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Abstract 6 

The residential sector accounts for a significant amount of water consumption in the United States. 7 

Understanding this water consumption behavior provides opportunity for water savings, which are 8 

important for sustaining freshwater resources. In this study, we analyzed 1-second resolution smart water 9 

meter data from a 4-person household over one year as demonstration. We disaggregated the data using 10 

derivative signals of the influent water flow rate at the water supply point of the home to identify start and 11 

end times of water events. k-means clustering, an unsupervised machine learning method, then 12 

categorized these water events based on information collected from the appliance/fixture end uses. The 13 

use of unsupervised learning reduces the training data requirements and lowers the barrier of 14 

implementation for the model. Using the water use profiles, we determined peak demand times and 15 

identified seasonal, weekly, and daily trends. These results provide insight into specific water 16 

conservation and efficiency opportunities within the household (e.g., reduced shower durations), 17 

including the reduction of water consumption during peak demand hours. The widespread implementation 18 

of this type of smart water metering and disaggregation system could improve water conservation and 19 

efficiency on a larger scale and reduce stress on local infrastructure systems and water resources.  20 

Introduction 21 

Freshwater is a necessary resource for human life. Unsustainable depletion of fresh surface water and 22 

groundwater resources, along with the depletion of water quality through contamination, are growing 23 

issues that threaten widespread water security (1). While the management of water resources is imperative 24 

for ensuring water security in the future, there is a general lack of understanding of residential water 25 
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consumption on a day-to-day basis. While monthly total volumetric utility data are available, finer 26 

resolution data reveal possibilities for identifying specific, customized opportunities for residential water 27 

conservation and efficiency. 28 

Implementing smart water meters in the residential sector is a way to improve the temporal resolution of 29 

residential water consumption data, and further analysis of the data from these meters provides useful 30 

insight into residential water end uses. In this study, water main flow rate data were collected on 1-second 31 

resolution from a smart water meter system at a 4-person residence in central Illinois from February 2018 32 

through January 2019, as a demonstration of a residential smart water metering system in a temperate-33 

humid climate. This work explored two research questions: 1) What water consumption trends exist at the 34 

whole-home and appliance levels?, 2) Can 1-second resolution whole-home water meter data be used to 35 

identify appliance end uses with limited training data? 36 

We analyzed water consumption on daily and hourly timescales to identify household-level trends. By 37 

quantifying average daily water consumption for each month, we revealed seasonal variation in 38 

consumption behavior. On the weekly scale, we compared average water consumption values for each 39 

day of the week to identify differences in weekday and weekend consumption. We implemented 40 

additional time-of-day analysis to find peak demand times in the morning and evening. Timing of peak 41 

demand can be useful for residential demand prediction and plumbing design (2), and widespread 42 

implementation of smart water meters can inform conservation and efficiency recommendations. 43 

In addition to analyzing the water consumption trends of the overall household, we aimed to estimate 44 

water end uses within the home as a demonstration for further implementation of smart water metering 45 

systems. We created a model to disaggregate and categorize water events into appliance/fixture end uses. 46 

With access to 1-second resolution data, we used this approach to pinpoint the instances in which water 47 

valves opened and closed by analyzing the derivative signals from the flow rate, providing water event 48 

information of average flow rate and duration. We classified these water end-use events using k-means 49 

clustering, an unsupervised machine learning method. This unsupervised machine learning approach 50 
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greatly reduces the amount of input data necessary, lowering barriers in the widespread implementation of 51 

residential water use studies. 52 

 These results can be used to identify customized conservation and efficiency recommendations for 53 

household water consumption, which could promote positive water consumption behavior change through 54 

feedback mechanisms. Overall, this study serves as a basis for extracting water demand information from 55 

smart meter data on multiple timescales, reduces the barrier of implementation of smart water meter 56 

disaggregation and appliance/fixture identification models, and explores the implications of how this 57 

information could be used for improved conservation and efficiency. 58 

Background 59 

Quantitative residential water consumption data have traditionally only been available through utilities at 60 

the monthly level. While several studies have utilized surveys to gain further insight into residential water 61 

use behavior (3-5), these surveys are associated with a high level of uncertainty. Higher resolution water 62 

use data are needed to more accurately analyze how water is used within the residential sector. Smart 63 

water metering is an emerging technology that can be used at the household level to aid in water 64 

conservation and efficiency. These meters have advanced to track flow rates on the order of seconds (6). 65 

This type of information is a vast improvement from the traditional data collected by utilities, and these 66 

data can provide a more comprehensive quantification of water consumption behavior than previously 67 

possible, reduce the uncertainty of how water is consumed, and provide more detailed insight into 68 

household water consumption. 69 

There are several different technologies available that can be used to measure the flow of water through a 70 

pipe. Consequently, there are a variety of smart water meters on the market, including pressure sensors, 71 

accelerometers, mechanical meters, and magnetic meters. Pressure sensors use Poisuelle’s law to estimate 72 

flow rates based on pressure changes within the pipe as the valve is open or closed (7). Accelerometers 73 

track vibrations in the pipe from turbulence of moving water (8), while ultrasonic sensors transmit 74 
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ultrasonic beams and measure the difference in time between these beams in flowing water (9). Finally, 75 

mechanical meters calculate the flow rate based on the movement of a disk within the meter (6), and 76 

magnetic meters measure the flow via the voltage induced across the fluid within a magnetic field (10). 77 

The development of these technologies not only improves the temporal resolution of available flow rate 78 

data, but allows for accurate water flow rate measurements as low as 0.02 L/min (11). Pressure sensors 79 

and mechanical or magnetic flow meters have been used as residential smart water meters due to the cost 80 

of ultrasonic sensors and the intensive calibration required for accelerometers. 81 

Smart water meter information can be beneficial on a city-wide scale if data are captured remotely, and 82 

can be used for urban water planning (12) and demand forecasting (13). Information from smart water 83 

meters can be used by both residents and water utilities in widespread water supply planning, and water 84 

conservation and efficiency can benefit an area’s entire water infrastructure system (14). Monthly utility 85 

water consumption data are often used to predict water demand at the district level (15), but access to 86 

daily or hourly data opens new potential for these water demand predictions. Insight into how water is 87 

used during the day, including overall demand and peak demand times (2), is important for water utility 88 

operation and for the construction and maintenance of infrastructure. Water infrastructure is typically 89 

designed based on average and peak daily and hourly demands, and these demands have a direct impact 90 

on infrastructure cost (16). This infrastructure experiences the most stress during peak demand times, so 91 

reducing peak demand can reduce the need for expensive water distribution network augmentations (17). 92 

