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Relaxation operator for quasiparticles in a solid
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Popular models of the phenomenological relaxation operators that are widely used in the master equation for-
malism for open condensed-matter systems have significant flaws ranging from limited applicability to violation
of fundamental physical principles. We propose a relatively simple universal model of the relaxation operator
which is free from these flaws, has a correct static limit, has a correct direct-current limit in a uniform electric
field, includes both interband and intraband transitions, and is valid for an arbitrary dispersion of quasiparticles
in a solid. We use the proposed operator to generalize the Lindhard formula and derive explicit expressions
for the relaxation operator for Dirac materials with an unconventional energy spectrum of quasiparticles, such as
graphene andWeyl semimetals. We compare the linear susceptibility spectra for graphene obtained with different
relaxation models and show that the proposed relaxation operator leads to physically meaningful behavior of the
susceptibility at low frequencies, whereas the existing models become completely invalid.
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I. INTRODUCTION

The description of open quantum systems is often based on
the master equation with a relaxation operator [1,2],

∂ρ̂

∂t
+ i

h̄
[Ĥ, ρ̂] = R̂(ρ̂). (1)

There are many approximations to the form of the relaxation
operator that make Eq. (1) more tractable. Phenomenological
models are particularly popular because of their simplicity.
A hybrid approach is also possible, which combines the
microscopic description of relaxation of populations with phe-
nomenological models of relaxation of quantum coherences;
see, for example, Refs. [3,4]. In the energy basis the popu-
lations and quantum coherences correspond to the diagonal
and off-diagonal elements of density matrix, respectively. The
choice of phenomenological models was discussed in a num-
ber of papers [5–10]. Here we derive a universal and relatively
simple expression for the relaxation operator of quantum co-
herences in an ensemble of quasiparticles in a solid, which
is free from inconsistencies typical for the known models.
We use this operator to generalize the Lindhard formula [11]
and consider the case of a dissipative two-dimensional (2D)
system such as graphene as an example.

The simplest phenomenological relaxation operator has the
following form in the energy basis [12]:

Rαβ = −γαβ

[
ραβ − δαβn

(0)
β

]
, (2)

where γαβ is the relaxation rate for the transition α ↔ β and
n(0)β are equilibrium populations. This model corresponds to
the well-known replacement ω ⇒ ω + iγ for the equal con-
stants γαβ = γ . For the coherences such a relaxation operator
is in agreement with the well-known Lindblad form [12–14],
whereas the diagonal elements according to Eq. (2) relax to

the equilibrium state. Unfortunately, this popular model has
serious flaws as described below.

A. Violation of the continuity equation

Using expression (2) in Eq. (1) can lead to a number of in-
consistencies and mistakes. First of all, it leads to violation of
the continuity equation connecting the charge density and the
current density in a distributed system, as well as an incorrect
stationary perturbation limit [5,6]. As a consequence of the
violation of the continuity equation, for a bounded isolated
system in an alternating external field the relation J = ∂

∂t P
between the dipole moment of the system P and the average
current J is no longer valid [6]. For ∝ eiκr−iωt processes the
violation of the continuity equation leads to violation of the
standard relation ωQκω = κ jκω between the Fourier harmon-
ics of the charge density Qκω and current density jκω. As a
result, if one calculates the conductivity σ (ω, κ) and polar-
izability χ (ω, κ) independently, the fundamental relationship
between them, namely

σ (ω, κ) = −iωχ (ω, κ), (3)

turns out to be satisfied only with an accuracy of the or-
der of ∼ γ /ω. Therefore, one has to choose which of these
two quantities is more “correct” or adequate for a particular
situation and calculate it in the framework of the particular
microscopic model of the material. In this case Eq. (3) has
to be considered as a definition that allows one to find another
quantity (see, for example, Ref. [9]). This is hardly acceptable,
since there is no universal rule for choosing which response
function is “correct”: σ or χ . When describing high-frequency
or low-dissipation processes in which ω � γ , this inconsis-
tency does not lead to significant errors. At the same time, in
the region of relatively low frequencies the use of Eq. (2) is
highly problematic (see, for example, Ref. [6]).
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Of particular interest in this regard is the description of
Coulomb screening in a dissipative system. In this case, Mer-
min [5] proposed a modified relaxation operator, which can be
represented as follows:

Rαβ = −γ
[
ραβ − δαβn

(0)
β − η

(st)
αβ

(δμ)
]
, (4)

where η
(st)
αβ (δμ) is a quasistationary perturbation of the equi-

librium density matrix, which is linear in perturbation of the
chemical potential δμ. For ∝ eiκr−iωt processes, Mermin [5]
developed the procedure which allows one to find the solu-
tion for δμ(κ, ω) which preserves the continuity equation.
The latter guarantees that, when the relaxation operator (4)
is used, the relation (3) is satisfied in which the conductivity
and polarizability are calculated independently. In Eq. (4) the
matrix η

(st)
αβ (δμ) does not depend on the relaxation constant,

since it corresponds to the equilibrium state which the system
approaches for a stationary perturbation (i.e., when ω → 0),
regardless of the relaxation mechanism. This approach goes
back to the paper by Landau [15] on the theory of the disper-
sion of the magnetic permeability in ferromagnetic media.

It is important to note that the procedure proposed in
Ref. [5] is limited to the simplest case, when the plane waves
are considered as basic eigenstates of the unperturbed Hamil-
tonian, and the energy dispersion of the carriers is parabolic
with respect to the quasimomentum k, i.e., it corresponds to
the electron current being proportional to the electron quasi-
momentum: j = − e

m h̄k, where −e is an electron charge and
m is a fixed effective mass.

B. The static limit

The second important test of the relaxation operator model
is the behavior of the solution to the master equation (1)
in the limit of a static perturbing potential. In this case a
closed system should reach an equilibrium state in a given
external potential. Such a state should not depend on the
nature and rate of relaxation, and there is obviously no cur-
rent in it. As a result, the following requirements appear
reasonable: (i) For any κ the quantity limω→0 Re[χ (ω, κ)] =
limω→0 ω−1Im[σ (ω, κ)] should not depend on the parame-
ters and the model of relaxation, (ii) limω→0 ωIm[χ (ω, κ)] =
limω→0 Re[σ (ω, κ)] = 0. However, such a solution cannot
describe the situation in which a conductive sample with
boundaries which are permeable for carriers is an ele-
ment of a direct current circuit. In the latter case the
limit lim

κ → 0
ω→0

ωImχ (ω, κ) = lim
κ → 0
ω→0

Reσ (ω, κ) = σ (γ ) is

nonzero and should correspond to the ohmic conductivity in
the uniform constant field, which depends on the relaxation
constant γ . There is no contradiction with the previous state-
ment, since the element of an electric circuit is obviously not
a closed system. A continuous transition from the equilibrium
current-free solution to the Ohmic conductivity is possible
only within the framework of a problem with boundary con-
ditions.

The current-free steady state can be obtained by expanding
the initial equations in powers of a small parameter which is
independent on the relaxation constant, eδ�

〈W 〉 , where δ� is a
maximum potential drop and 〈W 〉 is a characteristic electron

energy. The state with direct current satisfying Ohm’s law
can be obtained by expanding in powers of another small
parameter: eE

γ 〈p〉 , which includes the relaxation constant γ , the
characteristic value of the electric field E , and the characteris-
tic momentum 〈p〉 of the carriers in the conduction band. Note
that under the condition eE

γ 〈p〉 
 1 the initial equilibrium distri-
bution of carriers in the conduction band is weakly perturbed
for any ratio eδ�

〈W 〉 .
Let us discuss how the above properties relate to the func-

tions σ (ω, κ) and χ (ω, κ), obtained as a result of solving the
master equation with relaxation operators defined by Eq. (2)
and Eq. (4), respectively, for conduction electrons in a metal
or in a bulk semiconductor far from any boundaries.

For a standard model given by Eq. (2), limκ→0 σ (ω, κ)
corresponds to the complex Drude conductivity in a uniform
field. In the limit lim

κ → 0
ω→0

Re[σ (ω, κ)] = σ (γ ), one obtains

the standard Ohmic conductivity in a uniform and time-
independent field. At the same time, for finite values of κ and
ω → 0 the expression for the conductivity is incorrect: There
is no solution corresponding to the equilibrium current-free
state, since limω→0 Re[σ (ω, κ)] �= 0. As noted above, for the
relaxation model of Eq. (2) the relationship (3) is violated.
Therefore, independent calculations of the conductivity and
susceptibility χ (ω, κ) lead to different results, but both of
them are incorrect: In the limit ω → 0 and for finite values
of κ the expression for limω→0 Re[χ (ω, κ)] depends on the
relaxation parameter γ .

The model based on Eq. (4) preserves the continuity equa-
tion, and the limit ω → 0 for any finite κ corresponds to an
equilibrium current-free state in a closed system [5]. In this
case, however, it follows from the relations in Ref. [5] that the
limit κ → 0 leads to limκ→0 ωIm[χ (ω, κ)] = 0, both for finite
values of ω and after taking the subsequent limit ω → 0.

Thus, the model proposed in Ref. [5] provides more ade-
quate description of the screening effects in comparison with
the standard approximation (2) but does not describe Ohmic
conductivity in a uniform field. In addition, it cannot include
interband transitions and is limited to the quadratic energy
dispersion of quasiparticles. Besides, the model is rather com-
plicated.

