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Biodiversity is changing at local to global scales in response 
to habitat degradation and fragmentation, climate change, 
nutrient enrichment, species introductions and more1–4. 

Meanwhile, ecosystem functions and the ecosystem services that 
support life depend on biodiversity2,5,6. Yet, how relationships 
between biodiversity and ecosystem function vary across space and 
time remains poorly understood2. Local-scale experiments domi-
nate understanding of biodiversity–ecosystem function relation-
ships7. Theory2,3,8,9 and recent empirical studies indicate that the 
positive relationships predominant at local scales10 ought to persist 
or strengthen across larger scales of space and time11–13.

There are at least two kinds of scaling relevant to this issue. First, 
it is unknown whether biodiversity–ecosystem function relation-
ships at fine scales differ systematically from those at larger spa-
tial grains (for example, 1 m2, 100 m2, 1 km2 and 100 km2), that is, 
areal scale dependency. This dependency merits evaluation because 
relationships may change, even in direction, with spatial grain14. 
Second, it remains unclear whether relationships found in experi-
ments and observations within limited contexts apply regardless of 
contexts and community types; in other words, whether relation-
ships at the fine-scale neighbourhoods where most biodiversity–
ecosystem function mechanisms occur can be extrapolated to other 
similar domains in different systems.

The data needed to assess either kind of scaling of biodiversity–
ecosystem function relationships are challenging to collect with 
traditional field-based methods but may be complemented with 
airborne or satellite imaging spectroscopy15–17. Given increasing 
risks of biodiversity loss and climate change2,6,18, the development 
of effective approaches to remotely sense diversity effects on eco-
system functions and properties that can advance theory, under-
standing and quantification of how relationships scale across space 

and time is being called for15,19,20. If achieved, these advances will 
inform management options for Earth’s ecosystems to help simulta-
neously meet global biodiversity, sustainability and climate change 
goals6,18,21. Here, we present and test an approach for remotely 
detecting and partitioning biodiversity effects22 on forest biomass 
production, an important ecosystem function, by spectrally identi-
fying the diversity and stem biomass of forest stands.

While imaging spectroscopy is becoming increasingly accessi-
ble23, its potential is only beginning to be revealed. To date, ecologi-
cal applications of imaging spectroscopy have included detecting 
biodiversity through identifying species or spectral signatures of 
diversity24–27, measuring functionally important attributes of veg-
etation such as canopy chemistry28–30 or disease31, and estimating 
biomass, productivity and photosynthetic capacity32–34. However, 
imaging spectroscopy has not yet been applied to characterize the 
effects of biodiversity on ecosystem function.

Beyond documenting the existence of biodiversity–ecosystem 
function relationships, we need better capacity to decipher the mech-
anisms that drive these relationships to predict the consequences of 
biodiversity change, especially in changing environments. In forests, 
diversity has been found to enhance productivity and biomass both 
in small-scale tree experiments and in studies of natural stands13,35,36, 
and recent efforts have shifted toward understanding underlying 
mechanisms37–39. Enhanced productivity in mixed-species stands 
may be a consequence of resource partitioning among species that 
leads to reduced competition, competitive imbalances that lead to 
the dominance of a highly productive species, facilitation that ame-
liorates light or microclimatic stress and/or trophic interactions that 
reduce losses to herbivory or disease40–43. Alongside mechanisms 
reliant on differences among species, intraspecific variation may also 
shape diversity–productivity relationships37.
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We propose that differences in spectral reflectance between 
mixed-species stands and monocultures will contain signals of 
diversity effects on biomass and be separable into components 
related to the drivers of diversity-enhanced biomass (Fig. 1). The 
spectral reflectance of canopies is affected by leaf traits—their 
chemistry and morphology—and canopy structure, including the 
number, angle and spatial distribution of leaves within and among 
crowns. Differences in spectral reflectance between a mixed-species 
stand and the mean of monocultures of the same species may come 
from two main sources: (1) shifts in the relative dominance of 
different species in the uppermost stratum of the canopy and (2) 
plastic or intraspecific shifts in spectral reflectance resulting from 
species expressing different leaf or crown traits in mixture. Here, we 
propose an approach to partition the contributions of these mecha-
nisms to the net biodiversity effect.

Differences in spectral reflectance between mixtures and  
monocultures may also be linked to well-understood chemical and 

physiological determinants of forest productivity such as foliar 
nitrogen concentration. Canopy nitrogen is a key driver of for-
est productivity44 because the nitrogen-containing compounds of 
RuBisCO and chlorophyll determine the biochemical fixation of 
carbon. Canopy nitrogen also drives variation in spectral reflec-
tance and is measurable from spectroscopic data28,29. We further 
suggest that increased stem biomass in mixed-species stands will 
correspond with spectrally detectable increases in canopy nitrogen, 
which may arise through the dominance of species with greater leaf 
nitrogen or through intraspecific increases in either leaf nitrogen or 
in the density of leaves within crowns.

In this study, we assess whether diversity effects on biomass, 
and their underlying ecological drivers, can be spectrally detected 
in tree communities; and whether these effects correspond with 
spectrally detectible shifts in canopy nitrogen. The capacity for 
imaging spectroscopy to detect relationships between biodiver-
sity and biomass can be assessed rigorously in a controlled setting 
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Fig. 1 | Simulations to assess spectral diversity effects. We simulated mixtures from monocultures in two ways—according to the number of trees (T) 
per species planted in mixture (SimT) and according to the upper canopy leaf area (L) per species in mixture (SimL)—to decipher the relative contributions 
of the sDE and sPE to the sNBE. In this hypothetical example, two species (circles and triangles) are depicted in monoculture, simulated mixtures and 
an observed mixture. Differences in colour between monocultures and mixture represent intraspecific differences in canopy traits. Each assemblage 
is illustrated in cross-section, from overhead (depicted in a grid to represent pixels) and as a mean reflectance spectrum. The differences in spectral 
reflectance captured by the sNBE, sDE and sPE are also shown.
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where one can easily manipulate species mixtures and accurately 
quantify effects on the ground. To this end, we combined airborne 
(AVIRIS-Next Generation (NG)) imaging spectroscopy data with 
field-collected data across a tree-diversity experiment in Minnesota, 
United States45. The experiment was composed of 192 young stands 
of monocultures and different mixtures of two and six species 
(Methods). Data were collected for each of 2 years, when stands 
were in their fifth and sixth growing seasons and had largely devel-
oped closed canopies (mean leaf area index, LAI, of 4.5 and 5.9, 
respectively).

