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Abstract

Due to large number of entities in biomedical knowledge bases, only a small fraction of entities have corresponding
labelled training data. This necessitates entity linking models which are able to link mentions of unseen entities using
learned representations of entities. Previous approaches link each mention independently, ignoring the relationships
within and across documents between the entity mentions. These relations can be very useful for linking mentions in
biomedical text where linking decisions are often difficult due mentions having a generic or a highly specialized form.
In this paper, we introduce a model in which linking decisions can be made not merely by linking to a knowledge
base entity but also by grouping multiple mentions together via clustering and jointly making linking predictions. In
experiments we improve the state-of-the-art entity linking accuracy on two biomedical entity linking datasets including
on the largest publicly available dataset.

1 Introduction

Ambiguity is inherent in the way entities are mentioned in natural language text. Grounding such ambiguous mentions
to their corresponding entities, the task of entity linking, is critical to many applications: automated knowledge base
construction and completion [28, 31], information retrieval [21], smart assistants [1], question answering [7], text
mining [15, 25].

Consider the excerpt of text from a biomedical research paper in Figure 1, the three highlighted mentions (expression,
facial expressions, and facially expressive) all link to the same entity, namely C0517243 - Facial Expresson
in the leading biomedical KB, Unified Medical Language System (UMLS) [3].

The mention expression is highly ambiguous and easily confused with the more prevalent entity, Gene
expression. This linking decision may become easier with sufficient training examples (or sufficiently rich struc-
tured information in the knowledge-base) . However, in biomedical [24] and other specialized domains [19], it is often
the case that the knowledge-base information is largely incomplete. Furthermore, the scarcity of training data leads to a
setting in which most entities have not been observed at training.

State-of-the-art entity linking methods which are able to link entities unseen at training time make predictions for
each mention independently [19, 35]. In this way, the methods may have difficulty linking mentions which, as in the
example above, have little lexical similarity with the entities in the knowledge-base, as well as mentions for which the
context is highly ambiguous. These mentions cannot directly use information from one mention (or its linking decision)
to inform the prediction of another mention. On the other hand, entity linking methods that do jointly consider entity
linking decisions [10, 14] are designed for cases in which all of the entities in the knowledge-base to have example
mentions or meta-data at training time [19].

In this paper, we propose an entity linking model in which entity mentions are either (1) linked directly to an entity
in the knowledge-base or (2) join a cluster of other mentions and link as a cluster to an entity in the knowledge-base.
Some mentions may be difficult to link directly to their referent ground truth entity, but may have very clear coreference
relationships to other mentions. So long as one mention among the group of mentions clustered together links to the
correct entity the entire cluster can be correctly classified. This provides for a joint, tranductive-like, inference procedure
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Figure 1: Biomedical Entity Linking. All three highlighted mentions refer to the same entity. The mention
expression is clearly related to the other two highlighted mentions which are much less ambiguous. If considered
independently expression is more closely related to an incorrect entity.

for linking. We describe both the inference procedure as well as training objective for optimizing the mode!’s inference
procedure, based on recent work on supervised clustering [36].

It is important to note that our approach does not aim to do joint coreference and linking, but rather makes joint
linking predictions by clustering together mentions that are difficult to link directly to the knowledge-base. For instance,
in Figure 1, the mention expression may be difficult to link to the ground truth Facial expression entity in the
knowledge-base because the mention can refer to a large number of entities. However, the local syntactic and semantic
information of the paragraph give strong signals that expression is coreferent with facial expression, which is easily
linked to the correct entity.

We perform experiments on two biomedical entity linking datsets: MedMentions [24], the largest publicly available
dataset as well as the benchmark BC5CDR [17]. We find that our approach improves over our strongest baseline by 2.3
points of accuracy on MedMentions and 0.8 points of accuracy on BCSCDR. over the baseline method [19]. We further
analyze the performance of our approach and observe that (1) our method better handles ambignous mention surface
forms (as in the example shown in Figure 1) and (2) our method can correctly link mentions even when the candidate
generation step fails to provide the correct entity as a candidate.

2 Background

Each document D € D, has a set of mentions M(P) = {m%nj,mgm, . .,m%?]}. We denote the set of all mentions
across all documents as plainly A4. The task of entity linking is to classify each mention m; as referent to a single
entity ¢; from a KB of entities. We use £(m;) to refer to the ground truth entity of mention m; and &; to refer to the
predicted entity.