The analysis of smart water meter data can assist in identifying opportunities for water conservation, and 93 

ultimately assist in peak demand reduction (18-20).   94 

Improved availability of smart meters can also reduce city-wide non-revenue water, through physical 95 

losses and metering inaccuracies. Mukheibir et al. (21) found that non-registration and under-registration 96 

of flow rates in residential water meters contributed to non-revenue water and errors in the city-scale 97 

water balance. Meters can become less reliable with age and usage, but are not always replaced, which 98 

can lead to large volumes of unaccounted-for-water (22-23). Implementation of new meters can mitigate 99 
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these issues, and an improvement in temporal resolution of the data could lead to fewer water losses, as 100 

quick feedback from smart meter data can also be used to identify and repair leaking pipes (24), saving 101 

water, energy, and money (25-27). 102 

Water demand also varies seasonally, and data from residential smart water meters have been used to 103 

understand these trends in water consumption, which are important for regional water supply planning. A 104 

study of Albuquerque, New Mexico, showed that overall demand increased in the summer due to 105 

additional outdoor use (28). Other studies have shown this type of outdoor water consumption variability 106 

(29-30), and there is evidence that indoor residential water use may also vary seasonally. Rathnayaka et 107 

al. (31) showed that shower duration is negatively correlated with outdoor temperature, while other water-108 

consuming appliance use behavior remains steady throughout the year. This type of seasonal demand 109 

information can be useful for conservation and efficiency efforts on behalf of the consumer, as well as for 110 

widespread water supply planning and management.  To analyze appliance-level water consumption, 111 

however, coarse temporal resolution data are no longer sufficient, as most appliances operate on a sub-112 

minute timescale. Therefore, sub-minute data are necessary for understanding residential water end uses. 113 

Non-intrusive load monitoring (NILM) is a concept originally developed for smart electricity meters to 114 

determine the energy consumption of each appliance based on the household current and voltage load. 115 

The first NILM system was developed by Hart (32) and several studies have performed this type analysis 116 

on buildings using smart electricity meters (33-35). However, these methods cannot be exactly replicated 117 

and applied to smart water meter data, which consists primarily of fixtures that may not be used at the 118 

maximum flow rate (e.g., faucets) and are more subject to human control of the signal during 119 

consumption. The concept of disaggregating overall household data into appliance end-uses, however, has 120 

been applied to smart water meter data using a variety of techniques.  121 

There are several software packages available to disaggregate smart water meter data, but the accuracy 122 

and ease of implementation of these packages is highly variable based on the resolution of data, specific 123 

appliance characteristics, model calibration requirements, and dependence on human understanding of the 124 
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appliance flow signatures (11). Most existing appliance identification algorithms utilize supervised 125 

learning, a type of machine learning approach that requires a ground truth (36). In the case of residential 126 

appliance/fixture identification from smart water meter data, the “ground truth” would be prior knowledge 127 

of what the output appliances/fixtures should be, and the model would need to be calibrated using this 128 

knowledge. Consequently, extensive training data or sub-metered measurements specific to the household 129 

are required to calibrate the model using supervised machine learning. 130 

Many studies have applied supervised machine learning techniques for appliance identification. Trace 131 

Wizard (37) and Identiflow (10) utilize a decision tree algorithm based on boundary conditions from the 132 

physical water consumption characteristics of the appliances (e.g., flow rate, volume, and duration). 133 

HydroSense, developed by Froelich et al. (7), utilizes probabilistic-basic classification that uses pressure 134 

changes from valves opening and closing. This method requires the installation of many additional 135 

pressure sensors throughout the household, presenting challenges to potential implementation on a larger 136 

scale. Beal et al. (38) developed the South East Queensland Residential End Use Study (SEQREUS) 137 

approach in a widespread study in Australia that combines Hidden Markov Models (HMMs) and 138 

Dynamic Time Warping techniques, a technique that shows over 80 percent accuracy but requires manual 139 

classification of inconclusive and combined events, in addition to extensive training data (39). 140 

While supervised learning is a technique that has shown success in residential water use studies, the end-141 

use monitoring systems (40) and training data required to calibrate the models can be tedious to collect, 142 

and the calibration can be labor and computationally intensive (41). Applying unsupervised machine 143 

learning techniques to residential water meter disaggregation studies reduces this barrier of 144 

implementation (42). Unsupervised learning is an approach in which the goal is to infer results from the 145 

output data; that is, the model does not rely on labeled data like models that apply supervised learning. 146 

Recent studies have applied unsupervised learning techniques such as k-means clustering (43-45), which 147 

classifies data into a set number of clusters. When applied to residential water use, automated appliances 148 

operate similarly each time and should appear within the same cluster, and these water events can be 149 
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classified by inferring the clusters based on the physical characteristics of the appliances as found in the 150 

water audit. 151 

Separating and identifying overlapping, or concurrent, events is a significant challenge in residential 152 

water use studies, and the accuracy of existing smart meter disaggregation models decreases significantly 153 

when encountering concurrent events. Nguyen et al. (39) developed a method of separating concurrent 154 

events by calculating the vector gradients of the flow rate data to identify start and end times of events 155 

that overlap. Once these events are separated, they can be treated as single appliance/fixture water events 156 

in the event classification process. In this study, we utilized a vector gradient method to disaggregate 157 

concurrent water events from high-resolution household meter data. By applying k-means clustering, this 158 

study explored classification of water events using limited training data. 159 

Methods 160 

Setup and Data Collection 161 

To advance understanding of residential water end uses, we installed a smart water metering system at a 162 

4-person residence in central Illinois, collecting 1-second resolution flow rate data from February 2018 163 

through January 2019. During installation of the water meter, we completed a water audit (shown in 164 

Figure SI1) to document the model and brand of water appliances and fixtures throughout the home, 165 

along with characteristics about the dwelling and residents (e.g., home size and age, number and age of 166 

occupants, etc.). This data collection included only factual data such that this work was determined not to 167 

meet the definition of human subjects research and, therefore, did not require Institutional Review Board 168 

(IRB) approval. Documentation of this IRB decision is available upon request. 169 

Our methodology consisted of three general steps: 1) smart water meter flow rate monitoring, 2) data 170 

logging and formatting, and 3) data analysis. We collected the data from a smart water meter installed on 171 

the main water supply pipe into the residents’ home. This meter is a custom ally® water meter provided 172 

by Sensus and monitors flow rate data at a 1-second resolution in units of gallons per minute (gpm); the 173 
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analysis results are reported in both L/min and gpm. The meter can read a positive flow rate above 0.11 174 