Results
Our approach of detecting biodiversity effects on biomass depends 
upon accurate spectral detection of biomass differences among 
stands. We predicted stem biomass using partial least squares 
regression (PLSR). The model was calibrated onsite with data from 
both growing seasons and leveraged full-range spectral reflectance 
(400–2,500 nm). We found that the PLSR model performed well, 
explaining 91% of variation among stands in stem biomass, with 
a relative root mean square error (%r.m.s.e.) of 6.3% for indepen-
dent data (Fig. 2 and Extended Data Fig. 1). As a point of contrast, 
a common multispectral index, the normalized difference vegeta-
tion index (NDVI), explained only 21–27% of variation in stem bio-
mass among stands (Supplementary Fig. 1). Important wavelengths 
within the PLSR model occurred throughout the spectrum, particu-
larly at the red-edge of the visible and near-infrared (NIR) around 
755 nm, the NIR (~935 nm), the NIR to short-wave infrared (SWIR) 
transition (~1,340 nm) and in the SWIR (~1,800 nm) (Extended 
Data Fig. 2). These wavelengths leverage features at the red-edge 
and in the NIR that are generally associated with canopy and foliar 
structure and biomass, and water absorption features (SWIR) that 
also correlate with total foliar biomass.

The net biodiversity effect (NBE) on stem biomass was calculated 
as the difference between the stem biomass of a species mixture and 
the average stem biomass of monocultures of the same set of spe-
cies22 (Methods). We calculated the spectral net biodiversity effect 
(sNBE) in the same manner: as the difference between the spectral 

reflectance of a mixed-species stand and the reflectance averaged 
(via a simulation procedure) across monocultures of the same spe-
cies (Fig. 1). Spectral reflectance observed in mixed-species stands 
(Obs) differed from the spectral reflectance simulated (Sim) for 
mixed-species stands from monocultures of the same species based 
on the proportion of trees planted (T) (SimT). These differences in 
spectral reflectance between species mixtures and monocultures 
predicted diversity effects on stem biomass. Applying the PLSR 
model for stem biomass to the stand-level observed spectra (Obs) 
and simulated spectra (SimT) and then calculating the difference 
in predicted stem biomass—that is, the sNBE on stem biomass—
explained 54–69% of variation among stands in field-measured 
diversity-enhanced stem biomass (NBE) each year (Fig. 3a,d). 
These results indicate that the upper canopy layers captured by 
remote spectroscopic imaging are informative in assessing diversity 
effects on stem biomass, at least within our young stands. Stands 
that had a positive NBE on stem biomass (that is, overyielded) 
tended to have higher reflectance in the NIR and lower in SWIR 
(especially 1,500–1,750 nm), which relate to higher foliar biomass 
and canopy water content, than in their monoculture simulations 
(Extended Data Fig. 3).

To assess the relative importance of species’ dominance of the 
upper canopy and intraspecific variation to diversity-induced shifts 
in spectral reflectance and stem biomass, we separated sNBE into 
two additive components—a spectral dominance effect (sDE) and a 
spectral plasticity effect (sPE) (Fig. 1). Diversity-enhanced stem bio-
mass on average across our stands was most attributable to shifts in 
species’ dominance of the upper canopy as opposed to plastic shifts 
in leaf traits or canopy structure. Across all stands, the sDE on stem 
biomass explained 43–44% of variation in the field-measured NBE 
on stem biomass (Fig. 3b,e) and 52–64% of the spectrally measured 
NBE on stem biomass (Extended Data Fig. 4). The sPE on stem bio-
mass explained little variation in the NBE on stem biomass across 
all stands, explaining only 0–3% of variation in the field-measured 
NBE on stem biomass and 3–11% of the spectrally measured NBE 
on stem biomass (Fig. 3c,f and Extended Data Fig. 4). However, the 
relative contribution of the spectral dominance and sPEs to sNBE 
on stem biomass differed among stands (Extended Data Fig. 4). 
Diversity effects within stands were largely consistent in direction 
and relative magnitude between our study years (Extended Data 
Fig. 4), indicating stability in the drivers of diversity-enhanced 
stem biomass on a given stand during these early stages of stand 
development.

We mapped canopy nitrogen with spectra (Methods; Extended 
Data Fig. 5) to assess whether differences in canopy nitrogen 
between mixed-species stands and monocultures corresponded 
with diversity-enhanced stem biomass. Spectrally predicted canopy  
nitrogen was closely associated with canopy nitrogen based on field 
measurements and explained 33–37% of variation among stands 
in stem biomass in each year (Extended Data Fig. 6). The NBE 
on spectrally predicted canopy nitrogen was also positively asso-
ciated with the field-measured NBE on stem biomass, explaining 
nearly one-third (29–32%) of variation among stands each year  
(Fig. 4a,d). Moreover, by applying our spectral partitioning  
approach (Fig. 1) to spectrally predicted canopy nitrogen, we 
assessed whether diversity-driven differences in canopy nitro-
gen were attributable to shifts in the upper canopy dominance of  
species with different canopy nitrogen concentration or plastic 
shifts in species’ canopy nitrogen concentration. Across stands, the 
field-measured NBE on stem biomass was more closely associated 
with the sDE on canopy nitrogen (R2 ≥ 0.33) than the sPE on canopy 
nitrogen (R2 ≤ 0.09; Fig. 4b,c,e,f).

The steps above, that outline our approach to assessing diver-
sity effects on stem biomass, require field-based knowledge of 
the species composition of stands—knowing which stands are 
monocultures and knowing species’ relative abundances within 
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mixed-species stands. Although necessary as a proof of concept 
that spectra can detect biodiversity effects, this approach cannot be 
used in naturally assembled forests where the species composition 
of stands is unknown.

Thus, we also assessed whether spectra can identify the species 
composition of stands as well as diversity effects; that is, whether 
diversity effects on stem biomass may be entirely remotely detected. 
To do so, we began with a known species pool, trained models to 
discriminate among these species according to their spectral reflec-
tance in monocultures (Methods; Extended Data Fig. 7) and applied 
these models to spectrally identify monoculture stands and the  
species composition of mixed-species stands (Methods; Extended 
Data Fig. 8).