Knowledge-bases. We assume that we are given a knowledge-base corresponding to a closed world of entities.
These KBs are typically massive: English Wikipedia contains just over 6M entities' and the 2020 release of the
UMLS contains 4.28M entities”. We describe in Sections 5.1 & 5.2 the details of the KBs used in each of the experiments.

Candidate Geperation. Given the massive number of entities to which a mention may refer, previous work [19, inter
alia] uses a candidate generation step to reduce the resirict the number of entities considered for a given mention, m, to
a candidate set T'(m). The recall of this step is critical to the overall performance of entity linking models.

!mymber of content papes as of May 20, 2020, https: //en.wikipedia.org/wiki/Special:Statistics
pt tps:/  www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/releasze/notes.html
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Figure 2: Clustering-based Inference for Entity Linking. Mentions are shown in circles and entities in squares. Color
families indicate ground-truth cluster assignments. The left figure shows the graph G that is the basis of the clustering
task, the center figure show predictions under independent linking model, and the right figure shows our proposed
inference linking mentions to entities by running our proposed constrained clustering inference procedure over G that
assigns at most one entity per cluster.

3 Model

In this section, we describe our clustering-based approach for jointly making entity linking predictions for a set of
mentions. Our proposed inference method builds a graph where the nodes are the union of all of the mentions and
entities and the edges have weights denoting the affinities between the endpoints. To make linking decisions, we cluster
the nodes of the graph such that each cluster contains exactly one entity, following which each mention is assigned to
the entity in its cluster.

3.1 Clustering-based Entity Linking

Letgp: M x M — Rand ¢ : M x £ = R be parameterized functions which compute symmetric mention-mention
and mention-entity affinities, respectively. The exact parameterizations of these functions are detailed in Section 3.2.

Define the undirected, weighted graph G = (V,E,w) where V= MUE and E = M x MU {(m,e) : e €
[(m)}. The weight of each edge, w(v;, v;) for v;,v; € V, is determined by ¢ or ¢ depending on the vertices of the
edge: w(m;, m;) = @(m;,m;) and w(m;,e;) = (m;, ;). Linking decisions for each mention are determined by
clustering the vertices of G under the constraint that every entity must appear in exactly one cluster.

Given the graph G, we start with every node in their own individual cluster. We define affinity between a pair of
clusters as the strongest cross-cluster edge between nodes in the two clusters. Iteratively, we greedily merge clusters
by choosing a pair of clusters with largest affinity between them under the constraint that we cannot merge two
clusters which both contain an entity. When every cluster contains exactly one entity, this process can no longer merge
any clusters, and thus terminates’. Each mention is linked to the entity present in its cluster at the end of inference.
Algorithm 1 describes this process of constructing the graph and clustering nodes to make linking decisions more
formally.

Figure 2 shows the proposed inference in action on five entities and six mentions. Initially, every mention and

3This process is equivalent to single-linkage hierarchical agglomerative clustering with the constraint that two entities cannot be in the same
cluster.



entity start in a singleton cluster. In the first round, clusters {m1 } and {m;} are merged, followed by merger of {e3}
and {mg} in the second round, and so on. Note that in fifth round, clusters ¢; = {my, 2} has higher affinity with
¢y = {my,my, m3,e1} than with c3 = {ms}, yet ¢1 and c3 are merged instead of ¢ and ¢, due to the constraint that
we cannot merge two clusters which both contain an entity. At the end, every mention is clustered together with exactly
one entity, and there could be entities present as singleton clusters such as {e4} and {es }. Note that mj3 correctly links
to its gold entity e as a result of being clustered with mentions 11, 5 even though it has higher affinity with entity
ez : w(ms,e3) > w(ms,e1).

Algorithm 1 Clustering Inference for Linking

1: Input: (M, E,T,,¢)
Output: {(m;, &)}
> Construct the graph G
E={)
for m; € M do

Let D; be the document containing m;

for m; € MP)N\ {m;} do

E = EU {(m;, mj, ¢(m;,m;))}
for ¢; € T'(m;) do
E = EU{(m; e, p(mje))}

Construct G = (V, E) from edge set E
Let S be the edges sorted in descending order
> Cluster nodes of G under linking constraint
14: C = {{v}|v € V}
15: for (s,t) € S do
16: ifC(s)NE =D orC(t)NE = @ then
72 C=C\{C(s),C(1)}
5. C=CU{C(s)Ul(h)}
19: > Make linking decisions based on clustering
20 L={}
21: for C € € do
2: M=CnM
3. {é}=Cn¢&
24:  form e Mdo
25: L=LU{(m,é}
26: return L

_ = = =
B 2 e A L

3.2 Affinity Models

We parameterize §(-, ) and ¢(+, -) using two separate deep transformer encoders [32] for our mention-mention affinity
model and mention-entity affinity model — specifically we use the BERT architecture [6] initialized using the weights
from BioBERT [16].