L/min (0.03 gpm), and the data are reported to 0.04 L/min (0.01 gpm) resolution. The water meter wrote 175 

data to a computer running a script to parse the raw data into a suitable format for further analysis. This 176 

data acquisition computer logged the data as a comma separated values file for each day. These files 177 

contained the water flow rate [gpm], temperature [K], pressure [psi], and volume [gal] timestamped at 178 

each second. With a focus on water consumption trends in this analysis, we only considered the flow rate 179 

and timestamp; additional analyses using the pressure and/or temperature data are reserved as future 180 

work. The data were further cleaned by adjusting the timestamp to Central time, converting flow to metric 181 

units, and removing any duplicate recordings or blank entries. Additionally, the meter often read values 182 

slightly above or below zero when water was not flowing. Recorded values between -0.11 L/min (-0.03 183 

gpm) and +0.11 L/min (+0.03 gpm) were adjusted to 0.00 L/min (0.00 gpm), based on the reported flow 184 

rate resolution of the meter. 185 

We analyzed the household’s water use at both the whole-household and sub-household, or 186 

appliance/fixture, levels. The first portion of this analysis focuses on household level water use to 187 

determine temporal patterns on weekly and monthly bases, as well as a half-hourly basis to determine the 188 

peak times of use throughout the day. Through this approach, we estimated how residential water 189 

consumption varies seasonally and throughout the week (workdays and weekends) in terms of volume of 190 

water used per day and peak times of use.  191 

Household Level Water Use  192 

The first step in the household-level analysis was to identify total daily water consumption trends on the 193 

weekly and monthly levels. Using the trapezoidal rule, as shown in Equation 1, we estimated the overall 194 

volume of water consumed at the residence on each day and averaged these values over each month and 195 

day of the week. Days with water consumption less than 38 L (10 gal), suggesting no occupancy, were 196 

excluded from the larger-scale trend analysis. 197 



 

 9 

 198 

𝑉𝑜𝑙𝑢𝑚𝑒 =  
1

60
∫ 𝑓(𝑡)𝑑𝑡

𝑏

𝑎
 ≈  

1

60
[

𝑓(𝑎)+𝑓(𝑏)

2
+ ∑ (𝑎 + 𝑘

𝑏−𝑎

𝑛
)𝑛−1

𝑘=1 ]  Equation 1 

 

Where a is the interval start time [s], b is the interval end time [s], f(t) [gpm or L/min] is the flow rate 

at time t [s], and n is the number of seconds in the interval 
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For longer time scales, we conducted a t-test (Equation 2) to determine whether the monthly and weekly 200 

mean consumption trends were statistically different (p < 0.05).  201 
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−
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Equation 2 

where 𝑡 is the t statistic, 𝑥̅ is the mean of the sample, and 𝑠 is the variance of the sample, and 𝑛 is the 

number of subjects in the sample, conducting the following hypothesis test: 

H0: 𝜇1 − 𝜇2 = 0 

HA: 𝜇1 − 𝜇2 ≠ 0 

Appliance Level Water Use 202 

The next portion of the study focused on the end use of water that enters the home through the water 203 

main. The goal was to provide a more quantitative method of creating a water-use profile for the specific 204 

test house. We first collected information from each of the water-using appliances and fixtures within the 205 

household through a water audit. We created a limited training dataset by running each water-using 206 

appliance and fixture in isolation to learn more about the characteristics of each end use and to compare 207 

against manufacturers’ ratings. These appliances and fixtures were categorized into two groups: automatic 208 

end uses and human-controlled end uses.  209 

We defined automatic end uses as those that function approximately the same during each water use 210 

event. The toilets and dishwasher are examples of automatic end uses that use water in approximately the 211 

same manner with each event (i.e., flushing, dishwashing cycle). While the clothes washing machine is 212 
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also an automatic end use, it is programmed to fill with water based on sensing the amount of laundry in 213 

the washing machine. 214 

Human-controlled end uses vary greatly with each use. Examples of these end uses are the sink, bathtub, 215 

and shower faucets. The user of these fixtures controls when the event starts and ends. Additionally, the 216 

flow rate of these events often varies because the user is in control of the amount that the valve opens 217 

during the event. These events are more difficult to identify because they do not have a single event 218 

“signature” like the automatic end uses.  219 

We next analyzed how water was used within the household throughout the day. We separated the 220 

measured flow rate data at the water main into water events, defined as instances in which the flow rate 221 

was positive (i.e., greater than 0.11 L/min (0.03 gpm)) for at least 3 consecutive seconds. In this study, we 222 

isolated these water events from the overall dataset to support data disaggregation and ultimately identify 223 

the appliances and fixtures associated with these water events. A depiction of such water use events is 224 

shown in Figure 1 225 

 226 

Figure 1: Water use events, or instances in which the flow rate is consecutively non-zero, were collected 227 
for further analysis. 228 
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 229 

Our disaggregation algorithm initially separates the data into instances of consecutive seconds with the 230 

flow rate is greater than zero (i.e., greater than 0.11 L/min (0.03 gpm) using the filtered data). These water 231 

events, along with time and flow rate information, were stored separately from the remainder “non-use” 232 

data, greatly decreasing the amount of data under consideration for disaggregation. 233 

Separating Concurrent Events 234 

Separating and identifying overlapping, or concurrent, water use events is a significant challenge in 235 

residential water studies reported in the literature, and the accuracy of existing smart meter disaggregation 236 

models decreases significantly when these types of events are encountered (11). Concurrent events occur 237 

fairly often, especially during longer duration events such as showers, and disaggregating concurrent 238 

events from one another is important for the purpose of creating a comprehensive water profile for the 239 

household. Nguyen et al. (39) developed a method of separating concurrent events by calculating the 240 

vector gradients of the flow rate data to identify start and end times of events that overlap. Once these 241 

events are separated, they can be treated as single-appliance water events in the event classification 242 

process. These vector gradients, 𝑔𝑖 , are calculated using Equation 3. 243 

𝑔𝑖 =
𝑎𝑖+1 − 𝑎𝑖

𝑑𝑡
 Equation 3 

where ai is the water flow rate at time tj, and dt is equal to the time step. 244 

We applied Equation 3 to each collected water event, providing a vector gradient for each second as the 245 

derivative values associated with the flow rate. Because the water meter was capable of reading data at a 246 

resolution of 0.11 L/min (0.03 gpm), vector gradients with a value between -0.66 and +0.66 L/min2, or a 247 

change of 0.11 L/min with a time differential of one second, were considered as zero so that only 248 

significant changes in flow rate were identified. These significant increases and decreases in flow rate 249 

within the event signified when water valves were opened or closed.  For a single event, the major 250 

increase in flow signified the start of the water event when the valve was opened, and the water begins 251 
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flowing. A significant decrease in the flow rate associated with this event signified the ending of the event 252 

when the valve is closed. The disaggregation process for concurrent events was based on the assumption 253 

that the absolute value of the major increase and decrease of a single event should be similar, a suitable 254 

assumption for an incompressible fluid. 255 

To collect these positive and negative derivative signals, we created and applied a similar algorithm to the 256 

water event collection process to isolate the major increases and decreases from the vector gradients 257 

