
Multi-Regional Coverage Path Planning for Robots with Energy
Constraint

Junfei Xie1 and Jun Chen2

Abstract— Coverage path planning (CPP) has been exten-
sively studied in the literature, which is a key step to realize
robotic applications that require complete coverage of a region,
such as lawn mowing, room cleaning, land assessment, search
and rescue. However, CPP for multiple regions has gained much
less attention, which arises in many real scenarios. This multi-
regional CPP problem can be considered as a variant of the
traveling salesman problem (TSP) enhanced with CPP, namely
TSP-CPP. In this paper, we extend our previous investigation
on the TSP-CPP problem to further consider the energy
constraint of the robots. As the constrained TSP-CPP problem
has an NP-Hard computational complexity, a stepwise selection
based heuristic algorithm is developed to solve the problem.
Simulation experiments and comparison studies show the good
performance of the proposed algorithm in balancing optimality
and efficiency.

I. INTRODUCTION

In the past twenty years, robotics or unmanned vehicles
have experienced an unprecedented level of growth. Many of
their applications, such as lawn mowing [1], room cleaning
[2], land surveying [3], to name a few, involve the task
of planning the path for the robots to scan a region com-
pletely, while satisfying certain safety and mission-related
constraints. This task is known as the coverage path planning
(CPP) problem.

Two types of approaches have been developed to solve
the CPP problem [4]: the randomized approaches and the
complete approaches. The randomized approaches, adopted
by many floor-cleaning robots, generate a random path that
can fully cover a region if long enough. This type of
approach is easy to implement but produces long paths. The
complete approaches, which are more frequently researched,
generate shorter paths that can guarantee full coverage, by
decomposing the region into a collection of small cells and
then finding the coverage path for each cell.

Although the CPP problem for a single region has been
extensively studied, the practical scenario where multiple
regions are to be fully covered has been largely ignored. This
multi-regional CPP problem can be considered as a variant
of the vehicle routing problem (VRP) [5] or the traveling
salesman problem (TSP) [6] enhanced with CPP, where the
determination of the region visiting order is a TSP and the

*This work was supported partially by the National Science Foundation
under Grant CI-1953048/1730589, and partially by San Diego State Uni-
versity under the University Grants Program.

1Junfei Xie is with the Department of Electrical and Computer
Engineering, San Diego State University, San Diego, CA, 92182.
jxie4@sdsu.edu.

2Jun Chen is with the Department of Aerospace Engineering, San Diego
State University, San Diego, CA, 92182. jun.chen@sdsu.edu.

coverage for each region is a CPP problem. We hence name
it the TSP-CPP problem. Despite the existence of many
approaches for TSP, such as Branch-and-Bound [7], dynamic
programming [8], nearest neighbor [9], to name a few, the
TSP-CPP problem cannot be solved by a direct extension
to these TSP or CPP approaches. This is because the TSP-
CPP problem requires the determination of the entrance and
exit locations, which impact both the region visiting order
and intra-regional coverage paths and are not considered in
either TSP or CPP problems.

A related problem, called the tour polygon problem (TPP)
[10], also considers multiple regions, but it does not require
full coverage of each region. In particular, the TPP seeks the
optimal path to merely visit multiple regions. In cases when
the robot is only allowed to visit the edge of each region
without entering the region, the TPP is also known as the
zookeeper problem [11]. Otherwise, if the robot can freely
cross the regions, the TPP is often referred to as the Safari
problem [12].

In our previous studies [13]–[15], we have investigated the
TSP-CPP problem for scenarios where a single robot with
sufficient power supply is tasked to fully cover multiple non-
overlapping convex polygonal regions. To solve this problem,
we developed a dynamic programming based exact approach
[14], [15] that can find (near) optimal solutions and a nearest
neighbor (NN) and 2-Opt based heuristic approach, called
Fast NN-2Opt [15], that can generate high-quality tours
very efficiently. To the best of our knowledge, we were the
first to consider the TSP-CPP problem with mathematical
formulation provided.