3.2.1 Mention-Mention Model

The mention-mention model is also a cross-encoder, taking as input a pair of mention in context and producing a single
scalar affinity for every pair. The input tokens take the form:

[CLS] <m; > [SEP] < m; > [SEP]

where < m; >:=¢;[START]m; [END]c,
where m; is the mention tokens and ¢; and ¢, are the left and right context of the mention in the text, respectively.
The [START] and [END] tokens are special tokens fine-tuned to signify the start and end of the mention in context,

respectively. We restrict the length of each input sequence to have a maximum of 256 tokens. A representations of
each mention is computed using the average of the encoder’s output representations corresponding to the mention’s



input tokens. The affinity for a mention pair is computed by concatenating their mention representations and passing
it through a linear layer with a sigmoid activation. We make this affinity symmetric by averaging the two possible
orderings of a pair of mentions in the cross-encoder input sequence.

3.2.2 Mention-Entity Model

The mention-entity affinity model is a cross-encoder model [33, 34, 12, inter alia] and takes as input the concatenation
of the mention in context with the entity description. The input tokens take the form:

[CLS]c¢; [START]m[END]c, [SEP]e[SEP]

where the mention in context is the same as in the mention-mention model and e is the description of the entity. We
restrict the length of this input sequence to 256 tokens. After passing the input sequence through BERT, we transform
the output representation corresponding to the [CLS] token with a linear layer with one output unit. This value is
finally passed through the sigmoid function to output affinity between the mention and the entity.

4 Training

In this section, we explain the training procedure for the affinity models ¢(-,-) and (-, -) used by the clustering
inference procedure. We train the mention-mention and mention-entity models independently in a way that allows the
affinities to be comparable when performing inference.

We use triplet max-margin based training objectives to train both models. The most important aspect of our
procedure is how we pick negatives during training. For the mention-entity model, we restrict our negatives to be from
the candidate set. For the mention-mention model, we restrict our negatives to come from mentions within the same
document. From these sets of possible negatives we choose the top-k most offending ones according the instantaneous
state of the model — i.e. the negatives with highest predicted affinities according to the model at that point during
training. The following sections detail the training procedures for both models.

4.1 Mention-Mention Affinity Training

To train the mention-mention affinity model we use a variant of the maximum spanning tree (MST) supervised
single linkage clustering algorithm presented in Yadav et al. [36]. Let MSID) = {m € MP)|E(m) = e} be the
set of mentions referring to entity e; in any one document and the set of ground truth clusters be represented by

C* = {Mng ) |e; € £}. Let P be the set of positive training edges: the edges of the MST of the complete graph on the
cluster C € C*. Let Ny (m.) be the k-nearest within document negatives to the anchor point 1, € C according to the
current state of the model during training. The objective of this training procedure is to minimize the following triplet
max-margin loss* with margin u for each cluster C € C*:

Ly(6;C)= ), Yo lpu(me,my,mo),

MMy €P m_€Ng(my)
where £y, (a,p,n) = [¢p(a,n) — @(a,p) + p]+.

4.2 Mention-Entity Affinity Training

For the mention-entity model, we use a triplet max-margin based objective with margin y where the anchor is a
mention 7 in the training set, the positive is the ground truth entity e, = £ (m), and the negatives are chosen from the
candidate set I'(m). Denote the k most offending negatives according to the current state of the model during training
as Ny(m) C T'(m) \ {€(m)}. Formally, the loss is

LyG;M)=) Yo lyu(mer,e),

m,eq ¢ _e€Ny(m)

where Ly, (a, p,n) = [P(a,n) —p(a, p) + 4.

“Define [x];+ = max(x,0)
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Figure 3: Example predictions on Ambiguous Mentions. Here we show two example outputs for highly ambigous
mention surface forms (inhibition and activity). The independent model incorrectly makes predictions on
these surface forms. The clustering-based model is able to have each ambiguous mention link to a less ambiguous
mention in the same abstract and thereby make correct predictions.

S Experiments

We evaluate on biomedical entity linking using the MedMentions [24] and BC5CDR [17] datasets. We compare
to state-of-the-art methods. We then analyze the performance of our method in more detail and provide qualitative
examples demonstrating our approaches’ ability to use mention-mention relationships to improve candidate generation
and linking.

