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Global change has resulted in chronic shifts in fire regimes, increasing fire frequency in 1 

some regions and decreasing it in others. Predicting the response of ecosystems to changing 2 

fire frequencies is challenging because of the multi-decadal timescales over which fire 3 

effects emerge and the variability in environmental conditions, fire types, and plant 4 

composition across biomes. Here, we address these challenges using surveys of tree 5 

communities across 29 sites that experienced multi-decadal alterations in fire frequencies 6 

spanning ecosystems and environmental conditions. Relative to unburned plots, more 7 

frequently burned plots had lower tree basal area and stem densities that compounded 8 

over multiple decades: average fire frequencies reduced basal area by only 4% after 16 9 

years but 57% after 64 years, relative to unburned plots. Fire frequency had the largest 10 

effects on basal area in savanna ecosystems and in sites with strong wet seasons. Analyses 11 

of tree functional-trait data across North American sites revealed that frequently burned 12 

plots had tree communities dominated by species with low biomass nitrogen and 13 

phosphorus content and with more efficient nitrogen acquisition through ectomycorrhizal 14 

symbioses (rising from 85% to nearly 100%). Our data elucidate the impact of long-term 15 

fire regimes on tree community structure and composition, with the magnitude of change 16 

depending on climate, vegetation type, and fire history. The effects of widespread changes 17 

in fire regimes underway today will manifest in decades to come and have long-term 18 

consequences for carbon storage and nutrient cycling. 19 

  20 

  21 
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Ecosystem resilience to changing fire regimes1–3 will be a key determinant of how terrestrial 22 

biomes respond to global change3–5. Fire is a pervasive disturbance, burning ~5% of global land 23 

area each year and releasing carbon stored in plant biomass equivalent to 20% of anthropogenic 24 

fossil fuel emissions6,7. Historically, much of this carbon is re-sequestered through time as plants 25 

recover and regrow, then lost again in the next fire. However, in many systems, changes in 26 

climate and land use have shifted fire frequencies, potentially changing the ability of plants to 27 

regrow between fires1,8–10.  28 

More frequent burning increases productivity, biodiversity, and plant biomass in some 29 

ecosystems, whereas in other ecosystems, little change or even the opposite occurs11–15. Our 30 

ability to determine why these different responses occur across ecosystems remains limited. At 31 

large biogeographic scales, many analyses rely on observational datasets comparing spatial 32 

patterns in fire frequency with tree cover and biomass16,17; although informative, this approach is 33 

limited by the collinearity between variables that both determine fire frequency and tree cover, 34 

such as rainfall. Furthermore, the effect of repeated burning on tree cover can take multiple 35 

decades to become significant12,15,18–20, emphasizing the need to account for the length of time 36 

fire frequencies have differed and consider multi-decadal alterations in fire frequencies.  37 

In addition to environmental factors and timescale, plant community composition and 38 

species’ functional traits may explain additional variability in responses to long-term changes in 39 

fire frequency21. For example, traits related to physiological protection from heating during fire 40 

and the capacity to colonize and regrow rapidly could help predict losses of trees due to frequent 41 

burning15,22–24. Additionally, nutrient acquisition and use traits can influence the future 42 

productivity of plants and their ability to regrow after fire25 and also have long-term implications 43 

for carbon and nutrient cycling in soils26. For example, plants that form symbioses with 44 

ectomycorrhizal fungi, arbuscular mycorrhizal fungi, or nitrogen-fixing bacteria may be better 45 

equipped to access limiting nutrients under frequent burning. The distinction between strategies 46 

is important, however, because ectomycorrhizal plants tend to slow nutrient cycling and 47 

productivity, while arbuscular and nitrogen-fixing species can accelerate cycling and increase 48 

productivity25–28.  49 

The existence of experimental manipulations of fire frequencies across sites that span 50 

large environmental and compositional gradients offers an opportunity to test how ecosystems 51 
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respond to altered fire frequencies29–32. However, the few studies comparing multi-decadal fire 52 

manipulations have typically been constrained to small groups of sites within single 53 

ecosystems31,33. Here, we quantified the effects of fire frequency on tree cover across broad 54 

biogeographic and climatic scales, incorporating additional factors that may explain variability in 55 

fire effects on tree communities. We analyzed data on tree populations from 29 sites and 374 56 

plots; at 27 of the sites (324 plots), surface fire frequency was experimentally manipulated for 57 

16-64 years (mean of 30 years), and at two sites (50 plots), natural variation in crown fire 58 

frequency presented a natural experiment. The sites cover North and South America, Africa, and 59 

Australia across major biomes that experience frequent burning (Figure S1, Table S1, 60 

Supplemental Information, SI). Each surface fire site contains replicate plots including an 61 

unburned treatment and different prescribed burning frequencies (Figure S2), where fire 62 

frequencies ranged from approximately one fire every decade to one fire every year (Table S1). 63 

To evaluate the effects of fire alone and in combination with environmental covariates while 64 

accounting for the high variability in overall tree basal area and stem density across sites, we 65 

used mixed-effects models with site as a random intercept as the main test in our analysis (SI). 66 

We focused on tree responses because trees are critical for long-term carbon storage and 67 

productivity34, define the ecosystem (e.g., whether a landscape is a forest or savanna)35, and 68 

influence several biogeochemical processes36.  69 

There was a clear overall effect of fire treatment on tree populations. Tree density (stems 70 

per-hectare) tended to be lower in frequently burned plots relative to infrequently or unburned 71 

plots (Figure 1a). A comparison between the most extreme fire frequency treatments using 72 

response ratios illustrated that densities were 44±25% lower in the most frequently burned plots 73 

compared with unburned plots, and that the differences between fire treatments were lower when 74 

the differences in fire frequencies were lower (Figure 1b, Table S2, error defining 95% 75 

confidence intervals). When fire frequency and duration of study were analyzed as continuous 76 

variables across all plots and sites using mixed-effects models, sites with longer durations of 77 

altered fire frequencies had larger differences between fire treatments (F1,282=47, p<0.001), with 78 

the slope between duration and stem density being more negative the more frequently plots were 79 

burned (F1,280=8.4, p=0.004, Figure 1c). For example, relative to unburned plots, stem density in 80 

plots with a three-year fire-return interval was 26% lower after 30 years and 48% lower after 50 81 

years (Figure 1c, Table S3). Fifty years of annual burning resulted in burned plots having 63% 82 
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lower stem density relative to unburned plots (Figure 1c, Table S3, see Figure S3 for non-83 

transformed results).  84 

Fire type was also important, with frequent crown fires affecting tree populations to a 85 

greater degree than frequent surface fires. Comparison of 50 plots in needleleaf forests that 86 

experienced natural variability in the frequency of stand-replacing crown fires (i.e., wildfires) 87 

illustrated that stands with shorter fire-return intervals had significantly lower tree densities, 88 

especially when plots with the shortest return intervals were considered (F1,26.5=5.2, p=0.03 and 89 

F1,21=10.3, p=0.004, Figure S4). Experimental manipulation of surface fire frequency (i.e., 90 

prescribed fires) in needleleaf forests in the USA showed that stem densities were lower in more 91 

frequently burned plots, but less so than differences caused by frequent crown fires (F1,47.1=17.2, 92 

p=0.001, Figure S4). The large effect of short-interval crown fires on tree communities, 93 

supported by studies from other regions37,38, highlights the importance of higher fire intensities 94 

having more severe effects. 95 

Fire had similar effects on tree basal area, which we analyze in detail, because basal area 96 

correlates with tree biomass, canopy cover, and tree carbon storage. Basal area was on average 97 