C. The relaxation operator in a real basis

For a real Hamiltonian in the absence of a magnetic field
[16] one can always choose the basis eigenfunctions to be real.
In this case a much simpler relaxation operator was proposed
in Ref. [6]:

Rαβ = −γαβ (ραβ − ρβα ). (5)

Equation (5) does not determine relaxation of the diagonal
elements of the density matrix; however, if necessary, the
relaxation operator for the populations can be added sepa-
rately: See, for example, Refs. [6,7,12]. Note that the diagonal
elements (populations) are usually not perturbed in the linear
approximation with respect to an external field.

Equation (5) was obtained in Ref. [6] from the first princi-
ples for a system which possesses an electric dipole-allowed
transition interacting with a radiation reservoir. In this case,

235103-2



RELAXATION OPERATOR FOR QUASIPARTICLES IN A … PHYSICAL REVIEW B 102, 235103 (2020)

the interaction of the quantum system with the reservoir is de-
scribed beyond the rotating wave approximation (RWA), i.e.,
the interaction Hamiltonian includes off-resonant counter-
rotating terms. The master equation beyond the RWA was
studied also in Refs. [17–19]. The relaxation operator (5) is
not of the Lindblad form [13]. Nevertheless, one can show
[6,19] that at times exceeding the averaging time correspond-
ing to the Markov approximation, the use of the relaxation
operator (5) does not violate the condition of positive defi-
niteness of the density matrix.

In the steady-state case, the solution of Eq. (1) with the
relaxation operator (5) corresponds to an equilibrium state
in a static external field, and this equilibrium state does not
depend on the relaxation constants. Since Eq. (5), in contrast
to Eq. (4), does not explicitly depend on the external field
[in Eq. (4) the external field defines the value δμ], this result
seems paradoxical. The point, however, is that in the real basis
the stationary perturbation corresponds to the real values of
ραβ , so that the relaxation operator (5) is zero.

For time-varying fields, the use of the relaxation operator
(5) ensures that the relation J = ∂

∂t P is satisfied for a bounded
isolated system [6]. For the simplest systems (harmonic oscil-
lator and free particles) placed in a dissipative reservoir and,
simultaneously, in a magnetic field, a generalization of the
model based on Eq. (5) was developed in Refs. [6,7]. They
proposed an approach based on the transition from energy
representation to the coordinate representation, taking into
account the requirement of gauge invariance of the observ-
ables in an external field with a nonzero vector potential.
This condition imposes certain restrictions on the relaxation
operator [6,9].

As we see, there is strong motivation to derive the
phenomenological relaxation operator that would have the
antisymmetric structure like Eq. (5) and would remain appli-
cable to the most general case. In this paper we obtain such a
relaxation operator which

(i) is valid for charged carriers in solids with an arbitrary
energy dispersion, in particular the Dirac spectrum;

(ii) preserves the continuity equation while including both
intraband and interband transitions;

(iii) allows one to obtain both the stationary “current-free”
regime in equilibrium and the ohmic direct current regime in
the limit of a uniform static field;

(iv) is significantly simpler than the model proposed in
Ref. [5].

In the simplest (intraband) version, the analog of the ex-
pression Eq. (5) for |k〉 states has the form

Rkq = −γkq(ρkq − ρ−q−k). (6)

This expression has a simple interpretation. Suppose that the
transition between the states |k〉 ↔ |q〉 is accompanied by
some excitation of the “reservoir.” This excitation must have
quasimomentum p, such that h̄k = h̄q + p. However, in this
case, the conservation of momentum is also valid for the
transition |−q〉 ↔ |−k〉, since the relation −h̄q = −h̄k + p
is true. Thus, the reservoir modes inevitably “couple” the
transitions |k〉 ↔ |q〉 and |−q〉 ↔ |−k〉, which is reflected in
the expression (6).

The structure of the paper is as follows. Section II estab-
lishes general requirements for the structure of a relaxation

operator, following from the conservation of the number of
particles. An operator for an ensemble of quasiparticles in
a solid is constructed, which ensures the continuity equa-
tion to be satisfied exactly or after averaging over the lattice
period; see Eqs. (26) below. The lattice-averaged relaxation
operator is applicable not only in the linear response theory
but also in the nonlinear regime of significant perturbation
of populations, as long as its diagonal elements satisfy a
standard condition of detailed balance when averaged over
a lattice period; see Sec. II C below. It turns out that the
derivation of the relaxation operator is significantly simplified
for systems that are symmetric with respect to time reversal
(TRS systems). Here we mean the corresponding property of
the isolated system without taking into account its relatively
weak interaction with a dissipative reservoir. In Sec. III, the
Lindhard formula is obtained for a dissipative 2D system
using the correct (in the above sense) relaxation operator.
In Sec. IV we compare our results applied to graphene with
the results of using the standard model given by Eq. (2).
In Appendix A one property of the TRS systems is estab-
lished which is important for derivation of the relaxation
operator. Appendices B and C describe the the procedure for
deriving a phenomenological relaxation operator in graphene
and Weyl semimetals with broken time-reversal symmetry. In
Appendix D the properties of the linear susceptibility in
the limit of a uniform high-frequency field are considered.
Appendix E contains the derivation of the susceptibility of
monolayer graphene in the limit of κ = 0.

II. RELAXATION OPERATOR PRESERVING
THE CONTINUITY EQUATION

A. Basic relationships

First, we write the Hamiltonian of a nonrelativistic electron
in a periodic potential in a fairly general form,

Ĥ = Ĥ0(r, p̂, ŝ),

where the dependence of the Hamiltonian on the coordi-
nate r is periodic, p̂ = −ih̄∇ is a momentum operator, ŝ =
1
2 (x0σ̂x + y0σ̂y + z0σ̂z ) is a spin operator, and σ̂x,y,z are Pauli
matrices. The dependence on the spin operator may be, e.g.,
due to spin-orbit coupling.

If there are perturbing fields defined by electrodynamic
potentials ϕ(r, t ) and A(r, t ), the operator Ĥ can be obtained
from the unperturbed Hamiltonian Ĥ0( p̂) as [16]

Ĥ = Ĥ0

(
p̂ ⇒ p̂+ e

c
A

)
− eϕ. (7)

For simplicity, we do not consider here the spin-dependent
components of the perturbation operator, such as the en-
ergy of a spin magnetic moment in a magnetic field, V̂B =
−μB[ŝ · (∇ × A)], where μB is Bohr’s magneton, or the
spin-orbit coupling term in the perturbing field, V̂s−o =
− eh̄

2m2c2 [(
1
c Ȧ + ∇ϕ) × p̂] · ŝ [16,20,21]. The conditions for ne-

glecting spin-dependent terms in the perturbation operator are(
p

mc

)(
h̄

mcLE ,P

)

 1;

(
H

E

)(
h̄

mcLE ,P

)

 1,
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where E and H are the electric and magnetic field strengths,
p is an average electron momentum, LE is a characteristic
spatial scale of the electric field, LP ∼ T p

m is the distance
that an electron with momentum p travels over the time T
where T is a characteristic timescale during which the electric
field changes significantly. No restrictions related to spin are
imposed on the unperturbed Hamiltonian Ĥ0(r, ŝ, p̂).

Consider the energy basis given by the stationary solution
of the Schrödinger equation:

Ĥ0�α (r, s) = Eα�α (r, s),

where �α (r, s) are eigenfunctions of the unperturbed Hamil-
tonian Ĥ0, α is an index or a set of indices indicating a
stationary state of the Hamiltonian taking into account spin
orientation, and the spin coordinate s takes the values 1 and 2
denoting spinor components [�α (r, 1)

�α (r, 2)
], which define the proba-

bility of spin projection on the quantization axis to be equal to
1
2 and − 1

2 .
The observed current density j(r) and free carrier density

n(r) can be expressed through the elements of the density
matrix in the given basis ραβ as follows (see, for example,
Refs. [22,23]),

n(r) =
∑
αβ

2∑
s=1

[�∗
β (r, s)�α (r, s)]ραβ, (8)

j(r) = − e

2

∑
αβ

2∑
s=1

{�∗
β (r, s)[v̂�α (r, s)]

+ [v̂∗�∗
β (r, s)]�α (r, s)}ραβ, (9)

where v̂ = i
h̄ [Ĥ, r] = 1

m ( p̂+ e
cA) is a velocity operator.

Since our goal in this section is to include the limitations
imposed by the conservation of the particle number, we ne-
glected the vortex spin current in Eq. (9),

jS (r) = μBc∇ ×
∑
αβ

2∑
s=1

[�∗
β (r, s)ŝ�α (r, s)]ραβ,

because it does not affect the evolution of carrier density.
For a spin-independent Hamiltonian the space coordinates

and spin are separated. The simplest example is

Ĥ0 = −eU (r) + 1

2m
p̂2,

where U (r) is a periodic lattice potential. In this case, the
summation in Eqs. (8) and (9) over two equal spin states gives
only the degeneracy factor g = 2 in the final expressions:

n(r) = g
∑
αβ

[�∗
β (r)�α (r)]ραβ, (10)

j(r) = −g
e

2

∑
αβ

{�∗
β (r)[v̂�α (r)] + [v̂∗�∗

β (r)]�α (r)}ραβ,

(11)

where the functions �α (r) are scalar (not the spinors).
For brevity, we will use the term “spinless” particles.
For Fourier harmonics nκ = 1

(2π )ς
∫
n(r)e−iκrdς r and jκ =

1
(2π )ς

∫
j(r)e−iκrdς r it follows from Eqs. (10) and (11) that

nκ = g

(2π )ς
∑
αβ

(e−iκr)βαραβ, jκ

= − g

(2π )ς
e

2

∑
αβ

(e−iκr · v̂ + v̂·e−iκr)βαραβ, (12)

where ς is the system dimension.
The evolution of the density matrix is described by the von

Neumann equation

∂ραβ

∂t
+ i

h̄

∑
γ

(Hαγ ργβ − ραγHγ β ) = 0. (13)

By applying the summation operation

∑
αβ

2∑
s=1

�∗
β (r, s)�α (r, s)(· · · )

to Eq. (13) and taking into account Eqs. (8) and (9), we arrive
at the continuity equation

∂n

∂t
+ ∇ · j

−e
= 0. (14)

B. Correct phenomenological relaxation operator

The correct relaxation operator in Eq. (1) must not violate
the continuity equation, i.e., the conservation of the number
of particles given by Eq. (14). Taking into account Eqs. (8)
and (9), the particle conservation law is satisfied under the
condition

∑
αβ

2∑
s=1

�∗
β (r, s)�α (r, s)Rαβ = 0, (15)

or, for “spinless” particles,∑
αβ

�∗
β (r)�α (r)Rαβ = 0. (16)

As noted in the Introduction, the diagonal elements of the
density matrix are usually not perturbed in the linear approxi-
mation with respect to the Hamiltonian of interaction with an
external field. Therefore, when calculating the linear response
of the medium it is sufficient to take into account only the
off-diagonal elements of the relaxation operator Rαβ in the
sum (15).

