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Abstract

In transportation networks with stochastic and dynamic travel times, park-and-ride
decisions are often made adaptively considering the realized state of traffic. That is,
users continue driving towards their destination if the congestion level is low, but
may consider taking transit when the congestion level is high. This adaptive behavior
determines whether and where people park-and-ride. We propose to use a Markov
decision process to model the problem of commuters’ adaptive park-and-ride choice
behavior in a transportation network with time-dependent and stochastic link travel
times. The model evaluates a routing policy by minimizing the expected cost of
travel that leverages the online information about the travel time on outgoing links in
making park-and-ride decisions. We provide a case study of park-and-ride facilities
located on freeway 1-394 in Twin Cities, Minnesota. The results show a significant
improvement in the travel time by the use of park-and-ride during congested condi-
tions. It also reveals the time of departure, the state of the traffic, and the location
from where park-and-ride becomes an attractive option to the commuters. Finally,
we show the benefit of using online routing in comparison to an offline routing
algorithm.
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1 Introduction

Due to a rise in the number of motor vehicles resulting from increasing travel
demand, urban highways are facing an inescapable condition of traffic congestion.
This increase in demand has led to a rise in the level of fuel consumption, greenhouse
gas emissions, travel delays, accidents, and thereby a negative impact on the quality
of life in cities (Shepardson and Carey 2018). It has been observed that the conges-
tion problem is more dominant in the Central Business District (CBD) areas where
people commute every day for work or school. To avoid this congestion, travelers
often consider using park-and-ride mode i.e., they drive up to a certain stretch of the
highway, and then take transit to reach their destination. The routing of park-and-ride
users is different from transit and auto users as travelers need to decide where to park
and take transit. These decisions are often made adaptively considering the realized
state of traffic and transit availability.

Modeling park-and-ride location choice of commuters in a congested urban net-
work is inherently a difficult problem. Various factors such as accessibility, parking
availability at park-and-ride locations, travel time perception of users, or trip costs
affect the decision process (Pang and Khani 2018; Webb and Khani 2020). Besides
these, transportation networks are often subject to random arc travel times. This vari-
ability can be attributed to several factors such as congested road conditions (e.g., due
to induced demand), traffic signals, accidents, bad weather, construction disruptions,
and so on. Due to this variability in travel time, the park-and-ride location choice
becomes even more complex. Recent advances in intelligent transportation systems
such as Variable-message sign (VMS) on roads or Automatic Vehicle Location (AVL)
technology employed in transit vehicles allow us to gather real-time information
about the current state of the transportation network. However, most routing applica-
tions do not consider this uncertainty while providing routing policies. The adaptive
routing policy can help users in making better choices and improve the overall travel
cost by re-evaluating the auto route, park-and-ride location, and transit itinerary.

In the United States, several freeways with and without High-Occupancy Toll
(HOT) lane connect the residential suburbs to CBD, where many people commute
for work and education. Multiple express bus routes connect the suburban areas to
the CBD along these facilities, with relatively high speed but low frequency. These
routes are mostly supplemented by park-and-ride facilities alongside the freeways
and give commuters the choice to transfer to transit mode at different points. On less
congested days/times, one may continue driving to the destination, while on more
congested days/times, parking at a park-and-ride location at a midway point and tak-
ing transit for the remaining part of the trip can lead to shorter travel time or cost.
When real-time information on congestion level and waiting time of transit routes are
provided to users using variable message signs along the freeway corridor and rout-
ing applications respectively, users can change their decisions en route considering
current congestion level and short term traffic predictions. Under these conditions,
understanding and modeling users’ park-and-ride decisions become a difficult but
interesting research question.