54±25% lower in the most frequently burned plots relative to the unburned plots (Figure 2a,b). 98 

When frequency and duration were considered in parallel across all sites, the lower basal area in 99 

frequently burned plots became more apparent with increasing experimental duration and 100 

frequency of burns (frequency-duration interaction, F1,289=23.3, p<0.001; Figures 2c, Table S3, 101 

mixed-effects models). For example, plots with 30 years of triennial burning had 27% less basal 102 

area relative to unburned plots, while those with 50 years had 53% less basal area. Divergence 103 

between fire treatments was even greater after 50 years of the most extreme frequencies of 104 

annual burning, where burned plots had 72% less basal area than unburned plots. Consequently, 105 

changing fire frequency and duration of exposure shifted tree basal area and stem abundance 106 

across sites. The manifestation of fire effects began to lessen as experiments had increasingly 107 

long durations, suggesting that effects will saturate as tree cover approaches a new equilibrium. 108 

The effects of changing fire frequencies also depended on the fire history of the site prior 109 

to the establishment of the experiment. In forest sites that burned regularly in the decades prior to 110 

the onset of the experiment, fire exclusion resulted in basal area being 50% (±17%) higher than 111 

treatments that maintained historical burning frequencies (p=0.002, Figure S5, Table S1 for site 112 
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fire histories). In contrast, the reintroduction of fire into forests that had not burned for several 113 

decades prior to the onset of the experiment had relatively minimal effects (p=0.13, Figure S5). 114 

These results differ from studies on wildfires which are known to have larger effects in forests 115 

that have a history of fire exclusion due to high fuel accumulation39,40, which is somewhat 116 

expected given the lower severity of prescribed surface fires. In savannas, where the fire 117 

experiments were all initiated in landscapes that burned regularly in the decades preceding the 118 

experiment, fire exclusion resulted in basal area increasing by 41% (±20%), but increasing fire 119 

frequency resulted in basal area declining by 48% (±16%), relative to an intermediate interval 120 

that maintained the pre-experiment frequency (statistics from log response ratios ±95% 121 

confidence intervals, p<0.001 for both, Figure S5, SI). Taken together, the largest effects of 122 

altered fire frequencies were due to fire exclusion in landscapes that had burned regularly for at 123 

least the past few decades.  124 

Climate played an important role in modifying the effect of fire frequency on trees. Fire 125 

effects were largest in areas that received more rainfall in the wet season, less rainfall in the dry 126 

season, and had lower mean annual temperatures (F1,292.2=55.2, p<0.001, F1,284.7=9.8, p=0.002, 127 

and F1,283.2=18.1, p<0.001, respectively) (Figure 3a-c, Table S4, see Table S5 for stem density). 128 

Sites with higher precipitation in the wet season experienced larger effects of burning. For 129 

example, plots that experienced more frequent burning (2 fires every 3 years, one standard 130 

deviation above mean frequency) had 67% lower tree basal area than unburned plots in sites with 131 

high wet season precipitation (Figure 3a,S6, Table S4, see SI for details on calculations). The 132 

difference between treatments was only 22% in sites with average wet season precipitation.  133 

Precipitation in the dry season had opposite effects. Sites with lower precipitation in the 134 

dry season experienced twice as large an effect of fire on basal area (46% vs. 22% lower tree 135 

basal area in sites with low vs. average dry season precipitation Figure 3c, Table S4). The 136 

contrasting response to precipitation in the wet vs. dry season is consistent with our 137 

understanding that fires are most intense in areas with stronger wet seasons (leading to more 138 

fuel) and more severe dry seasons (lower fuel moisture), thus contributing to potential losses 139 

with more frequent burning41,42. Rainfall in the dry season likely also influences fire effects by 140 

determining the water available for tree growth when fire is excluded.  Soil characteristics did 141 
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not explain sensitivity to changing fire frequencies across sites; across all sites, neither texture-142 

based classification of soils nor soil carbon content interacted with fire frequency (Table S4). 143 

The effect of fire on tree basal area also differed across ecosystems (F2,279=14.5, 144 

p<0.001), with frequent burning having a larger effect on tree basal area in savannas relative to 145 

broadleaf and needleleaf forests (accounting for climate effects and differences among 146 

continents, Figure 3d, Table S4). Relative to the unburned plots, basal area in frequently burned 147 

plots was 6% lower in needleleaf forests and 22% lower in broadleaf forests (Figure 3d, burn 148 

frequency of two fires every three years, SI). In savannas, frequently burned plots had 70% lower 149 

basal area relative to the unburned plots (Figure 3d, Table S4). Interestingly, stem density 150 

responses to fire frequency were qualitatively different between savannas and forests (Table S5). 151 

Stem densities increased with more frequent burning in forests while basal area decreased, 152 

potentially due to higher light availability and recruitment of trees in the forests. We tested the 153 

sensitivity of our findings that savannas were more sensitive to increased burning frequency via a 154 

subdivided classification of ecosystems by partitioning broadleaf forests into oak and eucalypt 155 

types and needleleaf forests into those that transitioned between oak and pine dominated (Table 156 

S1). When included in the final model, the subdivided vegetation classification still had a 157 

significant main effect (F4,19.4=12.4, p<0.0001), and a significant interaction with fire frequency 158 

(F4,276.8=7.8, p<0.001, Figure S8), with basal area in savannas responding the most to changes in 159 

fire frequency (Figure S8).  160 

We next tested the extent to which plant traits influence tree responses to fire across 161 

ecosystems23. We analyzed only the experiments from North America (77 tree species, 16 sites, 162 

181 plots) because trait data were available there to (i) categorize species by nutrient-acquisition 163 

strategies, and (ii) assign wood, leaf, and root traits related to growth, survival, and nutrient-use 164 

strategies. Plots with tree species having thinner bark and denser wood changed relatively more 165 

with frequent burning (bark: F1,154.3=5.7, p=0.018; wood density: F1,154.1=12.9, p<0.001, Table 166 

S6, Figure 4a,b). Within a site, mean wood density of the tree community tended to be lower in 167 

frequently burned landscapes, potentially because of increasing dominance of gymnosperms, 168 

which tend to have lower wood density. In contrast, we did not observe any effect of fire on the 169 

mean bark investment of the tree community (Table S6), demonstrating that bark investment at 170 
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the community scale does not appear to change in response to fire; nevertheless, bark investment 171 

may influence basal area loss patterns across broad biogeographic scales. 172 

Frequent burning also shifted the nutrient use and acquisition strategies of tree 173 

communities, as expected given the nitrogen (N) losses resulting from frequent burning43. Plots 174 

burned frequently for longer periods of time were dominated by tree species with low N 175 

concentrations in green and senesced leaves and roots, and resorbed a greater proportion of N 176 

before leaf senescence (p<0.001 for all variables, Figure 4d, Table S7). Tissue phosphorus (P) 177 

concentrations also declined with frequent burning in leaves and litter but not in roots (Figure 178 