(derivatives) within each water use event. For each observed and isolated event, this disaggregation 258 

algorithm iterated through the vector gradients, creating lists of consecutive non-zero gradients. These 259 

lists of consecutive non-zero gradients were then summed and multiplied by the length of the list in 260 

seconds to obtain the overall increase or decrease in flow rate in L/min. The positive values were added to 261 

a list of positive signals, while the negative values were added to a separate list for later comparison. 262 

Single events typically contained only one major increase and one major decrease, as shown in Figure 2. 263 

There were two exceptions to this assumption, which were both accounted for within the algorithm. First, 264 

human-controlled water events can have multiple increases or decreases if the valve is not opened or 265 

closed in a continuous manner. Secondly, shower events were treated slightly differently in the 266 

disaggregation process because both the bathtub and showerhead faucets were used during this single 267 

event. The bathtub was typically turned on first before switching to the showerhead, which has a lower 268 

flow rate. As displayed in Figure 2, shower events had one major increase and two major decreases that 269 

summed to a similar magnitude of the flow rate of the bathtub. 270 
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 271 

Figure 2: Shower events typically began with the bathtub valve opening before switching to the shower 272 
fixture, providing one major increase and two major decreases in the flow rate (blue). The vector gradient 273 

(derivative), shown in orange, was used to identify single and concurrent water use events. 274 

 275 

We used the number of significant positive and negative derivative signals within a water use event to 276 

determine if the event was a single appliance/fixture event, or a concurrent water use event requiring 277 

further disaggregation. Figure 3 outlines the process used in our model. If the event had only one increase 278 

or only one decrease, it was treated as a single event. This condition held true for shower events and 279 

human-controlled water use events, as long as the valve was either opened or closed in a continuous 280 

manner. If the event had more than one increase in addition to more than one decrease, the event was 281 

determined to contain multiple appliances or fixtures operating simultaneously and was categorized as a 282 

concurrent event. We then applied our disaggregation algorithm to separate and classify the water use 283 

events.  284 
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 285 

 286 

Figure 3: The process for determining concurrent events was based on the number of major increases and 287 
decreases within a water use event. 288 

 289 

The concurrent event disaggregation process was based the assumption that, in instances other than 290 

shower events, the positive derivative signal of the event should be similar in magnitude to the negative 291 

derivative signal. This condition means that, in most cases, each positive derivative signal collected from 292 

the concurrent event should be matched to a negative signal. The first step in this process was to iterate 293 

through the list of major increases and match each item in this list to the major decrease closest in 294 

magnitude. The matched increase and decrease pairs were then removed from their respective lists and 295 

stored separately as start and end times of a single event. Because each positive signal could only be 296 

matched with one negative signal, the result depended on the order in which the positive and negative 297 

signals are matched. To optimize the amount of water use events correctly accounted for in the 298 

disaggregation process, the list of major increases was ordered from largest to smallest. Using this 299 

method, the event with the highest flow rate was matched first. This algorithm assured that the largest 300 

major increase was matched with the largest major decrease, improving the number of events accounted 301 

for by the model. 302 
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Because shower events contained two negative derivative signals, the algorithm responded differently to 303 

these types of events. It was important to include this exception because concurrent events are most likely 304 

to occur during long duration events, particularly showers. We implemented a test within the algorithm to 305 

determine if a shower event was likely to exist during a concurrent event. The bathtub had one of the 306 

largest flow rates of the water fixtures throughout the house. The only other fixtures within the home that 307 

operated at a flow rate above 15.2 L/min (4 gpm) included the washing machine and outdoor hose. Based 308 

on the training dataset, the washing machine did not use water continuously for greater than 300 seconds 309 

during normal wash cycles; it was a reasonable assumption that a shower might last for this duration or 310 

longer. Based on these assumptions, if the magnitude of the major increase was greater than 15.2 L/min, 311 

and the duration of the event was greater than 300 seconds, the event was determined to contain a shower. 312 

This checking-system test is outlined in Figure 4. 313 

 314 

Figure 4: Matching the positive consecutive sums to the negative gradient signals required additional 315 
considerations. The algorithm behaved differently for shower events, due to the switch from the bathtub 316 

faucet to the showerhead during the event. 317 

 318 
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The algorithm iterated through the list of positive derivative signals until each item was matched with a 319 

negative signal closest in value. The start and end times were then recorded, based on when these 320 

increases and decreases occurred. Each isolated water use event was then treated as an individual event in 321 

the event classification process. 322 

Appliance/Fixture Identification 323 

We determined appliance/fixture end uses from the disaggregated water events using k-means clustering. 324 

The k-means clustering algorithm allocated each point (water use event) in the dataset to one of the 325 

predetermined clusters, while minimizing the size of the clusters. The average flow rate and duration were 326 

used as identifying factors for the appliance/fixture identification criteria. While higher dimensional k-327 

means clustering was considered by including the start time, end time, and/or volume, the start and end 328 

times were determined to have little significance, while the volume was directly related to the average 329 

flow and duration. Therefore, we implemented 2-dimensional k-means clustering for the analysis, using 330 

the average flow rate and duration of the water use events as criteria. 331 

Before performing the k-means clustering on the water event data, we removed events that likely 332 

represented leaks. By visualizing the average flow rate as a function of the event duration, it was clear 333 

that several events were low-flow, high-duration events, as shown in Figure 5. While leak detection is a 334 

valuable application of smart water meter data analysis, these events were removed before the clustering 335 

process for simplification purposes. The flow rate cutoff was adjusted from 0.11 L/min (0.03 gpm) to 336 

0.38 L/min (0.1 gpm) to remove these low-flow, high-duration events, which were assigned to the “other” 337 

category to account for the water losses. To further process the data for clustering, we scaled the input 338 

average flow rate and duration data by dividing by the respective standard deviations, making the data 339 

unitless. This data scaling was an important step to ensure that the results of the clustering algorithm were 340 

not changed when analyzing the data in metric (liters) or U.S. customary (gallons) units. 341 
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 342 

Figure 5: Low-flow, high-duration events, present at left, were removed for further analysis, shown right. 343 

 344 

Results  345 

Household-level trends 346 

Figure 6 shows the daily average volume of water consumed for each month, representing average water 347 

consumption values only for days with consumption >38 L (>10 gal) as an indicator of occupancy. 348 

Results of the t-test for difference in mean household-level water use between months suggested no 349 

strong seasonal trend in the residents’ water consumption (p = 0.19); that is, the statistical decision is to 350 

fail to reject the null hypothesis of no difference between means. 351 
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 352 

Figure 6: The study home did not show a strong seasonal water consumption trend. Data values represent 353 
average consumption for days in the month indicating occupancy (water consumption >38 L/day (>10 354 

gal/day)).  355 

 356 

While water consumption typically increases during the summer months due to increased outdoor use 357 