We found that species could be distinguished in monoculture 
with high levels of accuracy (Extended Data Fig. 9). Applying these 
models across all stands sometimes inaccurately identified spe-
cies’ presence within stands—probably due to pixels containing 
mixtures of species, variable trait expression and thus reflectance 
of species in mixture, or missed detection of overtopped species 
(Extended Data Fig. 8). Using these spectrally identified mono-
cultures and compositions of mixed-species stands, we repeated 
our approach of simulating the spectra of mixed-species stands  
(Fig. 1) and applying PLSR models to calculate the sNBE, sDE and 
sPE on stem biomass (Methods). By spectrally detecting both species 
composition and stem biomass, diversity effects on stem biomass 
could be predicted from remotely sensed imagery without explicit 
ground-based knowledge of species composition or relative abun-
dance. The NBE on stem biomass predicted using only spectra (that 
is, when the species composition of stands was spectrally identified, 
sID; sNBEsID) was significantly associated with the field-measured 
NBE on stem biomass (R2 = 0.27, t130 = 6.85, P < 0.001 in the fifth 
growing season; R2 = 0.42, t130 = 9.73, P < 0.001 in the sixth growing 
season). Moreover, the spectral dominance and plasticity effects on 
stem biomass predicted using only spectra (when composition was 
also spectrally predicted; sDEsID and sPEsID) explained 41–60% of 
variation among stands in the spectral dominance and sPEs on stem 
biomass calculated where stand composition was known (sDE and 
sPE) (Extended Data Fig. 10).

Discussion
By comparing spectrally assessed stem biomass in monocul-
tures and mixed-species stands of young trees, we show how air-
borne imaging spectroscopy can be leveraged to detect patterns of 
diversity-enhanced biomass in forests (Fig. 1) and lend insight into 
the ecological processes that underlie these patterns (Figs. 3 and 4). 
While previous studies have shown how spectral measures of diver-
sity may correspond with patterns of biomass46, the extent to which 
imaging spectroscopy can identify diversity effects on biomass and 
underlying mechanisms, has not been demonstrated before.

Spectral signals of diversity-enhanced stem biomass were driven 
by differences between monocultures and mixtures in species’ 
canopy dominance and/or intraspecific shifts in canopy structure 
or leaf traits. By separating diversity effects on spectrally detected 
stem biomass into effects attributable to spectral dominance and 
spectral plasticity, we found that shifts in species’ dominance of the 
upper canopy best explained diversity-enhanced stem biomass on 
average across our stands (Fig. 3). This might well be different in 
other ecosystems and across time47. Moreover, the relative contribu-
tion of different drivers of diversity effects depended on the species 
composition of stands (Extended Data Fig. 4). For instance, the sDE 
was prevalent in mixtures with angiosperms, consistent with these 
species possessing traits at the ‘fast’ end of the resource economics 
spectrum48. The strong contribution of the sPE in mixtures of gym-
nosperms signals intraspecific shifts in their canopies consistent 
with community-driven shifts in species’ crown and leaf traits39,49. 
Trees were planted at the same density in all stands, thus the sDE 

implies that a species occupies a greater portion of the upper canopy 
per tree in mixture than it does in monoculture. Associated changes 
in canopy structure, such as a species having lower LAI than in 
monoculture, may manifest as a negative sPE; this was observed 
most prominently in mixtures containing angiosperms where the 
sPE often tempered strong sDEs.

One challenge in using optical remote sensing in forests is 
that the reflectance signal may saturate with increasing leaf layers 
and information about lower strata may be missed50. Despite our 
young stands having LAI values comparable to mature forests44 
(4.5 and 5.9 in the fifth and sixth growing seasons, respectively), 
biomass and diversity effects on stem biomass were strongly evi-
dent in spectra. Tree growth is typically light-limited within closed 
canopy forests51,52. The upper canopy layers that remotely sensed 
imaging spectroscopy detects are the same layers that intercept 
most light and, in so doing, tend to dominate forest productivity53. 
Our approach of detecting diversity-enhanced biomass might be 
less effective when stands have stratified canopies with subdomi-
nant species that contribute considerable biomass because spectra 
might miss the biomass contributions of overtopped trees. In such 
instances, detecting diversity-enhanced production may be more 
effective as overtopped trees contribute less to annual production.

Productivity (measured as stem biomass growth) was closely 
associated with standing stem biomass on our young stands 
(R2 = 0.94–0.97; Supplementary Fig. 2) and analyses that pre-
dicted and partitioned diversity effects on productivity rather 
than biomass led to comparable findings (Supplementary Table 1 
and Supplementary Fig. 3). This is not surprising in young stands, 
where biomass will largely reflect recent productivity. Canopy foliar 
biomass and biochemistry together drive forest productivity44 and 
spectra can capture signals of both28,32,34. We found spectral sig-
nals of diversity-enhanced stem biomass corresponded closely 
with increased canopy biomass, including higher reflectance in 
the NIR and decreased reflectance in the SWIR. Whereas visible 
wavelengths are dominated by pigment absorption and SWIR wave-
lengths by water absorption, NIR reflectance is strongly associated 
with leaf, stem and canopy structure54. Increased NIR reflectance 
in higher biomass stands can be attributed collectively to greater 
multiple scattering from mesophyll tissue at the leaf level and, at 
the canopy level, architectural differences including leaf and branch 
density and distribution, as well as total green vegetation cover and 
vegetation dry matter content. Decreased reflectance in the SWIR 
can be directly related to increased canopy water content, which 
scales with total foliar biomass54.

Moreover, spectral signals of diversity effects on stem biomass 
followed patterns of spectrally determined canopy nitrogen, con-
necting spectral patterns of diversity effects on stem biomass with 
fundamental understanding of forest productivity drivers, namely 
the functional link between enhanced growth and enhanced capac-
ity to harvest light and assimilate carbon44. Previous diversity 
experiments with young trees have also found that productivity is 
associated with community-weighted mean leaf traits including 
nitrogen concentration36 and that enhanced biomass in mixtures 
compared with monocultures is associated with species identity and 
the dominance of fast-growing species35. Our study extends these 
findings by showing that overall trends of positive diversity effects 
on stem biomass were consistent with dominance of the upper can-
opy by species with greater leaf nitrogen concentration (Fig. 4).