S10, Table S7).  179 

Fire also affected the relative abundance of nutrient-acquisition strategies. We evaluated 180 

changes in acquisition strategies using categories of trees’ abilities to form symbioses, which 181 

correlate with several other traits involved in acquisition44. Trees that formed symbioses with 182 

ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi were the most abundant 183 

nutrient-acquisition strategies across our plots; ericoid and nitrogen-fixing trees were absent 184 

from most sites (Figure 4c). ECM trees, which contain fungal symbionts capable of acquiring N 185 

from organic matter45, tended to be more successful in frequently burned plots. The relative 186 

abundance of ECM trees increased from 85% in unburned plots to nearly 100% in annually 187 

burned plots (Figures 4c, Table S8). ECM trees were also more common in warmer climates and 188 

on soils with low organic matter (Figure S11, Table S8). ECM trees typically have lower 189 

concentrations of N and P in leaves, litter, and roots than AM trees46 (Figure S12, Table S9), 190 

suggesting the turnover in symbiont composition may be driving the shift in stoichiometry of the 191 

tree community. The tendency for frequently burned plots to have tree communities dominated 192 

by ECM trees with low N and P content in leaves, roots, and litter indicates that frequent burning 193 

favors tree species with a suite of traits consistent with a conservative strategy of nutrient use and 194 

acquisition.  195 

Although our analysis is to our knowledge the largest compilation of results from fire 196 

manipulation plots to date, it identifies several factors that highlight the need for even larger-197 

scale analyses. For one, an improved representation of fire experiments in different ecosystem 198 

types across continents (e.g., tropical forests in Africa and savannas in Australia) will help 199 

further unpack the variability across ecosystems. Past research has demonstrated that the 200 
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turnover in tree species composition can be important for explaining changes in total tree cover 201 

within experiments47. Thus, a better understanding of how fire kills trees and how these 202 

processes differ across ecosystems may give a more complete picture of why fire effects vary. 203 

Our analyses also demonstrated that land use history and the fire regime prior to experiment 204 

establishment are critical to interpreting the magnitude of fire effects, consistent with previous 205 

studies48. Consequently, global-scale estimates of how current shifts in fire frequency alter 206 

ecosystem carbon should carefully consider how uncertainties in fire history preceding the 207 

satellite era may influence their estimates. 208 

Our findings that fire effects emerge over multiple decades but then approach a new 209 

(non-zero) equilibrium are in agreement with studies that have performed repeated 210 

measurements of tree populations within the same experiment. Generally the treatments can 211 

diverge over the first few decades15, but the rate of divergence declines through time30. The 212 

timescale of change is similar to the multi-decadal shifts in soil carbon and nitrogen, which likely 213 

reflect a link between tree biomass inputs into soil carbon pools and potentially the turnover of 214 

plant traits interacting with changes in soil nitrogen pools25,49,50.  215 

In conclusion, widespread changes in fire regimes are likely to have structural, 216 

compositional, and functional effects on tree communities that manifest over decades. 217 

Importantly, fire is an integral part of many ecosystems and can promote biodiversity, reduce 218 

wildfire risk, and stimulate nutrient turnover; consequently, lower tree basal area and density in 219 

more frequently burned plots is not necessarily a negative result depending on the management 220 

goals for the ecosystem. Nevertheless, persistent changes in fire frequency will have, and already 221 

are having, profound effects on ecosystems and need to be considered in projections of 222 

communities and ecosystems in the future.  223 

   224 

 225 

 226 

 227 

  228 
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Supplemental Information 279 

 280 

Experimental design and site descriptions   281 

The majority of sites sampled comprise ecosystems that experience surface fires (from 282 

fire manipulation experiments, n=27). Our main analyses are based on the surface fire 283 

experiments, but we compare these data with a network of plots across n=2 sites with natural 284 

variability in the frequency of stand-replacing crown fires to evaluate the effect of fire regime. 285 

We describe the sites briefly in Table S1, and present detailed descriptions of site history in 286 

Dataset 1.  287 

The surface fire experiments mostly are experimental prescribed burn plots. The 288 

managers generally try to burn in a broad seasonal window (e.g., a spring fire in North America 289 

may occur anytime from March-May) to optimize burn timing for the local fire conditions most 290 

suitable to their planned fire intensities. The sites contained different land use histories before the 291 

establishment of the experiment, which was not always documented in detail, but we describe 292 

key factors in Tables S1 and Dataset 1. We describe how we evaluated the potential role of land 293 

use history in Testing role of fire and land use history below. 294 

Because these experimental sites utilized different survey methods, the classification of a 295 

plant as a tree differed. In some cases, such as savannas with relatively small woody plants, all 296 

woody plants over a basal diameter of 5 cm were measured (which includes shrubs). In other 297 

cases, stems only above 10 cm diameter at breast height were measured. Consequently, the 298 

definition of ‘tree’ is based on the local knowledge of what is the relevant size threshold for a 299 

particular ecosystem, and in some cases it includes all woody plants.  300 

 The stand-replacing crown fires are from one extensive ecosystem type that accounts for 301 

a large amount of forest fire area in North American temperate regions. Specifically, we used 302 

data from 50 plots in lodgepole pine forest in the Western United States23 (n=50) spanning 303 

different elevations and plots along a continuum of fire return intervals23. Because this ecosystem 304 

experiences stand-replacing fires, time-since-fire is critical for determining tree abundance 305 

because it determines the stage of regrowth. We dealt with this by sampling plots that differed in 306 
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their fire return interval over the past several hundred years but shared the same time since last 307 

fire because of a large fire that burned forests with different times since the previous fire. Given 308 

the previous study found elevation to be important, we included elevation categories in the 309 

model (<2400 m and >2400 m, respectively).  310 

 311 

Choice of plots within 27 sites with surface fires 312 

Within each site, we only used one sampling time period for our analysis. Eight sites 313 

contained time series data: Cedar Creek, Lombard, Sequoia, Kings Canyon, and the four Kruger 314 

sites. For Lombard, we used the surveys from 2002, for Cedar Creek we used 2010, for Kruger 315 

we used 1996-98 and for Sequoia and Kings Canyon it varied according to the replicate plots 316 

because their most recent surveys occurred in different years. For Cedar Creek, more recent 317 

surveys exist, but the outbreak of oak wilt has resulted in large amounts of tree mortality not due 318 

to fire (Reich personal communication). For Highland Rim, we used two different sets of data: 319 

the first dataset contains plot-level data (thereby allowing us to determine a variance around the 320 

mean) but no tree species identities; the second dataset contains no plot-level data but has 321 

treatment-level averages within each tree species, which allowed us to analyze composition 322 

changes. We utilized the plot-level data for analyses of basal area and stem density. For Morton 323 

and Okmulgee, there are not always true replicates in each fire treatment. Morton contains two 324 

true replicates for the unburned, but no true replicates for the burned plots. Okmulgee contains 325 

no true replicates.  326 

In sites where fires were prescribed in different seasons, we used a single burn season in 327 

the analysis in an attempt to match seasons of burns within a particular ecosystem type within a 328 

particular region. In North America, we standardized fire season to burning conducted in the 329 

winter to early spring because not all sites contained fire treatments with summer burns. For 330 

Hitchiti, we used the December-March burns, dropping the June burns. For Kisatchie we used 331 