Very recently, a growing interest has been shown in the
TSP-CPP problem [16], [17], driven by the popularity of
unmanned aerial vehicles (UAVs), which have been adopted
by many applications that involve the TSP-CPP problem,
such as land assessment [18] and precision agriculture [19].
In particular, a two steps path planning (TSPP) approach
was introduced in [16], which first determines the region
visiting order using regions’ centroids and then plans the
path to cover each region. Although simple, this heuristic
approach produces longer tours, compared with our meth-
ods [15], as it ignores the interaction between the region
visiting order and intra-regional coverage paths. It is also
less efficient than our Fast NN-2Opt algorithm. Another
paper [17] considers the path planning for multiple UAVs. A
heuristic procedure was developed to first assign regions to
the UAVs and then optimize the region visiting order. This
study, however, oversimplifies the coverage problem. How
to enter or exit each region and what is the path to fully

2020 IEEE 16th International Conference on Control & Automation (ICCA)
Oct 9-11, 2020 (Virtual) Sapporo, Hokkaido, Japan

978-1-7281-9092-1/20/$31.00 ©2020 IEEE 1378

cover each region are not addressed. Paper [20] considers the
distributed motion planning problem for multiple robots to
cover multiple rectangular regions. In this study, each robot
determines its next motion based on a set of rules.

In this paper, we extend our previous study on the TSP-
CPP problem [13]–[15], [21] to further address the energy
constraint of the robot. In particular, we consider a more
realistic scenario where a robot with limited energy is sent
to scan multiple regions. During the mission, the robot
is allowed to return to the depot to change its battery.
An alternative scenario is to send multiple robots with
limited energy to scan the regions collaboratively. This
constrained TSP-CPP problem is much more challenging
than the original TSP-CPP problem, which is NP-Hard,
in that it further requires the optimization of the number
of sub-tours (or UAVs) and the assignment of regions to
each sub-tour (or UAV). To solve this problem efficiently,
we propose a heuristic algorithm based on the Fast NN-
2Opt. The proposed algorithm adopts a stepwise selection
procedure to minimize the number of sub-tours (or UAVs)
and optimize the region assignment, and adopts NN- and
2Opt-based approaches to find the best tour. To demonstrate
the performance of the proposed algorithm, we conduct
various comparative simulation studies. The results show that
the proposed algorithm achieves a good tradeoff between
optimality and efficiency.

In the rest of this paper, we first formulate the constrained
TSP-CPP problem in Section II. We then briefly review the
Fast NN-2Opt algorithm in Section III. In Section IV, we
solve the constrained TSP-CPP problem using a stepwise
selection based heuristic approach, whose performance is
then evaluated through simulation studies in Section V.
Section VI finally concludes the paper.

II. PROBLEM FORMULATION

A. Problem Description and Notations

In this study, we consider the scenario where a single
robot (e.g., ground vehicle or UAV) with arbitrary radius
of curvature is tasked to scan or survey N ∈ Z+ non-
overlapping convex polygonal regions. It departs from a
depot located at v0 and returns to the same depot after
mission completed. Due to limited power supply, the robot
may return to the depot v0 to change its battery during the
mission, but only after completing the scan for at least one
region, assuming that the robot has sufficient power to fully
cover the largest region. For simplicity, we assume the robot
moves at a constant speed and the maximum distance it can
travel at this speed and with its battery fully charged is
D. Note that D characterizes the robot’s energy capacity.
The constrained TSP-CPP problem then aims to find the
optimal tour1 for the robot to fully cover all regions with the
minimum total cost, while satisfying the energy constraint.

To formulate the constrained TSP-CPP problem math-
ematically, we first introduce some notations. Let bi =
{bik} be a feasible path to fully cover region i ∈ [N] =

1A tour is a feasible solution to the (constrained) TSP-CPP problem.

{1, 2, . . . , N}, where bik is the k-th waypoint in the path,
k ∈ [ni] and ni = |bi| is the total number of waypoints.
To describe the region visiting order, we introduce a binary
variable xij , i, j ∈ [N] ∪ {0}, where 0 is the index of the
depot. xij equals to 1 if the robot moves to region (or depot)
j after visiting region (or depot) i. Otherwise, xij equals
to 0. To denote the number of sub-tours, where each sub-
tour (except the last one) indicates a battery change, we use
symbol m ∈ Z+.