The simple partitioning approach that we present here is 
intended to illustrate that spectroscopic imaging can be leveraged 
for ecological insight. Our partitioning approach differs from pre-
vious approaches of additively partitioning the NBE into a selec-
tion or dominance effect and a complementarity effect using field 
measurements22,55,56. These previous approaches of additive parti-
tioning require tracking the relative biomass of species in mixture  
and monoculture—a seemingly intractable task with stand-scale 
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analyses of remotely sensed spectroscopic images which may miss 
species that are present in the stand but overtopped. This leads to 
important differences in the interpretation of spectral diversity 
effects. In particular, the sDE is superficially consistent with the 
selection22 and dominance55 effects of previous partitions (that 
is, when the NBE is driven by an especially productive species). 
However, species interactions typically attributed to complementar-
ity, such as partitioning light gradients57, might affect species’ domi-
nance of the upper canopy and thus contribute to the sDE.

As a step toward spectrally identifying diversity effects in nat-
ural stands, we illustrated the potential to spectrally detect both 
species composition and diversity effects (Extended Data Fig. 10). 
Challenges remain in widely applying spectroscopic imaging to 
assess diversity effects, including developing models that can be 
applied across sensors at different spatial scales and relevant tem-
poral scales. The models that we present here to detect biomass and 
species were developed with a statistical approach and calibrated 
onsite, and thus would require validation or further development 
before applying elsewhere. However, these models leverage spec-
tral attributes directly related to canopy biomass that, in principle, 
ought to apply broadly, and show transferability over space and time 
within our study site (Supplementary Tables 2 and 3). Therefore, 
our findings demonstrate the potential of imaging spectroscopy to 
address fundamental questions about biodiversity–ecosystem func-
tion relationships while emphasizing the need to enhance the wide-
spread applicability of models.

Spectral data lend a perspective for viewing communities, poten-
tially opening avenues of ecological questioning and insight16. Here, 
we demonstrate that remote spectroscopic imaging can detect 
effects of diversity on stem biomass in young tree communities 
and provide insight into the ecological processes that drive these 
patterns. Crucially, the spectroscopic signal we detect is the conse-
quence of many combined contributors (canopy architecture, chem-
istry, water content and species identity), and also incorporates the 
outcomes of biological interactions. Overall, our study highlights 
the promise of using remotely sensed data for testing relationships 
between biodiversity and ecosystem function across natural and 
managed ecosystems at multiple scales across the globe.

Methods
Study site. This study was conducted over 2 yr on a tree-diversity experiment that 
is part of the International Diversity Experiment Network with Trees (IDENT)45. 
The experiment was planted in spring 2010 at the Cloquet Forestry Center 
(Minnesota, United States, 46° 40′ 46′′ N, 92° 31′ 12′′ W, 382 m above sea level), 
which has a mean annual air temperature of 4.8 °C, annual precipitation of 783 mm 
(averaged over 1973–2008) and a short growing season of 4–5 months58. The site 
is flat and was formerly forested with a sandy loam soil that was homogenized by 
disking before planting the experiment.

The experiment is composed of trees planted 0.4 m apart in a grid pattern to 
form 2.8 × 2.8 m2 plots, which we refer to as stands, containing 49 trees. Stands were 
spaced 1 m apart. Seedlings of 12 common temperate-boreal species were planted: 
six from North America (Acer saccharum Marsh., Betula papyrifera Marsh., Larix 
laricina (Du Roi) K. Koch, Picea glauca (Moench) Voss, Pinus strobus L. and Quercus 
rubra L.) along with a congener of each species from Europe (Acer platanoides  
L., Betula pendula Roth, Larix decidua Mill., Picea abies (L.) H. Karst., Pinus sylvestris 
L. and Quercus robur L.). A diverse set of 48 different species assemblages was 
planted, namely 12 monocultures, 30 two-species mixtures and six six-species 
mixtures. Within an assemblage, species were planted in approximately even 
proportions. Each assemblage was replicated four times in a randomized block 
design to create a total of 192 stands. The site was fenced to exclude large herbivores 
and understory plants were hand-weeded regularly. Our study was conducted over 
2014 and 2015 when trees were in their fifth and sixth growing seasons (mean 
LAI ± s.d. per stand of 4.5 ± 1.9 in the fifth and 5.9 ± 2.6 in the sixth growing season).

Field measurements. The height and basal diameter of all trees were censused 
at the end of each growing season and stem biomass was estimated from these 
measurements with site- and species-specific allometric equations (Supplementary 
Table 4). Stands varied greatly in stem biomass (0.3 Mg ha−1 in an A. platanoides 
monoculture to 58.8 Mg ha−1 in an A. platanoides–B. pendula mixture in the fifth 
growing season and 0.6–116.4 Mg ha−1 for the same assemblages in the sixth 
growing season).

The NBE on stem biomass (b) was calculated as follows:

NBEb ¼ bo � be ð1Þ

where bo is the observed stem biomass in the mixed-species stand and be is the 
expected stem biomass, which was calculated as the sum of each constituent 
species’ (i) stem biomass in monoculture (m) weighted by the proportion of trees of 
that species planted in the mixture (p), as follows:

be ¼
X

bm;i ´ pi
� 

ð2Þ

Mixed-species stands were compared with monocultures within the 
same experimental block. Stands varied greatly in the NBE on stem biomass 
(−10.9 Mg ha−1 in B. papyrifera–B. pendula to 38.8 Mg ha−1 in A. platanoides–B. 
pendula in the fifth growing season and −18.4 Mg ha−1 in P. strobus–L. laricina to 
75.8 Mg ha−1 in A. platanoides–B. pendula in the sixth growing season), with 68% of 
mixed-species stands overyielding, or showing a positive NBE, in the fifth growing 
season and 69% in the sixth growing season.

LAI and the proportional species composition in the uppermost stratum of the 
canopy were determined with a line intercept approach (Supplementary Methods) 
on a subset of stands: 41 of the 48 species assemblages replicated across three 
of the four experimental blocks each year plus another five assemblages on one 
block in the fifth growing season. In brief, we assembled a rig to drop a line at 15 
random locations within each stand during peak leaf area (August). The species 
identity, angle and height of each leaf intercepted by the line were recorded and 
subsequently used to calculate LAI (refs. 59,60). The species identity of the top-most 
leaf intercepted by each line within a stand was used to estimate the proportional 
species composition in the uppermost stratum of the canopy.