(29-30), this study household does not show such a trend. The residents of this house report using little 358 

outdoor water over the course of the analysis period. Based on the recorded data, a substantial drop in 359 

average consumption is observed during June 2018, which was statistically significant based on the t-test 360 

(p < 0.01); that is, the statistical decision is to reject the null hypothesis (in Equation 2) in favor of the 361 

alternate hypothesis of a statistically significant difference between means. This decrease, however, can 362 

likely be attributed to travel; while days with water consumption <38 L (<10 gal) were excluded, several 363 

days were recorded in June 2018 in which the residents consumed 110-190 L (30-50 gal), less than half of 364 

the typical daily average. Most of these days occurred just before or just after a period of several days of 365 

zero water consumption, suggesting these were the days that the residents departed or returned from travel 366 

and were only home and consuming water for part of the day. The rest of the monthly averages were not 367 
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statistically different from each other based on a t-test (p = 0.19), suggesting no statistical evidence of a 368 

seasonal trend. 369 

While there was little difference in water consumption behavior on the monthly level, daily averages for 370 

each day of the week suggest that the residents’ water consumption varies on a weekly scale, as shown in 371 

Figure 7.  372 

 373 

Figure 7: More water is consumed on average on weekend days than on weekdays. 374 

 375 

The data reveal that more water is consumed on weekends than weekdays. The average daily 376 

consumption for all weekdays is 485 L (128 gal), with a standard deviation of 227 L (60 gal). The 377 

residents consumed 609 L (161 gal) on average on the weekend, with a slightly smaller standard deviation 378 

of 212 L (56 gal). A t-test determined this difference in means to be statistically significant (p < 0.0001). 379 

The differences in mean consumption for each weekday do not show statistical relevance (p = 0.19), nor 380 

do the Saturday and Sunday means (p = 0.47).  381 

The residents not only consumed different amounts of water on weekends and weekdays, but the 382 

consumption profiles over the course of the day also differ. Daily time-of-use patterns were visualized 383 
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based on 30-minute binning of water consumption data for the household, calculated using Equation 1. 384 

Peak time intervals were quantified as time periods in which the largest volume of water was consumed 385 

during the day. Residential water demand often has two peaks: one in the morning and another in the 386 

evening (2,46). To quantify these peak times for the study home, half-hour intervals were identified with 387 

the maximum volume of water consumed for both the morning (before 12:00 PM) and the evening (after 388 

12:00 PM) time periods. 389 

Figure 8 shows the volume of water consumed during each 30-minute interval throughout the day on a 390 

typical weekday and weekend day. These data are displayed for a typical weekday and typical weekend 391 

day instead of an average over each category because there was much more variance in how water is used 392 

over the weekends than weekdays. The weekday and weekend day shown in Figure 8 exhibited total 393 

water consumption values close to the respective averages, with the same morning and evening peak 394 

times as the respective medians. 395 

 396 

Figure 8: Water consumption exhibits different sub-daily temporal patterns on weekends and weekdays. 397 

The weekday peak time of use occurs in the morning, with the median time peak for weekdays between 398 

6:30 AM and 7:00 AM throughout the year. Another smaller peak occurs at night, with no water used 399 
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during the day. The median evening peak for weekdays was between 7:30 PM and 8:00 PM (19:30 and 400 

20:00). This sub-daily temporal pattern reflects a family that works during typical business hours and is 401 

home in the mornings and evenings. 402 

The weekend day morning peak is about the same size as the weekday morning peak; however, the 403 

weekend day peak occurs about 2 hours later. The median peak morning interval over all of the weekends 404 

within the analysis period was between 8:30 AM and 9:00 AM. There was also another peak at night in 405 

which less volume was consumed than the evening weekday peak, but both evening peaks occur around 406 

the same time. The median evening weekend peak interval was between 7:00 PM and 7:30 PM (19:00 and 407 

19:30). Additionally, water was used throughout the day on the weekends during the hours that the home 408 

was typically unoccupied during the week. 409 

Appliance identification results 410 

We applied the k-means clustering algorithm to the disaggregated data to produce four initial groups, as 411 

shown in Figure 9, based on the limited training data. Appliances and fixtures that displayed flow rate and 412 

duration data within the range of each group were identified to determine if further clustering of each of 413 

these initial groups was necessary. Group 1 was the lowest-volume, shortest-duration group of events. 414 

There were no identifiable appliances within the range of this cluster for average flow rate and duration, 415 

and these Group 1 events were determined to be human-controlled low-flow faucets. The Group 2 cluster 416 

was characterized by a larger average flow rate and longer duration than Group 1. This cluster contained 417 

events within the range of the three household toilets and the dishwasher. Group 3 contained the group of 418 

events with the highest average flow rates, and the appliances with characteristics consistent with this 419 

cluster included the washing machine and the outdoor hose. The long-duration events fell into Group 4, 420 

which primarily consisted of showers. 421 
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 422 

Figure 9: The data were divided into four initial groups: 1) low-flow faucets, 2) toilets and dishwasher, 3) 423 

washing machine and outdoors, and 4) showers. 424 

 425 

The clustering analysis, which was performed separately on each month of data, classified the data into 426 

similar initial groups. This similar grouping suggests that the household consumed water in a similar 427 

manner throughout the year and is consistent with the lack of seasonal trend observed in overall water 428 

consumption. The cluster centers of Groups 1 and 2 showed the most consistency throughout the year, 429 

with small variances in duration and average flow. Group 3 showed the most variation in average flow 430 

rate with a standard deviation of 31.4 L (8.31 gal), which suggests variation in washing machine cycles 431 

and outdoor water usage but could also be due to disaggregation errors. Group 4, which consisted of 432 

showers, showed the most variation in duration with a standard deviation of 73 seconds due to the human-433 

controlled nature of this type of event. The cluster centers for each group over the course of the analysis 434 

period are shown in Table 1. 435 

 436 

Group 1

Group 2

Group 3

Group 4
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Table 1: Cluster centers for initial groups using k-means clustering were fairly consistent for each month 437 
from February 2018 to January 2019. 438 

 439 
 

Group 1 Group 2 Group 3 Group 4  
Duration 

[s] 
Average 

flow 
[L/min] 

Duration 
[s] 

Average 
flow 

[L/min] 

Duration 
[s] 

Average 
flow 

[L/min] 

Duration 
[s] 

