leads to
entanglement.

State (25) is a tripartite entangled statewhich belongs to
the family of Greenberger–Horne–Zeilinger (GHZ) states. It
can be reduced to a standard GHZ state by local operations
[37, 38], e.g., by rotations on the Bloch sphere of each qubit.
In most cases discussed in the literature, the GHZ states are
made of identical subsystems, e.g., photons [39, 40], which
determine the way how they can be manipulated and used.
In our case, each subsystem is of different nature: a fer-
mionic electron system, a bosonic EM field, and a bosonic
phonon field, so we envision at least two interesting appli-
cations. One is to determine the statistics of phonons or
atomic excitations by measuring the statistics of photons.
The latter is relatively easy to do, whereas phonon counting
or direct measurement of quantizedmechanical oscillations
is extremely difficult due to their low energy and the lack of
suitable detectors. The second application is control of a
bipartite entangled state of two subsystems, say an atom
and a photon mode, by using the state of the third subsys-
tem, say phonons or mechanical oscillations, as a control
handle. One example is given in Section 7 of the paper. One
can come up with other combinations involving more
complex qubits consisting of coupled fermion–boson sub-
systems, for example, anentanglement of the atom–phonon
system by a classical EM field, etc.

The dynamics of the corresponding physical observ-
ables, such as the energy of the field and the atom, is Rabi
oscillations at the frequency which generalizes a standard
Rabi frequency to the case of a parametric photon–
phonon–atom resonance and which depends on both the
spatial structure of the photon and phonon fields and their
occupation numbers:

〈Ψ
∣∣∣∣Ê2∣∣∣∣Ψ〉 � |E(r)|2[2 − cos(2∣∣∣∣Ω(1,1)

R

∣∣∣∣t)] (26)

Figure 2: Frequency eigenvalues of the coupled electron–photon–
phonon quantum system as a function of detuning from the
parametric resonance W

ℏ � Ω + ω. All frequencies are in units of the
generalizedRabi frequencyΩ(1,1)

R . The values of eigenfrequencies are
shifted vertically by ω1,1|Δ�0.
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〈Ψ|Ĥa|Ψ〉 � W
1 + cos(2∣∣∣∣Ω(1,1)

R

∣∣∣∣t)
2

(27)

It is illustrated in Figure 3 which shows the normalized
EM field energy density and energy of an atomas a function
of time. Note that the EM field energy never reaches zero
because of the presence of zero-point vacuum energy.With
detuning from the parametric resonance, the amplitude of
the oscillations will decrease.

4 Dynamics of an open electron–
photon–phonon system

4.1 Stochastic evolution equation

Now we include the processes of relaxation and decoher-
ence in an open system, which is (weakly) coupled to a
dissipative reservoir. We will use the stochastic equation of
evolution for the state vector, which is derived in Appendix.
This is basically the Schrödinger equation modified by
adding a linear relaxation operator and the noise source
term with appropriate correlation properties. The latter are
related to the parameters of the relaxation operator, which is
a manifestation of the fluctuation–dissipation theorem [41].

Within our approach, the system is described by a state

vector which has a fluctuating component: |Ψ〉 � |Ψ〉 + |̃Ψ〉,
where the straight bar means averaging over the statistics
of noise, and the wavy bar denotes the fluctuating
component. This state vector is of course very different
from the state vector obtained by solving a standard
Schrödinger equation for a closed system. In fact, coupling
to a dissipative reservoir leads to the formation of a mixed
state, which can be described by a density matrix

ρ̂ � |Ψ〉  ⋅  〈Ψ| + |̃Ψ〉〈̃Ψ|. In Appendix, we derived the general
form of the stochastic equation of evolution from the Hei-
senberg–Langevin equations [23, 34, 42] and showed how
physically reasonable constraints on the observables
determine the properties of the noise sources. We also

demonstrated the relationship between our approach and
the Lindblad method of solving the master equation.

One can view the stochastic equation approach as a
convenient formalism for calculating physical observ-
ables which allows one to obtain analytic solutions for the
evolution of a coupled system even in the presence of
dissipation and decoherence. In this section, we use the
stochastic equation for the state vector given by Eqs. (A9)
and (A10). The effective Hamiltonian in Eqs. (A9) and
(A10) is determined by an approximation the user wants.
If one wants the Markovian approximation, the Hamilto-
nian is obtained simply by summing up partial Lind-
bladians for all subsystems, whatever they are (in our
case, these are a fermion emitter, an EM cavity mode, and
a phonon mode). Then, the noise source term is deter-
mined unambiguously by conservation of the norm of the
state vector and the requirement that the system should
approach thermal equilibrium when the external pertur-
bation is turned off. This immediately gives Eqs. (28) and
(29) below.

Following the derivation in Appendix, Eqs. (19) and
(20) are modified as follows:

d
dt
( Cαn0

C(α−1)(n−1)1
)+⎛⎝iωα,n+γαn0 −iΩ(α,n)*

R

−iΩ(α,n)
R iωα,n−iΔ+γ(α−1)(n−1)1

⎞⎠( Cαn0

C(α−1)(n−1)1
)

�− i
ℏ
( Rαn0

R(α−1)(n−1)1
), (28)

Ċ000+(iω0,0+γ000)C000�− iℏR000. (29)

Coupling to a reservoir introduces two main differences to
Eqs. (28) and (29) as compared to Eqs. (19) and (20) for a
closed system. First, eigenfrequencies acquire imaginary
parts which describe relaxation:

ωα, n ⇒ ωα, n − iγαn0,  ωα, n − Δ⇒ ωα,n − Δ − iγ(α−1)(n−1)1,  

ω0,0 ⇒ ω0,0 − iγ000.

The relaxation constants are determined by the properties
of all subsystems. They are derived in Appendix, and their
explicit form is given in the end of this section.

a b

Figure 3: (a) Normalized field intensity,
〈Ψ|Ê2|Ψ〉/|E(r)|2, and (b) normalized atom
energy 〈Ψ|Ĥa|Ψ〉/W as a function of time in
units of the generalized Rabi frequency
Ω(1,1)
R .
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Second, the right-hand side of Eqs. (28) and (29)

contain noise sources − i
ℏRαn0, − i

ℏR(α−1)(n−1)1, and − i
ℏR000.

They are equal to 0 after averaging over the noise statistics:

Rαn0 � R(α−1)(n−1)1 � R000. The averages of the quadratic
combinations of noise source terms are nonzero. Including
the noise sources is crucial for consistency of the
formalism: it ensures the conservation of the norm of the
state vector and leads to a physically meaningful equilib-
rium state. Note that the Weisskopf–Wigner theory does
not enforce the conservation of the norm.

4.2 Evolution of the state amplitudes and
observables

The solution to Eq. (29) is given as follows:

C000 � e−(iω0,0+γ000)t[C000(0) − i
ℏ
∫
t

0

e(iω0,0+γ000)τR000(τ)dτ].
(30)

The solution to Eq. (28) is determined again by the eigen-
values and eigenvectors of thematrix of coefficients, which
are now modified by relaxation rates:

Λ(α,n)
1,2 � iωα, n − iδ(α,n)1,2 , a(α,n)

1,2 � δ(α,n)1,2 − iγαn0
Ω(α,n)*

R

, (31)

where

δ(α,n)1,2 � Δ
2
+ i

γαn0 + γ(α−1)(n−1)1
2

±

�����������������������������[Δ + i(γ(α−1)(n−1)1 − γαn0)]2
4

+ ∣∣∣∣Ω(α,n)
R

∣∣∣∣2√
. (32)

The solution to Eq. (28) takes the following form:

⎛⎝ Cαn0

C(α−1)(n−1)1
⎞⎠

� e−Λ
(α,n)
1 t⎛⎝ 1

a(α,n)
1

⎞⎠(A − i
ℏ
∫
t

0

eΛ
(α,n)
1 τRαn0(τ)a(α,n)

2 − R(α−1)(n−1)1(τ)
a(α,n)
2 − a(α,n)

1

dτ)
+ e−Λ(α,n)

2 t⎛⎝ 1

a(α,n)
2

⎞⎠(B − i
ℏ
∫
t

0

eΛ
(α,n)
2 τR(α−1)(n−1)1(τ) − Rαn0(τ)a(α,n)

1

a(α,n)
2 − a(α,n)

1

dτ)
(33)

where the constants A and B are determined by initial
conditions.