5.1 MedMentions

MedMentions is a publicly available® dataset consisting of the titles and abstracts of 4,392 PubMed articles. The dataset
is hand-labeled by annotators and contains labeled mention spans and entities linked to the 2017AA full version of
UMLS. Following the suggestion of Mohan and Li [24], we use the ST21PV subset, which restricts the entities linked
in documents to a set of 21 entity types that were deemed most important for building scientific knowledge-bases. We
refer the readers to Mohan and Li [24] for a complete analysis of the dataset and provide a few important summary
statistics here. The train/dev/test split partitions the PubMed articles into three non-overlapping groups. This means that
some entities seen at training time will appear in dev/test and other entities will appear in dev/test but not at training
time. In fact, a large number of entities that appear in dev/test time are unseen at training, about 42% of entities. See
Table 1 for split details and statistics.

Previous work has evaluated on MedMentions using unfairly optimistic candidate generation settings such as using
only 10 candidates including the ground truth [37] or restricting candidates to entities appearing somewhere in the
MedMentions corpus [25]. We instead work in a much more general setting where all entities in UMLS are considered
at candidate generation time and the generated candidates might not include the ground truth entity.

5.2 BCSCDR

BCS5CDR [17] is another entity linking benchmark in the biomedical domain. The dataset consists of 1,500 PubMed
articles annotated with labeled disease and chemical entities. Unlike MedMentions, which contains 21 types of entities,
this dataset contains just two types. These chemical and disease mentions are labeled with entities from MeSH®, a much
smaller biomedical KB than UMLS. See Table 1 for split details and statistics.

Shttps://github.com/chanzuckerberg/MedMentions
Shttps://www.nlm.nih.gov/mesh
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MedMentions BC5CDR
Train Dev Test Train Dev  Test

M| 120K 40K 40K 18K 934 10K
[E(M)] 19K 9K 8K 2K 281 IK
% seen 100 577 575 100 80.1 648

Table 1: Linking Datasets. Statistics of each dataset, including the percent of ground truth entities seen during training
(% seen).

5.3 Preprocessing

The MedMentions ST21PV corpus is processed as follows: (i) Abbreviations defined in the text of each paper are
identified using AB3P [29]. Each definition and abbreviation instance is then replaced with the expanded form. (ii) The
text of each paper in the corpus is tokenized and split into sentences using CoreNLP [20]. (iii) Overlapping mentions
are resolved by preferring longer mentions that begin earlier in each sentence, and mentions are truncated at sentence
boundaries. This results in 379 mentions to be dropped from the total of 203,282. (iv) Finally, the corpus is saved
into the IOB2 tag format. The same preprocessing steps are used for BC5SCDR, except overlapping mentions are not
dropped.

5.4 Candidate Generation

For both datasets, we use a character n-gram TF-IDF model to produce candidates for all of the mentions in all splits.
The candidate generator utilizes the 200k most frequent character n-grams, n € {2...5} and the 200k most frequent
words in the names in £ to produce sparse vectors for all of the mentions and entity descriptions (which in our case is
the canonical name, the type, and a list of known aliases and synonyms). Table 5 provides candidate generation results
for each dataset. The results report the average recall@K at different numbers of candidates (K), i.e., whether or not the
gold entity is top K candidates for a given mention.

5.5 Training and Inference Details

Our model contains 220M parameters, the majority of which are contained within the two separate BERT-based
models. We optimize both the models with mini-batch stochastic gradient descent using the Adam optimizer [13] with
recommended learning rate of 5e-5 [6] with no warm-up steps. We accumulate gradients over all of the triples for a
batch size of 16 within document clusters. We compute the top-k most offending negatives on-the-fly for each batch by
running the model in inference mode proceeding each training step. Training and inference are done on a single machine
with 8 NVIDIA 1080 Ti GPUs. We train our model on MedMentions for two epochs and BC5CDR for four epochs.
Training takes approximately three days for MedMentions and one day for BCSCDR. Clustering-based inference takes
about three hours for MedMentions and one hour for BCSCDR. Code and data to reproduce experiments will be made
available.

5.6 Results

We compare our clustering-based inference procedure, which we refer to our approach as CLUSTERING-BASED, to
a state-of-the-art independent inference procedure, INDEPENDENT, which is the zero-shot architecture proposed by
Logeswaran et al.. This same model is used as the mention-entity affinity model used in our approach. We also compare
to to an n-gram tf-idf model (our candidate generation model), TAGGERONE [15], BIOSYN [30], and SAPBERT [18]
on both MedMentions and BC5CDR.