B. Mathematical Formulation

Based on the notations defined above, a tour can be
described jointly by 1) the region visiting order captured
by xij , i, j ∈ [N] ∪ {0}, 2) the path to cover each region
bi, i ∈ [N] and 3) the number of sub-tours m ∈ [N].
Mathematically, the constrained TSP-CPP problem can be
formulated as follows:

min
xij ,∀i,j∈[N]∪{0}

bi,∀i∈[N]
m∈[N]

J =
N∑
i=1

[x0id(v0, bi1) + xi0d(bini , v0)]

+
N∑
i=1

N∑
j=1

xijd(bini
, bj1) +

N∑
i=1

g(bi) + βm

(1)

subject to:
N∑
i=1

x0i = m (2)

N∑
i=1

xi0 = m (3)

N∑
i=0

xij = 1, ∀j ∈ [N] (4)

N∑
j=0

xij = 1, ∀i ∈ [N] (5)∑
i∈S

∑
j∈S

xij ≤ |S| − 1, ∀S ⊆ [N], |S| > 0

(6)
xij ∈ {0, 1}, ∀i, j ∈ [N] ∪ {0} (7)∑
i∈S\{0}

[x0id(v0, bi1) + xi0d(bini
, v0)]

+
∑

i∈S\{0}

∑
j∈S\{0}

xijd(bini
, bj1)

+
∑

i∈S\{0}

g(bi) < D,

∀
∑
i∈S

∑
j∈S

xij = |S|, |S| > 1 (8)

where J is the total cost to be minimized, which includes
the cost of inter-regional paths (first two terms), the cost of
intra-regional coverage paths (third term), and the cost for the
robot to change its battery at the depot (last term). d(a, b) de-
notes the travel cost from location a to location b, which here
is measured by the Euclidean distance. g(bi) computes the

1379

cost of path bi, particularly, g(bi) =
∑ni−1

k=1 d(bik, bi(k+1)).
β ≥ 0 is the unit cost for changing the battery of the robot.

In the above formulation, (2)-(8) are introduced to ensure
the validity of the tour. In particular, (2) and (3) limit the
number of sub-tours to m and ensure that each sub-tour starts
and ends at the depot. (4) and (5) ensure that each region is
scanned just once. (6) is used to prevent invalid sub-tours.
(7) ensures that xij takes valid values. (8) prevents long sub-
tours that exceed the energy capacity of the robot. Note that
this problem formulation is also suitable for scenarios where
m robots with the same energy capacity are tasked to scan N
regions, under the goal of minimizing the total cost and the
number of robots m. From this point of view, the proposed
problem can be considered as a variant of the multiple TSP
(MTSP) enhanced by CPP with energy constraint.

As it is infeasible and exceedingly time-consuming to
directly solve the constrained TSP-CPP problem formulated
in (1), considering the infinite number of possible tours
to cover all regions, in this paper, we propose a heuristic
approach to solve this problem efficiently.

III. FAST NN-2OPT ALGORITHM FOR TSP-CPP
WITHOUT ENERGY CONSTRAINT

Before solving the proposed problem, we first briefly
review the Fast NN-2Opt algorithm [15] for the original
TSP-CPP problem without energy constraint, which was
developed in our previous studies and can generate high-
quality tours very efficiently. Based on this algorithm, we
will then address the constrained TSP-CPP problem in the
next section.

The Fast NN-2Opt algorithm shown in Algorithm 1 con-
sists of two phases. In the first phase, the tour is initialized
using a nearest neighbor (NN) based algorithm. The key
idea is to first determine the region visiting order using
the NN algorithm based on the regions’ centroids (Line
4), and then find the complete tour that fully covers all
regions (function FINDTOUR() in Line 5). The pseudocode
for function FINDTOUR() is provided in Algorithm 2. In this
function, the tour is generated by connecting the best intra-
regional coverage path for each region one by one in the
region visiting order, where the candidate paths for covering
each region (Line 2) are generated by a back-and-forth CPP
algorithm [14], [15]. This CPP algorithm generates a set of
paths with back-and-forth pattern, which have line sweep
directions2 perpendicular to the region’s edges and have nice
properties in terms of full coverage guarantee, optimality and
complexity.

In the second phase, the tour is improved using a 2-Opt
based algorithm (function IMPROVETOUR() in Line 6). The
pseudocode for function IMPROVETOUR() is provided in
Algorithm 3. In this function, a 2-Opt move is performed
in each iteration to update the region visiting order, if the
cost of the resulting tour is reduced.

2The line sweep direction of a back-and-forth path points towards the
moving direction of the robot.