As an example, we consider the reservoir at low tem-
peratures, when the steady-state population should go to
the ground state |0〉|0〉|0〉. Also, we will neglect purely
elastic dephasing processes which lead to atomic deco-
herence without changing the populations. The elastic

processes will be added later. In this case, we can take
γ000 � 0, as shown below. We will also assume that the
only nonzero correlator of noise is delta-correlated in time:

R000(t + ξ)R*
000(t) � ℏ2δ(ξ)D000. (34)

Then, Eqs. (29) and (30) yield the following:

d
dt

|C000|2 � D000, (35)

whereas Eq. (28) gives the following:

d
dt
(|Cαn0|2 +

∣∣∣∣C(α−1)(n−1)1
∣∣∣∣2)

� −2(γαn0|Cαn0|2 + γ(α−1)(n−1)1
∣∣∣∣C(α−1)(n−1)1

∣∣∣∣2). (36)

This equation guarantees that the system occupies the
ground state at t →∞.

The noise intensity is determined by the condition that
the norm of the state vector be conserved. This gives the
following equation:

D000 � 2 ∑
∞,∞

α�1,n�1
(γαn0|Cαn0|2 + γ(α−1)(n−1)1

∣∣∣∣C(α−1)(n−1)1
∣∣∣∣2). (37)

In Appendix, we discuss in detail the dependence of the
noise correlator on the averaged dyadic components of the
state vector. We also show how to find the correlators
which ensure that the system approaches thermal distri-
bution at a finite temperature.

The above formalism allows us to obtain analytic
solutions to the state vector and observables at any
temperatures and detunings from the parametric reso-
nance, while still within the RWA limits. However, the
resulting expressions are very cumbersome, and they
are better to visualize in the plots. Let us give an
example of the solution at zero reservoir temperature

and exactly at the parametric resonance W
ℏ � Ω + ω,

when the expressions are more manageable. Consider
the initial state Ψ0 � |0〉|0〉|1〉 when an atom is excited
and boson modes are in the ground state. In this case,
the only nonzero amplitudes are C000, C001, and C110. To
make the algebra a bit simpler, we assume that the
dissipation is weak enough and its effect on the eigen-

vectors ( 1

a(α,n)1,2
) can be neglected. As a result, we obtain

the following equation:

Ψ � e−(iω1,1+γ001+γ1102 )t[ie−iθsin(∣∣∣∣∣∣Ω̃(1,1)
R

∣∣∣∣∣∣t)|1〉|1〉|0〉
+ cos(∣∣∣∣∣∣Ω̃(1,1)

R

∣∣∣∣∣∣t)|0〉|0〉|1〉] + C000|0〉|0〉|0〉, (38)
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where

|C000|2 � 1 − e−(γ110+γ001)t ,  Ω̃(1,1)
R �

�������������������∣∣∣∣Ω(1,1)
R

∣∣∣∣2 − (γ001 − γ110)2
4

√
,  

θ � Arg[Ω(1,1)
R ].

As we see, dissipation leads not only to the relaxation of
the entangled part of the state vector but also to the fre-
quency shift of the Rabi oscillations. This shift is absent if
γ001 � γ110.

The resulting expressions for the observables such as
the EM field intensity and the energy of the atomic exci-
tation are given as follows:

〈Ψ|Ê2|Ψ〉 �|E(r)|2[1 + e−(γ110+γ001)t

− cos(2∣∣∣∣∣∣Ω̃(1,1)
R

∣∣∣∣∣∣t)e−(γ110+γ001)t], (39)

〈Ψ|Ĥa|Ψ〉 � W
1 + cos(2∣∣∣∣∣∣Ω̃(1,1)

R

∣∣∣∣∣∣t)
2

e−(γ110+γ001)t (40)

Figure 4 illustrates the dynamics of observables in Eqs. (39)
and (40).

Note that theWeisskopf–Wigner theory would give the
same expression (40) for the atomic energy but a wrong
expression for the EM field intensity:

〈Ψ|Ê2|Ψ〉 � |E(r)|2[2 − cos(2∣∣∣∣∣∣Ω̃(1,1)
R

∣∣∣∣∣∣t)]e−(γ110+γ001)t ,
which does not approach the correct vacuum state.

4.3 Emission spectra

According to the study by Scully and Zubairy [23], the po-
wer spectrum of the emission is given as follows:

S(r, ν) � 1
π
Re ∫

∞

0

dτG(1)(r, r ;  τ)eiντ, (41)

where G(1)(r, r ;  τ) is the field autocorrelation function at
the position r of the detector:

G(1)(r, r ; τ) � |E(r)|2 ∫
∞

0

dt〈ĉd† (t)ĉd(t + τ)〉. (42)

where ĉd(t), ĉd† (t) are annihilation and creation opera-
tors for the photons which interact with the detector,
and the Heisenberg picture is used. We will assume that
the coupling between the photons and the detector is
weak, so the photon detection does not affect the dy-
namics of the intracavity photons. According to the
study by Madsen and Lodahl [45], ĉd(t)∝ ĉ(t) for a
nanocavity, so we can calculate the G(1)(r, r ;  τ) using
operators for the cavity field ĉ(t), ĉ†(t), up to a constant
factor in the result. Note that the lower limit of the in-
tegral over t is set to be t � 0, which requires that no
photons exist before t � 0.

In the Heisenberg–Langevin approach, an operator
in the Heisenberg picture can be expressed through
Schrödinger’s operators using the effective Hamiltonian

Ĥeff , which contains the anti-Hermitian part, see the
Appendix. At the same time, the inhomogeneous term
proportional to the noise sources should be added.
Including these noise terms in the solution for the field
operators when calculating the emission spectra is
equivalent to taking into account the detection of thermal
radiation which seeps into the cavity from outside and
spontaneous emission resulting from thermal excitation
of an atom. We assume that the reservoir temperature in
energy units is much lower than W and ℏω so that the
contribution of these noise terms to the emission spectra
can be neglected (although noise is still needed to pre-
serve the norm).

Then, the average correlator 〈ĉ†(t)ĉ(t + τ)〉 is
expressed as follows:

〈ĉ†(t)ĉ(t + τ)〉
� 〈Ψ(t � 0)∣∣∣∣eiĤeff

† t/ℏĉ†e−iĤeff t/ℏeiĤeff
† (t+τ)/ℏĉe−iĤeff(t+τ)/ℏ∣∣∣∣Ψ(t � 0)〉

� 〈Ψ(t)∣∣∣∣ĉ†e−iĤeff t/ℏeiĤeff
† (t+τ)/ℏĉ∣∣∣∣Ψ(t + τ)〉, (43)

where |Ψ(t)〉 is the state vector of the system which we
found in the previous subsection. It can be written as
|Ψ(t)〉 � ∑∞

n�0Cn(t)|n〉
∣∣∣∣Ψα, e

n (t)〉, where ∣∣∣∣Ψα, e
n (t)〉 is the part

describing phonons and electrons. Therefore,
Consider a simple example when the initial state is

|0〉|0〉|1〉. Within the RWA, the system can only reach states

a b

Figure 4: (a) Normalized field intensity,
〈Ψ|Ê2|Ψ〉/|E(r)|2, and (b) normalized atom
energy 〈Ψ|Ĥa|Ψ〉/W a function of time in
units of the generalized Rabi frequency
Ω(1,1)
R . Here, γ110 + γ001 � 0.3Ω(1,1)

R .
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|0〉|0〉|1〉, |1〉|1〉|0〉, and |0〉|0〉|0〉. After acting with ĉ on a
state of the system, a new state |1 〉 |0〉|0〉 can also appear,
but it cannot evolve into other states. So, in this case, we
have the following:

〈ĉ†(t)ĉ(t + τ)〉
� (C*

1(t)〈0| 〈Ψα, e
1 (t)∣∣∣∣)e−iĤeff t/ℏeiĤeff

† (t+τ)/ℏ(C1(t + τ)|0〉∣∣∣∣Ψα, e
1 (t + τ) 〉 )

� (C*
110(t)〈1|〈0|〈0|)e−iĤeff t/ℏeiĤeff

† (t+τ)/ℏ(C110(t + τ)|1〉|0〉|0〉)
� C*

110(t)C110(t + τ) exp [iω1,0τ − γ100(2t + τ)],
(45)

where we used Eqs. (A32) and (A33) and assumed that the
noise for state |1 〉 |0〉|0〉 has zero correlator. Since