March, dropping July and May. For Kruger, we used August, dropping all the other seasons. For 332 

Lombard, we used March-May, dropping the June-Aug.  333 

Lamto and La Pampa only contained data on the number of tree stems. Consequently, 334 

these were incorporated into the stem abundance analysis only.   335 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.22.216226doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.216226
http://creativecommons.org/licenses/by-nd/4.0/


 336 

Soil chemistry data 337 

We collected and analyzed soil data using several methods. First, we determined the 338 

dominant soil type using either author descriptions or reported soil texture analysis. Second, we 339 

used the highest resolution soil data as possible (e.g., soil samples from each replicate plot within 340 

a fire treatment), but some sites only contained site-level soil properties. Consequently, we 341 

analyze overall effects of fire on all sites without any covariates, followed by a model that uses 342 

model selection to account for collinearities among variables when testing for factors that modify 343 

fire effects. To extend data on soils across plots, we sampled soils (top 0-5 cm of the mineral 344 

horizon) in 24 plots across four sites: Kings Canyon, Sequoia, Limestone Flats, and Chimney 345 

Springs. Each site contained three replicate plots of an unburned treatment and a high fire 346 

frequency treatment. We collected n=5 pseudo-replicates within the true replicate plot, analyzed 347 

the soils for carbon, nitrogen, and texture, and averaged within each plot. 348 

 349 

Climate data 350 

To obtain long-term climate averages at each site, we used WorldClim51. Managers timed 351 

burning to coincide with consistent weather conditions over the course of the experiment, 352 

therefore we did not obtain high resolution inter-annual variability in climate. We focused on 353 

several climate variables based on ecologically relevant a priori hypotheses: (i) precipitation 354 

partitioned into the driest and wettest quarters of the year because precipitation influences fuel 355 

accumulation (primarilly in the wettest quarter) and fire conditions (primarily in the driest 356 

quarter) and (ii) mean annual temperature because of its large effect on a variety of 357 

biogeochemical processes. Precipitation in wet and dry quarters are not as correlated with one 358 

another but are highly correlated with mean annual precipitation and temperature (Table S10). 359 

 360 

Calculation of fire effects in different environmental conditions  361 

Several methods exist to calculate variable importance, with no clear optimal method 52. 362 

We chose to use the regression coefficients in the model to understand the sensitivity of basal 363 
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area and stem density to changes in relative values of each variable. Importantly, the models 364 

were fit to re-scaled data by subtracting each value by the mean and dividing by the standard 365 

deviation of the variable. Consequently, the product between the mean value of a variable and its 366 

coefficient is always zero. Thus, we can compare the relative impact of variables by comparing 367 

the magnitude of the fitted coefficients because they reflect the potential change in basal area for 368 

a one standard deviation change in a variable value.  369 

To perform meaningful comparisons, we use the standard deviations of variables to 370 

illustrate the sensitivity of basal area to a change in the value. For example, using the model to 371 

estimate the effect of increasing fire by 1 standard deviation from the mean (mean = 0.34, mean 372 

+ 1σ = 0.67) tells us the sensitivity of basal area to fire, with all other variables held at their 373 

means. Interactions can be tested by moving two variables away from their means: for example, 374 

changing the fire value in conjunction with precipitation in the wet quarter. Because the model is 375 

fit to re-scaled data, the intercept of the model is not representative of the unburned fire 376 

treatment, which is calculated by re-scaling the fire frequency data (0-μ)/σ, which gives a value 377 

of -1.081, making the unburned calculation of 25.6 m2 ha-1 when all other variables are held at 378 

their means.  379 

Here are the different levels of comparisons we used in the results and the corresponding 380 

figures.  381 

Wet season precipitation (Figure 3a): wet season precipitation varied one standard deviation 382 

above the mean vs. at the mean (525 vs. 375 mm yr-1, respectively). Fire frequency varied from 383 

unburned to one standard deviation above the mean (2 fires every 3 years).  384 

Dry season precipitation (Figure 3c): dry-season precipitation was one standard deviation below 385 

the mean vs. at the mean (25 vs. 133 mm yr-1, respectively). Fire frequency varied from 386 

unburned to one standard deviation above the mean (2 fires every 3 years). 387 

Vegetation type (Figure 3d): fire frequency effects were made using two levels of comparisons. 388 

Unburned plots vs. burning at the mean frequency (1 fire every 3 years) and unburned plots vs. 389 

burning at one standard deviation above the mean frequency (2 fires every 3 years). 390 

 391 
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Testing overall fire effects 392 

We first tested the overall effects of the fire treatments across sites with log response 393 

ratios using techniques employed meta-analyses53,54. First, we calculated the log response ratio 394 

between the different fire frequency categories (low, medium, and high) for basal area and stem 395 

density averaged within each category, with the lowest fire frequency in the comparison always 396 

in the denominator. Next, we determined the variance based on the number of true replicates 397 

within each treatment in a site and the standard deviations within the fire frequency category. 398 

These values across sites were then used to determine the effects of fire treatments on tree basal 399 

area and stem density.  400 

We first evaluated the overall effect of fire frequency and length of time frequency was 401 

altered on tree basal area and stem density without considering any potential modifying role of 402 

covariates to test the general effect of fire across all sites. To accomplish this we analyzed (i) a 403 

mixed-effects model containing fire frequency, fire period, and their interaction, and (ii) log 404 

response ratios of stem density and basal area relativized within each site. We excluded the 50 405 

crown fire plots for this initial analysis. We fit the mixed-effects models with site as a random 406 

intercept. The statistical design is nested because each site has several replicate plots receiving 407 

different fire treatments. As a result of this design, the responses to fire at the plot level are likely 408 

more related within sites than between sites, necessitating a random intercept. Although our 409 

design is not balanced (sites differ in their number of replicate plots), models are generally robust 410 

to unbalanced designs unless sample sizes are low and/or a random slope is being estimated 52, 411 

neither of which are applicable here. Models were constructed based on our a priori hypotheses 412 

of how fire would influence tree population sizes and the potential to interact with covariates. In 413 

all cases of mixed-effects models, we tested for model significance using Satterwaith’s 414 

approximation for degrees of freedom and a Type III ANOVA 55. In the event of an insignificant 415 

main effect but significant interaction, we tested whether the main effect could be dropped from 416 

the model using a change in Aikake Information Criterion (AIC) with a threshold of two.  417 

 418 

Comparison between surface vs. crown fire regimes 419 
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To analyze the effect of crown vs. surface fire types, we analyzed stem density data from 420 

50 plots (paired within 25 locations) in the Western USA in a separate model. All plots had the 421 

same time since fire of 12 years. For this analysis, we used a mixed-effects model to test the 422 

relationship between fire return interval and stem density for all locations across the entire return 423 

interval span with location as a random intercept. As a further test of fire return interval effects, 424 

we selected the short fire return interval (<100 years) in each paired plot and analyzed the 425 

relationship with a linear model.  426 

 427 

Testing the role of fire and land use history 428 

 We partitioned studies into three categories based on their disturbance history. Using 429 

knowledge of fire history for several decades prior to the fire experiments, we determined if the 430 

fire treatments within a site reflected (i) an increase in fire frequency above a historical mean, (ii) 431 

fire exclusion after decades of repeated burning prior to the experiment, and (iii) reintroduced 432 

fire after decades of pre-experiment fire exclusion (Table S1); the historical mean was defined 433 

based on fire activity data for several decades prior to initialization of the experiment (Dataset 1).  434 