Algorithm 1: Fast NN-2Opt Algorithm
Input: v0, vertices of N regions, sensing range of the robot
Output: tour τ ∗, cost J∗

1 for i← 1 to N do
2 Bi ← candidate paths for covering region i;
3 ci ← centroid of region i;

/* Initialize the tour */
4 o← order in which regions and the depot are covered or

visited, where o(0) = 0;
5 τ ← FINDTOUR(o, v0, {ci}, {Bi});
/* Improve the tour */

6 τ ∗ ← IMPROVETOUR(τ ,o, v0, {ci}, {Bi});
7 J∗ ← g(τ);
8 return τ ∗, J∗

Algorithm 2: FINDTOUR(o, v0, {ci}, {Bi})
1 τ ← {v0};
2 for t← 1 to N do
3 i← o(t);
4 if t < N then
5 j ← o(t+ 1);
6 else
7 j ← 0;

8 bi ← coverage path for region i that minimizes
g(bi) + d(τ (end), bi1) + d(bini , cj), where τ (end)
is the last location in path τ , c0 = v0 and bi ∈ Bi;

9 τ ← {τ , bi};
10 τ ← {τ , v0};
11 return τ

Algorithm 3: IMPROVETOUR(τ , o, v0, {ci}, {Bi})
1 cost←∞;
2 while g(τ) < cost do
3 cost← g(τ);
4 for i← 0 to N − 1 do
5 for j ← i+ 2 to N + 1 do
6 if d(co(i), co(i+1)) > d(co(i), co(j)) then
7 o′ ← o with links (o(i),o(i+ 1)) and

(o(j),o(j + 1)) replaced with
(o(i),o(j)) and (o(i+ 1),o(j + 1)),
respectively;

8 τ ′ ← FINDTOUR(o′, v0, {ci}, {Bi});
9 if g(τ ′) < g(τ) then

10 τ ← τ ′;

11 return τ

IV. A HEURISTIC APPROACH FOR TSP-CPP WITH
ENERGY CONSTRAINT

Similar as the Fast NN-2Opt algorithm, the proposed
heuristic approach solves the constrained TSP-CPP prob-
lem also through two phases: tour initialization and tour
improvement. In particular, the first phase determines the
minimum number of sub-tours and the regions to be covered
in each sub-tour. It also finds a feasible path to fully cover
the regions in each sub-tour. The second phase performs
a local optimization to improve the sub-tours. Algorithm 4

1380

summarizes the procedures of the proposed algorithm. Next,
let’s describe each phase in more detail.

Algorithm 4: Proposed Heuristic Algorithm
Input: v0, vertices of N regions, sensing range of the

robot, K, D
Output: tour τ ∗, cost J∗

1 for i← 1 to N do
2 Bi ← candidate paths for covering region i;
3 ci ← centroid of region i;

/* Initialize the tour */
4 for k ← 1 to N do
5 τ k ← ∅; p← k; U ← [N];
6 C ← indices of the top K regions that are closest to

region p;
7 os ← order in which regions in set C and the depot

are covered or visited;
8 τ s ← FINDTOUR(os, v0, {ci}, {Bi});
9 repeat

10 if g(τ s) > D then
11 Remove regions in set C that are farthest from

region p one by one until g(τ s) < D;
12 else
13 Move regions that are closest to region p from

set U \ C to set C one by one until no more
regions can be added to keep g(τ s) < D
satisfied;

14 U ← U \ C;
15 j ← index of the region closest to region p, where

j ∈ U ;
16 C ← indices of the top min{K, |U |} regions that

are closest to region j, where C ⊆ U ;
17 p← j;
18 τ k ← {τ k, τ s};
19 until U = ∅;
20 τ ← argmin

τk

g(τ k);

/* Improve the tour */
21 foreach sub-tour τ s in τ do
22 τ ∗ ← ∅;
23 τ ∗s ← IMPROVETOUR(τ s,os, v0, {ci}, {Bi});
24 τ ∗ ← {τ ∗, τ s};
25 J∗ ← g(τ ∗);
26 return τ ∗, J∗

A. Tour Initialization

The tour initialization phase aims to achieve three goals: 1)
determine the minimum number of sub-tours m; 2) determine
the regions to be covered in each sub-tour; and 3) find a
feasible tour efficiently.