In this study, we model the adaptive routing of a park-and-ride user trip in a
stochastic and time-varying (STV) transportation network. We assume that the arc
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travel time in the auto network and wait time for buses at any park-and-ride location
is a time-dependent random variable. Travelers receive information en-route when
arriving at each node. This information includes the travel time on the downstream
arcs, and wait time of buses if they reach a park-and-ride node which helps them
to assess the network conditions, and decide whether to park-and-ride or continue
their journey on the freeway. We model this adaptive routing problem as a stochas-
tic shortest path (SSP) problem. The states are defined by a tuple of node, time, and
the online information received. The objective is to minimize the expected general-
ized cost of travel which includes travel time on road and parking cost if the auto
option is chosen, otherwise, the road travel time, transit travel time, and transit fare if
park-and-ride is chosen. Through this article, we make the following contributions:

— Modeling adaptive park-and-ride routing as a stochastic shortest path problem

— Formulating value iteration and label correcting solution methods for the current
problem

— Evaluating optimal policy by minimizing expected cost of travel of a park-and-
ride trip

— Implementing the current methodology to I-394 in Twin Cities, MN

The rest of the article is structured as follows. Section 2 presents the related work
on adaptive routing in stochastic transportation networks. Then, Section 3 describes
the problem with an example, which is followed by Section 4 introducing the prob-
lem definitions and various notations used in this article. Section 5 formulates the
park-and-ride decision problem and describes various solution algorithms to solve it.
Then, Section 6 presents a case study, and finally, the conclusions and directions for
future research are presented in Sections 7 and 8 respectively. The proofs of various
propositions are provided in Appendix B.

2 Related Work

There has been a considerable amount of work on the shortest route planning in
the literature. It consists of route planning for different modes of transport such as
auto (Ahuja et al. 1988), transit (Tong and Richardson 1984b; Khani et al. 2015;
Kumar and Khani 2021), and park-and-ride (Khani et al. 2012). These route planning
algorithms can be classified into two categories: deterministic and stochastic shortest
path problems. In deterministic shortest path, using the historical average travel time
on links, a path with minimum travel time is sought. On the other hand, a stochastic
shortest path problem considers link travel time as a random variable and a path
with minimum expected travel time between an origin and destination is sought. The
stochastic shortest path problems can be further divided into two categories. The first
category tries to find a priori solution that minimizes the expected cost (Mirchandani
and Soroush 1985) or expectation-variance cost (Khani and Boyles 2015; Zhang and
Khani 2019), while the second category finds an online optimal solution that allows
decisions to be made at various stages (recourse or adaptive routing problem).

The recourse problem is an opportunity for a decision-maker to re-evaluate their
remaining path based on the information obtained en route. Croucher (1978) seems to
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be the first to study this type of problem. Hall (1986) specified that the least expected
travel time path between two nodes in a network with travel time both random and
time-dependent cannot be found using standard shortest path algorithms (such as
Dijkstra’s algorithm), as the optimal route choice is not a simple path, but a strategy
or hyperpath in which arcs are chosen based on an adaptive decision rule. Andreatta
and Romeo (1988) described this problem on a network with general dependency
in which different possible realizations of the network are considered. Psaraftis and
Tsitsiklis (1993) presented the shortest path problem in acyclic networks in which
the cost of an arc is a function of an environment variable at the head node of that
arc. Each of these environment variables is assumed to evolve according to an inde-
pendent Markov process. Polychronopoulos and Tsitsiklis (1996) presented solution
methods for two models of the shortest path with recourse. The first model assumes a
network with possible realizations of the arc costs whereas the second model assumes
independent arc costs as a random variable. A label setting algorithm was devel-
oped by Miller-Hooks and Mahmassani (2003) to evaluate a priori least expected
travel time path in a stochastic time-varying (STV) network by assuming indepen-
dence among arc costs as well as time periods. They used a similar label setting
algorithm to evaluate the least expected hyperpaths for adaptive route choice in STV
networks (Miller-Hooks 2001). Gao and Chabini (2006) also developed an exact
algorithm and several approximation algorithms such as certainty equivalence, no-
online-information, and open-loop feedback algorithm to find the routing policy in
STV networks.