Average 
flow 

[L/min] 
Feb 16.9 1.58 59.7 6.24 89.7 7.18 719 7.18 
Mar 14.5 1.51 62.7 5.82 76.8 16.1 715 7.48 
Apr 15.6 1.54 61.3 5.75 69.8 15.6 820 7.98 
May 13.7 1.43 57.8 4.84 72.5 10.5 849 8.13 
Jun 12.8 1.47 54.3 4.95 79.5 11.2 703 7.48 
Jul 14.9 1.73 60.4 5.82 79.6 15.9 809 8.05 
Aug 12.9 1.36 58.0 5.03 89.1 12.1 847 8.20 
Sep 13.5 1.43 47.3 4.76 87.5 10.7 796 8.39 
Oct 14.0 1.51 52.3 4.84 77.3 11.9 788 7.41 
Nov 13.9 1.43 55.4 4.61 64.2 9.71 971 8.28 
Dec 14.1 1.47 51.8 4.61 70.6 9.45 885 8.39 
Jan 11.8 1.17 53.5 4.50 89.8 9.71 844 7.94 

 440 

We further applied the k-means clustering algorithm to each initial group to distinguish sub-clusters in 441 

appliance/fixture end uses. The sub-clusters and appliance/fixture classifications associated with these 442 

clusters are shown in Figure 10, and appliances/fixtures categorized from within each group are shown in 443 

Table 2 based on limited training data. All events in Group 1 were classified as low-flow faucets, so no 444 

additional clustering was necessary for this group of events. The three household toilets and the 445 

dishwasher were within the range of Group 2; additional k-means clustering into 9 clusters was applied to 446 

this group. In response, there existed clusters with centers quite similar to the average flow rate and 447 

duration from the training data, and the events in these clusters were classified into the appropriate 448 

appliance/fixture category. The events in the other 5 clusters in this group were classified as human-449 

controlled faucet events, further labeled as medium-flow faucets to differentiate from the low-flow 450 

faucets in Group 1. Next, we applied the clustering algorithm to Group 3, dividing this group into 3 451 

clusters. One of these clusters was assigned as the washing machine based on both the cluster center and 452 

range of the data within this cluster. It should be noted that the particular model of washing machine in 453 
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the home is programmed to fill with the appropriate amount of water based on the size of the load of 454 

laundry, and the duration and flow rate of each cycle was highly variable in the test dataset. However, 455 

most cycles had durations and average flow rates within the range of the cluster. The remaining cluster, 456 

shown in Figure 10, was classified as the “Other” category, including possible outdoor water events and 457 

disaggregation errors. The third cluster did not have characteristics comparable to any of the appliances 458 

and these events were classified as medium-flow faucets. Finally, no additional sub-clusters were applied 459 

to Group 4; all of these events were classified as showers based on the long duration and flow 460 

characteristics. The final appliance/fixture end uses found in each group are summarized in Table 2. 461 

Table 2: Different appliances and fixtures were represented in the water end uses found in each group 462 
from k-means clustering. 463 

 464 

Cluster 
Group 

End-Uses 

Group 1 Low-flow faucets 
Group 2 Downstairs toilet, Upstairs toilet 1, Upstairs toilet 2, Dishwasher, Medium-

flow faucets 
Group 3 Washing Machine, Other 
Group 4 Showers 

 465 

 466 
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 467 

Figure 10: Most of the appliance/fixture end uses were found in sub-clusters of the initial clustering 468 
groups. 469 

The water end-use profile of the home is shown in Figure 11. Most of the water in the home was 470 

consumed through human-controlled events, specifically the shower, which accounted for an estimated 39 471 

percent of the overall household water consumption, at an average of 4,950 L (1,300 gal) per month. 472 

Cominola et al. (42) reported similar shower-dominated water end-use profiles based on data from 473 

Australia. Medium-flow and low-flow faucets were the second-highest form of water consumption with 474 

an estimated 32 percent contribution to the overall water footprint. Toilets were the next-largest consumer 475 

of water, accounting for 895 L (236 gal), or 7.1 percent of overall consumption per month on average. 476 

The washing machine and dishwasher were the lowest water consumers, accounting for 2.7 percent and 477 

1.2 percent of water use, respectively; however, it is important to note that there is additional uncertainty 478 

associated with these appliances that have multiple cycles per use. The “Other” category consisted of pipe 479 

leaks, disaggregation errors, and outdoor uses; these categories consumed an average of 1,030 L (272 gal) 480 

per month.  481 

Showers

Low flow 
faucets

Washing 
Machine Other

Upstairs toilet 1

Upstairs toilet 2

Downstairs toilet

Dishwasher
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 482 

Figure 11: Most of the water in the study home was consumed through human-controlled events, 483 
specifically showers and other faucets. 484 

Existing literature suggests that outdoor water consumption varies seasonally, peaking in the summer 485 

largely due to outdoor uses (29-30). The fact that the occupants of this study home report consuming little 486 

water for outdoor uses is supported by the lack of seasonal trend in water consumption behavior. 487 

Literature also suggests that while indoor water use shows little seasonal variation (47), others have 488 

shown that shower duration increases as temperature decreases (31), so indoor water consumption might 489 

increase during colder months. While seasonal differences in total water consumption were not 490 

statistically significant for this study home (p = 0.19), there was an increase in average daily consumption 491 

during the months of January and February, when temperatures were coldest. These results are displayed 492 

in Figure 12. Based on the water consumption profile for each month, the showers did account for less 493 

water in the warmer summer months, with the lowest shower consumption occurring during June 2018. 494 
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The colder months generally showed more water consumption from the shower, except for January 2019. 495 

This result could be due to other factors beyond the scope of this study, such as travel and data gaps. 496 

 497 

 498 

Figure 12: The water end-use profiles for each month show seasonal trends, particularly in shower use. 499 

 500 

End-use disaggregation metrics 501 

While training data were not required for this clustering analysis, information on how the 502 

appliances/fixtures operate was necessary for identifying appliances associated with observed water end 503 

use events. A training dataset was necessary to understand what appliances/fixtures were installed in the 504 

home and how each appliance/fixture operates. Table 3 shows the sample training data compared to the 505 

average cluster centers across all months for each appliance/fixture. It is also important to note special 506 

characteristics associated with each appliance/fixture. While the dishwasher and toilets are automatic 507 
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appliances that consistently operate the same way, the washing machine is different in that it is 508 

programmed to fill with the appropriate amount of water based on the size of the load of laundry. 509 

Additionally, the washing machine has numerous cycles, each of which differ by load. By sampling the 510 

dataset, most of the washing machine cycles were within the range of the assigned cluster, but there were 511 

likely some cycles that were not accounted for in the process.  512 

Table 3: Training data and disaggregated data characteristics show strong performance of the 513 
disaggregation algorithm. 514 

Appliance/Fixture Training Data 
Appliance 

Characteristics 

Disaggregated Data 
Coherence 

Average Cluster Centers 

Disaggregated 
Data Frequency 

 
Duration 

[s] 
Average 

Flow 
[L/min] 

Duration 
[s] 