To achieve the first two goals, we adopt the rules of
stepwise selection [22] and nearest neighbor [23] techniques.
The key idea is to maximize the number of regions covered
by each sub-tour and minimize the cost of each sub-tour
by grouping regions that are closely located. To realize this
idea, we perform a greedy search to find the sub-tours one by
one, and apply the stepwise selection rule to determine the
maximum number of regions that can be covered in each sub-
tour. In particular, starting from a randomly selected region
p, we first find the top K ∈ [N] regions (including region p)
that are closest to region p, denoted as set C (Line 8). We

then generate a feasible sub-tour to cover the K regions in
set C, with depot as both the start and end location (Line 9-
10). If the cost of the sub-tour exceeds the energy capacity of
the robot, we exclude regions in set C that are farthest from
region p one by one, until the energy constraint is satisfied
(Line 12-13). Otherwise, we add regions in set U \ C that
are closest to region p into set C one by one, if the inclusion
does not violate the energy constraint of the robot, where U
is the set of regions that haven’t been assigned to any sub-
tours (Line 15). The resulting set C then includes all regions
to be covered in the first sub-tour. Repeating all above steps,
we can then find the other sub-tours. As different starting
points (value of p) may lead to different region assignments,
we vary the starting points (Line 4) and search for the best
region assignment (Line 22).

To measure the closeness between two regions, i and
j, we adopt the cosine similarity: cos(θ), where θ =
(ci−v0)·(cj−v0)
‖ci−v0‖‖cj−v0‖ is the angle between vector ci−v0 and vector
cj − v0, and ci is the centroid of region i. ‖v‖ measures the
Euclidean norm of vector v and · is the dot product. This
metric is chosen because that, with each sub-tour starting and
ending at the depot, assigning regions of similar orientations
with respect to the depot into the same sub-tour is expected to
result in shorter tours. We will demonstrate the effectiveness
of this metric in the simulation study.

To approximate the cost for covering a set of regions and
achieve the third goal, we apply the NN-based algorithm, the
one used in the first phase of the Fast NN-2Opt algorithm
(Line 4-5 in Algorithm 1).

B. Tour Improvement

Although the NN-based algorithm used in the tour initial-
ization phase is efficient, it ignores the correlation between
region visiting order and intra-regional paths and hence
may generate low-quality tours. The tour improvement phase
further improves the tour by applying the IMPROVETOUR()
function (Algorithm 3), which is also used in the second
phase of the Fast NN-2Opt algorithm.

V. SIMULATION STUDIES

In this section, we conduct a series of simulation studies
to evaluate the performance of the proposed algorithm from
various aspects.

A. Experiment Settings

As the problem considered in this paper hasn’t been
studied in the literature, there are no existing approaches we
can directly use as benchmarks. To evaluate the performance
of the proposed algorithm, we implement the following
three methods alternative to the proposed algorithm as the
benchmarks.
• Benchmark Method 1: This method uses the Euclidean

distance, instead of cosine similarity metric, to measure
the closeness between two regions.

• Benchmark Method 2: This method adopts the pro-
cedure of forward selection to determine the sub-tours,

1381

0 10 20 30 40 50

K

0

5

10

15

20

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

D = 500

D = 1000

D = 1500

Fig. 1: The mean execution time of the proposed algorithm
at different values of K in the three scenarios.

which is a special case of the proposed algorithm with
K = 1.

• Benchmark Method 3: This method directly applies
the Fast NN-2Opt algorithm (Algorithm 1), instead of
the NN-based algorithm, to generate sub-tours during
the search. As tour improvement is performed at each
iteration, the tour improvement phase in the proposed
algorithm is not implemented in this method.

In all experiments, we consider N = 50 randomly generated
convex polygonal regions spatially distributed around the
depot. The sensing range of the robot is set to 1.5 × 3. To
better understand the performance of above methods, we vary
the energy capacity of the robot and consider three scenarios:
D = 500, D = 1000, and D = 1500. To reduce experimental
uncertainties, we repeat each experiment for 10 times, and
measure the mean execution time of each method and the
mean cost of the derived tour.

B. Parameter Impact Analysis

In the proposed algorithm, there is a parameter K ∈ [N]
that needs to be configured. To understand the impact of
this parameter, we vary its value from 1 to N = 50. As
K mainly impacts the efficiency, we show in Figure 1 the
mean execution time of the proposed algorithm at different
values of K. Note that the optimal K that leads to the
highest efficiency appears at a larger value when the energy
capacity of the robot increases. This is because K directly
determines the number of iterations required to find the
maximum number of regions that can be covered in a sub-
tour, and no iterations will be executed when K equals to the
number of regions allowed in a sub-tour. As larger energy
capacity permits the robot to cover more regions in a sub-
tour, the optimal value of K increases correspondingly. This
analysis provides us with guidelines for selecting a proper
value of K. In the following experiments, we set K to 8, 16
and 24 in the three scenarios, respectively.