C110(t) � i sin (∣∣∣∣∣∣Ω̃(1,1)
R

∣∣∣∣∣∣t) exp [− iω1,1t − γ110 + γ001
2

t], (46)

we obtain

〈ĉ†(t)ĉ(t + τ)〉 � sin (∣∣∣∣∣∣Ω̃(1,1)
R

∣∣∣∣∣∣t) sin (∣∣∣∣∣∣Ω̃(1,1)
R

∣∣∣∣∣∣(t + τ))
 exp [−iωτ] exp [− γac(2t + τ)], (47)

where we introduced the notation γac ≡ γ100 + γ110+γ001
2 . Then,

the power spectrum is found to be

S(r, ν)∝1
π
|E(r)|2

∣∣∣∣∣∣Ω̃(1,1)
R

∣∣∣∣∣∣2
4γac(∣∣∣∣∣∣Ω̃(1,1)

R

∣∣∣∣∣∣2 + γ2ac)
Re ⎡⎢⎢⎣ 2γac − i(ν − ω)[γac − i(ν − ω)]2 + ∣∣∣∣∣∣Ω̃(1,1)

R

∣∣∣∣∣∣2⎤⎥⎥⎦. (48)

The normalized power spectra are shown in Figure 5 for

various values of
∣∣∣∣∣∣Ω̃(1,1)

R

∣∣∣∣∣∣/γac. For ∣∣∣∣∣∣Ω̃(1,1)
R

∣∣∣∣∣∣ < γac, the spectrum
has a single maximum at zero detuning ν � ω. For∣∣∣∣∣∣Ω̃(1,1)

R

∣∣∣∣∣∣ > γac, the spectra are split and their maxima (same

value for all spectra) are reached at detunings given by

(ν − ω)2 �
∣∣∣∣∣∣Ω̃(1,1)

R

∣∣∣∣∣∣2 − γ2ac. Therefore, to reach the strong

coupling regime, the Rabi frequency
∣∣∣∣∣∣Ω̃(1,1)

R

∣∣∣∣∣∣ has to exceed

the combination of the decoherence rates denoted by γac.
Note that in a standard Lindblad formalism, γ param-

eters are inverse decay times for the populations or field
energies, i.e., they are related to the quantities which are
quadratic with respect to the state vector within the

Schrödinger’s approach. That is why our γ’s in the sto-
chastic equation of evolution, which is linear with respect
to the state vector, correspond to the Lindblad γ’s divided
by 2.

4.4 Relaxation rates

Finally, we give explicit expressions for the relaxation
constants γαn0 and γαn1. They were derived in Appendix
using the Lindblad master equation approach and
assuming statistical independence of “partial” dissipa-
tive reservoirs for the atomic, EM, and phonon sub-
systems. Within the model which neglects purely elastic
dephasing processes, the result is as follows:

γαn0 �
γ
2
NTa

1 + μω

2
[nTem

ω (n + 1) + (nTem
ω + 1)n]

+ μΩ

2
[nTp

Ω (α + 1) + (nTp
Ω + 1)α], (49)

γαn1 �
γ
2
NTa

0 + μω

2
[nTem

ω (n + 1) + (nTem
ω + 1)n]

+ μΩ

2
[nTp

Ω (α + 1) + (nTp
Ω + 1)α], (50)

〈ĉ†(t)ĉ(t + τ)〉
� ( ∑

∞

n�0
C*
n(t)〈n| 〈Ψα, e

n (t)∣∣∣∣)ĉ†e−iĤeff t/ℏeiĤeff
† (t+τ)/ℏĉ( ∑

∞

n�0
Cn(t + τ)|n〉∣∣∣∣Ψα, e

n (t + τ)〉 )
� (∑

n�0

∞ ��
n

√
C*
n(t)〈n − 1|〈Ψα, e

n (t)∣∣∣∣)e−iĤeff t/ℏeiĤeff
† (t+τ)/ℏ( ∑

∞

n�0

��
n

√
Cn(t + τ)|n − 1〉

∣∣∣∣Ψα, e
n (t + τ)〉 )

. (44)

Figure 5: The emission spectra for
∣∣∣∣∣∣Ω̃(1,1)

R

∣∣∣∣∣∣/γac equal to 0.5, 1, 2, and
5. All spectra are normalized by the same constant.
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where γ,μω, andμΩ are partial relaxation rates of the atomic,
photon, and phonon subsystems, respectively; NTa

0 � 1

1+e−
W
Ta
,

NTa
1 � e

−W
Ta

1+e−
W
Ta
, nTem

ω � 1

e
ℏω
Tem−1

, nTp
Ω � 1

e
ℏΩ
Tp−1

are their occupation

numbers at thermal equilibrium; Ta, em, p are tempera-
tures of partial atom, photon, and phonon reservoirs in
energy units, respectively. As a reminder, the atom en-
ergy is equal to 0 in state |0〉 and W in state |1〉.

If all reservoirs are at zero temperature, we obtain the
following:

γαn0 � μω

2
n + μΩ

2
α, γαn1 �

γ
2
+ μω

2
n + μΩ

2
α. (51)

Eq. (51) shows that γ000 � 0, validating our choice earlier in
this section. We also obtain physically intuitive expres-
sions for γ110 and γ001: γ110 � μω

2 + μΩ
2 , γ001 � γ

2.
Purely elastic processes which lead to the atomic deco-

herence with characteristic time 1/γel can be taken into ac-
countbyadding γel to the relaxationconstantγ001.At the same

time, one has tomodify the noise correlatorR001(t + ξ )R*
001(t)

by adding to it the quantity 2γelℏ
2|C001|2. This prescriptionwill

lead to correct dynamics of the observables; see the last sec-
tion in the Appendix. Note that the population relaxation
times will not depend on γel as it should be.

The above expressions allow one to quickly estimate
the feasibility of reaching strong coupling regime and
quantum entanglement when all fields are quantized. In a
semiconductor dielectric cavity at near-infrared wave-
lengths ∼1 μm for the refractive index ∼3.5 and a typical
dipolematrix element of the interband optical transition d/
e∼0.5 nm, the maximum vacuum Rabi frequency is of the
order of 100–200 μeV [13, 14], diffraction limited by the
cavity size. This sets the upper limit for the sum of relax-

ation rates γac ≡ γ100 + γ110+γ001
2 introduced above. In the ex-

periments with single QDs [13, 14], the phonons were not
involved and the sumof relaxation rates in the electron and
cavity subsystems was kept below 100 μeV at low tem-
peratures, allowing them to reach the strong coupling
regime.

In plasmonic cavities, a sub-nm field localization can
be achieved, leading to Rabi frequencies of the order of
100–200 meV for the same order of the transition dipole
moments. However, the combined relaxation rate is much
higher, up to ∼100 meV, typically dominated by cavity
losses. Here, the strong coupling of plasmons to a single
quantum emitter has been achieved in multiple experi-
ments, as discussed in the Section 1. However, reaching the
quantum regime for the EM and especially the phonon
fields remains a challenge. It could be beneficial to
consider longer wavelength emitters with the optical

transition at the midinfrared and even terahertz wave-
lengths. Indeed, with increasing wavelength, the plasmon
losses go down and the matrix element of a dipole-allowed
transition increases, whereas the plasmon localization
stays largely the same.

5 Classical acoustic or mechanical
oscillations

Quantization of acoustic or mechanical oscillations is very
difficult to achieve because of their low energy of the quan-
tum. Inmost experiments, they remain classical and therefore
cease to be an independent degree of freedom. Instead, their
amplitude becomes an external time-dependent parameter,
like an external pumping. In this case, the RWAHamiltonian
is given by Eq. (16). It depends only on quantum operators

σ̂, σ̂† and ĉ, ĉ†; therefore, the state vector has to be expanded
over the basis states |n〉 |0〉 and |n〉 |1〉:

Ψ � ∑
∞

n�0
(Cn0|n〉|0〉 + Cn1|n〉|1〉). (52)

Substituting Eq. (52) in the Schrödinger equation with the
Hamiltonian (16), we again get separation into a block of
two equations,

Ċn0 � −iωnCn0 + i
R*

ℏ
eiΩtC(n−1)1

��
n

√
, (53)

Ċ(n−1)1 � −i(ωn−1 +W
ℏ
)C(n−1)1 + i

R

ℏ
e−iΩtCn0

��
n

√
, (54)

and a separate equation for the amplitude of the ground
state |0〉 |0〉 of the system:

Ċ00 � −iω0C00, (55)

where ωn � ω(n + 1
2) andR � [d(Q ⋅ ∇)E]r�ra (see Eq. (16)).