In the basis of real wave functions of “spinless” particles,
which can always be chosen for a system without a magnetic
field [16], the relaxation operator of the form Eq. (5) ensures
that Eq. (16) is satisfied. Such a basis is “natural” for a discrete
nondegenerate spectrum describing a finite motion.

For particles in a system with translational symmetry (in
free space or in a periodic lattice field), the most “natural” ba-
sis is a set of complex wave functions that are eigenfunctions
of the momentum or quasimomentum operator. When using
such a basis, the procedure for constructing the desired relax-
ation operator similar to Eq. (5) becomes more complicated.
The additional complication is caused by spin dependence of
the Hamiltonian. However, as will be shown below, for TRS
systems the corresponding procedure is not too cumbersome.
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It relies on an assumption that the relaxation rate of quantum
coherence for a given transition depends only on its energy.

Now let us use the time-reversal symmetry of the system.
The operation of reversal in time T̂ as applied to a scalar
energy eigenfunction is just an operation of complex conju-
gation:

T̂�α (r) = �∗
α (r).

When applied to the spinor [�α (r, 1)
�α (r, 2)

] this operation takes the
form [16]

T̂

[
�α (r, 1)

�α (r, 2)

]
= iσ̂y

[
�∗

α (r, 1)

�∗
α (r, 2)

]
=

[
�∗

α (r, 2)

−�∗
α (r, 1)

]
. (17)

The Hamiltonian of a TRS-system commutes with the
operator T̂ . This property is inherent in closed systems, and
closure implies, among other things, the absence of an exter-
nal magnetic field. The Hamiltonian of such systems satisfies
the condition Ĥ ( p̂, ŝ) = Ĥ (−p̂,−ŝ). The presence of an ex-
ternal dc electric field does not affect the symmetry with
respect to time reversal [16]. For “spinless” particles, such
commutativity is equivalent to the Hamiltonian being real in
the r representation.

To construct a correct relaxation operator we make use of
the fact that for every basis state |α〉 the state T̂ |α〉 coincides
with the same or another basis state, up to a constant phase:

|α′〉 = eiϕα T̂ |α〉. (18)

Such a basis always exists since it can consist of eigenfunc-
tions of operator T̂ which commutes with the Hamiltonian,
[Ĥ , T̂ ] = 0. In the latter case |α′〉 = |α〉. For the degenerate
energy levels there is a freedom in the choice of basis states,
and the states |α′〉 and |α〉 can be different. However, the
condition (18) should be satisfied, since in the general case
the state T̂ |α〉 can be equal to the linear combination of basis
states corresponding to the same energy level.

Since T̂ 2 = ±1 where the upper sign is for a scalar state
function and the lower sign is for a spinor, respectively, we
obtain that Eq. (18) is reciprocal:

|α〉 = eiϕα′ T̂ |α′〉 (19)

and for a “spinless” particle ϕα′ = ϕα , while for a particle
described by the spinor ϕα′ = ϕα + π . In both cases for any
pair of states |α〉 and |β〉

ϕβ ′ − ϕα′ = ϕβ − ϕα. (20)

Another useful relation follows from Eqs. (17) and (18):

2∑
s=1

[�∗
β (r, s)�α (r, s) − ei(ϕα−ϕβ )�

∗
α′ (r, s)�β ′ (r, s)] = 0.

(21)
Using Eq. (18) we construct the relaxation operator in the

following way:

Rαβ = −γαβ[ραβ − ei(ϕβ−ϕα )ρβ ′α′]. (22)

Calculating the sum of the off-diagonal elements in Eq. (15)
with the relaxation operator (22), using Eqs. (20) and (21), and
rearranging the summation indices, we confirm that Eq. (15)
is satisfied, which, as stated earlier, is the criterion ensuring
the continuity equation in the system.

Consider the following examples: (i) free particles, (ii)
“spinless” particles in a periodic lattice, and (iii) spin-
dependent system in a periodic lattice.

(i) In this case we have |α〉 = |k〉, where a set of vectors
k is given by periodic boundary conditions. In the coordinate
representation the wave function has the form �k(r) = eikr,
�k′ (r) = �∗

k = �−k, so that the corresponding phases ϕα and
ϕα′ in Eqs. (18) and (19) are equal to zero. Then Eq. (22) gives

Rkq = −γkq(ρkq − ρ−q−k).

A simple interpretation of this expression is discussed in the
Introduction.

(ii) In this case we have |α〉 = |c, k〉, where c is a band
index. In the coordinate representation the wave function has a
form of the Bloch function: �ck(r) = ψck(r)eikr, where ψck(r)
is a periodic function with the lattice period, or a sum of
periodic functions (when several sublattices exists). For a
real Hamiltonian in the r representation, the dependence of
the electron energy on the quasimomentum in a given band
is a symmetric function: Eck = Ec−k, �c−k = eiϕck�

∗
ck. Thus,

each energy state is at least four times degenerate: twice in
quasimomentum and twice in spin. It follows from Eq. (22)
that

Rckdq = −γckdq[ρckdq − ei(ϕdq−ϕck )ρd −q c−k]. (23)

(iii) For a spin-dependent periodic Hamiltonian, spin de-
generacy can be lifted. In this case we have �ck(r, s) =
ψck(r, s)eikr, where periodic functions are the components of
the spinor ψck(r, 1) and ψck(r, 2). The energies of electron
states with opposite quasimomenta and, simultaneously, with
opposite average values of spin projections onto a given axis,
turn out to be equal. Such states are connected by the opera-
tion of time reversal. Thus, we have Eck = Ec′−k, where:[

ψc′−k(r, 1)
ψc′−k(r, 2)

]
e−ikr = eiϕck

{[
ψck(r, 2)

−ψck(r, 1)

]
eikr

}∗
.

To avoid any confusion, we emphasize that the band index c
numbers all states with different energies for a given k. The
bands created by spin splitting correspond to different values
of the index c. When k = 0, such bands intersect or touch, so
that the degeneracy is restored. Indeed, if the state with k = 0
and energy Eck=0 is described by the spinor [ψc (r, 1)

ψc (r, 2)
], then

the same energy level corresponds to the state T̂ [ψc (r, 1)
ψc (r, 2)

] =
[ ψ∗

c (r, 2)−ψ∗
c (r, 1)

], linearly independent with the first state. Therefore,
the state with energy Eck=0 is degenerate. The choice of band
numbering at the crossing or contact point is a matter of
convention. The relaxation operator (22) again has the form
of Eq. (23) if we consider the band index to be conserved
when the sign of the quasimomentum changes, i.e., choose
band numbering so that Eck = Ec−k.

C. Averaged relaxation operator

The relaxation operator satisfying the continuity equation
for carriers in a solid couples coherences at the transitions
that are symmetric in the quasimomentum space with respect
to the point k = 0. It often makes sense to restrict ourselves
to the carrier states in a relatively small vicinity of a certain
point k0 of the Brillouin zone. Suppose that such a point is
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an extremum, in the vicinity of which the carrier dispersion
can be considered symmetric: Ec(k − k0) = Ec(k0 − k) (for
example, the vicinity of the Dirac points [24,25]). Whenever
we calculate any observable quantities including only the
states within a small part of the Brillouin zone, we in fact
determine their values averaged over a scale much longer than
the lattice period a. In this case it makes sense to require that
the continuity equation be satisfied also “on average” over the
same scales. It turns out that a relatively simple relaxation
operator preserving the number of particles “on average” can
be constructed without requiring TRS of the system.

The corresponding averaging implies a rather narrow inter-
val of quasimomenta δk satisfying

δka 
 1. (24)

Let us average Eq. (15) over the lattice period, assuming that
inequality (24) is satisfied:

∑
cdkq

2∑
s=1

ψ∗
dq(r, s)ψck(r, s)e

i(k−q)rRckdq = 0, (25)

where the bar denotes the corresponding averaging and the
quasimomentum is counted from the point k = k0.

The diagonal terms ck = dq in Eq. (25) give zero contribu-
tion to the sum, since the diagonal terms under the averaging
bar are equal to 1 (normalization condition), the exponential
terms are also equal to 1, and the conservation of the total
number of particles in the system requires that

∑
ck Rckck = 0.

