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To enable urban air mobility (UAM), an efficient shortest path planning algorithm is
required to ensure safe UAV navigation in large-scale urban environments. Existing opti-
mal shortest path planning algorithms, e.g., the Dijkstra’s algorithm, are computationally
infeasible for complicated scenarios and large-scale problems. This paper aims to conquer
this challenge by exploring a novel distributed implementation of the classical centralized
Dijkstra’s algorithm. The proposed algorithm explores the coding theory and the idea of
load balancing to address the practical issues prominent in UAV-based distributed com-
puting systems, including uncertain disturbances and node heterogeneity. Comprehensive
experimental studies on Amazon EC2 demonstrate the high resiliency of the proposed al-
gorithm to uncertain disturbances and its high efficiency compared with existing solutions.

I. Introduction

Advances in aviation technologies enable a variety of unmanned aerial vehicle (UAV) based applications,
such as package delivery, search and rescue, surveillance and reconnaissance,1–3 etc. Recently, urban air
mobility (UAM)4,5 was proposed to utilize UAVs to transport passengers or cargo within urban and suburban
areas, which is envisioned to significantly reduce traffic congestion at the ground and offer people much more
affordable, fast, and accessible air transit services. To realize UAM, efficient path planning algorithms that
allow UAVs to safely navigate in a large-scale urban environment with many obstacles and to quickly reach
the destination are critical.

Path planning has been extensively studied in the literature. Depending on the application needs, path
planning problems can be classified into three categories: the shortest path planning problem,6 coverage
path planning problem,7,8 and travelling salesman problem/vehicle routing problem.9 Among them, the
shortest path planning problem is the most prominent one, which involves finding the optimal path (in
term of e.g., travel distance or travel time) from a starting position to the target position while satisfying
a set of constraints (e.g., collision avoidance). Classical approaches that guarantee optimal solutions to this
problem include the Dijkstra’s algorithm,10 dynamic programming,11 and Floyd-Warshall algorithm,12 etc.
However, these approaches suffer from the scalability issue and are computationally infeasible for complicated
scenarios and large-scale problems. To improve efficiency, many heuristic approaches have been proposed,
such as A*,13 D*,14 probabilistic roadmap,15 RRT,16 RRT*.17 However, these approaches generate sub-
optimal paths which can be unsatisfactory.

To enhance the efficiency of optimal shortest path planning algorithms while not sacrificing their accuracy,
distributed/parallel computing is a promising solution,18 which partitions the computation load into several
parts and leverages extra computing devices/processors to execute the parts simultaneously. Although there
have been a few studies that investigate the distributed/parallel implementation of the graph-based path
planning algorithms including the Dijkstra’s algorithm and Floyd-Warshall algorithm,18 distributed/parallel
path planning in the context of UAVs or other unmanned vehicles has not been well studied. One reason for
the lack of study is that previous designs of UAVs have mainly focused on the control, communication and
networking aspects, with the computing aspect being largely ignored.19 Therefore, existing studies on path
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planning for UAVs have been focused on centralized off-line algorithms20 or simple but less-accurate on-line
algorithms.20

In recent years, the advance of embedded systems and the emergence of networked airborne comput-
ing,19,21 mobile edge computing (MEC),22 and Internet of Things (IoT)23 make it feasible to execute
computation-intensive tasks directly onboard of UAVs. By offloading tasks to nearby servers, UAVs, mobile
devices or remote clouds, the computing performance can be further enhanced. Relying on these techniques,
it is thus possible to design more effective and efficient shortest path planning algorithms for UAVs to navi-
gate in a large-scale and complicated urban environment. In this paper, we aim to design such an algorithm
by exploring distributed computing techniques, where the UAV is assumed to be able to leverage the com-
puting resources from other nodes (e.g., neighboring UAVs, ground servers, nearby mobile devices or remote
clouds) to plan its path.

Existing distributed path planning algorithms assume perfect communication and computing systems,
with each computing node having the same computing power.18 Nevertheless, this is not true in a UAV-based
distributed computing system, where the communication between computing nodes is subject to uncertain
disturbances due to UAV mobility, line-of-sight effect, and wireless interference. Furthermore, computing
nodes, which can be neighboring UAVs, ground servers, mobile devices or remote clouds, may have different
computing powers. New algorithms that address these practical issues are thus needed.