Airborne data collection and processing. NASA AVIRIS-NG images of the 
IDENT site were acquired during the summer of the fifth growing season  
(25 August 2014) and the sixth growing season (30 August 2015) of the experiment. 
Pixels had a spatial resolution of 0.8 m and spectral resolution of approximately 
5 nm with 432 bands encompassing the spectral range of 380–2,510 nm. Images 
were orthorectified, radiometrically calibrated and atmospherically corrected to 
apparent surface reflectance by the Jet Propulsion Laboratory. Noisy and water 
absorption bands were excluded and the remaining spectral regions (416.4–1,343, 
1,463.2–1,733.7, 1,768.7–1,803.8 and 1,984.1–2,399.8 nm) were used for analyses.

To match spectra to stands, we created shape files of the stand locations by 
manually delineating polygons on the spectroscopic images (Supplementary Fig. 4).  
One shape file was created for each year’s image as the images did not perfectly 
align. False colour images were used to visualize the boundaries of stands and the 
known size and distance among stands was used as a guide. These shape files were 
used to extract the pixels occurring within each stand. Pixels were extracted if their 
centre was located within the stand boundary; this means that some pixels that 
extended over the stand boundary were spectrally mixed with the matrix between 
stands. To calculate stand-level mean spectra, we weighted the edge pixels by the 
proportion of each pixel occurring within the stand boundary.

Spectral detection of biomass and diversity effects on biomass. We used 
stand-level mean spectra (averaged across the pixels within a stand using the 
pixels weighted by proportion within the stand boundary) to predict stem biomass 
using PLSR (ref. 61) on the full spectrum, minus noisy and water absorption 
bands. To maximize the generality of the PLSR model across acquisitions that 
may have varied in overall scene brightness, one model was developed using 
vector-normalized spectra and field-measured stem biomass from both growing 
seasons. We followed the PLSR procedure outlined by Serbin et al.62 whereby 
data were split into a calibration (75%) and an independent validation subset 
(25%). Subsets were sampled in a stratified random fashion to evenly represent 
growing seasons and ensure that each subset encompassed the range of observed 
values for stem biomass that we were predicting. We further split the calibration 
subset, resampling 80% of these data without replacement (in jackknife fashion) 
1,000 times again in the same stratified random fashion. For each of these 1,000 
iterations, we fitted a PLSR model with the pls package63 in R (ref. 64). To avoid 
potential overfitting of models, the optimal number of PLSR components was 
chosen as the number where adding more components did not significantly 
reduce the predicted residual sum of squares (PRESS) on average across the 1,000 
iterations; this was assessed with t-tests. We assessed model fit by calculating the 
coefficient of determination (R2), r.m.s.e., relative r.m.s.e. (%r.m.s.e., calculated 
as r.m.s.e./range of data) and bias of the relationship between the stem biomass 
measured on stands and the mean values of stem biomass predicted for stands 
within the calibration, cross-validation and independent validation data subsets. 
Wavelengths of importance were extracted for each model iteration using the 
varImp function in the caret package65 in R, which assesses how much the 
wavelength reduces the sums of squares of the model fit. As a baseline to compare 
with the performance of the PLSR model of stem biomass, we also calculated 
a common index of vegetation cover—the NDVI (ref. 66). We calculated NDVI 
as (R800 − R680)/(R800 + R680), where R800 and R680 are the weighted stand average 
AVIRIS-NG reflectances at 800 and 680 nm, respectively.
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We tested the capacity to detect the NBE on stem biomass using spectra. 
We also partitioned the spectrally detected NBE on stem biomass into the 
spectral dominance and plasticity effects on stem biomass. To calculate these 
diversity effects, we simulated the spectra of mixed-species stands using pixels 
from monoculture stands (Fig. 1), which required knowing the composition of 
mixed-species stands. We ran two simulations with each simulation repeated 1,000 
times. First, for each mixed-species stand, we drew pixels from monocultures 
according to the proportion of trees (T) per species that were planted in the 
mixed-species stand (SimT). By drawing trees according the proportion of trees 
planted (rather than alive at the time of sampling), this treats differences in 
mortality between monocultures and mixtures as part of the diversity or mixing 
effect. In the calculation of diversity effects, each block was treated separately, such 
that simulations for each mixed-species stand drew pixels from the monocultures 
present on the same block. Second, we drew pixels from monocultures according 
to the relative proportion of leaves (L) in the uppermost stratum of the canopy 
that belonged to each species (SimL). This simulation was assessed for the subset 
of stands where the proportional species composition in the upper stratum of the 
canopy was estimated in the field.

To calculate spectral diversity effects on stem biomass, we applied the 
coefficients from each of the 1,000 iterations of the PLSR model of stem biomass 
to (1) the stand-level mean observed spectrum of each stand (Obs) to estimate 
the stem biomass observed in each mixed-species stand and (2) to the stand-level 
mean simulated spectra (SimT and SimL) of each stand to estimate the stem biomass 
expected in the mixture based on monocultures if the relative species composition 
of the upper canopy matched the relative proportion of stems per species (SimT), 
or matched the relative proportion of leaves per species (SimL). The stem biomass 
values predicted from the observed spectrum minus the values predicted from SimT 
were considered our measure of the spectrally predicted NBE (sNBE) on biomass. 
The difference in predicted stem biomass between SimT and SimL represented the 
sDE on stem biomass, and the difference in predicted stem biomass between the 
observed spectrum and SimL represented the sPE on stem biomass (Fig. 1).