The remaining sum of the off-diagonal terms determines the
coordinate-dependent part of the particle density which has
nonzero spatial harmonics and contributes to the charge con-
tinuity equation. Therefore, only the off-diagonal components
of the relaxation operator determine whether the continuity
equation is preserved and Eq. (3) is satisfied. In the averaged
description this is true even beyond the linear response theory.
In the nonaveraged description, the diagonal terms can be
also coordinate dependent and contribute to the continuity
equation, as is clear from Eq. (15). However, within the linear
response theory the diagonal terms are not perturbed by the
field and only the off-diagonal elements of the relaxation
operator need to be considered.

We will seek the matrix of the relaxation operator in a form
close to Eq. (23), replacing factor ei(ϕdq−ϕck ) with some matrix
element Gckdq which we need to determine:

Rckdq = −γckdq(ρckdq − Gckdqρd −q c−k). (26)

Substituting Eq. (26) in Eq. (25), we get∑
ckdq

γckdqe
i(k−q)r

×
[

2∑
s=1

ψ∗
dq(r, s)ψck(r, s)(ρckdq − Gckdqρd −q c−k)

]
= 0,

where after rearranging summation indices,

∑
ckdq

γckdqe
i(k−q)r

2∑
s=1

[ψ∗
dq(r, s)ψck(r, s)

−ψ∗
c−k(r, s)ψd−q(r, s)Gd −q c−k]ρckdq = 0. (27)

As a result, we obtain the following expression for the matrix
elements Gckdq:

Gckdq = 1

Gd −q c−k
=

∑2
s=1 ψ∗

c−k(r, s)ψd−q(r, s)∑2
s=1 ψ∗

dq(r, s)ψck(r, s)
(28)

or, for “spinless” particles,

Gckdq = 1

Gd −q c−k
= ψ∗

c−k(r)ψd−q(r)

ψ∗
dq(r)ψck(r)

. (29)

A different approach to describe quasiparticles in a crys-
tal is to work with wave functions averaged over the lattice
period. The truncated model Hamiltonian that defines such
states can be reconstructed using the matrix Ê (k), whose
eigenvalues define the energy bands and the carrier energy
dispersion in each band (see, for example, Ref. [20]). This
matrix can be calculated in various approximations, including
the magnetic and/or spin effects “hidden” in the form of the
matrix Ê (k).

In the region of k space corresponding to Eq. (24) and in
the absence of perturbing external fields, the averaged Hamil-
tonian has the form:

Ĥ0 = 1

h̄

(
∂

∂k
Ê

)
k=0

· p̂+ 1

2h̄2
∑
i j

(
∂2Ê

∂ki∂k j

)
k=0

· p̂i p̂ j,

(30)
where i, j = x, y, z. The Hamiltonian Ĥ0( p̂) is generally an
N×N matrix which defines a basis of states in the form of
N-component vectors corresponding to the energies Eck:

U ck(r) ≡ uckeikr, uck =

⎡
⎢⎣
u(1)ck
...

u(N )
ck

⎤
⎥⎦. (31)

The elements of the vector uck in Eq. (31) are the coefficients
of the expansion of the Bloch function over orthogonal pe-
riodic functions or over orthogonal periodic two-component
functions (spinors). The scalar product

(u∗
dq·uck) =

N∑
n=1

u(n)∗dq u(n)ck

corresponds to averaged quantities in Eqs. (28) and (29),

(u∗
dq·uck) =

2∑
s=1

ψ∗
dq(r, s)ψck(r, s), (32)

or, for “spinless” particles,

(u∗
dq·uck) = ψ∗

dq(r)ψck(r). (33)

For a model with the “averaged” Hamiltonian Eq. (30),
the influence of perturbing fields given by the electrodynamic
potentials ϕ(r, t ) and A(r, t ) is taken into account by trans-
forming the unperturbed Hamiltonian Ĥ0( p̂) ⇒ Ĥ ( p̂,A, ϕ)
using Eq. (7). The equation for the density matrix Eq. (13)
with the “averaged” Hamiltonian Ĥ ( p̂,A, ϕ) satisfies the con-
tinuity equation (14), in which

n(r) = g
∑
ckdq

ei(k−q)r(u∗
dq·uck)ρckdq, (34)
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j(r) = − e

2
g
∑
ckdq

[u∗
dqe

−iqr · (v̂ · uckeikr)

+ (v̂∗ · u∗
dqe

−iqr)·uckeikr]ρckdq, (35)

where the velocity operator v̂ = i
h̄ [Ĥ , r] is the N×N matrix

and g is a degeneracy factor which can take into account both
spin degeneracy and the presence of identical extreme points
in different valleys of the Brillouin zone (see, for example,
Ref. [26]).

For massless Dirac fermions in Eq. (30) we have
( ∂2Ê
∂ki∂k j

)
k=k0

= 0; therefore, the velocity operator matrix is

composed of constant elements and does not involve differ-
entiation:

v̂ = i

h̄
[Ĥ, r] = i

h̄2

(
∂

∂k
Ê

)
k=k0

· [ p̂, r] = 1

h̄

(
∂

∂k
Ê

)
k=k0

.

Thus, for fermions in Weyl semimetals, graphene and low-
energy surface states in topological insulators of the type
Bi2Se3, such an “algebraic” speed operator is formed by Pauli
matrices and is a 2×2 matrix [24]; for Kane fermions in
CdxHg1−xTe, it is a 6×6 matrix [25]. In these and similar
cases, the products in the expression for the current density
Eq. (35) are all algebraic, which leads to a certain simplifica-
tion (see, for example, Ref. [22]). Since in this case we have
u∗
dq(v̂uck) = (v̂∗u∗

dq)uck, it follows from Eq. (35) that

j(r) = −eg
∑
ckdq

ei(k−q)r(u∗
dq · v̂ · uck)ρckdq.

The continuity equation for an ensemble of electrons de-
scribed by a truncated Hamiltonian is satisfied when∑

cdkq

(u∗
dq · uck)ei(k−q)rRckdq = 0.

After the derivation similar to Eq. (25)–(28) [or using pairs
of equations (28) and (32) or (29) and (33)] we obtain the
following expression for the relaxation matrix written in the
form of Eq. (26):

Gckdq = 1

Gd −q c−k
= (u∗

c−k·ud−q)

(u∗
dq·uck)

. (36)

Note that for a wide class of systems the following condition
is satisfied:

|Gckdq|2 = 1. (37)

This is similar to a nonaveraged system described by Bloch
eigenfunctions, when the relaxation operator is given by
Eq. (23), and the factor ei(ϕdq−ϕck ) replaces the coefficient
Gckdq. In Appendix A we will show that to satisfy the condi-
tion (37) it is sufficient (although not necessary) to have a TRS
effective Hamiltonian Ĥ0( p̂). Appendix B contains an exam-
ple of a system (a Weyl semimetal) with broken time-reversal
symmetry, for which the condition (37) is nevertheless sat-
isfied. Appendix C shows that when calculating the linear
susceptibility in the limit of a uniform external field, violating
the condition (37) does not affect the result.

Thus, Eqs. (26), (28), and (36) define a relatively simple
relaxation operator, the use of which in the master equa-

tions preserves the continuity equation for the observables.
Note that the relaxation operator Eq. (26) cannot be re-
duced to the standard form Eq. (2) by a formal replacement
Gckdq = 0. Accordingly, the response of the medium obtained
using the relaxation operator Eq. (26) does not reduce to
the one obtained on the basis of the standard relaxation
model by replacingGckdq = 0. This is because the coefficients
Gckdq determined by the properties of the eigenstates of the
Hamiltonian obey Eq. (28) or Eq. (36). Therefore, formally
setting Gckdq = 0 for any transition, we automatically have
Gd −q c−k = ∞.

III. GENERALIZATION OF THE LINDHARD FORMULA
IN A DISSIPATIVE SYSTEM IN TWO DIMENSIONS

A. Screening effect in a monolayer

Let the monolayer with charge carriers be located in the
plane z = 0. In the region z < 0, there is a substrate with
a dielectric constant ε. Consider the electric field potential
�(r, z, t ), where the vector r belongs to the xy plane. We write
the potential as an expansion in 2D Fourier harmonics,

� =
∫

dω

∫∫
�κω(z)e

iκr−iωt d2κ.

The complex amplitudes of the field harmonics in the layer
plane are given by Eκω = −iκ�κω(0). Hereafter, to simplify
the expressions, we will use the notation �κω instead of
�κω(0).

Let χ (ω, κ) be the 2D linear susceptibility of a layer,
which determines its surface polarization excited by a field
harmonic:

Pκω = −iκχ (ω, κ)�κω.

Harmonics of the surface charge are related to the harmonics
of surface polarization by Qκω = −iκPκω, from which

Qκω = −κ2χ (ω, κ)�κω. (38)

We will seek a response to the external potential �, taking
into account the excitation of the self-consistent potential δ�:

Qκω = −κ2χ (ω, κ)(�κω + δ�κω ). (39)

The Poisson equation outside the monolayer gives(
−κ2 + ∂2

∂z2

)
δ�κω(z) = 0.

Its continuous solution along the z axis is

δ�κω(z) = δ�κωe
∓κz,

where the upper and lower sign corespond to the upper and
lower half-spaces. The value of δ�κω can be determined using
the Gauss theorem:

κδ�κω + εκδ�κω = 4πQκω. (40)

As a result, we get from Eqs. (39) and (40)

�(scr)
κω = �κω

1 + κ
1+ε

4πχ (ω, κ)
, (41)

where �(scr)
κω = �κω + δ�κω is the harmonic of a screened

potential. Note that equating the expression in the denom-
inator Eq. (41) to zero gives the dispersion equation for a
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2D plasmon supported by the monolayer [27]: 1 + κ
1+ε

4πχ

(ω, κ) = 0.
Let us show that Eq. (41) corresponds exactly to the Lind-

hard formula for a 2D system in the absence of dissipation
[11]:

�(scr)
κω = �κω

1 − 2
1+ε

�0κg
∑

αβ

( fα− fβ )|(eiκr )αβ |2
Eα−Eβ−h̄ω

, (42)

where�0κ is a spatial 2D harmonic of the interaction potential
of point charges e2/r,

�0κ = 1

4π2

∫
∞

e2

r
e−iκrd2r = e2

2πκ
,

where fα and Eα are the population and energy of quasipar-
ticles corresponding to the state |α〉 and g is the degeneracy
factor.