The fire experiments in the savannas were all initiated in sites that had regularly burned 435 

for several decades before the establishment of the experiment. The intermediate fire frequency 436 

treatments were reflective of the historical mean, but the most frequently burned plots in those 437 

sites were burned at a frequency higher than the historical mean. Consequently, we could use the 438 

intermediate frequency plots to evaluate the relative changes due to fire exclusion (unburned vs. 439 

intermediate) or tree cover declines because of more frequent burning (frequent vs. 440 

intermediate). In one savanna site, Marondera, all trees were removed before the onset of the 441 

experiment, and consequently we are not able to assume that the difference between the 442 

intermediate and high frequency treatment is due to declines in trees since the onset of the 443 

experiment, rather, it is likely due to a restriction on recovery. Consequently, we omit Marondera 444 

from these calculations. 445 

The fire experiments in the forests varied in their historical fire frequency and the 446 

occurrence of other disturbances. Several sites were in some stage of recovery from previous 447 

land use (e.g., selective logging, agriculture, etc.), but we focused on the variability in fire 448 
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history to categorize the sites into fire response categories. We partitioned forests into those that 449 

had remained unburned for several decades before the onset of the fire treatments (i.e., 450 

reintroduction burns) vs. sites that burned regularly before the experiment. We assume that in the 451 

case of the reintroduction burns, changes in tree cover arises from losses due to more frequent 452 

burning.  453 

In the sites that burned regularly prior to the establishment of the experiment, the 454 

differences between the unburned plots and those burned at the historical mean was assumed to 455 

arise from gains under fire exclusion, and not necessarily increased losses due to frequent 456 

burning (although that can clearly occur). 457 

We analyze the effect sizes of fire in the comparisons of the unburned vs. intermediate 458 

vs. frequent treatments using the same meta-analysis method described above. 459 

 460 

Model selection to determine parsimonious variable combinations 461 

For the plots with surface fires, we performed model selection by incorporating 462 

covariates of climate, soil, and plant composition into mixed-effects models to test for pairwise 463 

interactions and possible collinearities (see discussion below of collinearities). Finally, we 464 

constructed a full model containing fire, climate, soil, and composition variables based on our 465 

hypotheses that these factors will interact with fire frequency as well as information gained from 466 

the pairwise tests. There were several insignificant effects in the final model, which we tested for 467 

removal using model selection with a threshold AIC of two. All variables were re-scaled by 468 

subtracting the mean and dividing by their standard deviation. 469 

Our selection process in the tables illustrates the sensitivity of the final model to the 470 

inclusion of additional interactive effects that are not in the final model as well as main effects of 471 

the climate, geography, and soil variables. We do not present the exhaustive comparisons 472 

because they are not guided by our a priori hypotheses of factors modifying fire effects. Soil 473 

type was not reported for one location with stem density measurements in South America, so we 474 

just use soil carbon content in the model selection analysis. 475 

 476 
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Evaluating assumptions of aggregating ecosystem types 477 

The vegetation composition at each site differs substantially, ranging from diverse 478 

tropical savannas with dozens of tree species (e.g., Kruger sites) to monodominant coniferous 479 

forests (e.g., Limestone Flats and Chimney Springs). Classifying the sites into broad categories 480 

was done methodologically, by balancing the need to maintain parsimony (and thus statistical 481 

power) with accurately capturing how plant composition may modify fire effects. Consequently, 482 

we performed two levels of classification: (i) a coarse categorization based on biomes, as 483 

savannas vs. forests, and within forests treating broadleaf and needleleaf forests separately, 484 

which we refer to as a vegetation type; and (ii) accounting for variability within forest types by 485 

partitioning broadleaf forests into Myrtaceae (eucalypt) vs. Fagaceae (oak) dominated, and 486 

needleleaf forests into forests that are near completely dominated by needleleaf trees vs. a mixed 487 

forest containing both needleleaf and broadleaf trees, which we refer to as a sub-vegetation type.  488 

 489 

Collinearity among climate variables: 490 

Climate variables can be highly collinear, which can inflate the risk of error in statistical 491 

inference. To evaluate collinearity, we first determined the Pearson correlation coefficients 492 

between the main climate variables. We excluded variable combinations with a correlation 493 

>0.70. Most climate variables relating to water availability were not correlated with mean annual 494 

temperature. For water availability, we used precipitation in the driest quarter and the wettest 495 

quarter because their correlation coefficient was relatively low and they are ecologically more 496 

relevant than annual means because they determine the potential productivity in the wet season 497 

when most growth occurs but also potential water stress and fire conditions in the dry season 498 

(Table S10). In contrast, mean annual precipitation and aridity were tightly correlated with one 499 

another, as well as with the precipitation values in the separate quarters. 500 

 501 

Species classifications and functional traits 502 

Bark thickness data were collected from a dataset in the Fire and Fuels Extension of the 503 

Forest Vegetation Simulator. https://www.fs.fed.us/fmsc/ftp/fvs/docs/gtr/FFEaddendum.pdf . 504 
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Although broad syntheses of bark investment exist for many tree species in North America, not 505 

all species contained data from empirical measurements, and thus we used the data from the Fire 506 

and Fuels Extension. Bark thickness was assumed to scale linearly with stem diameter, which is 507 

generally valid for smaller stems, but it is known bark saturates with increasing stem diameter 56. 508 

The ability of bark investment to predict fire effects will likely improve with better consideration 509 

of the non-linear relationship between bark and stem diameter.  We evaluate the relative bark 510 

investment, and not absolute bark thickness, which is based on bark investment as well as stem 511 

size.  512 

Wood density was compiled from the literature using a global wood density database 57, 513 

supplemented with additional data 58,59. We assigned a genus-level average for 19 species lacking 514 

data.  515 

Plant tissue stoichiometry and mycorrhizal type were determined using both trait data as 516 

well as phylogenetic trait estimates calibrated to trait data used in a previous global analysis of 517 

plant mycorrhizal traits 46. Full data selection criteria are presented in 46, but we describe them 518 

briefly below. 519 

The plant phylogeny contained >49,000 plant species 60. Plant species were added to this 520 

phylogeny as needed using the congeneric.merge method 61. This method uses congeners to add 521 

species missing genetic data to the phylogeny, conservatively replacing genera with polytomies 522 

where more than one member of the genus is present in the analysis. 523 

We next generated a species-level phylogenetically estimated trait value for each species 524 

and trait by fitting models to all data for a particular trait as a function of phylogenetic distance, 525 

leaving out each species one at a time using the phyEstimate function within the picante package 526 

for R statistical software62. This way, each species trait estimate is based on its own phylogenetic 527 

position and a phylogenetic model of evolution (Brownian motion) parameterized without that 528 

specific species trait observation. For species without trait data, we estimated trait values based on 529 

a model fit to all available trait data. 530 

 531 

Testing the interactions between species composition and fire 532 
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To test for fire effects on the relative abundance of symbiotic strategies, we calculated the 533 

relative basal area of the different strategies (ectomycorrhizal, arbuscular mycorrhizal and the 534 

less abundant ericoid mycorrhizal, non-mycorrhizal, and nitrogen-fixing tree species). Given the 535 

low occurrences of ericoid, non-mycorrhizal, and nitrogen-fixing species, we analyzed the 536 

relative abundance of arbuscular mycorrhizal and ectomycorrhizal species only. We then fit 537 

mixed-effects models with relative basal area as the dependent variable and fire, climate, broad 538 

vegetation type (broadleaf, needleleaf, savanna), and soil conditions as the independent 539 

variables, each modified by a symbiont term. Relative basal area was arcsine transformed. This 540 

analysis was conducted in the North American plots. 541 

To test how functional traits correlated with the effects of fire frequency and duration of 542 

experiment, we calculated community trait means in plot j by averaging the traits of each species 543 

i by their relative basal area (BA) in a plot. Bark thickness (Bark) for example: 544 