As several authors (Polychronopoulos and Tsitsiklis 1996; Andreatta and Romeo
1988) considered a general spatial dependency, Waller and Ziliaskopoulos (2002)
considered limited dependency in evaluating the shortest path with recourse. They
presented two types of dependencies in a stochastic network. The one-step spatial
dependency describes the transition of an arc state to another depending on the state
of adjacent arcs. On the other hand, the temporal dependency reveals the state of
downstream arcs when a traveler reaches a particular node. In both cases, a label-
ing algorithm is presented to evaluate the online shortest path having a minimum
expected length. Provan (2003) classified the shortest path with recourse problem
into two cases: Reset and No reset. In no reset case, if an arc is visited, then its cost
becomes deterministically known upon further visits. On the other hand, in the reset
case, each visit to a node is an independent stochastic trial. Provan proved that every
instance of the No reset problem is an NP-Hard problem and provided a polynomial-
time algorithm for the reset case. Recently, Boyles and Rambha (2016) formulated
this problem as a total cost Markov Decision Process (MDP) to detect the unbounded
instances in the presence of negative arc costs. The stochastic version of adaptive
route choice was developed by Gao et al. (2008), Gao (1999), and Ding-Mastera
(2016). Gao et al. (2008) proposed an adaptive path model and an adaptive routing
policy choice model for STV networks and showed that the adaptive routing policy
choice model can achieve lesser expected cost in comparison to the adaptive path
model. Gao and Huang (2012) designed a heuristic algorithm for the adaptive rout-
ing problem for four different types of online information schemes, namely, perfect
information, delayed global information, global pre-trip information, and up-to-date
radio information on a subset of arcs.
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The adaptive routing by passengers in the case of transit networks is also a
common phenomenon. Due to several bus options, passengers often adopt varying
strategies to board the bus (Chriqui and Robillard 1975). Spiess and Florian (1989)
proposed that passengers take the first line among the set of attractive lines and for-
mulated this problem as a linear program to solve the transit assignment problem.
Nguyen and Pallottino (1988), formally defined hyperpaths to model this behavior
which is a set of paths (a subnetwork) rather than just a single path. There are sev-
eral studies such as Liu et al. (2019) and Nie and Wu (2009) which consider online
routing based on the assumptions on the distribution of the headway. This problem is
generally called the shortest path problem considering on-time arrival (SOTA) prob-
ability. Rambha et al. (2016) presented a pioneering effort in the case of the adaptive
transit routing problem in a time-dependent stochastic network. They formulated a
finite horizon MDP and presented several pre-processing ways to reduce the compu-
tational time of computing the least expected cost hyperpath. Khani (2019) developed
a label setting algorithm to evaluate an online shortest path for reliable routing in
case of schedule-based transit networks considering transfer failure probability.

The online shortest path has also been used for modeling route choice in various
applications. A User Equilibrium with Recourse (UER) model was developed by
Unnikrishnan and Waller (2009), which has been used for continuous network design
(Unnikrishnan and Lin 2012), optimally locating the information sensors (Boyles and
Waller 2011), and marginal cost pricing for system optimal traffic assignment with
recourse (Rambha et al. 2018). Using a policy-size logit route choice, Gao (1999)
developed a policy-based stochastic dynamic traffic assignment model. Jafari and
Boyle presented a priori routing and online routing of an Electric Vehicle (EV) in
a network with stochastic travel time in Jafari and Boyles (2017a) and Jafari and
Boyles (2017b) respectively. It has also been used for online parking search by Tang
et al. (2014) and Levin and Boyles (2019).

None of the above studies has considered adaptive routing in a multimodal frame-
work, such as for park-and-ride mode which consists of routing in both auto and
transit networks. In this research, we study the adaptive behavior of commuters in
terms of park-and-ride decision and its location choice, considering two modes of
transportation. We assume that the link travel times on the roadway network are
stochastic and time-dependent and transit service has a schedule. We model this phe-
nomenon as an infinite-horizon total cost MDP. A numerical example on a small
network based on a real case study is presented. In nutshell, this research presents a
method to evaluate efficient routing strategies for park-and-ride when online infor-
mation is provided. This understanding will have a future impact on the quality of
a trip and the satisfaction of travelers through improved planning, the location of
park-and-ride facilities, tolling on freeways, and the scheduling of transit service.