To compare Eq. (41) and Eq. (42), we need to obtain an
expression for the susceptibility χ (ω, κ). We use the equation
for the complex amplitude of the linear perturbation of the
density matrix ραβ = ρ̃

αβ
e−iωt under the action of the har-

monic of the potential �κωeiκr−iωt ,

−iωρ̃αβ + i
Eα − Eβ

h̄
ρ̃αβ = − i

h̄
e�κω(e

iκr)αβ ( fα − fβ ),

(43)
which yields

ρ̃αβ = −e
�κω(eiκr)αβ ( fα − fβ )

Eα − Eβ − h̄ω
. (44)

It follows from the first of Eqs. (12) that

Qκω = − eg

4π2

∑
αβ

(e−iκr)βαρ̃αβ . (45)

Substituting Eqs. (44) and (45) into Eq. (38) and using the
relation (e−iκr)βα (e

iκr)αβ = |(eiκr)αβ |2 we obtain

χ (ω, κ) = − e2g

4π2κ2

∑
αβ

( fα − fβ )|(eiκr)αβ |2
Eα − Eβ − h̄ω

. (46)

It is easy to see that the substitution of Eq. (46) into Eq. (41)
leads to Eq. (42).

Another way to derive the linear susceptibility is to calcu-
late the Fourier harmonic of the current jκω, which follows
from the second of Eqs. (12):

jκω = − eg

4π2

∑
αβ

1

2
(e−iκrv̂ + v̂e−iκr)

βα
ρ̃αβ . (47)

Using the identity (∇u·v̂+v̂·∇u
2 )

βα
= i Eβ−Eα

h̄ uβα which holds for
any function u(r) (see, for example, Ref. [22]), from Eqs. (47)
and (44) we obtain the expression for the conductivity,

σ (ω, κ) = i
e2g

4π2κ2

∑
αβ

Eα − Eβ

h̄
× ( fα − fβ )|(eiκr)αβ |2

Eα − Eβ − h̄ω
.

(48)
Using the relation

∑
α (e

∓iκr)βα (e
±iκr)αβ = 1, which is valid

for any index β, Eq. (48) can be reduced to the following form:

σ (ω, κ) = iω
e2g

4π2κ2

∑
αβ

( fα − fβ )|(eiκr)αβ |2
Eα − Eβ − h̄ω

= −iωχ (ω, κ),

which corresponds to the fundamental relationship Eq. (3).

B. Accounting for relaxation within the standard model

Using the standard relaxation operator defined by Eq. (2) in
the equation for the perturbation of the density matrix Eq. (43)
results in the substitution ω → ω + iγαβ in the corresponding
relations Eqs. (46) and (48):

χ (ω, κ) = − e2

4π2κ2
g
∑
αβ

( fα − fβ )|(eiκr)αβ |2
Eα − Eβ − h̄ω − ih̄γαβ

, (49)

σ (ω, κ) = e2g

4π2κ2

∑
αβ

(iω − γαβ )
( fα − fβ )|(eiκr)αβ |2

Eα − Eβ − h̄ω − ih̄γαβ

.

(50)

Obviously, this solution obtained using the relaxation operator
in the form of Eq. (2) violates Eq. (3). This can lead to sig-
nificant errors in the low-frequency range (see, for example,
Refs. [6,7,9]).

C. Accounting for relaxation with the modified
relaxation operator

Let us consider a system with quasiparticle states |α〉 =
|c, k〉 using the relaxation operator Eq. (26), which preserves
the average number of particles. The density matrix equations
become

−iωρ̃ckdq + i
Eck − Edq

h̄
ρ̃ckdq = − i

h̄
e�ω;ckdq( fck − fdq) − γckdq(ρ̃ckdq − Gckdqρ̃d −q c−k), (51)

−iωρ̃d −q c−k + i
Edq − Eck

h̄
ρ̃d −q c−k = − i

h̄
e�ω;d−q c−k( fd−q − fc−k) − γckdq(ρ̃d −q c−k − Gd −q c−kρ̃ckdq), (52)

where �ω;ckdq = �κω(eiκr)ckdq, γckdq = γd −q c−k, and energy Eck does not depend on the sign of k. From Eqs. (51) and (52),
taking into account the relationship GckdqGd −q c−k = 1 [see Eq. (36)], we obtain

ρ̃ckdq = −e
(Edq − Eck − h̄ω)�ω;ckdq( fck − fdq)

h̄2ω2 + 2ih̄2ωγckdq − (Eck − Edq)2
+ ih̄γckdqe

�ω;ckdq( fck − fdq) − Gckdq�ω;d−q c−k( fc−k − fd−q)

h̄2ω2 + 2ih̄2ωγckdq − (Eck − Edq)2
. (53)

Within the averaged description, the following relationship is satisfied:

�ω;ckdq = �κωδk(q+κ)(u∗
ck · udq), (54)
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which gives, after taking Eqs. (36) into account,

�ω;d−q c−k = �ω;ckdqG
∗
ckdq. (55)

Using Eqs. (54) and (55) and assuming that the populations are determined only by the energies of states, we transform the
second term on the right-hand side of Eq. (53) into

ih̄γckdqe�κωδk(q+κ)(u∗
ck · udq) 1 − |Gckdq|2

h̄2ω2 + 2ih̄2ωγckdq − (Eck − Edq)2
( fck − fdq).

Under the condition (37) the second term on the right-hand side of Eq. (53) is equal to zero. As a result, we obtain the following
expression for the perturbation of the density matrix:

ρ̃ckdq = −e
(Eck − Edq + h̄ω)�ω;ckdq( fck − fdq)

(Eck − Edq)2 − h̄2ω2 − 2ih̄2ωγckdq
. (56)

As we noted at the end of the Sec. II, for a wide class of systems the coefficients |Gckdq| = 1 [condition (37) is satisfied]. We
assume this to be true here. Moreover, it will be shown in Appendix C that the derivation of the linear susceptibility in the limit
of a uniform external field for an arbitrary value of |Gckdq| gives the same result as for |Gckdq| = 1.

The expression for the amplitude of monochromatic oscillations of the charge is calculated after substituting Eq. (56) into
Eq. (45). As a result, taking into account Eq. (38), we obtain the expression for the susceptibility,

χ (ω, κ) = − e2g

4π2κ2

∑
cdkq

( fck − fdq)δk(q+κ)|u∗
ck · udq|2(Eck − Edq + h̄ω)

(Eck − Edq)2 − h̄2ω2 − 2ih̄2ωγckdq
. (57)

It is easy to verify that as γckdq → 0, the expression Eq. (57) transforms into the dissipationless formula Eq. (46).
The resulting expression for the susceptibility can be simplified, given the identity

∑
cdkq

( fck − fdq)δk(q+κ)|u∗
ck · udq|2

(Eck − Edq)2 − h̄2ω2 − 2ih̄2ωγckdq
= 0. (58)

To prove Eq. (58) we make a replacement ck ↔ dq in the sum and obtain

∑
cdkq

( fck − fdq)δk(q+κ)|u∗
ck · udq|2

(Eck − Edq)2 − h̄2ω2 − 2ih̄2ωγckdq
=

∑
cdkq

( fck − fdq)|u∗
ck · udq|2 δk(q+κ)−δk(q−κ)

2

(Eck − Edq)2 − h̄2ω2 − 2ih̄2ωγckdq
.

Under the condition |Gckdq| = 1 we always have |u∗
ck · udq|2 = |u∗

c−k · ud−q|2. In this case, the right-hand side of the last
expression can be represented as the difference of identical sums, so that Eq. (58) is satisfied. As result we get

χ (ω, κ) = − e2g

4π2κ2

∑
cdkq

(Eck − Edq)( fck − fdq)δk(q+κ)|u∗
ck · udq|2

(Eck − Edq)2 − h̄2ω2 − 2ih̄2ωγckdq
. (59)

For an independent derivation of the conductivity, we use Eqs. (47) and (56) to obtain

σ (ω, k) = i
e2g

4π2κ2

∑
ckdq

Eck − Edq

h̄
× (Eck − Edq + h̄ω)δk(q+κ)|u∗

ck · udq|2( fck − fdq)

(Eck − Edq)2 − h̄2ω2 − 2ih̄2ωγckdq
.

Then we use the relation ∑
cdkq

(Eck − Edq)2( fck − fdq)δk(q+κ)|u∗
ck · udq|2

(Eck − Edq)2 − h̄
2
ω2 − 2ih̄2ωγckdq

= 0,

which proof is completely analogous to that of Eq. (58). As a result, we arrive at

σ (ω, k) = iω
e2g

4π2κ2

∑
ckdq

(Eck − Edq)( fck − fdq)δk(q+κ)|u∗
ck · udq|2

(Eck − Edq)2 − h̄2ω2 − 2ih̄2ωγckdq
= −iωχ (ω, κ).

As we see, in this case the relationship (3) is always satisfied;
therefore, it suffices to analyze the properties of the expression
(59), which determines the value of χ (ω, κ).