After making the substitution C(n−1)1 � G(n−1)1e−iΩt, Eqs. (53)
and (54) give the equations similar in form to Eq. (19):

d
dt
( Cn0

G(n−1)1
) + ( iωn −iΩ(n)*

R

−iΩ(n)
R iωn − iΔ

)( Cn0

G(n−1)1
) � 0, (56)

where

Ω(n)
R � R

ℏ

��
n

√
,  Δ � Ω + ω −W

ℏ
,  ωn − Δ � ωn−1 +W

ℏ
.

Eqs. (55) and (56) are different from Eqs. (19) and (20) only
in one aspect: they do not contain the index of the quantum
state of the phonon field, whereas the Rabi frequency de-
pends on the amplitude of classical acoustic oscillations
Q(ra), see Section 2.5. Obviously, the solution to Eqs. (55)
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and (56) will have the same form and the expressions (26),
(27) for the observables will remain the same, after drop-
ping the index of the quantum phonon state and redefining
the Rabi frequency.

Dissipation due to coupling to a reservoir can be
included using the stochastic equation of evolution of the
state vector, see the Appendix. The corresponding equa-
tions are again similar to those for a fully quantumproblem
given by Eqs. (28) and (29):

Ċ00 + i(ω0 + γ00)C00 � − i
ℏ
R00, (57)

d
dt
( Cn0

C(n−1)1
) +⎛⎝ iωn + γn0 −iΩ(n)*

R

−iΩ(n)
R iωn − iΔ + γ(n−1)1

⎞⎠( Cn0

C(n−1)1
)

� − i
ℏ
( Rn0

R(n−1)1
).

(58)

Since the acoustic field is now a given external pumping,
the relaxation constants should not depend on the pa-
rameters of a phonon reservoir. They can be obtained after
obvious simplification of Eqs. (49) and (50):

γn0 �
γ
2
NTa

1 + μω

2
[nTem

ω (n + 1) + (nTem
ω + 1)n], (59)

γn1 �
γ
2
NTa

0 + μω

2
[nTem

ω (n + 1) + (nTem
ω + 1)n], (60)

All expressions for the state vector and observables can be
obtained from the corresponding expressions in Section 4
after dropping the index α of the quantum state of the
phonon field and redefining the frequency of Rabi
oscillations.

6 Separation and interplay of the
parametric and one-photon
resonance

For an electron system coupled to a EM cavity mode and
dressed by a phonon field, the phonon frequency Ω can be
much lower than the optical frequency. In this case, the

overlap of the parametric (three-wave) resonance ω ± Ω ≈
W
ℏ and the one-photon (two-wave) resonance ω ≈ W

ℏ can be

an issue.
Here, we derive the analytic criteria for the separation

of these resonances and show numerically what happens
when they overlap. Throughout this section, we neglect
losses. Since the parametric and one-photon resonances
are separated by the phonon frequencyΩ, the losses can be

neglected when the value of Ω exceeds the sum of the
spectral widths of the EM cavity mode and the electron
transition which originate from dissipation and decoher-
ence. If this condition is violated, resonances overlap
strongly and their separation is impossible anyway.

The separation criterion imposes certain restrictions
on the Rabi frequencies of the two resonances. To derive
these restrictions, we neglect dissipation and retain in the
Hamiltonian (11) both the RWA terms near the parametric

resonance ω ± Ω ≈ W
ℏ and the terms near a one-photon

resonance ω ≈ W
ℏ . Since the result will be almost the same

whether the phonon field is quantized or classical, we will
consider the classical phonon field to keep the expressions
a bit shorter. The resulting Hamiltonian is given as follows:

Ĥ � ℏω(ĉ†ĉ + 1
2
) +W σ̂†σ̂ − (χ +Re−iΩt)σ̂†ĉ

− (χ* +R*eiΩt)σ̂ĉ†, (61)

where χ � (d ⋅ E)r�ra andRwas defined in Eq. (16);Q is now
a complex-valued amplitude of classical phonon oscilla-
tions. The value of Ω in Eq. (61) can be both positive and
negative, corresponding to the choice of an upper or lower
sign in the parametric resonance condition ω ± Ω ≈ W

ℏ . The
change of sign in Ω corresponds to replacing Q with Q* in
the expression for R.

The state vector should be sought in the form of Eq.
(52). After substituting it into the Schrödinger equation, we
obtain coupled equations for the amplitudes of basis states
|n〉|0〉, |n − 1〉|1〉:

Ċn0 + iωnCn0 − i
ℏ
(χ* +R*eiΩt) ��

n
√

C(n−1)1 � 0, (62)

Ċ(n−1)1 + i(ωn−1 +W
ℏ
)C(n−1)1 − i

ℏ
(χ +Re−iΩt) ��

n
√

Cn0 � 0, (63)

and

Ċ00 + iω0C00 � 0, (64)

where ωn � ω(n + 1
2). To compare these equations with

Eqs. (53) and (54), it is convenient to assume that the sys-
tem is exactly at one of the resonances and study the
behavior of the solution with increasing the detuning from
another resonance. For example, we assume an exact
parametric resonanceω + Ω � W

ℏ . In this case, the detuning

from the two-wave resonance is W
ℏ − ω � Ω. After the sub-

stitution Cn0 � Gn0e−iωnt and C(n−1)1 � G(n−1)1e−i(ωn−1+Wℏ )t, we
obtain from Eqs. (62) and (63) that

Ġn0 − i
ℏ
(χ* +R*eiΩt) ��

n
√

G(n−1)1e−i(W
ℏ−ω)t � 0, (65)
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Ġ(n−1)1 − i
ℏ
(χ +Re−iΩt) ��

n
√

Gn0ei(W
ℏ−ω)t � 0. (66)

If we neglect at first the perturbation of the system in
the vicinity of the two-wave resonance, the solution to Eqs.
(65) and (66) at χ � 0 is

( Gn0

G(n−1)1
) � AeiΩ

(3)
R t( 1

1
) + Be−iΩ

(3)
R t( 1

−1), (67)

where Ω(3)
R � 1

ℏR
��
n

√
is the Rabi frequency of the parametric

resonance and A and B are arbitrary constants. The state
described by Eq. (67) is obviously entangled.

To write the formal solution to Eqs. (65) and (66), we
make another substitution of variables: Gn0 ± G(n−1)1 � G±.
The result is

Ġ± ∓ iΩ(3)
R G± � iΩ(2)*

R e−iΩtGn0 ± iΩ(2)
R eiΩtG(n−1)1,

where Ω(2)
R � 1

ℏ χ
��
n

√
is the Rabi frequency corresponding to

the one-photon (two-wave) resonance. The solution to the
last equation is given as follows:

G± � 2(A,B)e±iΩ(3)
R t + ie±iΩ

(3)
R t ∫

t

0

e∓iΩ
(3)
R τ[Ω(2)*

R e−iΩτGn0(τ)

± Ω(2)
R eiΩτG(n−1)1(τ)]dτ. (68)

Considering the terms proportional toΩ(2)
R as perturbation,

we seek the solution as

( Gn0

G(n−1)1
) � AeiΩ

(3)
R t( 1

1
) + Be−iΩ

(3)
R t( 1

−1) + ( δGn0

δG(n−1)1
).

To estimate the magnitude of the perturbation, we sub-
stitute Eq. (67) into Eq. (68). After some algebra, we obtain

that under the condition Ω(3)
R ≪ Ω, the magnitude of the

perturbation is given as follows:

δGn0, (n−1)1 ∼
∣∣∣∣∣∣∣∣∣Ω(2)

R

Ω

∣∣∣∣∣∣∣∣∣Gn0, (n−1)1,

whereas if Ω(3)
R ∼ Ω, the magnitude of the perturbation is

given as follows:

δGn0, (n−1)1 ∼
∣∣∣∣∣∣∣∣∣Ω(2)

R

Ω(3)
R

∣∣∣∣∣∣∣∣∣Gn0, (n−1)1.

To summarize this part, if both Rabi frequencies Ω(3)
R ,

Ω(2)
R ≪ Ω, the two resonances can be treated independently

for any relationship between the magnitudes of Ω(3)
R and

Ω(2)
R . If the above inequality is violated, one can neglect one

of the resonances only if its associated Rabi frequency is
much lower than the Rabi frequency of another resonance.
These restrictions are obvious from qualitative physical
reasoning: either the magnitudes of the Rabi splittings are

much smaller than the distance between resonances or one
of the splittings is much weaker than another one.