𝜇! =$𝐵𝐴"𝐵𝑎𝑟𝑘"

#

"$%

 545 

We calculated community weighted means (CWM) for wood density, bark thickness, live and 546 

senesced leaf nitrogen (N) and phosphorus (P) and live root N and P. We also calculated 547 

retranslocation of N and P from a live leaf before senescence using the data from live and 548 

senesced leaf N and P (i.e., not directly measured). Calculations using N as an example: 549 

𝑅𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =
𝑁&'(() − 𝑁*()(*+(,

𝑁&'(()
 550 

Bark thickness was calculated as a scaling coefficient relative to stem diameter (𝛽) 551 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑏𝑎𝑟𝑘	𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 𝛽 ∗ 𝑠𝑡𝑒𝑚	𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 + 𝛼 552 

To test the potential for traits to predict the response of trees to fire, we fit linear mixed-effects 553 

models with the CWM modifying fire effects but allowing for main effects of fire. For example, 554 

(𝑝𝑙𝑜𝑡	𝑏𝑎𝑠𝑎𝑙	𝑎𝑟𝑒𝑎)~𝐹𝑖𝑟𝑒𝑃𝑒𝑟𝑖𝑜𝑑 + 𝐹𝑖𝑟𝑒𝐹𝑟𝑒𝑞 + 𝐹𝑖𝑟𝑒𝐹𝑟𝑒𝑞:𝑊𝐷!"# + 𝐹𝑖𝑟𝑒𝑃𝑒𝑟𝑖𝑜𝑑:𝑊𝐷!"#555 
+ 𝐹𝑖𝑟𝑒𝐹𝑟𝑒𝑞: 𝐵𝑇!"$ + 𝐹𝑖𝑟𝑒𝑃𝑒𝑟𝑖𝑜𝑑: 𝐵𝑇!"# +	(1|𝑆𝑖𝑡𝑒) 556 

 557 
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To test how fire influenced the trait composition of the community we fit mixed-effects 558 

models to test the effect of both fire as well as environmental factors in explaining the 559 

community weighted mean trait values. 560 

We do not include an independent effect of either wood density or bark thickness because 561 

we are primarily concerned with how they may modify fire effects. 562 

We also tested for whether the symbiotic strategies differed in their traits. To do so, we 563 

assigned symbiotic strategies and the dominant ecosystem in which they occurred to different 564 

species. We then analyzed linear models incorporating symbiotic strategy and ecosystem type as 565 

additive effects. 566 

 567 

  568 
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Table S1: List of sites with key meta-data. Cont=continent (AU=Australia, NA=North America, 569 
SA=South America, AF=Africa). Vegetation type present in broad categories (NL=needleleaf, 570 
BL=broadleaf) and the families of the dominant tree species. Sites with a pine-dominated ecosystem that 571 
can change from pine to oak depending on fire regime are noted. Number of plots is the total within the 572 
entire site. Duration is the number of years over which fire frequencies have differed across plots. 573 
Frequency is in # fires yr-1. Prior conditions describe the ecosystem type at the beginning of the 574 
ecosystem, whether the site experienced regular burning prior to the experiment and if not, how long it 575 
had remained unburned (reintroduction burns). 576 

 577 

In attached document. 578 

  579 
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Table S2: Meta-analysis statistics. The sample size indicates true replicates. The top section analyzes 580 

basal area, the bottom analyzes stem abundance. 581 

Variable 

measured 

Fire 

comparison 

Response 

ratio 

Standard 

error 
Z value p value Lower CI Upper CI 

Basal area Low vs. high       

 n=22 -0.78 0.22 -3.53 0.0004 -1.22 -0.35 

 Low vs. mid       

 n=16 -0.40 0.12 -3.41 0.0006 -0.63 -0.17 

 Mid vs. high       

 n=16 -0.43 0.23 -1.86 0.0632 -0.88 0.02 

Stem Low vs. high       

abundance n=23 -0.58 0.19 -3.13 0.002 -0.94 -0.22 

 Low vs. mid       

 n=17 -0.25 0.12 -2.12 0.034 -0.48 -0.02 

 Mid vs. high       

 n=18 -0.33 0.20 -1.65 0.0985 -0.73 0.06 

 582 

 583 

  584 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.22.216226doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.216226
http://creativecommons.org/licenses/by-nd/4.0/


Table S3: Results from mixed-effects model fit to log basal area and stem density (ANOVA for 585 
significance of terms, and then fitted model coefficients) testing the effect of fire frequency (FireFreq), 586 
the length of time plots were exposed to different frequencies (Duration) and their interaction 587 
(FireFreq:Duration). The means and standard deviations used to re-scale the data were: Basal area: fire 588 
frequency, mean=0.34, standard deviation=0.32; duration of experiment, mean=28, standard 589 
deviation=19. Stem density: fire frequency, mean=0.35, standard deviation=0.33; duration of experiment, 590 
mean=29, standard deviation=19. Units for frequency are fires per-year and duration are years. The main 591 
effect of fire frequency was dropped from the top model based on the AIC being lower. 592 

Basal area df  F value p value del AIC 
FireFreq  

   -FireFreq=9.4 
Duration 1 290.5 94.3 <0.0001  

FireFreq:Duration 1 288.6 23.3 <0.0001  
      

Stem density df  F value p value  
FireFreq     -FireFreq=3.8 
Duration 1 281.6 47.3 <0.0001  

FireFreq:Duration 1 279.9 8.4 0.004  
      

Model coefficients      
 Intercept FireFreq Duration FireFreq:Duration  

Log basal area 2.7408  -0.4268 -0.2204  
 Intercept FireFreq Duration FireFreq:Duration  