An important feature of the expression (59) is that the
transition to the limit of a constant field is nontrivial. Depend-

ing on the order in which we take the limits, the relations
obtained in the limit ω → 0 allow us to describe both the
response of an equilibrium quasiclosed system to a per-
turbing potential and the ohmic conductivity of an open
system.
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For a nonzero value of κ in the limit ω = 0, Eq. (59)
defines the real value of χ , independent on the relaxation
constants. If the quantities fck correspond to the equilibrium
distribution in the absence of external fields, then expression
(59) corresponds to the equilibrium state of the system placed
in the potential field, treating the electron-field interaction as
a perturbation. This result corresponds to the correct limit
of a stationary response to an external nonuniform constant
perturbing field, since such a response itself should not depend
on the mechanism and rate of relaxation.

We will arrive at a different result if we first take the limit
κ → 0. In this case we obtain

χ (ω, 0) = − e2g

4π2

∑
c �=d,k

|n·rckdk|2( fck − fdk)(Eck − Edk)

(Eck − Edk)2 − h̄
2
ω2 − 2ih̄2ωγckdk

+ e2g

4π2

∑
ck

(
n ∂

∂kEck
)(
n ∂

∂k fck
)

h̄2ω2 + 2ih̄2ωγckck
, (60)

where rckdk = u∗
cki

∂
∂kudk is the matrix element of the coor-

dinate operator defined in the k representation for a “direct”
transition; n = κ

|κ| .
It is easy to verify that when we use Eq. (60) to determine

the conductivity σ (ω, 0) = −iωχ (ω, 0), the second term on
the right-hand side of Eq. (60) defines the standard intraband
Drude conductivity, up to a factor of 2 in the definition of a
relaxation constant.

To summarize, if the limit ω → 0 is taken after taking the
limit κ → 0, then a physically transparent result is obtained:
Interband transitions determine the susceptibility which does
not depend on the relaxation constant, whereas intraband tran-
sitions determine the finite Drude conductivity which depends
on the relaxation constant. However, this conclusion is valid
for a finite band gap only. Otherwise (as, for example, in
graphene), a more complex contribution of interband transi-
tions is possible.

Note that for ω → 0, a continuous transition from the
equilibrium “current-free” solution given by Eq. (59) to the
ohmic conductivity given by Eq. (60) is possible only for a
problem with boundary conditions.

The resonance denominator in the expression for the
susceptibility Eq. (59) corresponds to a classical harmonic
oscillator with friction; this structure of the electrodynamic
response is typical for the relaxation operator with an anti-
symmetric structure like Eq. (5) [6,7].

For the simplest open systems that violate time-reversal
symmetry, for example free particles or a harmonic oscil-
lator in a magnetic field, expressions similar to Eq. (59)
were obtained in Refs. [6,7]. The corresponding expressions
for the phenomenological relaxation operator were derived
there imposing the requirement of the gauge invariance of
the electrodynamic response [6,9]. In the present case, no
additional requirements, except for the conservation of the
particle number, were imposed. As noted above, all the nec-

essary information about the system is “hidden” in the form
of specific Bloch functions ψck(r, s) or, within the simplified
description, in the form of vectors uck. When used in Eqs. (26)
and (28) or Eqs. (26) and (36) respectively, these sets of state
functions unambiguously define the correct phenomenologi-
cal relaxation operator.

IV. APPLICATION TO GRAPHENE

A. General considerations

In this section, we compare the results for the dielectric
response of graphene obtained with the modified relaxation
operator Eq. (26) and the standard relaxation operator Eq. (2).
One has to choose for which particular quantity to carry out
the comparison: the surface susceptibility χ (ω, κ) or the sur-
face conductivity σ (ω, κ), since using the standard relaxation
operator Eq. (2) violates Eq. (3). Whenever the standard re-
laxation operator is used, we introduce the notation χ (st)(ω, κ)
and σ (st)(ω, κ).

For quasiparticle states |α〉 = |c, k〉 the expressions
Eqs. (49) and (50) have the form

χ (st)(ω, κ) = − e2g

4π2κ2

∑
cdkq

( fck − fdq)δk(q+κ)|u∗
ck · udq|2

Eck − Edq − h̄ω − ih̄γckdq
,

(61)

σ (st)(ω, κ)

= e2g

4π2κ2

∑
cdkq

(iω − γckdq)
( fck − fdq)δk(q+κ)|u∗

ck · udq|2
Eck − Edq − h̄ω − ih̄γckdq

.

(62)

As an important example, we compare the values of
σ (st)(0, κ) and χ (st)(0, κ). Using exactly the same approach as
in the derivation of Eq. (58), we obtain Re[σ (st)(0, κ)] �= 0,
but Im[χ (st)(0, κ)] = 0. The relaxation operator (26) corre-
sponds to the susceptibility given by Eq. (59), which leads to
Im[χ (0, κ)] = Im[χ (st)(0, κ)] = 0. This suggests that if one
wants to use the standard relaxation operator Eq. (2) for low
frequencies and finite values of κ, then one can get more
adequate results from calculating the susceptibility χ rather
than the conductivity, since it is the condition Imχ (0, κ) = 0
that corresponds to the correct stationary state for finite
values of κ. Therefore, below we compare the susceptibil-
ities derived with different relaxation operators rather than
conductivities.

B. Comparison between the standard and new model
of the relaxation operator for graphene

Consider monolayer graphene, for which the wave func-
tions uck and electron energy dispersion Eck are given in
Appendix B [see Eqs. (B8) and (B9)]. If we assume that the
relaxation rate is a constant, γckdq = γ , then the susceptibility
given in Eq. (59) is written as

χ (ω, κ) = − e2g

4π2κ2

∑
cd

∫
d2q

( fc,q+κ − fdq)
∣∣u∗

c,q+κ · udq
∣∣2(Ec,q+κ − Edq)

(Ec,q+κ − Edq)2 − h̄2ω2 − 2ih̄2ωγ
. (63)
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FIG. 1. The real part (a) and imaginary part (b) of the surface susceptibility for undoped monolayer graphene as a function of frequency
for the two models: standard (solid blue curve) and new (dashed red curve). The plots are calculated for T = 300 K, γ = 1014 s−1 � 16 THz,
and κ/2π = 2 μm−1. The inset in each figure shows the curves near zero frequency.

The above expression can be calculated numerically. How-
ever, when ω → 0, the denominator can become zero (even
for κ �= 0 if c = d), and the numerical integration does not
work. So we need to analyze the behavior of the susceptibility
in the vicinity of ω = 0. The denominator of χ (ω, κ) can be
written as

1

(Ec,q+κ − Edq)2 − h̄2ω2 − 2ih̄2ωγ

= (Ec,q+κ − Edq)2 − h̄2ω2 + 2ih̄2ωγ

((Ec,q+κ − Edq)2 − h̄2ω2)2 + 4h̄4ω2γ 2
. (64)

Therefore,

lim
ω→0

1

(Ec,q+κ − Edq)2 − h̄2ω2 − 2ih̄2ωγ

= V.p.

{
1

(Ec,q+κ − Edq)2

}
+ iπδ[(Ec,q+κ − Edq)

2], (65)

where V.p. stands for the principal value of the integral. As
a result, the susceptibility in the zero-frequency limit is given
by

lim
ω→0

χ (ω, κ)

= − e2g

4π2κ2

∑
cd

∫
d2qV.p.

{
( fc,q+κ − fdq)

∣∣u∗
c,q+κ · udq

∣∣2
Ec,q+κ − Edq

}

− iπ
e2g

4π2κ2

∑
cd

∫
d2q( fc,q+κ − fdq)|u∗

c,q+κ · udq|2

× (Ec,q+κ − Edq)δ[(Ec,q+κ − Edq)
2]

= − e2g

4π2κ2

∑
cd

∫
d2qV.p.

{
( fc,q+κ − fdq)

∣∣u∗
c,q+κ · udq

∣∣2
Ec,q+κ − Edq

}

− iπ
e2g

8π2κ2

∑
cd

∫
d2q( fc,q+κ − fdq)

× |u∗
c,q+κ · udq|2δ(Ec,q+κ − Edq). (66)

One can see that the imaginary part of χ (ω, κ) is zero when
ω → 0 for κ �= 0.

Now we calculate the susceptibility of intrinsic monolayer
graphene by carrying out the integration in k space numer-
ically. In the plots below, we assumed T = 300 K and γ =
1014 s−1 � 16 THz.

In Fig. 1 we show the susceptibility as a function of fre-
quency, calculated with the new model Eq. (63) in comparison
with the standard model, Eq. (61). The inset shows the behav-
ior near ω = 0. The difference between the predictions of the
two models is very large when ω � γ . In the high-frequency
limit ω � γ the models give a very similar result.

Figure 2 shows the susceptibility as a function of the wave
vector κ , while the frequency is fixed at ω = 0.5γ . In Fig. 3
we show the same dependence while the frequency is fixed at a
higher value ω = 2.0γ . Clearly, at low frequencies the models
have a very different behavior when κ approaches zero. The
difference between the models becomes less important as the
frequency gets larger than the relaxation rate.

C. The case of κ → 0 for graphene

In the case of κ → 0, the susceptibility in the modified
model is given in Eq. (60), and the susceptibility in the
standard model is given in Eq. (61). Here we try to com-
pare the results by finding the analytical expressions of the
susceptibility. In order to do this, we consider the case of
zero temperature, so the distribution of electrons is given by
fnk = θ (EF − Enk), where θ (x) is the Heaviside function, and
EF is the Fermi level, which is related to the Fermi wave
vector kF by EF = sgn(EF )h̄vFkF , where sgn(x) is the sign
function.