Table 2 shows performance of the baseline models, INDEPENDENT, and CLUSTERING-BASED inference procedure
on MedMentions and BC5CDR. We report results using the gold mention segmentation (rather than end-to-end) to
focus on the performance of each model in terms of linking rather than confounding the performance by including
segmentation. Due to TAGGERONE’s joint entity recognition, typing, and linking architecture, we cannot make
predictions for gold mention boundaries without also using their gold types. And so to have a fair comparison to
TaggerOne, we provide the gold mention boundaries and types to each system and report these results as well.

We use seen and unseen to refer to the sets of mentions whose ground truth entities are seen and unseen at training,
respectively. Note that even if a mention is in the subset of mentions referred to as seen, it does not mean that we have



MedMentions BC5CDR
Overall Acc. on Overall Acc. on
Acc. Seen Unseen Acc. Seen Unseen
N-GRAM TF-1DF 50.9 50.9 51.0 86.9 89.2 74.6
BIOSYN i) 725t 765t 587t g7.8t  89.0f 811t
SAPBERT 69.8t 729"  589°f 852"t 858" 8207
INDEPENDENT 9 72.8 75.9 61.9 90.5 94.0 73.6
CLUSTERING-BASED (ours) 74.1 77.3 62.9 91.3 94.9 73.8
w/ Gold Types
N-GRAM TF-IDF 67.9 69.0 64.0 87.8 90.2 76.1
TAGGERONE 151 73.8 78.2 58.8 89.8 91.8 79.9
BIOSYN i3 77.0f 807" 641t 879t 89.1t 813"
SAPBERT 5 741t 770t 63.8t 86.0" 868" 820"
INDEPENDENT 9] 76.8 79.2 68.4 90.6 94.1 73.6
CLUSTERING-BASED (ours) 79.1 81.5 70.5 914 94.9 74.0

Table 2: Entity Linking Results. We report linking accuracy on MedMentions and BC5CDR datasets with gold
mentions spans and gold mention spans and types. We observe that CLUSTERING-BASED inference provides improved
accuracy in each setting with additional improvements seen when gold entity types are provided. (*Hits at one synonym
— multiple entities could be predicted)

seen the particular surface form before in the training set, merely that we have seen other mentions of that particular
entity.

On MedMentions, when the models are provided with only the gold mention span, CLUSTERING-BASED inference
procedure outperforms INDEPENDENT by 1.3 points of accuracy, and we see improvements in accuracy for both seen
and unseen entities. When the models are additionally provided with the gold type, we see substantial improvements
in accuracy for both INDEPENDENT and CLUSTERING-BASED over TAGGERONE, namely 3.0 and 5.3 points of
improvement, respectively.

On BC5CDR, when the models are provided with only the gold mention span, CLUSTERING-BASED inference
procedure outperforms INDEPENDENT by 0.4 points of accuracy, and we see improvements in accuracy for both seen
and unseen entities. When the models are additionally provided with the gold type, we see improvements in accuracy
for both INDEPENDENT and CLUSTERING-BASED over TAGGERONE, namely 0.8 and 1.6 points of improvement,
respectively.

Observe that the candidate generation results are drastically different for the two datasets (Table 5). We posit that
the ability to generate correct candidates correlates with the relative difficultly of the linking task on each dataset,
respectively.

5.7 Analysis: Recovering from Poor Candidate Generation

We hypothesize that our clustering-based inference procedure would allow for better performance on mentions for
which candidate generation is difficult. Observe that while the performance of the independent model is upper bounded
by the recall of candidate generation, this is not an upper bound for the clustering-based model. The clustering-based
model can allow mentions that have no suitable candidates to link to other mentions in the same document. We report the
accuracy of both systems with respect to whether or not the ground truth entity is in each mentions’ list of candidates.

The accuracy for each system and each partition of mentions is shown in Table 3. Observe that our approach offers
a large number of mentions a correct resolution, when the independent model could not link them correctly due to
the ground truth entity being missing from the candidate list. Additionally, it can be seen that CLUSTERING-BASED
does sacrifice some performance in comparison to INDEPENDENT, but more than makes up for it in the case where the
ground truth entity is not in the candidate set.