3 Problem Description
Given the uncertainty in travel time on a freeway and bus arrival time at the park-

and-ride locations, the problem is to navigate a traveler commuting from a suburban
region to a downtown location in minimum expected travel cost by deciding:
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1. Whether to continue driving towards the destination or use a park-and-ride
location to take transit?

2. At which park-and-ride location should the traveler park their car?

3. At what times of the day, taking transit from a park-and-ride location minimizes
the overall expected travel cost?

To better understand the problem, an illustrative example is provided in Fig. 1.
The network given in this example consists of 4 nodes and 4 links, with travel time
shown on the links. The path (r, p, d) represents a freeway with p as the park-and-
ride node from where it is possible to take transit. The travel time and wait time on
link (p, d) and (p, t) respectively are random variable (but not time-varying for sim-
plicity) whose distribution is shown on the links. When a traveler arrives at node p,
one of the possible realizations of cost on the outgoing links is revealed to them.
Depending on the information and time of arrival, we need to compute an optimal
policy that decides whether to take transit or continue driving on the freeway to min-
imize the expected cost to reach the destination. In this case, it is optimal to take
freeway from p if the travel time of 10 units is revealed to the traveler on it, other-
wise it is optimal to take transit from there. The expected cost of using the adaptive
routing policy is 42.5 units in comparison to an expected cost of 56 units by always
taking the freeway and 45 units by always taking the park-and-ride option.

4 Preliminaries

In this section, we describe the network topology and various assumptions involved
in modeling the stated problem. Let us start by considering an auto network repre-
sented by a directed graph G,(N,, P,;, A;), where N, represents the set of nodes,
A, represents the set of links, and P, C N, represents the set of nodes where park-
and-ride facilities are located. Let G;(N;, A;) be the directed graph representing the
time-dependent transit network, where N; and A, represent the time-dependent nodes
and links in the transit network. The set A; = A" U A} can be partitioned into a set of
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Fig. 1 An illustrative example of a park-and-ride trip in a network with random travel time
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walking (used for access and egress) or waiting links A} and a set of in-vehicle links
A} . The park-and-ride nodes in the auto network serve particular nodes in the transit
network. Let Z : P, — 2Mi be the set-valued map that assigns a park-and-ride node
to a set of transit nodes. Note that there can be no park-and-ride node connected to a
transit node if the walking distance to the nearest park-and-ride node is more than a
certain threshold (say 0.75mi). Let M = {(ny, n;) € P, x Nt : ny € Z(ny)} be the set
of links created between park-and-ride nodes and transit nodes and vice-versa known
as Mode transfer links. These links involve walking time to access the transit stop
and waiting time before the arrival of the bus. Let Z = U, cp, Z(n) be the collection
of all transit network nodes which are connected to various park-and-ride facilities.
Further, let us denote I" (i) and I"~! (i) as the forward star {j : (i, j) € N, UN; UM}
and backward star {j : (j,i) € N, U N; U M} of node i respectively and 7 as the
set of discretized time values with interval Az. The value of Ar should be less than
the minimum travel time on any link. This is necessary to ensure the state transition
from one time interval to another by taking an action in the MDP described later in
Section 5.2. As the decision of taking transit at a park-and-ride node depends on the
time the traveler arrives at that node, we need to expand the static road network into
a time-dependent network. This is done by replicating the nodes i € N, at different
time intervals ¢ € 7 and connecting them with the corresponding cost of travel.