Mapping canopy nitrogen concentration. We followed the procedure outlined in 
Singh et al.29 to map canopy nitrogen concentration from AVIRIS-NG imagery. We 
measured full-range (400–2,500 nm) reflectance on fresh leaves (or mat of needles) 
of three trees per species in each of 36 stands within one block in the fifth growing 
season and in 39 stands within two blocks in the sixth growing season with an 
ASD FieldSpec 3 spectroradiometer (Analytical Spectral Devices). For each tree, 
we measured three leaves from each of the top, middle and bottom of the crown. 
Leaf-level nitrogen concentration (Nmass, %) was estimated using leaf-level spectra 
with pre-existing leaf-level PLSR models (R2 = 0.95) (ref. 67). For each tree, the 
nitrogen predictions of the three replicate leaves per crown layer were averaged to 
obtain the nitrogen concentration per crown layer and these nitrogen values per 
crown layer were used to calculate a weighted mean estimate of leaf nitrogen per 
tree, with the top of crown nitrogen value weighted as 90%, middle of crown value as 
9% and bottom of crown value as 1%. For each species per stand, the weighted mean 
leaf nitrogen per tree from the three sampled trees were averaged to give the species’ 
mean leaf nitrogen per stand. The species’ mean nitrogen per stand were upscaled 
to stand-level nitrogen concentration by using LAI estimated per species per stand 
from field-based measurements (Supplementary Methods) to infer species’ relative 
abundance; gaps in data, where LAI or leaf-level spectra was not sampled for a stand, 
were infilled using data from species growing in the same assemblage on another 
block where possible or, if not, using site level means for each species’ LAI and 
nitrogen. A canopy-level PLSR model was developed from stand-level nitrogen and 
stand-level spectra to predict canopy nitrogen in both years (independent validation: 
R2 = 0.78, r.m.s.e. = 0.17, %r.m.s.e. = 12.4%). This model was applied across all pixels 
in the AVIRIS-NG images of the experiment in the fifth and sixth growing seasons 
(Extended Data Fig. 5). Predicted nitrogen values were subsequently averaged to 
give a mean value for each stand and growing season, again weighting pixels by 
their proportional area within the stand boundary. This approach estimates canopy 
nitrogen weighted toward the nitrogen concentration of the upper canopy, which 
matches the portion of the canopy sensed by AVIRIS-NG and is the most important 
tree layer functionally in terms of carbon assimilation.

We compared spectrally predicted canopy nitrogen with canopy nitrogen based 
on field measurements. For each species, we destructively sampled one to three 
mature leaves (fascicles or branchlets for needle-leafed species) from near the top of 
the crown of each of three trees chosen at random within each monoculture stand 
(one stand per block, n = 4). Samples were collected in late July during the fourth 
growing season. Leaves were pooled to give one sample per species per block, finely 
ground (lamina only), analysed for total nitrogen at the University of Nebraska, 
Lincoln, using a Costech ECS 4010 element analyser, expressed as a percentage 
of leaf mass (Nmass, %) and averaged to give one value per species. Canopy-level 
nitrogen from these field measurements was calculated for each stand by weighting 
species’ nitrogen values by species’ relative LAI in mixed-species plots; gaps in LAI 
data were infilled as described above for the spectral mapping of canopy nitrogen.

Spectral diversity effects on spectrally predicted canopy nitrogen were 
calculated with a similar approach as for stem biomass except, when simulating 
mixtures from monocultures (Fig. 1), the spectral estimates of canopy nitrogen for 
pixels were drawn from monoculture stands.

An approach using only spectra: spectrally identifying species composition 
for the analysis of diversity effects on biomass. As a step toward an approach 
for identifying spectral diversity effects in naturally assembled forests where the 
species composition of stands may be unknown, we assessed whether we could 
first use spectra to identify the species composition of stands and then use these 
spectrally identified species compositions in combination with spectrally predicted 
stem biomass to calculate spectral diversity effects on stem biomass. Partial least 
squares discriminant analysis (PLS-DA) (ref. 63) was used to develop a model to 
distinguish among the 12 species on the basis of spectra drawn from monoculture 
stands across both growing seasons. Using pixels at their original resolution from 
the 48 monoculture stands (four stands of each of the 12 species; 9–14 pixels per 
stand with a mean of 12 pixels), we vector-normalized spectra and split data into 
calibration (50%) and validation (50%) subsets stratified by species, experimental 
blocks and growing seasons. Data were resampled without replacement, evenly 
drawing from species, experimental blocks and growing seasons, 300 times and 
a PLS-DA model was fitted to each sample with the pls package. The number of 
components (23) was chosen by assessing kappa scores for iterative model runs 
with increasing numbers of components (Supplementary Fig. 5).

For each growing season, coefficients from the resulting 300 PLS-DA iterations 
were applied to predict the species composition of stands and to simulate the 
spectra of mixtures from monocultures. For each pixel, we calculated the fraction 
of the 300 PLS-DA iterations assigned to each of the 12 species. We then took the 
average of these fractional species assignments across all pixels within a stand as our 
estimate of the proportional species composition on a stand (Extended Data Fig. 8). 
Monocultures were spectrally assigned by assuming that each block contained one 
monoculture stand per species. The monoculture of a given species was assumed 
to be the stand with the greatest proportion of pixels assigned to that species; in the 
case of a tie, more than one stand was treated as the monoculture and we took the 
mean across these spectra (this was the case for some stands dominated by Betula 
spp.). All other stands were assumed to be mixed-species stands.

We simulated the spectra of mixed-species stands from the spectrally assigned 
monocultures (above) using two approaches that approximately correspond to the 
simulations based on the proportion of trees (SimT) and the proportion of the upper 
stratum of the canopy (SimL) (Fig. 1). Traditional field-based approaches of assessing 
diversity effects on productivity22 require knowing initial proportion of species 
planted or seeded. However, initial proportions cannot be spectrally determined. 
Instead, for our first approach, we simulated an ‘equal abundance’ scenario—an 
analogue of SimT—that requires no prior knowledge but makes the assumption 
that all species spectrally identified as present within the canopy of a mixed-species 
stand have equal abundance in that stand (SimsID(T)). This approximates the design 
of the tree-diversity experiment and is analogous to assuming demographic 
equivalence among tree species. In the second approach—an analogue of SimL—we 
took a weighted mean from the stand-level mean spectra of spectrally assigned 
monocultures; spectra were weighted according to the spectrally determined 
proportional composition of stands, which presumably represents their proportional 
abundance in the upper stratum of the canopy (SimsID(L)). Finally, we applied the 
PLSR models of stem biomass to the observed spectrum (Obs) as well as the two 
simulated spectra (SimsID(T) and SimsID(L)) for each stand. Following our earlier 
approach (Fig. 1), the difference between biomass estimated from the observed 
spectrum and SimsID(T) represents the NBE (sNBEsID) on biomass, while the difference 
between SimsID(T) and SimsID(L) represents the sDE on biomass (sDEsID) and between 
the observed spectrum and SimsID(L) represents the sPE on biomass (sPEsID).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
AVIRIS-NG data can be downloaded from https://aviris-ng.jpl.nasa.gov/
alt_locator/. Image level spectra, canopy nitrogen predictions and field-based 
measurements along with coefficients for PLSR and PLS-DA models are available 
on the Data Repository for the University of Minnesota68 (https://doi.org/10.13020/
s7pf-am91).