In this preliminary study, we investigate the classical Dijkstra’s algorithm and propose a Load-Balanced
Coded (LBC) load allocation scheme to enhance system resilience to uncertain disturbances and address
node heterogeneity. This innovative load allocation scheme explores the coding theory and the idea of load
balancing to smartly partition and assign computation loads with redundancy to the computing nodes. To
further speed up computation, we also develop a dynamic batch processing scheme, which allows partial
results to be returned early and dynamically adjusts the frequency of data return to achieve the optimal
performance. The resulting distributed Dijkstra’s algorithm that integrates the LBC and dynamic batch
processing schemes achieves higher efficiency than existing solutions at the presence of stragglers, as demon-
strated by the experimental results generated using Amazon EC2 computing clusters.

In the rest of the paper, we first briefly review the Dijkstra’s algorithm and its distributed implementation
by traditional approaches in Section II. Section III describes the proposed coded distributed path planning
algorithm. Our experimental results are then presented in Section IV. Finally, we summarize our paper in
Section V.

II. Preliminaries

In this section, we first describe the problem to be solved. We then briefly review the Dijkstra’s algorithm
and a traditional distributed implementation of this algorithm.

II.A. Problem Description

Consider the scenario where a UAV navigates in a large-scale urban environment with the presence of various
obstacles such as trees and buildings. It aims to reach a target position sg, starting from an initial position
sl. Suppose the UAV flies at the same altitude, so that its movement can be described in a 2-dimensional
(2-D) space. The shortest path planning problem aims to find a sequence of waypoints S = {si}i∈[n] to the
target position, such that the total travel cost J is minimized and there is no collision with the obstacles.
Here si is the i-th waypoint, n is the total number of waypoints, and [n] := {1, 2, . . . , n}. Mathematically,
the problem can be formulated as follows:

minimize
S={si}i∈[n]

J =
n−1∑
i=1

d(si, si+1)

subjectto si ∈ Cfree, ∀i ∈ [n]

s1 = sl

sn = sg

(1)

where d(si, si+1) measures the cost to travel from si to si+1. Cfree denotes the free space that the UAV can
safely fly, which can be derived by Cfree = {s | ‖s − o‖2 ≤ ε, ∀o ∈ Cobs}, where Cobs is the obstacle space
and ε > 0 is the minimum distance the UAV should maintain with any obstacle to avoid collision.
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The above optimization problem can be solved by discretizing the map and applying the classical Dijk-
stra’s algorithm. However, the computation cost grows exponentially when the size of the map increases.
In this study, we explore distributed computing techniques to reduce the running time of the Dijkstra’s
algorithm, by assuming that the UAV can offload its computation task to nearby UAVs, servers, mobile
computing devices, or remote clouds. Nevertheless, due to node mobility and the harsh communication
environment in the aerial layer, task offloading is subject to significant uncertain disturbances, causing slow-
downs in computation. Moreover, the offloadees often have different computing capabilities, which have been
overlooked in existing solutions. These practical issues will be addressed in the next Section.

II.B. Dijkstra’s Algorithm

In this subsection, we briefly describe how to use the Dijkstra’s algorithm to solve the shortest path planning
problem in (1). The Dijkstra’s algorithm24 is a graph-based greedy algorithm that finds the shortest path
between two vertices in a graph, by making locally optimal choices. To construct the graph G(V,E), we first
decompose the free space Cfree into grids with the size of each grid to be β × β, β > 0. Then the centroids
of the grids become vertices V in the graph, and adjacent grids are connected to form edges E. Let si ∈ V
be a vertex and A be a distance matrix that captures the relationship among the vertices and its (i, j)-th
entry is defined as follows

aij =


d(si, sj), Ifvertices si and sj formanedge

0, If i = j

∞, Otherwise

(2)

Given a start position sl ∈ V and target position sg ∈ V , the procedures to find the shortest path from
sl to sg using the Dijkstra’s algorithm are summarized in Algorithm 1. In particular, Line 1 introduces a
set V isited to maintain the list of vertices that have been visited, and set Unvisited to maintain the list
of vertices that have not been visited. Line 2 introduces a vector D = {D(si)} to store the estimate of the
shortest distance from the start position sl to each vertex si ∈ V , and Line 3 introduces a vector P = {P (si)}
to store the last vertex (before si) in the estimated shortest path from sl to si. Lines 4-12 then iteratively
search for the shortest path from sl to sg by visiting each vertex si ∈ V and improving the estimate of the
shortest distance from sl to each vertex si. With optimized D and P , Lines 13-15 finally constructs the
shortest path S from sl and sg.