We assume that the travel time and wait time on the auto network links A, and
mode transfer links M, respectively, are time-dependent discrete random variables
with finite support, but the travel time on transit links (A; = A}’ U A}) is constant.
The random travel time on links A, U M results in a node-dependent stochasticity
as when the traveler arrives at node i € N, the information about the travel time on
all the downstream links attached to it is revealed to them. Let ®@;(¢) denote the set
of possible states at node i € N,, where probability of observing a particular state
6 € O;(t) at time ¢ is pe. Each state 6 € ©;(t) is a realization of travel time or
wait time (if i € P,) on downstream links attached to node i. Let S;;(¢) be the set
of possible realizations of travel time (or wait time) on link (i, j) € A, U M at time
t. Clearly, ®;(t) = X, j)ea,umSij(t) are the possible states at node i and time ¢,
where x represents the cross product of the sets. Moreover, each 6 € ©;(¢) represents
an information that is revealed to a traveler when arriving at node i at time ¢. This
information consists of travel time or wait time (if arrived at a park-and-ride node) on
outgoing links from node i which is represented by cigj, VO € ©;(t),Vj € I'(i). Let
¢;j be the cost associated with link (i, j) € A;. A value of time parameter « is used to
convert monetary costs into time units. The monetary costs may include parking cost
7, at a particular node or transit fair 7y to board a transit route. Before proceeding
further, we make the following assumptions in this study, which help us in defining
the current problem.

Assumptions

1. The travel time on auto network links (A,) and waiting time on mode transfer
links (M) are modeled as time-dependent discrete random variables with finite
support. We do not assume any stochasticity in the travel time experienced in
the transit network. This is because the transit vehicles can use high occupancy
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vehicle lane on freeways or dedicated infrastructure (such as light rail or heavy
rail transit), which, in general, provide reliable travel times.

2. The arc travel times on the road network takes new independent cost values each
time an arc is traversed. This condition is called reset condition and is necessary
to develop a polynomial-time algorithm for this problem (Provan 2003).

3. There are no time-dependent correlations in travel time or wait time on links
and are assumed to be independent.

4. The online information provided to the commuter is assumed to be one of the
realizations of traffic state obtained from the historical data, and the proposed
routing algorithm computes optimal policy for every such realization.

5. The online information is available at each node of the auto network. This infor-
mation may consist of travel time or wait time depending on the type of link,
which is accessed from online routing applications, Variable-message signs
(VMS), or radio signals. Note that this is not a strict requirement, as the nodes
with no online information can just have the deterministic cost for adjacent
downstream links (with probability 1).

6. The passenger is assumed to be an expected-cost-minimizer. The word “optimal
policy” used in this article minimizes the expected cost of travel (comprising
of travel time, wait time, fare, and parking cost), and does not consider other
attributes affecting passengers’ utility.

7. The passenger has a preferred arrival time P AT at the destination location.

8. There exists a transit stop near the destination of the traveler, which is accessible
by walking. This is generally true for the destinations in CBD areas, which are
well served by transit services.

9. There is sufficient capacity at park-and-ride facilities to park.

10. There is sufficient capacity to board the transit vehicle. We do not model the
failure-to-board instances in this problem.

11. The auto and transit networks are connected.

12.  'We assume that the waiting time and travel time are the same cost to the traveler
and use the same parameter to convert it into travel cost.

The relaxations of Assumptions 1, 6, 9, and 10 are research topics in their own
right and a discussion on them is provided in Section 8.

5 Adaptive Routing of Park-and-ride Trip

This section presents the solution methodology for adaptive routing of the park-
and-ride trip. The problem is to navigate a passenger starting at origin r € N, to
destination d € N; in minimum expected travel cost. The computation of optimal
routing consists of two steps. In the first step, we compute the latest departure time
(L DT) label from every bus stop of park-and-ride locations (Z), so that the traveler
reaches the destination before the preferred arrival time. This LDT label is com-
puted for each time-dependent transit node in Z, which is represented by a unique
transit route and a trip departure time. The trip information is obtained from the tran-
sit schedule data, more specifically, General Transit Feed Specification (GTFS) data.
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A label setting algorithm, known as schedule-based transit shortest path (SBTSP) is
used to compute the LDT labels, which is presented in Section 5.1. In the second
step, routing in a network with uncertain travel time on the road and wait time for
buses is considered. This is formulated as a stochastic shortest path problem, which in
turn, will help in evaluating an optimal policy for routing as well as the park-and-ride
decision. In the next subsection, we describe the first step of the procedure.