C. Optimality Study

Figure 2 shows the mean cost of the tour generated by each
method in different scenarios. We also selectively visualize
the tour generated by each method when D = 500 in Figure
3. All methods find the same number of sub-tours in the

three scenarios, in particular m = 7, m = 3 and m = 2,
respectively. One exception is that the Benchmark Method
3 only finds m = 6 sub-tours when D = 500, as shown in
Figure 3.

Comparing the four methods, we can see that the Bench-
mark Method 3 achieves the best performance in terms
of optimality, as it generates shorter sub-tours during the
search and better estimates the minimum cost required to
cover a particular set of regions. However, it quickly loses
its advantage as the robot’s energy capacity increases, and
the performance of the proposed algorithm is comparable
to it for large D. Additionally, Benchmark Method 1 has
the worst performance, evidencing the effectiveness of the
cosine similarity metric. Benchmark Method 2 achieves a
similar performance as the proposed algorithm, as they only
differ in the value of K, which mainly impacts the efficiency.

D. Efficiency Study

In this study, we demonstrate the efficiency of the pro-
posed algorithm. As shown in Figure 4, the proposed algo-
rithm achieves the highest efficiency. Benchmark Method 3
is the most time-consuming method, though it can generate
shorter tours. Moreover, its execution time rises quickly
as D increases. This is because higher energy capacity
allows more regions to be covered in each sub-tour, and the
efficiency of the Fast NN-2Opt degrades more quickly than
the NN-based algorithm as the number of regions increases.

Benchmark Method 2 is also less efficient than the pro-
posed algorithm, as it requires more iterations to find the
maximum number of regions allowed in a sub-tour. Its
performance degrades with the increase of the value D, as
higher energy capacity allows more regions to be covered in
each sub-tour. The efficiency of the Benchmark Method 1 is
similar as the proposed algorithm, as they only differ in the
similarity metric used.

VI. CONCLUSION

This paper addresses a new path planning problem
that seeks the optimal tour to fully cover multiple non-
overlapping convex polygonal regions, while satisfying the
energy constraint of the robot. This problem arises in many
robotic, especially UAV-based, applications and has received

500 1000 1500

D

2000

2200

2400

2600

2800

3000

C
o
s
t

Proposed Algorithm

Benchmark Method 1

Benchmark Method 2

Benchmark Method 3

Fig. 2: The mean costs of the tours generated by different
methods at different values of D.

1382

0 50 100 150

X

0

50

100

150
Y

(a)

0 50 100 150

X

0

50

100

150

Y

(b)

0 50 100 150

X

0

50

100

150

Y

(c)

Fig. 3: Tour generated by the a) proposal algorithm and Benchmark Method 2, b) Benchmark Method 1, c) Benchmark
Method 3. The grey polygons and the red triangle represent regions and depot, respectively. Sub-tours are differentiated by
different colors.

500 1000 1500

D

0

2

4

6

8

10

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Proposed Algorithm

Benchmark Method 1

Benchmark Method 2

Benchmark Method 3

Fig. 4: The mean execution times of different methods at
different values of D.

increasing attentions from the researchers. To address this
problem, a mathematical formulation was first provided. A
stepwise selection based heuristic algorithm was then devel-
oped, which achieves a good trade off between optimality
and efficiency. Comprehensive simulation studies demon-
strated the good performance of the proposed algorithm.
In the future, we will extend this study to consider more
complicated scenarios, such as the existence of more than
one depots.

REFERENCES

[1] Z. L. Cao, Y. Huang, and E. L. Hall, “Region filling operations with
random obstacle avoidance for mobile robots,” Journal of Robotic
systems, vol. 5, no. 2, pp. 87–102, 1988.

[2] F. Yasutomi, M. Yamada, and K. Tsukamoto, “Cleaning robot control,”
in Proc. of IEEE International Conference on Robotics and Automa-
tion. IEEE, 1988, pp. 1839–1841.

[3] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar,
“Uavs for smart cities: Opportunities and challenges,” in Proc. of
International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2014, pp. 267–273.