Average Flow 
[L/min] 

Average Percent 
of Analysis Days 
Present in Cluster 

Upstairs Toilet 1 105-108 3.82 113 ± 1.3 3.89 ± 0.09 76.0 
Upstairs Toilet 2 55-56 6.08 58.0 ± 3.4 5.98 ± 0.02 70.4 
Downstairs Toilet 54 7.67 58.8 ± 1.8 7.52 ± 0.09 80.9 

Dishwasher 66.9 3.78 64.8 ± 3.8 4.17 ± 0.04 53.8 
Washing Machine 23-116 1.89-20.0 36.2 ± 9.1 16.5 ± 0.15 74.1 

Shower 128-133 7.18-9.83 854 ± 131 7.92 ± 0.11 83.6 
 515 

Disaggregating water use data into end uses introduces uncertainty in the absence of sub-metering 516 

measurements, which can be intrusive for household occupants (40) and can change occupant behavior 517 

(48). Large-scale smart water metering systems often lack sub-metered data and instead use pre-trained 518 

disaggregation algorithms (42). Since unsupervised learning methods do not require labeled data, specific 519 

qualitative and quantitative metrics have been proposed to assess results (49). In Table 3, we quantify the 520 

metrics of coherence (spread of the examples in a cluster) and frequency (percent of days covered by an 521 

activity) (49). Accounting for the unknown uses in the “Other” category, 91.8 percent of the incoming 522 

water to the home was categorized into appliance/fixture end uses through this process, representing the 523 

significance metric proposed by Cardell-Oliver (49). This amount of categorization is consistent with 524 

other models, which typically have a success rate of around 80 percent for appliance/fixture identification 525 

(11).  526 
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There were some additional uncertainties associated with this analysis that came from utilizing k-means 527 

clustering to classify water use events. It is important to note that because the k-means clustering 528 

algorithm aims to minimize the size of the cluster centroids, it assigns points to the closest centroid. This 529 

approach is inexact, and it is not always possible to obtain clusters containing points belonging 530 

exclusively to one appliance. It is also possible for a human-controlled faucet event to have the same 531 

average flow rate and duration of an automatic appliance, especially the appliances in Group 2, where 532 

most of the events were medium-flow faucets and likely overlap with the toilets and dishwasher clusters. 533 

It is also impossible to know the optimal number of clusters in the data by using this algorithm, so human 534 

labor is required to manually determine the clusters that exist, especially when human-controlled events 535 

such as faucets often do not appear in clear clusters. These uncertainties, however, are a tradeoff of using 536 

an unsupervised learning method in which training data are not required. In some reported instances in 537 

literature, unsupervised classifiers performed better than supervised classifiers (50). 538 

The frequency metrics for the individual appliances give some insight into the accuracy of the clustering 539 

algorithm. It is likely that the toilets and shower are underestimated using this method since these events 540 

are expected to occur every day in a four-person household. The toilet clusters are found within Group 2 541 

of initial clusters, which consistently has the largest number of water events, and the inter-cluster density 542 

of the sub-clusters in this group can decrease the accuracy of the k-clustering (51). Additionally, toilet 543 

flushes are commonly concurrent events. Because toilets are in the medium flow category, the 544 

disaggregation algorithm is more likely to miss the derivative signal if it is combined with a lower flow 545 

event, which could change the average flow and duration enough to move the event out of the appropriate 546 

cluster. Because the shower cluster is classified as all of Group 4, the discrepancy occurs during the initial 547 

clustering of the four groups and the unaccounted showers are likely categorized within the medium-sized 548 

clusters as well based on the flow rate of these events. This likely misclassification is especially true for 549 

showers shorter in duration, as these points might lie closer to the Group 2 centroid, particularly if other 550 

longer showers occurred within the same month. 551 
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 552 

Broader implications 553 

Water conservation and efficiency implications 554 

The overall daily average water consumption in the study home over the period of analysis (February 555 

2018 to January 2019) was 519 L (137 gal) per day for the 4-person household. The USGS (2015) 556 

estimates per person water consumption to average 303-379 L (80-100 gal) of water per day within the 557 

household, so the residents in this study consume less than expected. This result could be due to a few 558 

factors. Sharing appliances such as dishwashers and washing machines among four people can increase 559 

efficiency and reduce per-person consumption. Cooking for multiple people is also more water efficient 560 

than cooking individual meals. Additionally, this particular household reports they do not attribute much 561 

water to outdoor uses, which is estimated to be the highest water consumer in the residential sector in the 562 

United States (6,52). 563 

Much of the residents’ water consumption occurs during typical morning and evening utility-scale peak 564 

demand hours (2,46). Decreasing consumption during this time on a widespread scale could contribute to 565 

lowering overall peak demand for the local utility and reduce pressure on existing water infrastructure. 566 

Supplying feedback to residents that consume most of their water during peak demand times might 567 

encourage behavior change and ultimately lower peak demand. Launching this type of study in more 568 

homes in the area could provide more insight into possible measures to reduce peak water demand. 569 

While the household’s overall per-person water consumption is below the U.S. average, the end-use 570 

analysis suggests that there are still opportunities for improved water conservation and efficiency. Most of 571 

the water in the home was consumed through human-controlled events, specifically showers and medium-572 

flow faucets. Because human-controlled events depend heavily on the user’s behavior, these end uses 573 

present the most opportunity for behavior change. Showers are the primary-identifiable end use and the 574 

largest area of potential conservation in this home. The average shower duration over the course of the 575 

analysis period is 855 seconds, consuming a volume of 112 L (29.8 gal). This result suggests that 576 
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reducing the duration of showers by a few minutes could save 14,000 L (3,700 gal) over the course of the 577 

year, based on current showerhead flow rates. Similarly, lower-flow showerheads could be retrofitted into 578 

the study home as a focused water efficiency approach. It should also be noted that showers are large 579 

energy consumers because of the energy required to heat the water (53-55), so water conservation and 580 

efficiency associated with showers is also an energy-saving measure. 581 

While changes in behavior can lead to significant water savings, the water efficiency of the 582 

appliances/fixtures is also relevant. Using low-flow fixtures and upgrading to water-efficient appliances is 583 

a method of water efficiency that does not require behavior change. To address how the 584 

appliances/fixtures in the home performed in terms of efficiency, the performance of each appliance 585 

based on the meter data was compared to the manufacturers’ ratings. The appliances/fixtures throughout 586 

the home were documented during the initial meter installation regarding manufacturer and model, and 587 

this information was used to find the flow rates or volume of water consumed as stated by the 588 

manufacturer. Some of the fixtures had the water use printed on them, including the toilets and the 589 

showerheads; however, most rating data were found in the respective appliance/fixture manuals online. 590 