II.C. Traditional Distributed Dijkstra’s Algorithm

A traditional distributed implementation of the Dijkstra’s algorithm18 is to partition and distribute the load
for computing the vectors D and P , by dividing the set of vertices V into N equally-sized non-overlapping
groups, denoted Li ⊆ V , i ∈ [N ], such that each worker node i ∈ [N ] computes Di = {D(sj)}sj∈Li

and
Pi = {P (sj)}sj∈Li

, where N is the total number of worker nodes. Let K = |V | be the total number of

vertices. Then |Li| = bKN c, ∀i ∈ [N − 1] and |LN | = K − (N − 1)bKN c. Algorithm 2 summarizes the
procedures followed by the master node (UAV) (Lines 1-21) and the worker nodes (Lines 22-34).

III. Coded Distributed Path Planning

In this section, we introduce a novel coded distributed Dijkstra’s algorithm that addresses the limitations
of the traditional distributed Dijkstra’s algorithm and enhances its efficiency under uncertain disturbances.
Before we describe the proposed algorithm, let’s first discuss the limitations of the traditional distributed
Dijkstra’s algorithm so as to motivate our approach.

III.A. Limitations of the Traditional Distributed Dijkstra’s Algorithm

Uncertain disturbances (e.g., node/link failures, communication bottlenecks and data losses) are prominent
in a UAV-based distributed computing system, which will significantly delay or even fail the transmission
of data between two nodes. The traditional distributed Dijkstra’s algorithm, unfortunately, is vulnerable to
such uncertain disturbances. In particular, as shown in Algorithm 2, in the traditional distributed Dijkstra’s
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Algorithm 1: Centralized Dijkstra’s algorithm

Input: sl, sg, G(V,E)
Output: shortest path S
// Step 1: Initialization

1 V isited← ∅; Unvisited← V
2 D(sl)← 0; D(si)←∞, ∀si ∈ V \ {sl}
3 P (si)← ∅, ∀si ∈ V
// Step 2: Search the environment

4 sc ← sl
5 while sg 6∈ Visited do
6 foreach sj ∈ Unvisited, sj /∈ V isited do
7 if D(sj) > D(sc) + acj then
8 D(sj)← D(sc) + acj
9 P (sj)← sc

10 V isited← V isited ∪ {sc}
11 Unvisited← Unvisited \ {sc}
12 sc ← argminsi∈UnvisitedD(si)

// Step 3: Construct the shortest path

13 s← sg; S ← s
14 while sl /∈ S do
15 S ← P (s) ∪ S
16 s← P (s)

17 Return S

algorithm, the master node cannot update the intermediate variable sc in Line 12 until it has received all
results from the worker nodes in each iteration. Therefore, any delay of results will increase the running
time of this algorithm.

Furthermore, the traditional distributed Dijkstra’s algorithm assumes that all computing nodes are ho-
mogeneous with the same computing capability and thus it assigns each node with a same load. However,
real distributed computing systems can often be heterogeneous with nodes of differing computing capabil-
ities. This will result in some worker nodes completing their tasks sooner than others. Nodes that finish
early have to idly wait for others to finish, which can create long delays.

III.B. Coded Distributed Dijkstra’s Algorithm

In order to address the limitations of the traditional distributed Dijkstra’s algorithm, we develop a novel
load allocation scheme to smartly partition and assign the loads to the worker nodes. To further speed up
the computation, we develop a dynamic batch processing scheme that allows worker nodes to return partial
results early. In the following subsections, we first introduce the load allocation scheme and then describe
the dynamic batch processing scheme. The complete algorithm is provided at the end.