Log stem density 6.3765  -0.3427 -0.1515  
 593 

 594 

 595 

 596 
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Table S4: Results from mixed-effects model fit to log basal area a) ANOVA for significance of terms, b) 598 
fitted model coefficients, and c) change in the model AIC with altered additions and removals. All 599 
analyses performed on mean centered and standard deviation scaled data for continuous variables with 600 
site as a random intercept. ANOVA uses Satterthwaite's method to estimate degrees of freedom. Colon 601 
denotes interactions. Variable abbreviations are: FireFreq= fire frequency (fires yr-1), Veg=vegetation 602 
type (needleleaf forest, broadleaf forest, savanna), MAT=mean annual temperature (°C), 603 
PWQ=precipitation in wet quarter (mm), PDQ=precipitation in dry quarter (mm), Duration=length of 604 
time plots have experienced the repeated burning regime (years). For the fitted model coefficients, the 605 
intercept gives the value for broadleaf forest (so to calculate the basal area in a savanna, you would 606 
exponentiate the sum of the coefficient of “VegSavanna” and the intercept). See Figures 3, S7 for the 607 
effects. Independent effects of PWQ, PDQ, and Continent were not included in the model because the 608 
models did not pass the criterion that an improved model needed to have a >2 AIC difference. C) 609 
Sensitivity of model to changes in terms illustrates what happens when the model only includes 610 
interactions and the effect of adding or removing independent effects, as well as the interactions between 611 
fire and soil.  612 

a) Type III ANOVA df F value P value Mean SD 

FireFreq 1 287.5 29.0 <0.001 0.34 0.32 

Veg 2 17.8 1.9 0.172   

MAT 1 18.6 2.7 0.115   

Continent 3 19.2 4.2 0.020 14 4 

FireFreq:Veg 2 279.7 14.0 <0.001   

FireFreq:PWQ 1 285.1 50.3 <0.001 375 149 

FireFreq:PDQ 1 285.6 7.5 0.007 133 108 

FireFreq:MAT 1 280.8 16.8 <0.001 14 4 

FirePeriod:Continent 4 283.4 7.2 <0.001 28 19 

      
 

b) Fitted model coefficients 
  

  
  

 

Variable Estimate SE df t value P value  

(Intercept) 1.8 0.6 17.2 2.9 0.011  

FireFreq -0.1 0.1 284.7 -1.5 0.135  

VegetationNeedleleaf 0.2 0.3 18.5 0.8 0.451  

VegetationSavgrass -0.9 0.6 17.1 -1.5 0.142  

MAT -0.2 0.1 18.6 -1.7 0.115  

ContinentAustralia 1.6 0.7 17.2 2.4 0.025  

ContinentNorthAmer 1.1 0.6 17.1 1.9 0.078  

ContinentSouthAmer 1.7 0.6 23.2 2.8 0.010  

FireFreq:VegetationNeedleleaf 0.1 0.1 278.8 1.0 0.310  

FireFreq:VegetationSavgrass -0.5 0.1 281.1 -3.5 <0.001  
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FireFreq:PWQ -0.4 0.1 285.1 -7.1 <0.001  

FireFreq:PDQ 0.2 0.1 285.6 2.7 0.007  

FireFreq:MAT 0.2 0.0 280.8 4.1 0.000  

FirePeriod:ContinentAfrica -0.2 0.1 285.1 -2.1 0.039  

FirePeriod:ContinentAustralia 0.3 0.1 283.2 1.9 0.059  

FirePeriod:ContinentNorthAmer -0.2 0.1 291.3 -4.3 <0.001  

FirePeriod:ContinentSouthAmer -0.2 0.2 274.7 -0.8 0.418  

**Intercept using broadleaf for vegetation      

   
 

c) Sensitivity of model terms    

Model df AIC ∆AIC 

~FireFreq+Veg+MAT+Veg:FireFreq+PWQ:FireFreq+PDQ:FireFreq 

       +MAT:FireFreq+Continent:Duration+Continent 19 556.3 

Top 

model 

Only interactions 13 582.0 25.76 

  +PWQ 17 561.0 4.70 

  +PDQ 17 566.4 10.18 

  -MAT 16 567.3 11.03 

  -VegType 15 589.1 32.83 

  -Continent 16 562.8 6.5394 

  +SoilType 26 559.3 3.0709 

  +%C 20 561.4 5.1847 

  +SoilType:FireFreq 23 581.3 25.06 

  +%C:FireFreq 17 569.1 25.76 

 613 
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Table S5: Results from mixed-effects model fit to log stem density a) ANOVA for significance of terms, 615 

b) fitted model coefficients, and c) sensitivity of model terms. All analyses performed on mean centered 616 

and standard deviation scaled data for continuous variables with site as a random intercept. ANOVA uses 617 

Satterthwaite's method to estimate degrees of freedom. Colons denote interactions. Variable abbreviations 618 

are: FireFreq= fire frequency (fires yr-1), Veg=vegetation type (needleleaf forest, broadleaf forest, 619 

savanna), MAT=mean annual temperature (°C), PWQ=precipitation in wet quarter (mm), 620 

Duration=length of time plots have experienced the repeated burning regime (years). For the fitted model 621 

coefficients, the intercept gives the value for broadleaf forest (so to calculate the basal area in a savanna, 622 

exponentiate the sum of the coefficient of “VegSavanna” and the intercept). See Figures S7, S9 for 623 

effects. Model terms are presented relative to the top model (given in the first row), the only interactions 624 

refers to all main effects removed.  625 

a) Type III ANOVA df F value P value  Mean SD 

FireFreq 1 271.8 14.3 <0.001  0.35 0.33 
FireFreq:Duration 1 272.8 5.0 0.026  29 19 
FireFreq:Vegetation 2 270.4 32.9 <0.001    

FireFreq:PWQ 1 272.2 35.5 <0.001  389 165 

FireFreq:MAT 1 270.2 51.5 <0.001  15 6 

Duration:Continent 3 275.7 14.0 <0.001    

 
       

b) Fitted model coefficients        

Variable Estimate SE df t value P value   

(Intercept) 6.30 0.28 23.9 22.3 < 2e-16   

FireFreq 0.31 0.08 271.8 3.8 <0.001   
FireFreq:Duration -0.10 0.05 272.8 -2.2 0.026   
FireFreq:VegNeedleleaf -0.19 0.10 270.3 -2.0 0.051   

FireFreq:VegSavanna -0.85 0.11 270.8 -8.0 <0.001   

FireFreq:PWQ -0.21 0.04 272.2 -6.0 <0.001   

FireFreq:MAT 0.36 0.05 270.2 7.2 <0.001   
Duration:ContinentAustralia -0.73 0.18 271.0 -4.1 <0.001   
Duration:ContinentNorthAmer -0.42 0.07 275.5 -6.0 <0.001   

Duration:ContinentSouthAmer -0.07 0.21 281.6 -0.4 0.719   

Intercept using broadleaf for vegetation       

       

c) Sensitivity of model terms       
Model  Df AIC ∆AIC   

~FireFreq+ FireFreq:Veg+ FireFreq:PWQ+FireFreq:MAT+ 
Duration:Continent+Veg+Continent 17 630.6 0 

  

Only interactions  12 639.6 9.0   

  +PDQ  18 632.8 2.2   
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  +PWQ  18 631.3 0.6   

  +MAT  18 632.5 1.9   
  +%C  18 635.3 4.6   
  -Veg  15 630.6 0.0   

  -Continent  14 637.0 6.3   

  +PDQ:FireFreq  18 636.0 5.4   

  +%C:FireFreq  18 633.0 2.4   
 626 

 627 

 628 
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Table S6: Results from mixed-effects models testing how: a) wood traits modified fire effects on tree 630 

basal area and b) fire altered the trait values within plots. Whether the site was a savanna, broadleaf 631 

forest, or needleleaf forest was included in the model because of the large difference in wood traits 632 

between needleleaf forests and the other ecosystems.  633 

a) Basal area ~ wood traits df  F value P value 
FireFreq 1 154.4 12.9 <0.001 
FireFreq:Bark 1 154.3 5.7 0.018 
FireFreq:WD 1 154.1 12.9 <0.001 
b) Wood traits ~ fire   
Bark     
Duration 1 157.3 0.4 0.520 
FireFreq 1 156.3 0.2 0.624 
Vegetation 2 12.9 7.9 0.006 
Wood density    
Duration 1 156.4 5.4 0.022 
Vegetation 2 13.0 9.8 0.003 