MedMentions BC5CDR
E(m)eT(m) &E(m)&T(m) | E(m)el(m) E(m) ¢TI (m)

INDEPENDENT 85.3 0.0 95.5 0.0

CLUSTERING-BASED 84.5 13.9 95.3 14.9
w/ Gold Types

INDEPENDENT 90.0 0.0 95.7 0.0

CLUSTERING-BASED 89.3 19.3 95.4 15.9

Table 3: Performance when Candidate Generation Fails. We report the accuracy of each method on mentions for
which the ground truth entity is in the candidate list (£ (m) € T'(m)) and is not in the list (£ (m) & T'(m)). We observe
that our proposed approach is able to perform reasonably well even when candidate generation fails.

Accuracy

INDEPENDENT 9 71.91
CLUSTERING-BASED (ours) 73.03

Table 4: Performance on Ambiguous Mentions We select mentions for which the surface form is labeled 10 or more
different entities in MedMentions and measure performance on instances of these surface forms on the test data. We
observe that CLUSTERING-BASED is able to more accurately link these mentions. Figure 3 shows examples of these
mentions.

5.8 Analysis: Handling Ambiguous Mentions

We also hypothesize that for mentions which are highly ambiguous and could refer to many different entities, such
as common nouns like virus, disease, etc, the clustering-based inference should offer improvements. Table 4 shows
that our approach is able to correctly link more ambiguous mentions compared to independent model’. Figure 3 shows
two examples from this subset where CLUSTERING-BASED inference is able to make the correct linking decision and
INDEPENDENT is not.

Recall@ BC5CDR MedMentions

1 86.9 50.8
2 89.4 63.8
4 91.1 73.4
8 92.1 79.2
16 93.1 82.3
32 94.3 84.6
64 94.9 85.3

Table 5: Candidate Generation Recall. Recall is measured by whether or not the ground truth entity is in the top K
candidate entities for the given mention. We report the micro average recall over all mentions.

6 Related Work

Entity linking is widely studied and often focused on linking mentions to Wikipedia entities (also known as Wikification)
[22, 5, 23, 11, 27, 4]. Entity linking is often done independently for each mention in the document [27, 26] or by
modeling dependencies between predictions of entities in a document [4, 10, 14].

In the biomedical domain, Unified Medical Language System (UMLYS) is often used as a knowledge-base for entities
[24, 15]. While UMLS is a rich ontology of concepts and relationships between them, this domain is low resource

TThese are: activation, activity, a, b, cardiac, cells, clinical, compounds, cr, development, disease, function, fusion, inhibition, injuries, injury, liver,
management, methods, mice, model, pa, production, protein, regulation, report, responses, response, 1, screening, stress, studies, study, treatment



compared to Wikipedia with respect to number of labeled training data for each entity mention. This leads to a zero-shot
setting in datasets such as MedMentions [24] where new entities are seen at test time. Previous work has addressed this
zero-shot setting using models of the type hierarchy [25, 37]. This previous work [25, 37] uses an unrealistic candidate
generation setting where the true positive candidate is within the candidate set and/or entities are limited to those in the
dataset rather than those in the knowledge-base.

Mention-mention relationships are also explored in [14] which extends the pairwise CRF model [10] to use
mention-level relationships in addition to entity relationships. These works use attention in a way to build the context
representation of the mentions. However, as mentioned by Logeswaran et al. [19] is not well suited for zero-shot linking.

Coreference (both within and across documents) has also been explored by past work [9]. This work uses an iterative
procedure that performs hard clustering for the sake of aggregating the contexts of entity mentions. Durrett and Klein
[8] presents a CRF-based model for joint NER, within-document coreference, and linking. They show that jointly
modeling these three tasks improves performance over the independent baselines. This differs from our work since we
do not require coreference decisions to be correct in order to make correct linking decisions. Other work performs joint
entity and event coreference [2] without linking.

7 Conclusion

In this work, we presented a novel clustering-based inference procedure which enables joint entity linking predictions.
We evaluate the effectiveness of our approach on the two biomedical entity linking datasets, including the largest
publicly available dataset. We show through analysis that our approach is better suited to link mentions with ambiguous
surface forms and link mentions where the ground truth entity is not in the candidate set.

8 Ethical Considerations

Entity linking is a task with the intention of providing useful information when building a semantic index of documents.
This semantic index is a core component of systems which allow users to search, retrieve, and analyze text documents.
In our specific case, we are interested in building semantic indexes of scientific documents where the end user would be
scientists and researchers. The goal is to help them navigate the vast amount of literature and accelerate science. This
being said, users need to take the outputs of such a system as suggestions and with the potential that the information
is incorrect. Researchers must be aware that the system is not perfect and they should not jump to any conclusions
especially about important decisions. Additionally, the researcher can always verify the decisions being made by the
system.