5.1 Schedule-Based Transit Shortest Path

This is a label setting algorithm that runs on a time-dependent transit network. The
time-dependent transit network can be created using General Transit Feed Specifica-
tion (GTFS) data, which is a standard format of schedule data released publicly by
various transit agencies throughout the world. We use trip-based network represen-
tation for modeling the transit network. In this procedure, the main consideration is
given to the fact that every deviation from a transit route cannot be considered as a
transfer. Depending upon the acceptable walking time, waiting time, and direction of
movement, transfers are created between two transit routes. We refer the interested
reader to the article by Khani et al. (2014) for more details about the procedure to
create such a network and its open-source implementation in R by Kumar and Khani
(2019).

As a transit network consists of different types of links (access/egress, waiting, in-
vehicle, and transfer links), the quickest path found on a transit network may not be
an optimal path for a passenger (Tong and Richardson 1984a). For example, a quick-
est path may return a path that consists of a large number of transfers and walking
components, which are considered more onerous than other components of a transit
trip. Moreover, transfers are less reliable, therefore, an algorithm should avoid select-
ing such paths. To do that, we define weights associated with different types of links
in A, for calculating a generalized cost. Let n;; be the weight associated with link
(i, j) € A; depending upon its type. For example, walking and waiting links can be
assigned a higher weight in comparison to other types of links in the transit network.
Given that a passenger departs from node n € N;, we find the labels y;, that specify
the latest time a passenger should depart from n to reach d before PAT. Let SEL
be a scan eligible list, & be the predecessor of node i in the shortest path. Using the
weighted sum of the cost of traversing different types of links in the transit network,
a generalized cost label y,;g ¢ is maintained for each node n € N,, which satisfies the
following principle of optimality:

Bellman’s principal of optimality: For any node i € Ny, yigc should satisfy the
following condition:

)/fc = jlenjil(ll_){)/igc +¢ij} (1)
Pseudocode for finding an optimal transit path is given in Algorithm 1. The algorithm
runs backward shortest path from d at PAT. We initialize a scan eligible list (SEL)
and maintain two different types of labels—time labels y and generalized cost labels
y8¢. The time labels are used to store information about the actual time of departure
from that node while the generalized cost labels 8¢ are used to maintain a minimum
generalized cost for a rider which is calculated as the weighted sum of the cost of
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traversing different types of links in the transit network (line 9). Line 11 checks
Bellman’s principle of optimality (1). Finally, labels yp,, and predecessor set & are
returned by the algorithm which can be used to retrieve LDT from park-and-ride
nodes and optimal transit itinerary respectively.

Algorithm 1 Schedule-based transit shortest path.
: procedure SBTSP(GI, n, PAT)
. ya < PAT,y§" < 0,& < NULL

1
2
3: Yj < —00, y 8¢ « oo, §&j < ¢ Vj #d v intializing node labels and SEL
4: SEL <« {d}
5.
6

while SEL # ¢ do
i < argmin{y;’“ | k € SEL}

7: SEL <—]SEL\{i}

: for each j € F’ (i) do

o: View < Vi 4+ mij % Cji & 7 is user defined
10: View < Vi — E]l
11: if y,,e;u < yl’ then
12: )/ 8 Y Vi < Vaew &) <0 > Updating labels
13: SEL < SEL U{}j}

14: Ypnr < {yi Vi € Z} return yp,,, §

Proposition 1 The worst case computational complexity of Algorithm 1 is O(|A;|
log | N¢| + | N¢|log [N¢1)).

5.2 Stochastic Shortest Path Problem

After computing the L DT labels y,,,, we contract the transit network by connecting
the nodes in Z directly to the destination d with the corresponding cost of travel
obtained from these labels. With a little abuse of notation, let us assume that the
set A, also consists of the mode transfer links M as well as the contracted transit
links. Similarly, let us assume Z and {d} are also part of N,. After this contraction
procedure, we obtain a single graph, G,(N,, A;) on which we are going to define
the stochastic shortest path problem.