The detailed derivation is given in Appendix E. For the
modified model, we find the following expression for part of
χ (ω, 0) due to the interband transitions,

χinter (ω, 0) = − e2g

16π

1

h̄ω
√
(1 + 2iγ /ω)

× ln

[
2vFkF − ω

√
(1 + 2iγ /ω)

2vFkF + ω
√
(1 + 2iγ /ω)

]
, (67)
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FIG. 2. The real part (a) and imaginary part (b) of the surface susceptibility for undoped monolayer graphene as a function of the
wave vector κ for the two models: standard (solid blue curve) and new (dashed red curve). The plots are calculated for T = 300 K and
γ = 1014 s−1 � 16 THz. The frequency is at ω = 0.5γ , namely ω/2π = 8.0 THz.

where the branch of the square root should have
Re[

√
(1 + 2iγ /ω)] > 0. The contribution of intraband

transitions is found to be

χintra (ω, 0) = − e2g

4π h̄

vFkF
ω2(1 + 2iγ /ω)

. (68)

For the standard relaxation operator, the contribution of
interband transitions is

χ
(st)
inter (ω, 0) = − e2g

16π

1

h̄ω(1 + iγ /ω)

× ln

[
2vFkF − ω(1 + iγ /ω)

2vFkF + ω(1 + iγ /ω)

]
, (69)

and the contribution of the intraband transitions is

χ
(st)
intra (ω, 0) = − e2g

4π h̄

vFkF
ω2(1 + iγ /ω)2

. (70)

These results show that the functions χ (ω, 0) calculated in
the standard and modified models tend to be the same at large
frequencies ω � γ , while they are quite different in the region
where ω is of the order of or smaller than γ .

We are not aware of the measurements that could be cor-
rectly compared with Figs. 1 and 2. There are numerous
reports of THz spectra and some of them are extended to
low enough frequencies; see, e.g., Refs. [28,29]. However,
these measurements are done under the conditions κ � 0 and
on samples with high or uncontrollable doping, when the
response is dominated by intraband transitions. Furthermore,
the scattering rate is unknown; in fact, the authors typically
try to extract it by fitting the spectra with the Drude for-
mula. We hope that our paper will stimulate others to conduct
dedicated measurements with controlled doping including in-
trinsic graphene, variable κ achieved by tuning around bulk or
surface plasmon resonance, and independent estimates of the
scattering rate.
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FIG. 3. The real part (a) and imaginary part (b) of the surface susceptibility for undoped monolayer graphene as a function of the
wave vector κ for the two models: standard (solid blue curve) and new (dashed red curve). The plots are calculated for T = 300 K and
γ = 1014 s−1 � 16 THz. The frequency is at ω = 2.0γ , namely ω/2π = 31.8 THz.
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V. CONCLUSIONS

In conclusion, we derived the phenomenological relaxation
operator for quasiparticles in a crystalline solid, which has a
number of important advantages as compared to widely used
models. Our relaxation operator is valid for charged carriers
in solids with an arbitrary energy dispersion, in particular the
Dirac spectrum; it preserves the continuity equation while
including both intraband and interband transitions; it allows
one to obtain both the stationary “current-free” regime in
equilibrium and the well-known ohmic direct current regime
in the limit of a uniform static field; and it is much simpler
and more general than the model proposed in Ref. [5].

We demonstrated a significant difference between the
results of applying the standard and modified models of relax-
ation of quantum coherence in the low-frequency region. We
believe that the proposed relaxation operator model should be
used in a wide range of problems related to the interaction of
electromagnetic fields with condensed matter systems.
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APPENDIX A: RELAXATION MATRIX
FOR A TRS-INVARIANT HAMILTONIAN

Consider the Schrödinger equation ih̄U̇ = Ĥ0U , where U
is an N-component vector. The solution U (t ) is related to the
time-reversed solution Ũ (t ) by Ũ (t ) = Q̂U∗(−t ), where Q̂ is
a certain linear operator which does not have to be specified.
Invariance with respect to time reversal means that vectors
Ũ (t ) andU (t ) must satisfy the Schrödinger equation with the
same Hamiltonian Ĥ0, which implies:

Ĥ∗
0 = Q̂−1Ĥ0Q̂. (A1)

If U ck(r) = uckeikr is the eigenvector of the Hamiltonian Ĥ0

for energy Eck, then another eigenvector for the state with the
same energy corresponds to the time-reversal operation,

uc−k = eiϕckQ̂u∗
ck. (A2)

It follows from Eq. (A1) and the hermiticity of the operator
Ĥ0 that

Q̂−1 = ±Q̂∗, Q̂−1 = ±Q̂†. (A3)

Using Eq. (A2) to transform the scalar product in Eq. (36), we
get

(u∗
c−k · ud−q) = ei(ϕdq−ϕck )(Q̂u∗

dq · Q̂∗uck)

= ei(ϕdq−ϕck )(u∗
dq·Q̂Q̂†uck).

Equation (A3) means that Q̂Q̂
† = ±1̂, where 1̂ is the identity

matrix. Using this, we arrive at the following expression for

the coefficients Gckdq,

Gckdq = ξei(ϕdq−ϕck ), (A4)

where ξ = ±1 for Q̂Q̂
† = ±1̂. Equation (37) follows from

Eq. (A4).

APPENDIX B: RELAXATION OPERATOR FOR
QUASIPARTICLES IN MONOLAYER GRAPHENE

The Bloch functions for quasiparticles in monolayer
graphene are given by [26]

〈r|α〉 = �sk(r) = eikr
[
λAψ

A
k (r) + λBψ

B
k (r)

]
, (B1)

where

ψA
k (r) =

∑
rA

eik(rA−r)X (r − rA),

ψB
k (r) =

∑
rB

eik(rB−r)X (r − rB), (B2)

rA,B are atom positions in two sublattices and X (r − rA,B) is

the Wannier function. The set of vectors
(λA

λB

)
and the ener-

gies E of the quasiparticles correspond to eigenvectors and
eigenvalues of the transformation which in the tight binding
approximation has the following form [26],

h̄ν

[
0 S(k)

S∗(k) 0

]
·
(

λA

λB

)
= E

(
λA

λB

)
, (B3)

where

S(k) = 2exp

(
ikxa

2

)
cos

(√
3kya

2

)
+ exp(−ikxa), (B4)

and ν is a normalized hopping parameter. From Eq. (B3) we
obtain

Eck = ch̄ν|S(k)|, λA/λB = cS(k)/|S(k)|, (B5)

where c = ±1 is the band index. The relations (B1), (B2),
and (B4) and the second of Eqs. (B5) define the set of wave
functions �sk(r). The spin-orbit coupling which leads to the
spin dependence of energy is negligible in this case.

Taking into account that S(−k) = S∗(k), we get Eck =
Ec−k, �c−k(r) = �∗

ck(r), which should be expected from the
TRS property of the system. The last equation indicates that
one can use the relaxation operator in the form of Eq. (23).
Note, however, that the relation S(−k) = S∗(k) refers to the
complete Brillouin zone that includes two Dirac points: K =
( 2π3a , 2π

3
√
3a
) and K

′ = ( 2π3a , − 2π
3
√
3a
). Therefore, the replacement

−k ↔ k can connect quasiparticles from different valleys and
the intervalley scattering can contribute to the relaxation rate
[20].

In the vicinity of the Dirac points, it is convenient to use
approximate expressions [26]

S(k) ∝ (δkx − iδky), (B6)

where δk = k − K or δk = k − K
′
. Equation (B6) leads to an

effective Hamiltonian of the type (30), in which ∂2Ê
∂ki∂k j

→ 0:

Ĥ0 = vF p̂σ̂, (B7)
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where σ̂ = x0σ̂x + y0σ̂y and vF = 3aν
2 is the Fermi velocity.

The Hamiltonian (B7) corresponds to the energy dispersion
for massless Dirac quasiparticles given by

Eck = ch̄vFk, (B8)

and the eigenfunctions

U ck(r) = eikruck, uck = 1√
2

(
c

eiθ (k)

)
, (B9)

where the indices c = ±1 denote the conduction and valence
bands, respectively, θ (k) is the angle between the quasimo-
mentum h̄k and the x axis in the plane of the monolayer, the
vector k is defined in the k space relative to the point K or K

′
;

the degeneracy over the valley index is assumed.
Note that the model Hamiltonian (B7) is TRS invariant

so that Eq. (A1) with operator Q̂ = iσ̂y is satisfied and the

eigenvectors (B9) satisfy the relation uc−k = eiϕckQ̂u∗
ck, where

ϕck =
{
θ (k), c = 1
θ (k) + π, c = −1 .

Therefore, one can use Eq. (A4) to find the coefficients
Gckdq which determine the form of the relaxation operator in
Eq. (26). As a result, since Q̂Q̂† = 1̂, we get the following
relaxation operator for carriers in graphene in the vicinity of a
Dirac point,

Rckdq = −γckdq(ρckdq − cdei[θ (q)−θ (k)]ρd −q c−k). (B10)

One can obtain the same expression by substituting Eq. (B9)
for the eigenfunctions directly into Eqs. (26) and (36).