When the effect of the neighboring resonance is non-
negligible, it can still be taken into account in the solution.
Indeed, consider the solution to Eqs. (62) and (63), taking
into account only the two-wave resonance, i.e., taking
R � 0. After obvious substitutions, we arrive at

⎛⎝ Cn0

C(n−1)1
⎞⎠ � Ae

−i(ωn−Ω2+
������
Ω2
4 +
∣∣∣∣Ω(2)

R

∣∣∣∣2√ )t ×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−Ω
2
+

����������
Ω2

4
+ ∣∣∣∣Ω(2)

R

∣∣∣∣2√
Ω(2)

R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+Be−i(ωn−1+Wℏ+Ω2−
������
Ω2
4 +
∣∣∣∣Ω(2)

R

∣∣∣∣2√ )t ×⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ω(2)

R

−Ω
2
−

����������
Ω2

4
+ ∣∣∣∣Ω(2)

R

∣∣∣∣2√
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠;

(69)
In the limit Ω≫ Ω(2)

R , we obtain the following:

( Cn0

C(n−1)1
)≈Ae−i(ωn+|Ω(2)R |2

Ω )t⎛⎜⎜⎜⎜⎜⎜⎜⎝ 1∣∣∣∣Ω(2)
R

∣∣∣∣
Ω

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ Be

−i(ωn−1+Wℏ−
|Ω(2)R |2

Ω )t⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
∣∣∣∣Ω(2)

R

∣∣∣∣
Ω

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (70)

It is clear from Eq. (70) that the entanglement of states
described by Cn0 and C(n−1)1 is determined by a small

parameter

∣∣∣∣Ω(2)
R

∣∣∣∣
Ω , whereas at exact resonance, the entan-

glement is always stronger, see Eq. (67). Therefore, when

Ω(2)
R ≪ Ω, we can neglect the contribution of the two-

photon resonance to the entanglement of states |n〉|0〉 and
|n − 1〉 |1〉. However, it follows from Eq. (69) that the two-
wave resonance shifts the eigenfrequencies of the system.
Qualitatively, these shifts can be included by putting χ � 0
in Eqs. (62) and (63) but replacing the eigenfrequencies ωn

and ωn−1 according to Eq. (70):

ωn ⇒ ωn +
∣∣∣∣Ω(2)

R

∣∣∣∣2
Ω

,  ωn−1 +W
ℏ
⇒ ωn−1 +W

ℏ
−
∣∣∣∣Ω(2)

R

∣∣∣∣2
Ω

. (71)

If Ω(3)
R ≪

∣∣∣∣Ω(2)
R

∣∣∣∣2
Ω , these shifts can be significant in order to

interpret the spectra near the three-wave parametric resonance.
The same reasoning can be carried out to analyze the

effect of a detuned three-wave resonance on the solution
near the two-wave resonance.
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These results can be verified by an exact numerical
solution of Eqs. (62) and (63) for given initial condi-
tions. After that, we can obtain the spectra of Cn0 and
C(n−1)1. Since they are oscillating functions, their spectra
form discrete lines at frequencies which we denote
as ωosc.

As an example, we select the case of n � 1, set∣∣∣∣∣Ω(2)
R

∣∣∣∣∣ � ∣∣∣∣∣Ω(3)
R

∣∣∣∣∣ � 0.1Ω, and choose the initial condition as

Cn0(0) � 0 and C(n−1)1(0) � 1. The frequencies ωosc of the
spectral lines for Cn0 and C(n−1)1 are shown in Figure 6.
Their values are shifted byωosc,0 � ω1|ω�W/ℏ. The area of the
dot for each spectral line is proportional to the square of its
amplitude. If a marker is not visible, it means the corre-
sponding line is very weak and can be neglected. The
anticrossing can be seen at both the one-photon resonance
and parametric resonance.

As an illustration of the violation of the condition for
resonance separation, we show the oscillation frequencies for∣∣∣∣∣Ω(2)

R

∣∣∣∣∣ � ∣∣∣∣∣Ω(3)
R

∣∣∣∣∣ � 0.5 Ω in Figure 7. Here, the anticrossing pic-

ture of isolated resonances is smearedandcannotbeobserved.

7 Control of entangled states

In order to control the quantum state of the system, turn the
entanglement on/off, read or write information into a
qubit, or implement a logic gate, one has to vary the pa-
rameters of a system, for example, the detuning from
resonance, the field amplitude of the EM mode at the atom
position, or the intensity of a classical acoustic pumping.
The analytic results obtained in previous sections can be
readily generalized when the variation of a parameter is

adiabatic, i.e., slower than the optical frequencies ω or W
ℏ .

Since the space is limited, the time-dependent problemwill
be considered elsewhere. Here, we consider just one
example, namely turning on/off of a classical acoustic

pumping q � Q(r)e−iΩt + Q*(r)eiΩt.

Formaximal control, it is beneficial to place an atom at
the point where E(r � ra)→ 0, whereas (Q ⋅ ∇)Er�ra is
maximized. The equations of motion for quantum state
amplitudes were derived in Section 5, see Eqs. (53)–(55).

Consider an exact parametric resonance ω + Ω � W
ℏ for

simplicity, when

ωn � ωn−1 +W
ℏ
.

The solution to Eqs. (53)–(55)when the acoustic pumping is
turned off is given as follows:

Ψ � C00(0)e−iω0t|0〉|0〉 + ∑
∞

n�1
(Cn0(0)e−iωnt|n〉|0〉

+ C(n−1)1(0)e−i(ωn−1+Wℏ )t|n − 1〉|1〉)
The solution when the acoustic pumping is turned on

is given as follows:

Ψ � C00(0)e−iω0t|0〉|0〉 ∑
∞

n�1
[(Ane

−i
∣∣∣∣Ω(n)

R

∣∣∣∣t + Bne
i
∣∣∣∣Ω(n)

R

∣∣∣∣t)e−iωnt|n〉|0〉

+(− Ane
−i
∣∣∣∣Ω(n)

R

∣∣∣∣t + Bne
i
∣∣∣∣Ω(n)

R

∣∣∣∣t)eiθ−i(ωn−1+Wℏ )t|n − 1〉|1〉]
(72)

Assume that the initial quantum state before the
pumping was turned on was not entangled, for example,
an atomwas in an excited state and there were no photons:

Ψ � e−i(ω0+Wℏ )t|0〉|1〉.
If the acoustic pumping is turned on at t � 0, the quantum
state becomes entangled:

Ψ � ie−iω1t−iθsin(∣∣∣∣Ω(1)
R

∣∣∣∣t)|1〉|0〉 + e−i(ω0+Wℏ )tcos(∣∣∣∣Ω(1)
R

∣∣∣∣t)|0〉|1〉,
(73)

Then the acoustic pumping can be turned off. Depending
on the turnoff moment of time, one can obtain various
entangled photon–atom states, e.g., Bell states, etc. The
above reasoning is validwhen the turn-on/off rate is slower
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0.5a b Figure 6: The frequenciesωosc of the spectral
lines for Cn0 (left panel) and C(n−1)1 (right
panel), with n � 1, as functions of the
photon frequency ω. The photon
frequencies are shifted by W/ℏ, and the
positions of spectral lines ωosc are shifted
by ωosc,0 � ω1|ω�W/ℏ. The area of a marker is
proportional to the amplitude squared of
the spectral line. Both axes are in units ofΩ.
The parameters are

∣∣∣∣∣Ω(2)
R

∣∣∣∣∣ � ∣∣∣∣∣Ω(3)
R

∣∣∣∣∣ � 0.1 Ω,
and the initial condition is Cn0(0) � 0 and
C(n−1)1(0) � 1.
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than the optical frequencies and the detuning from the two-

wave resonance ω � W
ℏ .