III.B.1. Load-Balanced Coded Load Allocation Scheme

Our load allocation scheme employs the repetition codes to enhance the resilience of the distributed comput-
ing system to uncertain disturbances. Particularly, denote γ as the number of stragglers (worker nodes that
suffer from uncertain disturbances) we seek tolerance to. With repetition codes, redundancies are introduced
into the computation by assigning each vertex to (γ + 1) worker nodes,25 meaning that each vertex will be
processed for γ redundant times. γ thus reflects the level of repetition or redundancy. To partition the load,
we first divide the N worker nodes into (γ+ 1) groups, with each group consisting of M = N

γ+1 nodes, where
N is assumed to be a multiple of γ + 1. Then, by assigning the whole set of K vertices to each group, each
vertex will be processed by (γ + 1) worker nodes.

To determine the set of vertices assigned to each worker node within each group, we employ the idea of
load balancing25 to partition the load proportionally according to the nodes’ computing capabilities, such
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Algorithm 2: Traditional Distributed Dijkstra’s algorithm

Input: sl, sg, G(V,E)
Output: shortest path S
// Master node (UAV):

1 V isited← ∅; Unvisited← V ; Received← ∅; D ← ∅; P ← ∅; sc ← sl
2 while sg 6∈ Visited do
3 V isited← V isited ∪ {sc}
4 Unvisited← Unvisited \ {sc}
5 Send V isited, Unvisited, sc to all worker nodes, and then listen to the channel
6 while |Received| 6= N do
7 if Receiving ŝ and D(ŝ) from worker node i then
8 Received← Received ∪ ŝ
9 D ← D ∪Di(ŝ)

10 sc ← argmins∈ReceivedD(s)
11 Received ← ∅
12 for i = 1 : N do
13 Receive Pi from worker node i.
14 P = P ∪ Pi
15 s← sg; S ← s
16 while sl /∈ S do
17 S ← P (s) ∪ S
18 s← P (s)

19 Return S
// Worker node i:

20 Pi(s)← ∅, V isited← ∅, ∀s ∈ Li; Di(s)←∞, ∀s ∈ Li
21 if sl ∈ Li then
22 Di(sl)← 0

23 while sg 6∈ Visited do
24 Upon receiving V isited, Unvisited, sc from the master node:
25 foreach sj ∈ Unvisited ∩ Li, sj /∈ V isited do
26 if Di(sj) > Di(sc) + acj then
27 Di(sj)← Di(sc) + acj
28 Pi(sj)← sc

29 ŝ← argmins∈Unvisited∩Li,s/∈V isitedDi(s)

30 Send ŝ and Di(ŝ) to master.

31 Send Pi to the master node

that more powerful nodes are assigned more vertices than slower nodes. In particular, suppose the CPU
frequency of worker node i ∈ Gp is Ci > 0, where Gp is the set of vertices that belong to group p ∈ [γ + 1]
and |Gp| = M . The number of vertices assigned to worker node i is then given by

|Li| =
⌊
K

Ci∑
i∈Gp

Ci

⌉
(3)

where be rounds the included value to its nearest integer. To ensure the total number of vertices assigned to
the group is K, we determine Li one by one using (3) and make the number of vertices assigned to the last
node be K subtracting the total number of vertices assigned to the previous M − 1 nodes. Note that it does
not matter which vertices should be assigned to a worker node.

Figure 1 shows an example of load allocation for N = 4, γ = 1, K = 4000, C1 = C3 = 2.3 GHz and
C2 = C4 = 3.4 GHz. In this example, the four worker nodes are divided into γ + 1 = 2 groups, where the
first group consists of the first two nodes and the second group consists of the other two nodes. Using (3),
we can obtain the number of vertices assigned to each worker node. Particularly, |L1| = |L3| = 1, 614 and
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|L2| = |L4| = 2, 386. The full set of vertices assigned to each group has a size of K = 4, 000 and make up
the complete map to be processed.

Figure 1: Load-Balanced Coded Scheme for load allocation with N = 4, γ = 2 and K = 4, 000.

III.B.2. Dynamic Batch Processing

To further speed up the computation, we extend the batch processing procedure proposed in our previous
studies.26–28 The key idea is to partition the set of vertices to be processed by each worker node i at each
iteration, i.e., Unvisited ∩ Li in Line 28 of Algorithm 2, into subgroups, called batches. In the following
sections, we let Ui[k] represent the list of vertices to be processed by worker node i at the k-th iteration.
Each worker node i will process these vertices batch by batch and return results to the master node whenever
a batch has been processed. As worker nodes do not need to wait to return results until all assigned vertices
have been processed, the master node is expected to get the desired amount of results earlier. Decomposing
the set of vertices into small batches is also expected to greatly enhance the system resilience to uncertain
stragglers, as loss/delay of small amount of results has a small impact on the whole task.