In this problem, the online information about the travel time or wait time on down-
stream links is provided when the traveler reaches the head node. This information
can help the traveler in making a smarter choice and improving the overall cost of
the trip by re-evaluating the route cost, park-and-ride facilities, and waiting for tran-
sit. Due to a schedule and current congestion condition, the transit trip consists of a
waiting component depending on the available route. The waiting time on possible
routes (represented by mode transfer links) is also modeled as a time-dependent ran-
dom variable and is realized when the traveler reaches a park-and-ride node. The wait
time information is accessible through routing applications (such as Transit App),
which utilizes the Automatic Vehicle Location sensors installed in transit vehicles
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(Webb et al. 2020; Kumar et al. 2018). With this setup, the objective is to mini-
mize the expected cost to reach the destination. As the problem exhibits sequential
decision making in a stochastic dynamic system, it can be formulated as a Markov
Decision Process (MDP). The problem can be formulated as a finite horizon MDP
where the time of arrival at various nodes are considered as different stages of the
problem. However, we formulate it as an infinite horizon MDP by including the time
of arrival at various nodes as part of the state of the problem. This is performed to
enjoy various nice properties and algorithms designed for infinite horizon problems.
The infinite horizon total cost MDPs are characterized by a set of states, the set of
actions available at each state, the probability of transition from one state to another
by taking a particular action at each stage, and finally, the cost incurred by taking
such an action. These components are described below:

5.2.1 State Space

The state space S — N, x T x © defines the possible states in which a traveler can
be present. Each state s € S is defined by tuple s = (i, ¢, ), where, i € N, represent
the auto, park-and-ride, or the destination node. Here, ¢t € T is the time of arrival at
node i, and 6 € ©);(¢) represents the information obtained at node i € N, at time
t € T. Any state corresponding to the destination node is considered as an absorbing
state (once a traveler reaches there will remain there forever).

5.2.2 Action Space

Upon arrival at each node with no park-and-ride facility, the decision-maker consid-
ers the current travel cost, and the availability of the information about the future
travel time on downstream arcs and then decide which arc to take next. On the other
hand, when the traveler arrives at a node with a park-and-ride facility, she has two
options available: whether to park and wait for transit or take one of the down-
stream auto links. Therefore, the actions available at state (i, ¢, #) are denoted by
u(i,t,0) ={j € N, : (i, j) € Ay} i.e., the set of nodes in the forward star of node i.
Let C be the set of such actions. A policy  : § — C defines a stationary policy that
specifies the action to be taken at any state. Here, w (i, ¢, 0) € u(i, t,0),V(i,t,6) € S.

5.2.3 One-step Costs

If the decision maker chose to take an auto link, a cost equal to the travel time on
the forward link is incurred. Similarly, if she decides to take a waiting link to board a
transit route, a cost equal to the wait time is incurred. Let us denote the cost of choos-
ingmw(i,t,0)at(it,60)by cfﬂ(i’tﬁ), where 6 € ©;(t). The cost of transitioning from
(d, t,0) toitself is zero, VO € ®,4(t), Vt € T. Furthermore, the states associated with
nodes in Z has the only possibility of transitioning to the destination with probability

1.0 and cost equal to the transit travel time computed using Algorithm 1.
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5.2.4 Transition Functions

A traveler at state (i,f,6), following policy m, transitions to a new state

(@, t,0),t+ C?ﬂ(i,tﬁ), ), by taking an action 7 (i, t, 6) € u(i, t, 9), the probabil-

ity of which is denoted as p? , 6’ € Or(iro)(t + Czen(i,t,e))' Note that by fixing the
policy m, one can construct a transition diagram with corresponding states and transi-
tion probabilities. Let us denote the overall transition matrix for policy 7 by IP;. The
probability of transitioning from (d, ¢, 0),0 € ©4(¢) to itself, by taking any action

jeuld,t,0)is 1.0.
5.2.5 Value Function

Let J,(i,t,0) at state (i, ¢, 0) denote the cost incurred by a traveler to reach the
destination starting from node i € N, at time t € T receiving information 6 € ©;(t)
following policy . Mathematically, one can write

K—1

ok 0 _ - 40 0
Zcik’tk’n(ik’lkﬂk)n =i,00=0,"=17 2)
k=0

Jp(@i,t,0) = lim E{

K—o0
where, (ik , tk , 6") represents the state at kth stage, which represents the decision
points of the traveler. Given an initial state (i 070, 99), the task is to determine the
least expected cost J*(i, 1) = D _gce. (1 p?J*(i,t,0) from every node i at time 7 to
the destination d as well as an optimal routing policy 7*(i, ¢, 8) which minimizes
long-term cost function given by Eq. 2.