The manufacturers’ ratings were compared to the measured water use from the training data and 591 

disaggregated data from the smart water meter in Table SI1 in the Supporting Information. 592 

Insight into how appliances and fixtures actually function can inform water demand management 593 

strategies. The deployment of smart water meters has changed these strategies because now specific 594 

household appliances/fixtures as well as human behaviors can be monitored with fine resolution data 595 

(11,42). When comparing the actual use to the manufacturers’ rating, it is easier to identify where 596 

appliances are functioning incorrectly, or rather not up to standards. For example, if a toilet is using more 597 

water per flush than the manufacturer reports it should, a homeowner can target this toilet to be replaced 598 

or fixed. This finding also signifies that home occupants cannot rely on manufacturer-provided ratings 599 

alone to determine their water use. In this study home, for example, a toilet rated at 6.06 Lpf (1.60 gpf) 600 

uses 7.04 Lpf (1.86 gpf) in practice, introducing questions about the difference in operating conditions in 601 
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manufacturers’ rating tests versus in-home conditions. With more homes installing smart meters, 602 

additional data can be collected in support of better understanding in-home conditions. 603 

While some companies give ranges for how much water their appliances use, it is interesting to see where 604 

the actual measurements fall when in use in a home. In the case of the study home’s dishwasher, the 605 

measured readings were below the range that the company reported. The training data volume of 11.6 L 606 

(3.07 gal) per dishwasher cycle was outside the manufacturer-reported range of 11.7-27.2 L (3.1-7.2 gal). 607 

For the washing machine, the measured water use fell around the center of the manufacturer-reported 608 

range, shown in Table SI1 in the Supporting Information. These results motivate more widespread study 609 

regarding where most appliances/fixtures typically fall within manufacturer-provided water use ranges. 610 

Water-use feedback and data concerns 611 

Disaggregating and classifying water events obtained from residential smart water meter data reveals 612 

detailed information about how water is consumed within the home. Understanding the overall water 613 

consumption profile of the home presents opportunities for improved residential water conservation and 614 

efficiency and long-term water resource sustainability, since many individuals underestimate water use 615 

(53-54). Several studies have used smart water meter data to pinpoint opportunities for improved 616 

efficiency within the household. Cardell-Oliver et al. (56) used smart meters to identify trends in high-617 

magnitude water consumption behaviors for conservation implications. Schultz et al. (57) used water 618 

meters to provide personalized feedback on normative behavior to promote water conservation. In a study 619 

by Sønderlund et al. (25), 45% of participants stated that the availability of high-resolution water use data 620 

would encourage them to conserve water, suggesting that the widespread implementation of smart water 621 

meters to provide such information could effectively reduce water consumption in the residential sector. 622 

While access to detailed residential water consumption information has been successfully used for 623 

conservation and efficiency purposes in small-scale studies, the effectiveness of this feedback is uncertain 624 

and large-scale implementation could present additional challenges. Factors such as lifestyle, social 625 
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practices, household values, and socio-demographic factors also play a role in water consumption 626 

behavior such that behavior changes based on feedback from water meters are also likely to vary. Aitken 627 

et al. (58) found that water conservation depends highly on the values of the household, but education and 628 

targeted information promoting water conservation can effectively change individual behavior. Social 629 

practices and lifestyle also influence water consumption and may affect a user’s willingness to adjust their 630 

behavior (59). Socio-demographic factors affect water consumption, with evidence of correlation between 631 

household income and outdoor water use, as well as property size and overall water consumption (6,60). 632 

Willis et al. (61) found that household income also has an effect on appliance end uses, as well as the 633 

feasibility of switching to water-efficient appliances. 634 

In addition to uncertainty of the effectiveness of feedback from smart water meters, privacy concerns can 635 

also inhibit the widespread implementation of these water meters. Beckel et al. (62) found that 636 

information such as employment status can be revealed through smart meter data as a result of access to 637 

high temporal resolution data that reveal water use by time of day. Analysis of the data from our test 638 

home revealed likely work schedules and travel periods. Behavioral analysis with smart meter data could 639 

introduce privacy concerns, and there would need to be measures taken to protect consumer privacy if 640 

smart meters were implemented on a larger scale; however, effective communication strategies such as 641 

transparent public engagement can enhance the success of smart metering at a larger scale (59). Allowing 642 

others to access water use information can pose privacy and possibly safety concerns. These concerns 643 

among the public could be a significant barrier to large scale smart water meter implementation. Cities 644 

and utilities aiming to implement smart water meters to improve water conservation and efficiency should 645 

take action to protect the privacy of the households. Taking steps to protect consumer data and openly 646 

communicate the purpose of data collection and analysis could help gain public support. While 647 

anonymizing the data might make it difficult to provide direct feedback to the residents, such approaches 648 

might be an option for water utilities interested in using smart meters for infrastructure planning or water 649 

supply planning.  650 
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Conclusion 651 

Our residential water use results suggest that the study residence is below the expected water 652 

consumption for a 4-person household in the United States. Outdoor water use is a large contributor to 653 

residential water consumption and might be the largest opportunity for improvement in terms of water 654 

conservation in this sector in general. However, for our study home in particular, showers present the 655 

largest opportunity for water conservation and efficiency.  656 

Analysis of 1-second resolution smart water meter data provided detailed insight into the water 657 

consumption patterns of the study home. Seasonal trends for this household indicate low outdoor water 658 

usage, which is likely a large factor in the household’s lower-than-average water consumption. The 659 

residents consume more water on average over the weekends, but this consumption is more spread out 660 

throughout the day and the peak household demand is typically lower on these days. Widespread 661 

measurement of water consumption could be beneficial for predicting peak residential water demand (2), 662 

motivating additional smart water metering demonstrations. 663 

Our smart water meter data disaggregation estimated appliance/fixture end uses based on derivative 664 

signals of the flow rate, which occur within a few seconds, to pinpoint when water events began and 665 

ended. We used k-means clustering, an unsupervised machine learning method, to classify the 666 

disaggregated water events into appliance/fixture end uses using a small training dataset. Most available 667 

algorithms require extensive training data to calibrate the model, a significant barrier to the 668 

implementation of these studies on a broader scale. By using water meter data with more refined temporal 669 

resolution, our approach classified about 92% of the end uses to appliance/fixture events. 670 

The results of this study can be used to provide feedback to the residents of the home to encourage water 671 

conservation and efficiency by pinpointing end-uses that consume large quantities of water. Feedback 672 

based on these results has the potential to alter the behavior of the residents in terms of water 673 

consumption. Installing more water-efficient appliances/fixtures also has the potential to reduce the 674 
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household’s overall water consumption. If the availability of smart water meters were more widespread in 675 

the residential sector, the actual performance of appliances/fixtures might be better understood to advance 676 

water sustainability at the household level. 677 
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