To determine the number of batches for each worker node i, denoted as bi, the original batch processing
procedure26–28 sets it as a constant that stays unchanged throughout the entire program. The value of bi
can be determined by minimizing the overall task completion time. It was observed27 that more batches of
smaller size improves system efficiency to some extent but the creation and transmission of batches introduce
overhead.

Setting the number of batches as constants works well for matrix multiplication problems considered in our
previous studies where each sub-matrix is processed by a worker node only once. However, in the distributed
Dijkstra’s algorithm, the list of vertices being processed by each worker node i, i.e., Ui[k], decreases one by
one after each iteration until there are no more nodes left to visit. As the load changes over time, using
the same batch number at all iterations may not lead to the best performance, considering the overhead
introduced by batches. Through experiments, we observed that the optimal number of batches generally
decreases as the list Ui[k] becomes smaller, and equals 1 when the time required for processing Ui[k] is
roughly equal to or smaller than the time required for transmitting the result back to the master node.

To account for this observation, we develop a heuristic algorithm to dynamically adjust the number of
batches for each worker node as its load changes over time. In particular, denote bi[k] as the number of

batches for worker node i at the k-th iteration. The number of vertices in each batch is then |Ui[k]|
bi[k]

. Let tm,i
be the transmission time of the result returned by worker node i to the master node at each iteration. As
two values, ŝ and Di(ŝ) (see Line 32 of Algorithm 2), are transmitted at each iteration, k is removed from
the notation. Based on the hypothesis that the optimal number of batches equals 1 when the processing
time of the list of vertices is equal to or smaller than the transmission time of the results, the optimal batch
size can be approximated by

tm,iCi

α , where α is the average number of CPU cycles required for processing a
vertex. We then approximate bi[k] by

bi[k] = max

{⌊ |Ui[k]|α
tm,iCi

⌋
, 1

}
(4)

where bc is the floor function. To estimate the value of tm,i, we record the transmission time at each iteration
and apply the exponentially weighted moving average29 to get an average value. Furthermore, as |Ui[k]| only
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Algorithm 3: Coded Distributed Dijkstra’s algorithm

Input: sl, sg, G(V,E), f , α, {C1, C2, . . . , CN}, {b1, b2, . . . , bN}
Output: shortest path S
// Master node (UAV):

1 V isited← ∅; Unvisited← V ; Received← ∅; D ← ∅; P ← ∅; sc ← sl
2 while sg 6∈ Visited do
3 V isited← V isited ∪ {sc}
4 Unvisited← Unvisited \ {sc}
5 Send V isited, Unvisited, sc to all worker nodes, and then listen to the channel
6 while |Received| 6= N do
7 if Receiving ŝ and D(ŝ) from worker node i then
8 if ŝ /∈ Received then
9 Received← Received ∪ ŝ

10 D ← D ∪Di(ŝ)

11 Send acknowledgements to all worker nodes.
12 sc ← argmins∈ReceivedD(s)
13 Received ← ∅
14 for i = 1 : N do
15 Receive Pi from any worker node i.
16 P = P ∪ Pi
17 s← sg; S ← s
18 while sl /∈ S do
19 S ← P (s) ∪ S
20 s← P (s)

21 Return S
// Worker node i:

22 Pi(s)← ∅, V isited← ∅, ∀s ∈ Li; Di(s)←∞, ∀s ∈ Li
23 k ← 1
24 if sl ∈ Li then
25 Di(sl)← 0

26 while sg /∈ V isited do
27 Upon receiving V isited, Unvisited, sc from the master node:
28 if (k mod f) = 0 then

29 bi ← max
{⌊
|Unvisited∩Li|α

tm,iCi

⌋
, 1
}

30 Divide set Unvisited ∩ Li into bi subsets of equal size, denoted as {Ui,1, . . . , Ui,bi}
31 foreach h ∈ [bi] do
32 foreach sj ∈ Ui,h, sj /∈ V isited do
33 if Di(sj) > Di(sc) + acj then
34 Di(sj)← Di(sc) + acj
35 Pi(sj)← sc

36 if Acknowledgement Received then
37 k ← k + 1
38 break

39 ŝ← argmins∈Ui,h,s/∈V isitedDi(s)

40 Send ŝ and Di(ŝ) to master.
41 Record the transmission time and update tm,i using the exponentially weighted moving

average.