While this paper focuses on biomedical entity linking, this technique could be extended to other domains. In such
other domains, users might not have as much expertise, but the user is still responsible for making decisions on their
own, since the system is not perfect. In addition, the system developers and designers need to be aware of their particular
application to ensure to mitigate harm which could come from such a system. For example, in any application that deals
with personalized data, we need to be wary of the potential outcomes which could come from an entity linking based
system or semantic index, such as privacy or other potential malicious behaviour or unforeseen consequences due to the
decisions being made by the system.

Acknowledgements

We thank members of UMass IESL and NLP groups for helpful discussion and feedback. This work is funded in part by
the Center for Data Science and the Center for Intelligent Information Retrieval, and in part by the National Science
Foundation under Grants No. 1763618, and in part by the Chan Zuckerberg Initiative under the project Scientific
Knowledge Base Construction. The work reported here was performed in part by the Center for Data Science and the
Center for Intelligent Information Retrieval, and in part using high performance computing equipment obtained under
a grant from the Collaborative R&D Fund managed by the Massachusetts Technology Collaborative. Rico Angell is
supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1938059. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect those of the sponsor.

10



References

[1] Krisztian Balog and Tom Kenter. 2019. Personal knowledge graphs: A research agenda. In Proceedings of the
2019 ACM SIGIR International Conference on Theory of Information Retrieval, pages 217-220. ACM.

[2] Shany Barhom, Vered Shwartz, Alon Eirew, Michael Bugert, Nils Reimers, and Ido Dagan. 2019. Revisiting
joint modeling of cross-document entity and event coreference resolution. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 4179—4189, Florence, Italy. Association for
Computational Linguistics.

[3] Olivier Bodenreider. 2004. The unified medical language system (umls): Integrating biomedical terminology.
Nucleic acids research, 32.

[4] Xiao Cheng and Dan Roth. 2013. Relational inference for wikification. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pages 1787—-1796.

[5] Silviu Cucerzan. 2007. Large-scale named entity disambiguation based on wikipedia data. In Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 708-716.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Association for Computational Linguistics.

[7] Bhuwan Dhingra, Manzil Zaheer, Vidhisha Balachandran, Graham Neubig, Ruslan Salakhutdinov, and William W
Cohen. 2020. Differentiable reasoning over a virtual knowledge base. In International Conference on Learning
Representations (ICLR).

[8] Greg Durrett and Dan Klein. 2014. A joint model for entity analysis: Coreference, typing, and linking. Transactions
of the Association for Computational Linguistics, 2:477-490.

[9] Sourav Dutta and Gerhard Weikum. 2015. C3EL: A joint model for cross-document co-reference resolution and
entity linking. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 846856, Lisbon, Portugal. Association for Computational Linguistics.

[10] Octavian-Eugen Ganea and Thomas Hofmann. 2017. Deep joint entity disambiguation with local neural attention.
arXiv preprint arXiv:1704.04920.

[11] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fiirstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum. 2011. Robust disambiguation of named entities in text.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 782-792.
Association for Computational Linguistics.

[12] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. 2019. Poly-encoders: Transformer
architectures and pre-training strategies for fast and accurate multi-sentence scoring. CoRR abs/1905.01969.
External Links: Link Cited by, 2:2-2.

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[14] Phong Le and Ivan Titov. 2018. Improving entity linking by modeling latent relations between mentions. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1595-1604.

[15] Robert Leaman and Zhiyong Lu. 2016. Taggerone: joint named entity recognition and normalization with
semi-markov models. Bioinformatics, 32(18):2839-2846.

[16] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. Biobert: a pre-trained biomedical language representation model for biomedical text mining. CoRR,
abs/1901.08746.

11


https://doi.org/10.18653/v1/P19-1409
https://doi.org/10.18653/v1/P19-1409
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00197
https://doi.org/10.18653/v1/D15-1101
https://doi.org/10.18653/v1/D15-1101
http://arxiv.org/abs/1901.08746

[17] Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sciaky, Chih-Hsuan Wei, Robert Leaman, Allan Peter Davis,
Carolyn J. Mattingly, Thomas C. Wiegers, and Zhiyong Lu. 2016. BioCreative V CDR task corpus: a resource for
chemical disease relation extraction. Database, 2016. Baw068.