APPENDIX C: RELAXATION OPERATOR FOR QUASIPARTICLES IN A TRS-BREAKINGWEYL SEMIMETAL

We use the “minimal” model Hamiltonian for a TRS-breaking Weyl semimetal from Ref. [30], which describes the two
bands touching in two separated Weyl nodes in the quasimomentum space, near which electrons have a three-dimensional Dirac
spectrum:

Ĥ0 = vF

(
P̂2 − h̄2m

2h̄b
σ̂x + p̂yσ̂y + p̂zσ̂z

)
, (C1)

where σ̂x,y,z are the Pauli matrices and the operator P̂2 can be defined in one of three ways: (1) P̂2 = p̂2x, (2) P̂
2 = p̂2x + p̂2y, or (3)

P̂2 = p̂2x + p̂2y + p̂2z .
The Hamiltonian in Eq. (C1) is not TRS invariant, which gives rise, in particular, to the gyrotropy and the anomalous Hall

effect in the absence of an external magnetic field [30,31]. Physically, this corresponds to a material with some kind of a magnetic
order.

The bulk states of the Hamiltonian (C1) have the energy dispersion

Eck = ch̄vF
√
K2
x + k2y + k2z , (C2)

and eigenvectors

U ck(r) = eikruck, uck = 1√
2

(√
1 − ccosθke−iφk

c
√
1 + ccosθk

)
, (C3)

where cosθk = ky√
K2
x +k2y+k2z

, eiφk = Kx+ikz√
K2
x +k2z

, and (1) Kx = k2x−m
2b , (2) Kx = k2x+k2y−m

2b , or (3) Kx = k2x+k2y+k2z −m

2b , respectively; c = ±1 (see

Ref. [30]).
Due to the broken TRS in this system [30], one cannot use the representation Eq. (A4) for the coefficients Gckdq, which

determine the form of the relaxation operator Eq. (26). However, calculating these coefficients directly using Eq. (36) with
Eq. (C3) taken into account, we obtain

Gckdq = cdeiφq−iφk

√
1 + ccosθk

√
1 + dcosθq + cdeiφq−iφk

√
1 − ccosθk

√
1 − dcosθq√

1 + ccosθk
√
1 + dcosθq + cde−iφq+iφk

√
1 − ccosθk

√
1 − dcosθq

,

whence it is easy to see that |Gckdq| = 1, despite the broken TRS of the system.

APPENDIX D: THE LINEAR SUSCEPTIBILITY FOR A UNIFORM PERTURBATION

From Eq. (53) and taking into account Eqs. (54) and (55), we obtain

ρ̃ckdq = −e
[Eck − Edq + h̄ω + ih̄γckdq(1 − |Gckdq|2)]�ω;ckdq( fck − fdq)

(Eck − Edq)2 − h̄2ω2 − 2ih̄2ωγckdq
. (D1)

The expression for the linear susceptibility calculated by substituting Eq. (D1) into Eq. (45) is

χ (ω, κ) = − e2g

4π2κ2

∑
cdkq

( fck − fdq)δk(q+κ)|u∗
ck · udq|2[Eck − Edq + h̄ω + ih̄γckdq(1 − |Gckdq|2)]

(Eck − Edq)2 − h̄
2
ω2 − 2ih̄2ωγckdq

. (D2)
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After rearranging the summation indices, taking into account the symmetry of the energy dispersion and populations with respect
to the replacement k → −k, q → −q, we can convert Eq. (D2) into another form,

χ (ω, κ) = − e2

4π2κ2

∑
cdkq

{
( fck − fdq)(Eck − Edq)|u∗

ck · udq|2 δk,q+κ+δk,q−κ

2

(Eck − Edq)2 − h̄
2
ω2 − 2ih̄2ωγck dq

+ ( fck − fdq)|u∗
ck · udq|2[h̄ω + ih̄γckdq(1 − |Gckdq|2)] δq,k−κ−δq,k+κ

2

(Eck − Edq)2 − h̄
2
ω2 − 2ih̄2ωγck dq

}
. (D3)

In the limit of a homogeneous perturbing field, when κ/k → 0 we obtain Eq. (60), which does not depend on the value of
|Gckdq|2.

APPENDIX E: DERIVATION OF THE LINEAR SUSCEPTIBILITY FOR GRAPHENE WHEN κ → 0

In this section, we show the derivation of χ (ω, κ) for graphene in the limit of |κ| → 0, which we study in Sec. IVC. As
stated in the main text, we consider the case of zero temperature, where the distribution of electrons is given by fnk = θ (EF −
Enk), where θ (x) is the Heaviside function, and EF is the Fermi level, which is related to the Fermi wave vector kF by EF =
sgn(EF )h̄vFkF , where sgn(x) is the sign function.

In the case of κ → 0, the susceptibility with the new relaxation operator is given by Eq. (60). Without loss of generality,
we can choose κ in the x̂ direction. For the contribution of interband transitions, using xckvk = sin θ (k)/2k, we find that the
susceptibility can be written as

χinter (ω, 0) = − e2g

4π2

∫
d2k

[
2
sin2 θ (k)

4k2
( fck − fvk)2h̄vFk

(2h̄vFk)2 − h̄2ω2 − 2ih̄2ωγ

]

= − e2g

4π2

∫ ∞

0
kdk

∫ 2π

0
dθ

[
sin2 θ

k

( fck − fvk )h̄vF
(2h̄vFk)2 − h̄2ω2 − 2ih̄2ωγ

]

= −e2g

4π

∫ ∞

0
dk

[
( fck − fvk )h̄vF

(2h̄vFk)2 − h̄2ω2 − 2ih̄2ωγ

]

= e2g

4π

∫ ∞

kF

dk

[
h̄vF

(2h̄vFk)2 − h̄2ω2 − 2ih̄2ωγ

]

= − e2g

16π

1

h̄ω
√
(1 + 2iγ /ω)

ln

[
2vFkF − ω

√
(1 + 2iγ /ω)

2vFkF + ω
√
(1 + 2iγ /ω)

]
, (E1)

where the branch of the square root should have Re[
√
(1 + 2iγ /ω)] > 0.

The contribution of the intraband transitions is

χintra (ω, 0) = e2g

4π2

∫
d2k

∑
n=c,v

(
n ∂

∂kEnk
)(
n ∂

∂k fnk
)

h̄2ω2 + 2ih̄2ωγ

= e2g

4π2

1

h̄2ω2 + 2ih̄2ωγ

∫
d2k

∑
n=c,v

(
n

∂

∂k
Enk

)2
∂

∂Enk
fnk

= e2g

4π2

v2
F

ω2 + 2iωγ

∫
d2k

∑
n=c,v

cos2 θ (k)
∂

∂Enk
fnk

= e2g

4π

v2
F

ω2 + 2iωγ

∫ ∞

0
kdk

1

h̄vF

∂

∂k
( fck − fvk)

= − e2g

4π h̄

vFkF
ω2(1 + 2iγ /ω)

. (E2)

For the standard relaxation operator, the expression of the susceptibility is given in Eq. (61). The contribution of the interband
transitions is found to be

χ
(st)
inter (ω, 0) = − e2g

4π2

∫
d2k

[
sin2 θ (k)

4k2
( fck − fvk)

(
1

2h̄vFk − h̄ω − ih̄γ
− 1

−2h̄vFk − h̄ω − ih̄γ

)]

= − e2g

4π2

∫
d2k

[
sin2 θ (k)

4k2
( fck − fvk)

4h̄vFk

(2h̄vFk)2 − (h̄ω + ih̄γ )2

]
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= e2g

4π

∫ ∞

kF

dk

[
h̄vF

(2h̄vFk)2 − (h̄ω + ih̄γ )2

]

= − e2g

16π

1

h̄ω(1 + iγ /ω)
ln

[
2vFkF − ω(1 + iγ /ω)

2vFkF + ω(1 + iγ /ω)

]
. (E3)

The contribution of the intraband transitions is

χ
(st)
intra (ω, 0) = lim

κ→0

e2g

4π2κ2

∫
d2k

∑
n=c,v

κ2 1
h̄ω+ih̄γ

(
n ∂

∂k fnk
)(
n ∂

∂kEnk
) + 1

2κ
2
(
n ∂

∂k

)2
fnk

h̄ω + ih̄γ

= e2g

4π2

1

h̄ω + ih̄γ

∫
d2k

∑
n=c,v

[(
n ∂

∂k fnk
)(
n ∂

∂kEnk
)

h̄ω + ih̄γ
+ 1

2

(
n

∂

∂k

)2

fnk

]
, (E4)

where the expansion in the numerator to the first order of κ will disappear after integration. The derivative terms are(
n

∂

∂k

)
Enk = snh̄vF cos θ (k),

(
n

∂

∂k

)
fnk = cos θ (k)

∂

∂k
fnk,

(
n

∂

∂k

)2

fnk = cos2 θ (k)
∂2

∂k2
fnk + 1

k
sin2 θ (k)

∂

∂k
fnk, (E5)

where sn = 1, − 1 for n = c, v. The integration of the first term gives∫
d2k

∑
n=c,v

[
cos2 θ (k)snh̄vF

∂

∂k
fnk

]
= π

∑
n=c,v

snh̄vF

∫ ∞

0
kdk

∂

∂k
fnk = −π h̄vFkF . (E6)

The integration of the second term gives

1

2

∫
d2k

∑
n=c,v

[
cos2 θ (k)

∂2

∂k2
fnk + 1

k
sin2 θ (k)

∂

∂k
fnk

]
= π

2

∫ ∞

0
kdk

∑
n=c,v

[
∂2

∂k2
fnk + 1

k

∂

∂k
fnk

]

= π

2

∑
n=c,v

∫ ∞

0
d

(
k

∂

∂k
fnk

)

= 0. (E7)

The result is

χ
(st)
intra (ω, 0) = e2g

4π2

1

h̄ω + ih̄γ

−π h̄vFkF
h̄ω + ih̄γ

= − e2g

4π h̄

vFkF
ω2(1 + iγ /ω)2

. (E8)
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