42 Send Pi to the master node
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reduces by one after each iteration, we introduce a variable f to control how often the number of batches is
updated using (4).

With the batch processing procedure, unlike the traditional distributed Dijkstra’s algorithm, the worker
nodes do not need to process all vertices assigned to it. As soon as the master node receives sufficient results
required for updating the intermediate variable sc (see Line 12 in Algorithm 2), it will notify all worker
nodes, who will then skip from the current iteration and directly move to the next iteration.

In particular, let I be the set of worker nodes, whose results have been received by the master node by
a certain time. The master node is able to update sc when {sj |sj ∈ Li, i ∈ I} = M .

Algorithm 3 summarizes the procedures followed by the master node (Lines 1-21) and the worker nodes
(Lines 22-42). The initial batch numbers are calculated using the historical data.

IV. Experimental Studies

In this section, we conduct experiments to evaluate the performance of the proposed coded distributed
Dijkstra’s algorithm.

IV.A. Experiment Settings

To evaluate the performance of the proposed coded distributed Dijkstra’s algorithm, we consider three
different scenarios, each containing a i3.large instance type master node and a different combination of
worker nodes.

• Scenario 1 consists of two worker nodes of instance type r4.xlarge and two worker nodes of instance
type m5zn.xlarge.

• Scenario 2 consists of two worker nodes of instance type r4.xlarge, two worker nodes of instance type

(a) (b)

(c)

Figure 2: Average execution time of different algorithms in a) Scenario 1, b) Scenario 2, and c) Scenario 3
when o = 0 stragglers exist.
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c5.lxlarge, and two worker nodes of instance type m5zn.xlarge.

• Scenario 3 consists of two worker nodes of instance type r4.xlarge and two worker nodes of instance
type c5.xlarge.

The CPU frequencies of the different instance types used in this study are 2.3 GHz for i3.large instance, 2.3
GHz for r4.xlarge instance, 3.4GHz for c5.xlarge instance, and 4.5 GHz for m5zn.xlarge instance.

IV.B. Comparison Results

To evaluate the efficiency of the proposed algorithm, we compare it with the following four benchmark
algorithms.

• Centralized: The centralized Dijkstra’s algorithm (Algorithm 1) is implemented on the master node
of instance type i3.large with no other worker nodes.

• Uniform Uncoded: This is the traditional distributed Dijkstra’s algorithm (Algorithm 2) that divides
the load among the worker nodes evenly without introducing any redundancy into the computation.

• Uniform Coded: This is an extension of the traditional distributed Dijkstra’s algorithm, which adds
redundant computations using the repetition codes described in Section III.B with γ = 1.

• Load-Balanced Coded (LBC): This algorithm extends the Uniform Coded algorithm to further
implement the load balancing idea described in Section III.B.

In the proposed algorithm, the parameters are set as γ = 1 and f = 50.
To evaluate the efficiency of the five different algorithms, we measure the execution time taken by each

algorithm to process a grid map of different sizes. Each experiment is repeated for 10 times and the average

(a) (b)

(c)

Figure 3: Average execution time of different algorithms in a) Scenario 1, b) Scenario 2, and c) Scenario 3
when o = 1 stragglers exist.
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execution time was recorded. To evaluate the resilience of these algorithms to uncertain stragglers, we
introduce unexpected stragglers that are randomly chosen. In particular, we randomly pick o worker nodes
as stragglers at each iteration and make each of these nodes delay for 0.01s before returning the results.
Figure 2 shows the mean execution time of different algorithms when the size of the grid map (K) increases
and when no stragglers are present. Figure 3 shows their performances when o = 1 straggler is present. Note
that distributing the load does not hurt the optimality of the generated paths, and all algorithms are able
to find the shortest paths.