[4] E. Galceran and M. Carreras, “A survey on coverage path planning
for robotics,” Robotics and Autonomous systems, vol. 61, no. 12, pp.
1258–1276, 2013.

[5] L. Chen, W.-C. Chiang, R. Russell, J. Chen, and D. Sun, “The
probabilistic vehicle routing problem with service guarantees,” Trans-
portation Research Part E: Logistics and Transportation Review, vol.
111, pp. 149–164, 2018.

[6] G. Laporte, “The traveling salesman problem: An overview of exact
and approximate algorithms,” European Journal of Operational Re-
search, vol. 59, no. 2, pp. 231–247, 1992.

[7] M. Padberg and G. Rinaldi, “A branch-and-cut algorithm for the
resolution of large-scale symmetric traveling salesman problems,”
SIAM Review, vol. 33, no. 1, pp. 60–100, 1991.

[8] C. Chauhan, R. Gupta, and K. Pathak, “Survey of methods of solv-
ing tsp along with its implementation using dynamic programming
approach,” International Journal of Computer Applications, vol. 52,
no. 4, 2012.

[9] D. S. Johnson and L. A. McGeoch, “The traveling salesman problem:
A case study in local optimization,” Local Search in Combinatorial
Optimization, vol. 1, no. 1, pp. 215–310, 1997.

[10] M. Dror, A. Efrat, A. Lubiw, and J. S. Mitchell, “Touring a sequence
of polygons,” in Proc. of the thirty-fifth annual ACM symposium on
Theory of computing, 2003, pp. 473–482.

[11] C. Wei-Pang and S. Ntafos, “The zookeeper route problem,” Informa-
tion Sciences, vol. 63, no. 3, pp. 245–259, 1992.

[12] X. Tan and T. Hirata, “Finding shortest safari routes in simple
polygons,” Information processing letters, vol. 87, no. 4, pp. 179–186,
2003.

[13] J. Xie, L. R. G. Carrillo, and L. Jin, “An integrated traveling salesman
and coverage path planning problem for unmanned aircraft systems,”
IEEE control systems letters, vol. 3, no. 1, pp. 67–72, 2018.

[14] J. Xie, L. Jin, and L. R. Garcia Carrillo, “Optimal path planning for
unmanned aerial systems to cover multiple regions,” in Proc. of AIAA
Scitech 2019 Forum, 2019, p. 1794.

[15] J. Xie, L. R. G. Carrillo, and L. Jin, “Path planning for uav to
cover multiple separated convex polygonal regions,” submitted to IEEE
Access, 2020.

[16] J. I. Vasquez-Gomez, J.-C. Herrera-Lozada, and M. Olguin-Carbajal,
“Coverage path planning for surveying disjoint areas,” in Proc. of
International Conference on Unmanned Aircraft Systems. IEEE, 2018,
pp. 899–904.

[17] J. Chen, C. Du, X. Lu, and K. Chen, “Multi-region coverage path
planning for heterogeneous unmanned aerial vehicles systems,” in
Proc. of IEEE International Conference on Service-Oriented System
Engineering (SOSE). IEEE, 2019, pp. 356–3565.

[18] L. Ma, L. Cheng, W. Han, L. Zhong, and M. Li, “Cultivated land
information extraction from high-resolution unmanned aerial vehicle
imagery data,” Journal of Applied Remote Sensing, vol. 8, no. 1, p.
083673, 2014.

[19] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, “Sensor planning
for a symbiotic uav and ugv system for precision agriculture,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1498–1511, 2016.

[20] B. Xin, G.-Q. Gao, Y.-L. Ding, Y.-G. Zhu, and H. Fang, “Distributed
multi-robot motion planning for cooperative multi-area coverage,” in
2017 13th IEEE International Conference on Control & Automation
(ICCA). IEEE, 2017, pp. 361–366.

[21] J. Xie, W. Zhang, and J. Chen, “Path planning for multiple energy
constrained unmanned aerial vehicles to cover multiple regions,” in
AIAA AVIATION 2020 FORUM, 2020, p. 2887.

[22] B. Ratner, “Variable selection methods in regression: Ignorable prob-
lem, outing notable solution,” Journal of Targeting, Measurement and
Analysis for Marketing, vol. 18, no. 1, pp. 65–75, 2010.

[23] N. Bhatia et al., “Survey of nearest neighbor techniques,” arXiv
preprint arXiv:1007.0085, 2010.

1383