8 Conclusions

In conclusion, we showed how the entanglement in a
system of a fermionic quantum emitter coupled to a
quantized EM field in a nanocavity and quantized phonon
or mechanical vibrational modes emerges in the vicinity of
a parametric resonance in the system. We developed ana-
lytic theory describing the formation and evolution of
entangled quantum states, which can be applied to a broad
range of cavity quantum optomechanics problems and
emerging nanocavity strong coupling experiments. The
model includes decoherence effects due to coupling of the
fermion, photon, and phonon subsystems to their dissi-
pative reservoirs within the stochastic evolution approach,
which is derived from the Heisenberg–Langevin
formalism. We showed that our approach provided the
results for physical observables equivalent to those ob-
tained from the density matrix equations with the relaxa-
tion operator in Lindblad form. We derived analytic
expressions for the time evolution of the quantum state and
observables and the emission spectra. The limit of a clas-
sical acoustic pumping, the control of entangled states,
and the interplay between parametric and standard two-
wave resonances were discussed.
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Appendix A
The stochastic equation of evolution
for the state vector
The description of open quantum systems within the
stochastic equation of evolution for the state vector is
usually formulated for a Monte Carlo–type numerical
scheme, e.g., the method of quantum jumps [23, 25]. We
developed an approach suitable for analytic derivations.
Our stochastic equation of evolution is basically the
Schrödinger equation modified by adding a linear
relaxation operator and the noise source term with
appropriate correlation properties. The latter are related
to the parameters of the relaxation operator in such a way
that the expressions for the statistically averaged
quantities satisfy certain physically meaningful
conditions.

The protocol of introducing the relaxation operator
with a corresponding noise source term to the quantum
dynamics is well known in the Heisenberg picture, where
it is called the Heisenberg–Langevin method [23, 34, 42].
We develop a conceptually similar approach for the
Schrödinger equation. Here, we derive the general form of
the stochastic equation of evolution from the Heisenberg–
Langevin equations and track how certain physically
reasonable constraints on the observables determine the
correlation properties of the noise sources.
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Figure 7: The frequencies ωosc of the spectral
lines for Cn0 (left panel) and C(n−1)1 (right
panel), with n � 1. The notations are the
same as in Figure 6. The parameters are∣∣∣∣∣Ω(2)

R

∣∣∣∣∣ � ∣∣∣∣∣Ω(3)
R

∣∣∣∣∣ � 0.5 Ω, and the initial
condition is Cn0(0) � 0 and C(n−1)1(0) � 1.
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1. From Heisenberg–Langevin
equations to the stochastic
equation for the state vector

The Heisenberg–Langevin equation for the operator ĝ of a
certainobservablequantity takes the following form [23, 34, 42]:

d
dt

ĝ � i
ℏ
[Ĥ, ĝ] + R̂(ĝ) + L̂g(t), (A1)

where R̂(ĝ) is the relaxation operator, L̂g(t) is the Lan-
gevin noise source satisfying L̂g(t) � 0, where the bar
means statistical averaging. For given commutation re-
lations of the two operators, [ĝ1, ĝ2] � C, where C is a
constant, correct Langevin sources should ensure the
conservation of commutation relations at any moment of
time, despite the presence of the relaxation operator in
Eq. (A1), see [34, 43, 44].

The group of terms i
ℏ [Ĥ, ĝ] + R̂(ĝ) can often be written

as follows:

i
ℏ
[Ĥ, ĝ] + R̂(ĝ) � i

ℏ
(Ĥeff

† ĝ − ĝĤeff), (A2)

where Ĥeff is a non-Hermitian operator. For example, if the
relaxation operator describes dissipation with relaxation
constant γ so that ĝ ∝ e−γt, then Ĥeff � Ĥ − iℏ γ

2 1̂, where 1̂ is
a unit operator. Note that in the master equation for the
density matrix, the relaxation is often introduced in a
conceptually similar way [25], [Ĥ, ρ̂]⇒ Ĥeff ρ̂ − ρ̂Ĥeff

† ,
which is however slightly different from the form used in
Eq. (A2): [Ĥ, ĝ]⇒ Ĥeff

† ĝ − ĝĤeff . The difference is because
the commutator of an unknown operator with Hamiltonian
enters with opposite sign in the master equation as
compared to the Heisenberg equation.

Nowconsider the transition fromtheHeisenberg–Langevin
equation to the stochastic equation for the state vector. The key
point is to assume that there exists the operator of evolution
Û(t), which is determined not only by the system parameters
but also by the properties of the reservoir. This operator
determines the evolution of the state vector:

|Ψ(t)〉 � Û(t)|Ψ0〉, 〈Ψ(t)| � 〈Ψ0|Û†(t), (A3)

where Ψ0 � Ψ(0). Hereafter, we will denote the operators
in the Schrödinger picture with index “s” to distinguish
them from the Heisenberg operators. An observable can be
calculated as follows:

g(t) � 〈Ψ(t)| ĝS|Ψ(t)〉 � 〈Ψ0| ĝ(t)|Ψ0〉

which leads to

ĝ(t) � Û†(t) ĝSÛ(t), (A4)

Since the substitution of Eqs. (A3) and (A4) into the
standard Heisenberg equation leads to the standard
Schrödinger equation, it makes sense to apply the same
procedure to theHeisenberg–Langevin equation in order to
obtain the “stochastic variant” of the Schrödinger
equation. The solution of the latter should yield the
expression for an observable,

g(t) � 〈Ψ(t)|ĝS|Ψ(t)〉,
which is different from the standard expression by addi-
tional averaging over the noise statistics.

Note that an open system interacting with a reservoir is
generally in a mixed state and should be described by the
density matrix. We are describing the state of the system
with a state vector which has a fluctuating component. For
example, in a certain basis |α〉, the state vector will be
Cα(t) � Cα + C̃α, where the fluctuating component is
denoted with a wavy bar. The elements of the density
matrix of the corresponding mixed state are
ραβ � CαC*

β � Cα ⋅ C*
β + C̃α ⋅ C̃β

*.
The solution to the Heisenberg–Langevin equation

can be expressed through the evolution operator Û(t)
using Eq. (A4). The noise source terms should be chosen
to ensure the conservation of commutation relations at
any moment of time, despite the presence of the
relaxation operator. Since commutation relations
between any two operators are conserved if and only if
the evolution operator Û(t) is unitary, a correct noise
source in the Heisenberg–Langevin equation will
automatically ensure the condition Û†Û � 1̂.

We implement the above protocol. Substituting Eq. (A4)
together with Ĥeff � Û†Ĥeff, SÛ and Ĥeff

† � Û†Ĥeff, S
† Û into

Eqs. (A1) and (A2) and using Û†Û � 1̂, we arrive at the
following:

( d
dt
Û† − i

ℏ
Û†Ĥeff, S

† )ĝSÛ + Û†ĝS( d
dt

Û + i
ℏ
Ĥeff, SÛ) � L̂g

(A5)

Next, we introduce the operator F̂, defined as follows:

L̂g � 2Û†ĝSF̂ (A6)

For the operator L̂g†, Eq. (A6) gives
L̂g† � 2F̂†(Û†ĝS)† � 2F̂†ĝS

† Û. Since ĝ and ĝS are Hermitian
operators, L̂g has to be Hermitian too. (One can develop the
Heisenberg–Langevin formalism for non-Hermitian
operators too, for example, creation or annihilation
operators, but the derivation becomes longer.) Then the
operator L̂g can be “split” between the two terms on the
left-hand side of Eq. (A5) using the following relationship:
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L̂g � Û†ĝSF̂ + F̂†ĝSÛ (A7)

Substituting the latter into Eq. (A5), we obtain the
following:

( d
dt
Û† − i

ℏ
Û†Ĥeff, S

† −F̂†)ĝSÛ + Û†ĝS( d
dt

Û + i
ℏ
Ĥeff, SÛ − F̂)

� 0.

For simplicity, we will assume operator Ĥeff to be constant
with time, i.e., we will not differentiate between Ĥeff and
Ĥeff, S.

The last equation is satisfied for sure if

d
dt

Û � − i
ℏ
ĤeffÛ + F̂,

d
dt
Û† � i

ℏ
Û†Ĥeff

† +F̂†. (A8)

Multiplying Eq. (A8) by the initial state vector |Ψ0〉 from the
right and from the left, we obtain the stochastic equation
for the state vector and its Hermitian conjugate:

d
dt

|Ψ〉 � − i
ℏ
Ĥeff |Ψ〉 − i

ℏ
|R(t)〉 (A9)

d
dt

〈Ψ| � i
ℏ
〈Ψ|Ĥeff

† + i
ℏ
〈R(t)| (A10)

where we introduced the notations iℏF̂|Ψ0〉⇒ |R(t)〉,
−iℏ〈Ψ0|F̂† ⇒ 〈R(t)|. We will also need Eqs. (A9) and (A10)
in a particular basis |α〉:

d
dt
Cα � − i

ℏ
∑
ν
(Ĥeff)ανCν − i

ℏ
Rα, (A11)

d
dt
C*
α �

i
ℏ
∑
v
C*
ν(Ĥeff

† )
να
+ i
ℏ
R*
α, (A12)

where Rα � 〈α|R〉, (Ĥeff)αβ � 〈α|Ĥeff

∣∣∣∣β〉.
Applying the same procedure to the standard

Heisenberg Eq. (1), we obtain that in Eqs. (A9) and (A10):
Ĥeff ≡ Ĥeff

† � Ĥ and |R t( )⟩ ≡ 0, which corresponds to the
standard Schrödinger equation and its Hermitian conjugate.