From Figure 2 and Figure 3, we can observe that leveraging surrounding worker nodes to share the
computation load significantly reduces the time required for finding the optimal path. Comparing the four
distributed Dijkstra’s algorithm, we can observe that the Uniform Uncoded algorithm (i.e., the traditional
distributed Dijkstra’s algorithm) is more efficient than the three coded algorithms when no stragglers exist
(see Figure 2), as it does not involve any computation redundancy. However, when stragglers are present
(see Figure 3), the uncoded algorithm performs the worst, demonstrating its vulnerability to uncertain dis-
turbances. Comparing the Uniform Coded with the two Load-Balanced Coded algorithms, we can observe
that it always performs worse than the Load-Balanced Coded algorithms, as it ignores the node heterogene-
ity. Furthermore, from the two figures, we can see that our algorithm always outperforms the two coded
algorithms, and the centralized algorithm of course.

IV.C. Effectiveness of the Dynamic Batch Processing Scheme

In order to evaluate the effectiveness of the proposed dynamic batch processing scheme, we compare the
proposed algorithm with two benchmark algorithms:

• Load-Balanced Coded (LBC): This is the algorithm described in the previous section, which does
not introduce any batches or can be considered as a special case of our algorithm with bi[k] = 1,
∀i ∈ [N ].

(a) (b)

(c)

Figure 4: Average execution time of the distributed Dijkstra’s algorithm equipped with different batch
processing schemes in a) Scenario 1, b) Scenario 2, and c) Scenario 3 when o = 1 stragglers exist.
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• Load-Balanced Coded algorithm with Static Batches (LBC-SB): This is a variant of our
algorithm that has the number of batches for each worker node being unchanged over time. In this
study, we set the number of batches in this algorithm as 100 for each worker node, i.e., bi[k] = 100,
∀i ∈ [N ].

Figure 4 shows the performance of the different algorithms in different scenarios when o = 1 uncertain
straggler exists. Of interest, comparing LBC and LBC-SB, we can observe that the effect that the number
of batches has on an algorithm differs greatly based on each scenario and different map sizes. In general, the
addition of batches for a worker node improves the overall performance, but only when the load assigned to
it is large enough. This is why we can observe a spike in execution time in Figure 4(a) when K = 4, 000, in
Figure 4(b) when K = 4, 000 and K = 8, 000, and in Figure 4(c) when K = 4, 000. The proposed dynamic
batch processing scheme takes this into consideration and adjusts the number of batches dynamically, so
that a large batch number is used at the beginning when the worker node has a large load, and a gradually
decreasing value is used as the load reduces. This makes our algorithm outperform the benchmark algorithms
in all cases as shown in Figure 4.

IV.D. Impact of the Level of Redundancy

What is the proper amount of redundancy we should introduce into the computation? To answer this
question, we vary the value of the level of repetition γ and evaluate its impact on the performance of the
proposed algorithm.

Figure 5(a) and Figure 5(b) show the average execution time of our algorithm at different values of γ in
Scenario 1 when no straggler (o = 0) and one straggler (o = 1) is present, respectively. As expected, when
no stragglers exist, the performance of our algorithm keeps degrading with the increase of γ, due to the extra
time required for processing redundant load. When stragglers exist, the proposed algorithm performs the
best when γ = 1, suggesting that γ = 1 is the proper value to use.

(a) (b)

Figure 5: Average execution time of our algorithm with the increase of γ when there are a) o = 0 and b)
o = 1 stragglers.

V. Conclusion

This paper extends the traditional distributed Dijkstra’s algorithm to address the practical issues promi-
nent in UAV-based distributed computing systems including uncertain disturbances and node heterogeneity.
The proposed coded distributed Dijkstra’s algorithm is featured by 1) a Load-Balanced Coded (LBC) scheme
that smartly distributes loads among heterogeneous computing nodes under uncertain disturbances and 2)
a dynamic batch processing procedure that enables computing nodes to return results early for even higher
efficiency. To demonstrate the performance of the proposed algorithm, comprehensive experimental stud-
ies were conducted on Amazon EC2. The results show that distributing the load significantly reduces the
computation time, especially for large-scale problems. The proposed algorithm is more resilient to uncertain
stragglers than the traditional distributed Dijkstra’s algorithm. Moreover, the LBC and dynamic batch
processing schemes improve computation efficiency significantly. In the future, we will extend our study to
explore the distributed implementation of other path planning algorithms.
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