Code availability
Code for the PLSR and PLS-DA models developed here along with code for 
simulating spectra, applying PLSR models and calculating spectral diversity effects 
are available at the Data Repository for the University of Minnesota68 (https://doi.
org/10.13020/s7pf-am91).
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Extended Data Fig. 1 | Fits of the PLSR model of stem biomass. Partial least squares regression (PLSR) model combining data from the fifth and 
sixth growing seasons, showing fits for calibration (Cal.), cross-validation (Val.) and independent validation (Ind. val.) data subsets. Spectra were 
vector-normalized. n = number of stands, n comp. = number of components in model.
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Extended Data Fig. 2 | Wavelengths of importance in the PLSR model of stem biomass. The variable importance index represents the reduction of sums 
of squares63. Solid line indicates the mean and shading indicates the 95% confidence intervals around the mean importance value for each wavelength 
across the 1000 model iterations. Noisy and water absorption wavelengths are omitted.
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Extended Data Fig. 3 | Examples of spectral reflectance and diversity effects on spectral reflectance. a, Spectral reflectance of four stands, representing 
the range in stem biomass in each growing season, and important wavelengths in the PLSR model of stem biomass. Important wavelengths (number of 
iterations where the wavelength was among the 20 most important based on the reduction of the sums of squares63) are indicated with the intensity 
of vertical lines. Shading around spectra indicates 95% confidence intervals among pixels within stands. b, Examples of diversity effects on the spectral 
reflectance of stands, showing the difference between observed spectral reflectance (Obs) and simulated spectral reflectance (SimT) (that is, the spectral 
net biodiversity effect, sNBE) separated into the additive contributions of spectral dominance (sDE) and spectral plasticity (sPE) (see Fig. 1). These stands 
are from the fifth growing season and illustrate strongly positive, moderately positive, and negative field-measured NBE on stem biomass (top to bottom 
panels, respectively). Noisy and water absorption wavelengths are omitted.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Spectrally determined diversity effects on stem biomass and the spectral net biodiversity effect. Contributions of the spectral 
dominance effect (sDE) (a, c) and spectral plasticity effect (sPE) (b, d) on stem biomass to the spectrally predicted net biodiversity effect (sNBE) on 
stem biomass in the fifth (a,b) and sixth (c,d) growing seasons. Error bars show 95% confidence intervals among the 1000 model iterations. Thick line 
represents the regression line (significant for sDE in both years and sPE in the fifth growing season, P ≤ 0.002, but not for sPE in the sixth growing season, 
P = 0.117). Dark grey lines represent the 95% prediction interval and light grey lines the 95% confidence interval of the models. Dashed grey line shows 
1:1. e, Mean contributions of sDE and sPE on stem biomass to sNBE on stem biomass for each species mixture, showing effects in the fifth growing season 
and the increase (or decrease) in effects in the sixth growing season. Error bars for sNBE represent standard deviations among blocks (n = 3; an additional 
five mixed-species stands measured in one block in the fifth growing season are omitted). 6 NA = all six species of North American origin, 6 EU = all 
six species of European origin, 6 angio = all six angiosperms, 6 gymno = all six gymnosperms, Ap = Acer platanoides, As = Acer saccharum, Bpa = Betula 
papyrifera, Bpe = Betula pendula, Ld = Larix decidua, Ll = Larix laricina, Pa = Picea abies, Pg = Picea glauca, Pst = Pinus strobus, Psy = Pinus sylvestris,  
Qro = Quercus robur and Qru = Quercus rubra.
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Extended Data Fig. 5 | Maps of canopy nitrogen. Canopy nitrogen concentration (Nmass, %) estimated from spectra using PLSR for the (a) fifth growing 
season and (b) sixth growing season. Location of stands indicated with black boxes.
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Extended Data Fig. 6 | Canopy nitrogen and stem biomass. Field-measured canopy nitrogen concentration was positively associated with spectrally 
predicted canopy nitrogen concentration in both (a) the fifth growing season and (d) the sixth growing season. Field-measured stem biomass was 
positively associated with both (b) field-measured canopy nitrogen concentration and (c) spectrally predicted canopy nitrogen concentration in the fifth 
growing season, and with both (e) field-measured canopy nitrogen concentration and (f) spectrally predicted canopy nitrogen concentration in the sixth 
growing season. Thick line represents the regression line (P < 0.001).
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Extended Data Fig. 7 | Wavelengths of importance within PLS-DA models. Wavelengths of importance in distinguishing species within partial least 
squares discriminant analysis (PLS-DA) models (red) shown alongside the PLSR model of stem biomass (grey, unchanged in all panels). The variable 
importance index represents the reduction of sums of squares49. Solid lines indicate the mean and shading indicates the 95% confidence intervals around 
the mean importance value for each wavelength across the 1000 model iterations. Vertical lines highlight the 20 most important wavelengths on average 
across the model iterations. Noisy and water absorption wavelengths are omitted.
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Extended Data Fig. 8 | Spectral assignments of the species composition of stands. Species assignments based on PLS-DA. Two-species compositions 
were not present on all four blocks (indicated by asterisks): Pg-Qru was planted in place of Pg-Qro on Block B, and Pg-As was planted on two stands in 
Block D with one stand in place of Pa-As.
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Extended Data Fig. 9 | Confusion matrix for PLS-DA species assignments in monoculture. The reference species identity of pixels (columns) and the 
predicted species identity of pixels (rows) from PLS-DA calibrated with pixels drawn from monoculture stands in their fifth and sixth growing seasons. 
Values are the mean proportion of pixels assigned to a given species using the validation data subset in each iteration. Presented in coarse phylogenetic 
order, separating angiosperms from gymnosperms.
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Extended Data Fig. 10 | Spectrally determined diversity effects on stem biomass calculated with remotely sensed species composition. Models whereby 
spectra were first used to predict the species composition of stands before calculating the net biodiversity effect (sNBEsID) (a, d), spectral dominance 
effect (sDEsID) (b, e) and spectral plasticity effect (sPEsID) (c, f) on stem biomass were each associated with their counterparts that were spectrally 
predicted using the known species composition of stands (sNBE, sDE and sPE, respectively). The top row (a–c) shows the fifth growing season and the 
bottom row (d–f) shows the sixth growing season. Error bars show 95% confidence intervals among the 1000 model iterations. Thick line represents the 
regression line (P < 0.001), dark grey lines represent the 95% prediction interval, and light grey lines represent the 95% confidence interval of the models. 
Dashed grey line shows 1:1. Sample sizes differ among panels; all panels are limited to the subset of stands that were not monocultures or spectrally 
identified as such, and sDE and sPE are also limited to those stands where leaf area was measured.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The Fieldspec Pro RS3 software (Analytical Spectral Devices, Boulder, CO, USA) was used to collect leaf spectra. Atmospheric correction for 
AVIRIS-NG was made using ATREM (Gao, B.C., K. H. Heidebrecht, and A. F. H. Goetz, Derivation of scaled surface reflectances from AVIRIS 
data, Remote Sens. Env., 44, 165-178, 1993).