 634 

  635 
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Table S7: Results from mixed-effects models testing the effect of fire on nitrogen (N) and phosphorus (P) 636 

concentrations in green and senesced leaves, the proportion of N and P retranslocated before senescence, 637 

and root N and P concentrations. Vegetation type was included as a term given the strong differences in 638 

traits between needleleaf vs. broadleaf trees.  639 

Green N df  F value P value  Green P df  F value P value 
Duration 1 158.9 13.8 <0.001  Duration 1 157.3 11.8 <0.001 

Vegetation 2 12.7 33.6 <0.001  Vegetation 2 12.6 12.4 0.001 
           

Senesced N     Senesced P    
Duration 1 158.9 19.7 <0.001  Duration 1 158.3 21.3 <0.001 

Vegetation 2 12.4 19.1 <0.001  Vegetation 2 12.5 27.2 <0.001 
           

Retrans N      Retrans P     
Duration 1 157.8 14.2 <0.001  Duration 1 159.8 24.1 <0.001 

Vegetation 2 12.3 3.0 0.088  Vegetation 2 12.5 43.3 <0.001 
           

Root N      Root P     
Duration 1 160.0 14.3 <0.001  Duration 1 157.2 3.1 0.082 

Vegetation 2 12.6 30.7 <0.001  Vegetation 2 12.4 1.1 0.378 
 640 

 641 
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Table S8: Results from top mixed-effects model on the relative abundance of trees summed within a 644 

symbiotic strategy within a plot with site as a random intercept conducted in North America where 645 

taxonomic resolution was the highest (relative basal area was arcsine transformed). The statistics were 646 

only run on ectomycorrhizal and arbuscular mycorrhizal groups because they were sufficiently abundant 647 

across plots, but all other strategies (ericoid, non-mycorrhizal, nitrogen fixer) were included in relative 648 

basal area calculation.  649 

Variable df df F value P value 

Symb 1 138.3 49.1 <0.001 

Symb:Soil C 2 34.4 23.4 <0.001 

Symb:FireFreq 2 140.1 7.8 <0.001 

Symb:MAT 2 18.6 12.5 <0.001 

Symb:Family 4 14.0 4.4 0.017 

Symb:Duration:FireFreq 2 135.0 4.0 0.021 

 650 
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Table S9: Type III ANOVAs on linear models testing the differences in tissue stoichiometry between the 652 

symbiotic strategy grouped in the different ecosystem vegetation types (broadleaf forest, needleleaf forest, 653 

or savanna). Inferred statistics are using phylogenetic relationships to infer trait values for species with 654 

missing data (see supporting information and46) while observed are based on direct trait measurements. 655 

The inferred vs. observed do not refer to the classification of mycorrhizal type. 656 

Inferred     Observed    
N green     N green    
n=61 DF F value p value  n=48 Df F value p value 
Symb 1 12.4 0.001  Symb 1 4.2 0.046 
Veg 2 5.4 0.007  Veg 2 4.0 0.025 
N senesced    N senesced   
n=61 Df F value p value  n=25 Df F value p value 
Symb 1 90.8 0.000  Symb 1 1.1 0.310 
Veg 2 4.5 0.016  Veg 2 1.5 0.237 
N roots     N roots    
n=61 Df F value p value  n=31 Df F value p value 
Symb 1 15.8 0.000  Symb 1 0.6 0.427 
Veg 2 1.8 0.181  Veg 2 0.7 0.489 
P green     P green    
n=61 DF F value p value  n=38 Df F value p value 
Symb 1 8.5 0.005  Symb 1 3.9 0.054 
Veg 2 1.8 0.176  Veg 2 5.7 0.007 
P senesced     P senesced    
n=61 DF F value p value  n=21 Df F value p value 
Symb 1 27.8 0.000  Symb 1 6.6 0.018 
Veg 2 6.1 0.004  Veg 2 1.6 0.216 
P roots     P roots    
n=61 DF F value p value  n=9 Df F value p value 
Symb 1 11.0 0.002  Symb 1 9.3 0.014 
Veg 2 0.6 0.572  Veg 2 1.2 0.346 

 657 

 658 

 659 
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Table S10: Pearson correlation coefficients between climate variables., PWQ=precipitation in wet quarter 662 

(mm), PDQ=precipitation in dry quarter (mm), MAT=mean annual temperature (°C), MAP=mean annual 663 

precipitation (mm yr-1). Data derived from WorldClim.  664 

 665 

 PDQ PWQ MAT MAP Aridity 
PDQ  0.28 -0.05 0.82 0.88 
PWQ 0.28  0.44 0.77 0.54 
MAT -0.05 0.44  0.19 -0.04 
MAP 0.82 0.77 0.19  0.91 
Aridity 0.88 0.54 -0.04 0.91  

 666 

  667 
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Figure S2: 681 

 682 

Figure S2: Example of the experimental layout of a fire manipulation experiment taken from Cedar 683 

Creek (a temperate savanna in Minnesota, USA), where fires have been manipulated since 1964. Aerial 684 

imagery (taken in 2017) from the National Agriculture Imagery Program from the Farm Service Agency. 685 

Plots are outlined with a color corresponding to their fire frequencies expressed in terms of number of 686 

fires per year (e.g. 0.33 is one fire every 3 years). 687 
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Figure S3: 689 

 690 

Figure S3: Untransformed data on stem density (a-b) and basal area (c-d) as a function of the duration 691 
that plots have been exposed to burning in the experiment (0=unburned plots). Each dot represents a site 692 
and the dashed lines connect treatments within sites. Columns represent two sets of fire frequency 693 
contrasts comparing unburned vs. the intermediate frequency in a and c, and unburned vs. the high 694 
frequency in b and d (levels defined based on treatments within sites). Dots and bars based on mean and 695 
standard error calculated across the replicate plots within a fire treatment in a site. Note y-axis is on a 696 
log10 scale.   697 
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Figure S5: 714 

  715 

Figure S5: Log response ratios of basal area under different fire history scenarios. In savannas, 716 
suppression compares the unburned vs. intermediate burn in a historically burned environment. The 717 
increased frequency compares higher than historical frequency with historical frequency. The extremes 718 
compare the highest frequency vs. suppression. The main difference in forests is the increased frequency, 719 
which is the reintroduction of fire into a historically fire suppressed forest.   720 
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Figure S12: 781 

 782 

Figure S12: Box and whiskers plot displaying the tissue stoichiometry for tree species averaged within 783 

symbiont strategy (AM= arbuscular mycorrhizal; ECM=ectomycorrhizal) and then grouped according to 784 

which overall ecosystem type the species generally occurred in (broadleaf forest, needleleaf forest, or a 785 

savanna-grassland). For both N and P, we conducted our comparisons using data that were either based on 786 

direct observations (“obs” in the y-axis), or inferred via a phylogenetic relatedness statistical filling ("inf” 787 

in the y-axis). Statistics are in Table S9. 788 
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