Note that intermediate relations (A8) for the
evolution operator and in particular operator F̂ should
not depend on the choice of a particular physical
observable g in the original Heisenberg–Langevin Eq.
(A1). We assume that the Langevin operators in the
original equation do not contradict this physically
reasonable requirement.

In general, statistical properties of noise that ensure
certain physicallymeaningful requirements impose certain
constraints on the noise source |R〉 which enters the right-
hand side of the stochastic equation for the state vector. In
particular, it is natural to require that the statistically
averaged quantity |R〉 � 0. We will also require that the
noise source |R〉has the correlation properties that preserve

the norm of the state vector averaged over the reservoir
statistics:

〈Ψ(t)|Ψ(t)〉 � 1. (A13)

2. Noise correlator
The solution to Eqs. (A9) and (A10) can be formally written
as follows:

|Ψ〉 � e − i
ℏĤeff t|Ψ0〉 − i

ℏ
∫
t

0

e
i
ℏĤeff(τ−t)|R(τ)〉dτ, (A14)

〈Ψ| � 〈Ψ0| ei
ℏĤeff

† t + i
ℏ
∫
t

0

〈R(τ)|e− i
ℏĤeff

† (τ−t)dτ, (A15)

In the basis |α〉, Eqs. (A14) and (A15) can be transformed
into the following equations:

Cα � 〈α| e− i
ℏĤeff t|Ψ0〉 − i

ℏ
∫
t

0

〈α|ei
ℏĤeff(τ−t)|R(τ)〉dτ, (A16)

C*
α � 〈Ψ0| ei

ℏĤeff
†t|α〉 + i

ℏ
∫
t

0

〈R(τ)|e− i
ℏĤeff

† (τ−t)|α〉dτ. (A17)

In order to calculate the observables, we need to know
the expressions for the averaged dyadic combinations of
the amplitudes. We can find them using Eqs. (A11) and
(A12):

d
dt

CαC*
β � − i

ℏ
∑
v
(H(h)

αν CνC*
β − CαC*

νH
(h)
νβ )

− i
ℏ
∑
v
(H(ah)

αν CνC*
β + CαC*

νH
(ah)
νβ )

+ ( − i
ℏ
C*
βRα + i

ℏ
R*
βCα), (A18)

where we separated the Hermitian and anti-Hermitian
components of the effective Hamiltonian:
〈α|Ĥeff

∣∣∣∣β〉 � H(h)
αβ + H(ah)

αβ . Substituting Eqs. (A16) and (A17)
into the last term in Eq. (A18), we obtain the following:

− i
ℏ
C*
βRα + i

ℏ
CαR*

β �
1

ℏ2
∫
0

−t
〈R(t + ξ)∣∣∣∣e− i

ℏĤeff
†ξ
∣∣∣∣β〉 〈α|R(t)〉dξ

+ 1

ℏ2
∫
0

−t
〈R(t) ∣∣∣∣β〉 〈α| ei

ℏĤeff ξ
∣∣∣∣R(t + ξ)〉dξ .

To proceed further with analytical results, we need to
evaluate these integrals. The simplest situation is when the
noise source terms are delta-correlated in time
(Markovian). In this case, only the point ξ � 0 contributes
to the integrals. As a result, Eq. (A18) is transformed to the
following equation:
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d
dt

CαC*
β � − i

ℏ
∑
v
(H(h)

αν CνC*
β − CαC*

νH
(h)
νβ )

− i
ℏ
∑
v
(H(ah)

αν CνC*
β + CαC*

νH
(ah)
νβ ) + Dαβ, (A19)

where the correlator Dαβ is defined as follows:

R*
β(t + ξ)Rα(t) � R*

β(t)Rα(t + ξ) � ℏ2δ(ξ)Dαβ (A20)

The time derivative of the norm of the state vector is
given as follows:

d
dt

∑
α
|Cα|2 � −∑

α
[ i
ℏ
∑
ν
(H(ah)

αν CνC*
α + CαC*

νH
(ah)
να ) − Dαα] (A21)

Clearly, the components Dαα of the noise correlator
need to compensate the decrease in the norm due to the
anti-Hermitian component of the effective Hamiltonian.
Therefore, the expressions for H(ah)

αβ and Dαα have to be
mutually consistent. This is the manifestation of the
fluctuation–dissipation theorem [41].

Note that the noise correlator could depend on the
averaged combinations (e.g., dyadics) of the components
of the state vector. This is because the noise source term
|R〉 introduced above depends on the initial state |Ψ0〉 and
the evolution operator Û, and these quantities form the
state vector components at any given time. Of course,
what we call a “state vector” is the solution of the
stochastic equation of motion, which is very different
from the solution of the conventional Schrödinger
equation for a closed system. In particular, we
postulated the existence of the evolution operator Û
determined not only by the parameters of the dynamical
system but also by the properties of a dissipative
reservoir, although we did not specify any particular
expression for Û.

As an example, consider a simple diagonal anti-
Hermitian operator H(ah)

αν :

H(ah)
αν � −iℏγαδαν (A22)

and introduce the following models:

(i) Populations relax much slower than coherences (ex-
pected for condensed matter systems). In this case, we
can choose Dα≠β � 0, Dαα � 2γα

∣∣∣∣Cα|2; within this model,
the population at each state will be preserved.

(ii) The state α � αdown has a minimal energy, while the
reservoir temperature T � 0. In this case, it is expected
that all populations approach zero in equilibrium,
whereas the occupation number of the ground state
approaches 1, similar to the Weisskopf–Wigner model.
The adequate choice of correlators is Dα≠β � 0,

Dαα ∝ δααdown, γαdown � 0. The expression for the
remaining nonzero correlator,

Dαdownαdown � ∑
α≠αdown

2γα|Cα|2, (A23)

ensures the conservation of the norm:

d
dt

∑
α≠αdown

|Cα|2 � − ∑
α≠αdown

2γα|Cα|2 � − d
dt

∣∣∣∣Cαdown

∣∣∣∣2.
This is an example of the correlator’s dependence on

the state vector that we discussed before.

3. Comparison with the Lindblad
method

One can choose the anti-Hermitian Hamiltonian H(ah)
αβ and

correlatorsDαβ in the stochastic equation of motion in such
a way that Eq. (A19) for the dyadics CnC*

m corresponds
exactly to the equations for the density matrix elements in
the Lindblad approach. Indeed, the Lindblad form of the
master equation has the following form [23, 25]:

d
dt

ρ̂ � − i
ℏ
[Ĥ, ρ̂] + L̂(ρ̂) (A24)

where L̂(ρ̂) is the Lindbladian:

L̂(ρ̂) � − 1
2
∑
k
γk(̂lk† l̂kρ̂ + ρ̂̂lk† l̂k − 2̂lk ρ̂̂lk† ), (A25)

Operators l̂k in Eq. (A25) and their number are
determined by the model which describes the coupling of
the dynamical system to the reservoir. The form of the
relaxation operator given by Eq. (A25) preserves
automatically the conservation of the trace of the density
matrix, whereas the specific choice of relaxation constants
ensures that the system approaches a proper steady state
given by thermal equilibrium or supported by an
incoherent pumping.

Eq. (A24) is convenient to represent in a slightly
different form:

d
dt

ρ̂ � − i
ℏ
(Ĥeff ρ̂ − ρ̂Ĥ

†
eff) + δL̂(ρ̂) (A26)

where

Ĥeff � Ĥ − iℏ∑
k
γk l̂k

† l̂k , δL̂(ρ̂) � ∑
k
γk l̂k ρ̂̂lk

† . (A27)

Writing the anti-Hermitian component of the
Hamiltonian in Eqs. (A11) and (A12) as

H(ah)
αβ � −iℏ 〈α|∑

k
γk l̂k

† l̂k
∣∣∣∣ β〉, (A28)
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and defining the corresponding correlator of the noise
source as

R*
β(t + ξ)Rα(t) � ℏ2δ(ξ)Dαβ, Dαβ � 〈α|δL̂(ρ̂) ∣∣∣∣β〉ρmn�CnC*m

,

(A29)

We obtain the solution in which averaged over noise
statistics dyadics CnC*

m correspond exactly to the elements
of the density matrix within the Lindblad method.