Data analysis ENVI (5.2) was used to resample pixels (Harris Geospatial Solutions, Inc., Broomfield, CO, USA), and Python 2.7 was used to map canopy 
nitrogen. Data analyses were completed in R (v3.5.1) with R packages pls (v2.7-0) and caret (v6.0-81). Model coefficients and example code 
for the new PLSR and PLS-DA models developed within the paper are available on the Data Repository for University of Minnesota: http://
hdl.handle.net/11299/215251. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

AVIRIS-NG data can be downloaded from https://aviris-ng.jpl.nasa.gov/alt_locator/. Image level spectra, canopy nitrogen predictions, and associated plot 
measurements (including stem biomass, species proportions, field-based canopy nitrogen) are publicly available on the Data Repository for University of Minnesota: 
http://hdl.handle.net/11299/215251.  
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Ecological, evolutionary & environmental sciences study design
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Study description Here we examined whether imaging spectroscopy data can detect diversity effects on biomass across a tree diversity experiment. 
The tree diversity experiment is composed of 192 plots representing 48 different combinations of 12 common, temperate-boreal 
tree species and replicated on four experimental blocks. Assemblages were chosen to represent a gradient in species richness and 
functional diversity (each species in monoculture, 30 two species mixtures and 12 six species mixtures). Each plot was 2.8 m by 2.8 m 
containing 49 trees planted in a grid with 0.4 m spacing. Data were collected over two years when the plots were in the fifth and sixth 
growing season and canopies were largely closed. 

Research sample The research sample consists of two AVIRIS-NG images (each with 432 bands of 5 nm spectral resolution ranging from 380-2510 nm 
and spatial resolution of 0.8 m) along with field-based measurements collected across the tree diversity experiment composed of 
192 plots. 

Sampling strategy Data were collected across all 192 plots within the tree diversity experiment with the exception of the line-intercept measurements 
of leaf area and leaf level spectra. All trees within the experiment were censused for diameter and height. Line-intercept 
measurements were collected on a subset of 128 plots in 2014 and 123 plots in 2015 (plots were omitted due to the time required to 
collect these data; the sampled subset of 41 to 46 of 48 assemblages on three of the four experimental blocks was chosen to 
represent the gradient in diversity whilst retaining replication across blocks, and were chosen prior to data analysis). Line intercept 
measurements were collected for 15 lines per plot; this number was chosen from previous sampling efforts. For leaf level spectral 
reflectance (used to map canopy nitrogen), one or two leaves or samples of conifer needles (mature and fully expanded) were 
collected from each of the top, middle and bottom of the crown of three trees per species on a subset of plots (36 plots within one 
block in 2014 and 39 plots within two blocks in 2015), and spectra were measured on three areas per leaf with five measurements 
per area. 

Data collection AVIRIS-NG images were acquired and processed by NASA Jet Propulsion Laboratory. Measurements of leaf-level spectral reflectance 
to map canopy nitrogen were led by John Couture with assistance from Anna Schweiger, Aidan Mazur and Melanie Sinnen, using an 
ASD FieldSpec 3 spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA). Censuses of the diameter (with calipers) and 
height (with measuring pole) of all trees were led by Artur Stefanski with assistance from Karen Rice, Raimundo Bermudez and 
interns. Line intercept measurements of leaf area (with custom designed rig) were collected by Laura Williams with assistance from 
interns. 

Timing and spatial scale AVIRIS-NG images were acquired on August 25, 2014 and August 30, 2015. Leaf-level spectral reflectance was measured over one 
week in August of 2014 and one week in August of 2015. Trees were censused for diameter and height annually at the end of each 
growing season (September-October). Line intercept measurements of leaf area were taken over approximately one month in August 
of 2014 and 2015 when plots were at peak leaf area. All measurements were taken within the tree diversity experiment, which 
occupies an area of approximately 0.4 ha and is composed of 192 stands that each measure 2.8 m by 2.8 m.

Data exclusions Noisy and water absorption bands were excluded from spectra prior to analysis. Line intercept measurements were collected on a 
subset of plots each year, as described above, with subsequent calculations and analyses (e.g., the spectral dominance and plasticity 
effects) completed using this subset of plots. 

Reproducibility All data were collected twice (once in 2014 and again in 2015). Two sets of spectral models were calibrated -- one using data from 
both years combined and another for each year separately -- and both the fit of these models and results from subsequent 
calculations of diversity effects were found to be comparable. 

Randomization In establishing the tree diversity experiment, two and six species mixtures were chosen to represent a gradient in functional diversity 
while maintaining approximately even representation of each species. Species were arranged within plots at random with rules to 
avoid clumping, and mixtures were arranged at random within experimental blocks. The 15 line intercept measurements per plot 
were located at random. Individual trees sampled for leaf-level spectral reflectance (per species and stand) were selected at random. 

Blinding Imaging spectroscopy data and field data were collected by separate teams. Data collectors could not be blinded to the species 
composition of plots when collecting field-based data. 

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions The study site has a mean annual air temperature of 4.8 °C, an annual precipitation of 783 mm, and a short growing season of 

approximately 4 to 5 months. The site is flat, has a sandy loam soil, and was formerly forested.
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Location The study was conducted on a tree diversity experiment planted at the University of Minnesota's Cloquet Forestry Center 
(Minnesota, USA, 46° 40’ 46” N, 92° 31’ 12” W , 382 m.a.s.l.)

Access & import/export Data were collected in compliance with local, national and international laws.

Disturbance Minimal numbers of leaves were harvested as needed for measurements.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
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MRI-based neuroimaging
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