[18] Fangyu Liu, Ehsan Shareghi, Zaigiao Meng, Marco Basaldella, and Nigel Collier. 2020. Self-alignment pre-training
for biomedical entity representations.

[19] Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, Jacob Devlin, and Honglak Lee.
2019. Zero-shot entity linking by reading entity descriptions. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 3449-3460, Florence, Italy. Association for Computational
Linguistics.

[20] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language processing toolkit. In Association for Computational Linguistics
(ACL) System Demonstrations, pages 55-60.

[21] Edgar Meij, Krisztian Balog, and Daan Odijk. 2014. Entity linking and retrieval for semantic search. In
Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14, pages
683-684, New York, NY, USA. ACM.

[22] Rada Mihalcea and Andras Csomai. 2007. Wikify!: linking documents to encyclopedic knowledge. In Proceedings
of the sixteenth ACM conference on Conference on information and knowledge management, pages 233-242.
ACM.

[23] David Milne and Ian H Witten. 2008. Learning to link with wikipedia. In Proceedings of the 17th ACM conference
on Information and knowledge management, pages 509-518. ACM.

[24] Sunil Mohan and Donghui Li. 2019. Medmentions: A large biomedical corpus annotated with umls concepts. In
Automated Knowledge Base Construction.

[25] Shikhar Murty, Patrick Verga, Luke Vilnis, Irena Radovanovic, and Andrew McCallum. 2018. Hierarchical losses
and new resources for fine-grained entity typing and linking. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 97-109, Melbourne, Australia.
Association for Computational Linguistics.

[26] Jonathan Raphael Raiman and Olivier Michel Raiman. 2018. Deeptype: multilingual entity linking by neural type
system evolution. In Thirty-Second AAAI Conference on Artificial Intelligence.

[27] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. 2011. Local and global algorithms for disambiguation
to wikipedia. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 1375—1384. Association for Computational Linguistics.

[28] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin. 2013. Relation extraction with matrix
factorization and universal schemas. In Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 74—84.

[29] Sunghwan Sohn, Donald C. Comeau, Won Gu Kim, and W. John Wilbur. 2008. Abbreviation definition identifica-
tion based on automatic precision estimates. BMC Bioinformatics, 9:402.

[30] Mujeen Sung, Hwisang Jeon, Jinhyuk Lee, and Jaewoo Kang. 2020. Biomedical entity representations with
synonym marginalization. arXiv preprint arXiv:2005.00239.

[31] Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christopher D Manning. 2012. Multi-instance multi-label
learning for relation extraction. In Proceedings of the 2012 joint conference on empirical methods in natural
language processing and computational natural language learning, pages 455-465. Association for Computational
Linguistics.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems, pages
5998-6008.

12


https://doi.org/10.1093/database/baw068
https://doi.org/10.1093/database/baw068
http://arxiv.org/abs/2010.11784
http://arxiv.org/abs/2010.11784
https://doi.org/10.18653/v1/P19-1335
http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/10.1145/2556195.2556201
https://doi.org/10.18653/v1/P18-1010
https://doi.org/10.18653/v1/P18-1010

[33] Jesse Vig and Kalai Ramea. 2019. Comparison of transfer-learning approaches for response selection in multi-turn
conversations.

[34] Thomas Wolf, Victor Sanh, Julien Chaumond, and Clement Delangue. 2019. Transfertransfo: A transfer learning
approach for neural network based conversational agents. arXiv preprint arXiv:1901.08149.

[35] Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. 2019. Zero-shot entity
linking with dense entity retrieval. arXiv preprint arXiv:1911.03814.

[36] Nishant Yadav, Ari Kobren, Nicholas Monath, and Andrew McCallum. 2019. Supervised hierarchical clustering
with exponential linkage. In International Conference on Machine Learning (ICML).

[37] Ming Zhu, Busra Celikkaya, Parminder Bhatia, and Chandan K Reddy. 2019. Latte: Latent type modeling for
biomedical entity linking. arXiv preprint arXiv:1911.09787.

13



	Introduction
	Background
	Model
	Clustering-based Entity Linking
	Affinity Models
	Mention-Mention Model
	Mention-Entity Model


	Training
	Mention-Mention Affinity Training
	Mention-Entity Affinity Training

	Experiments
	MedMentions
	BC5CDR
	Preprocessing
	Candidate Generation
	Training and Inference Details
	Results
	Analysis: Recovering from Poor Candidate Generation
	Analysis: Handling Ambiguous Mentions

	Related Work
	Conclusion
	Ethical Considerations