Instead of deriving the stochastic equation of evolution
of the state vector from the Heisenberg–Langevin
equations, we could postulate it from the very beginning.
After that, we could justify the choice of the effective
Hamiltonian and noise correlators by ensuring that they
lead to the same observables as the solution of the density
matrix equations with the relaxation operator in the
Lindblad form [25, 46, 47]. However, the demonstration
of direct connection between the stochastic equation of
evolution of the state vector and the Heisenberg–Langevin
equation provides an important physical insight.

4. Relaxation rates for coupled
subsystems interacting with a
reservoir

Whenever we have several coupled subsystems (such as
electrons, photonmodes, and phonons in this paper), each
coupled to its reservoir, the determination of relaxation
rates of the whole system becomes nontrivial. The problem
can be solved if we assume that these “partial” reservoirs
are statistically independent. In this case, it is possible to
add up partial Lindbladians and obtain the total effective
Hamiltonian.

Consider the Hamiltonian (11) of the system formed by a
two-level electron system coupled to an EMmode field and
dressed by a phonon field:

Ĥ � Ĥem + Ĥa + Ĥp + V̂ . (A30)

where, Ĥem � ℏω
2 (ĉ†ĉ + ĉĉ†) is the Hamiltonian for a single

EM mode field,  Ĥa � W1σ̂†σ̂ +W0σ̂σ̂† is the Hamiltonian
for a two-level “atom” with energy levels W0,1, Ĥp �
ℏΩ
2 (b̂†b̂ + b̂b̂†) is the Hamiltonian for a phonon mode, V̂ �
V̂ 1 + V̂2 is the interaction Hamiltonian, where V̂ 1,2 describe
the atom–photon and atom–photon–phonon coupling,
respectively:

V̂1 � −(χσ̂†ĉ + χ*σ̂ĉ† + χσ̂ĉ + χ*σ̂†ĉ†),
V̂2 � −(η1σ̂†ĉb̂ + η*

1 σ̂ĉ
†b̂† + η2σ̂

†ĉb̂†

+ η*
2σ̂ĉ

†b̂ + η1σ̂ĉb̂ + η*
1 σ̂

†ĉ†b̂† + η2σ̂ĉb̂
† + η*

2σ̂
†ĉ†b̂),

where χ, η1, η2 are coupling constants defined before.

Summing up the known (see e.g., [23, 25]) partial
Lindbladians of two bosonic (infinite amount of energy
levels) and one fermionic (two-level) subsystems, we
obtain the following:

L(ρ̂) � −γ
2
NTa

1 (σ̂σ̂†ρ̂ + ρ̂σ̂σ̂† − 2σ̂†ρ̂σ̂) − γ
2
NTa

0 (σ̂†σ̂ρ̂ + ρ̂σ̂†σ̂ − 2σ̂ρ̂σ̂†)
−μω

2
nTem
ω (ĉĉ†ρ̂ + ρ̂ĉ† ĉ − 2ĉ†ρ̂ĉ) − μω

2
(nTem

ω + 1)(ĉ† ĉρ̂ + ρ̂ĉĉ† − 2ĉρ̂ĉ†)
−μΩ

2
nTp
Ω (b̂b̂†ρ̂ + ρ̂b̂†b̂ − 2b̂†ρ̂b̂) − μΩ

2
(nTp

Ω + 1)(b̂†b̂ρ̂ + ρ̂b̂b̂† − 2b̂ρ̂b̂†)
(A31)

where γ, μω, and μΩ are partial relaxation rates of the
systems,

NTa
0,1 � (1 + e−

W1−W0
Ta )−1e−W0,1−W0

Ta ,  nTem
ω � (e ℏω

Tem − 1)−1,  nTp
Ω

� (eℏΩ
Tp − 1)−1,

Ta, em, p are the temperatures of partial reservoirs. For the
Lindblad master equation in the form Eq. (A26), we get the
following:

Ĥeff � Ĥ − iΓ̂, (A32)

where

Γ̂ �ℏ
2
{γ(NTa

1 σ̂σ̂† + NTa
0 σ̂†σ̂) + μω[nTem

ω ĉĉ† + (nTem
ω + 1)ĉ†ĉ]

+μΩ[nTp
Ω b̂b̂† + (nTp

Ω + 1)b̂†b̂]}.
(A33)

Using the effective Hamiltonian given by Eqs. (A32) and
(A33), we arrive at the stochastic equation for the state
vector in the following form:

d
dt
Cαn0 � −iW0 + ℏω(n + 1

2) + ℏΩ(α + 1
2)

ℏ
Cαn0

− i
ℏ
〈α| 〈n| 〈0|V̂|Ψ〉 − γαn0Cαn0 − i

ℏ
Rαn0, (A34)

d
dt
Cαn1 � −iW 1 + ℏω(n + 1

2) + ℏΩ(α + 1
2)

ℏ
Cαn1 − i

ℏ
〈α| 〈n| 〈1|V̂|Ψ〉

− γαn1Cαn1 − i
ℏ
Rαn1,

(A35)

where

γαn0 �
γ
2
NTa

1 + μω

2
[nTem

ω (n + 1) + (nTem
ω + 1)n]

+ μΩ

2
[nTp

Ω (α + 1) + (nTp
Ω + 1)α], (A36)

γαn1 �
γ
2
NTa

0 + μω

2
[nTem

ω (n + 1) + (nTem
ω + 1)n]

+ μΩ

2
[nTp

Ω (α + 1) + (nTp
Ω + 1)α], (A37)

M. Tokman et al.: Generation and dynamics of entangled fermion–photon–phonon states 509



Eqs. (A36) and (A37) determine the rules of combining
the “partial” relaxation rates for several coupled
subsystems.

5. Including purely elastic dephas-
ing processes

So far, we used the Lindbladian which includes only the
dissipation and does not include purely elastic
dephasing processes. In order to take them into
account, we need to modify the Lindbladian to include
the explicit dependence on the operators of populations.
Wewill follow the prescription which can be found in the
study by Fain and Khanin [48]. Using Eq. (A25) for the
“partial” Lindbladian L̂2l of a two-level atom, where
k � 1, 2, 3, l̂1 � σ̂, l̂2 � σ̂†, and l̂3 � σ̂σ̂† − σ̂†σ̂, we obtain the
following:

L2l(ρ̂) � −γ
2
NT

1 (σ̂σ̂†ρ̂ + ρ̂σ̂σ̂† − 2σ̂†ρ̂σ̂) − γ
2
NT

0(σ̂†σ̂ρ̂ + ρ̂σ̂†σ̂

− 2σ̂ρ̂σ̂†) − γel
2
ρ̂ + δL̂el(ρ̂),

(A38)

where

δL̂el(ρ̂) � γel
2
(σ̂σ̂† − σ̂†σ̂)ρ̂(σ̂σ̂† − σ̂†σ̂). (A39)

For the evolution of a two-level system, using the
Lindbladian (A39) leads to standard density matrix
equations with inverse relaxation times for the
coherence, 1

T2
� γ

2 + γel, and populations, 1
T1
� γ.

Furthermore, using the scheme developed in
Section 3 of the Appendix, we obtain that adding
elastic processes to the stochastic equation of
evolution for the state vector leads to the following
modifications for the anti-Hermitian part of the
effective Hamiltonian,

H(ah)
αβ ⇒ H(ah)

αβ − iδαβ
ℏ
4
γel,

and the correlators of noise sources,

Dαβ ⇒ Dαβ + γel(δαβ|Cα|2 − 1
2
CαC*

β).
This is a general prescription. Since, in thiswork,we are

only interested in the RWA dynamics of states |α〉 |n〉 |0〉
and |α − 1 〉 |n − 1〉|1〉, the same expressions for the
observables can be obtained with a much simpler
modification of the formalism. One can show that it is
sufficient to modify the relaxation constants γ(α−1)(n−1)1
according to

γ(α−1)(n−1)1 ⇒ γ(α−1)(n−1)1 + γel

and correlators D(α−1)(n−1)1;(α−1)(n−1)1 as

D(α−1)(n−1)1;(α−1)(n−1)1  ⇒ D(α−1)(n−1)1;(α−1)(n−1)1 + 2γel
∣∣∣∣C(α−1)(n−1)1 2 .|
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