Definition 1 (Bellman Operator). The Bellman optimality operator 7 : S — R is
defined as follows:

TJ)(i,1,0)= min {c/; TG e+l 3
(TJ)(G1,6) = min (c]; + Yo pIG i+ 00) 3)
0'€0;(t+cf)
Similarly, for a stationary policy 7, let us define the Bellman operator for policy
7w, Ty © S — R as follows:

(Te ), 1,0) = cfn(i,z,e)-F Z PP I (i 1, 0), t+Ci9n(i,t,9)’ 6 @)
(9’6@;1([.:,9)("*‘Cien(i,tﬁ))

In vector-matrix form, Eq. 4 can be written as:

TnJ =cx +PrJ (5)
where, J, P,, and c¢,; denote the vector of cost functions, transition matrix cor-
responding to the policy m, and the vector of the expected cost of transitions
following policy 7 respectively. Our objective is to determine the optimal cost func-
tion J*(i, t, 6) and an optimal policy 7 *. We next show that for any stationary policy
7, the resulting transition graph is acyclic.
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Proposition 2 For any stationary policy 7, the associated transition graph is acyclic
assuming that there do not exist self transition probabilities associated with any state
except the destination.

Definition 2 (Proper Policy). A stationary policy 7 is said to be proper if, when
using this policy, there is a positive probability that the destination will be reached
after at most m € Z, stages, regardless of the initial state, i.e., if ¢, =
max s g)es{Prob(x,, # (d,t,0) forsomer € T | xo = (i,t,0), )} < 1, where x;
represents the state at stage k. A stationary policy which is not proper is called an
improper policy.

With Assumption 11 and Proposition 2, we have an acyclic connected graph.
Therefore, there exists at least one proper policy 7 as for every arc (i, j) € Ag,
we have P, (i, j) > 0. The implication of the existence of a proper policy is that it
becomes inevitable to reach the destination node.

For a proper policy m, one can repeatedly apply the Bellman operator 75 to the
cost function Jo = {0}!S! to evaluate the cost of the policy 7 (see Eq. 6). Moreover,
J = is the unique solution of the system of Eq. 7 (Bertsekas 2012)

klim (TXJ)(,1,0) =k1im (T(T,f*‘J)) (i,1,0) = Jz(i,1,0), Y(i,t,0) €S (6)
Jn - TT[JIT (7)

Similarly, one can evaluate the optimal cost function vector J by solving the Bell-
man Eq. 8. Since the solution of a high-dimensional system of equations can be
time-consuming, we can also repeatedly apply mapping T on vector Jq to evaluate
J* (see Eq. 9). This is the basis of the value iteration method (presented in the next
section), which is a popular method to solve the Bellman Eq. 8.

Jr=T1J" (3

klim TkJ G, 1,0) = J*(i,1,0),¥(i,1,0) €S 9)
— 00

5.2.6 Solution Algorithm

The previous section described that the optimal cost functions and a stationary policy
can be evaluated by solving the Bellman Eq. 8. However, it becomes difficult to solve
it when the cardinality of the state space is a large number. This problem is commonly
referred to as the “curse of dimensionality” in the MDP literature. It turns out that the
state space of the current problem can be reduced by averaging the information vector
6 € ©. This is because 6 is an uncontrollable component of the state. It depends
on node i € N, at which the traveler is currently located and the time of arrival
t € 7T at that node but not on the control u(i, ¢, ). In that case, we can reformulate
the DP problem only on the controllable components (i.e., (i, t)) of the state space
with the dependence on the uncontrollable component 6 being “averaged out.” To do
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that, let us consider another cost function J (i, t) defined on the reduced state space
S'=N, xT.

Ty = Y plutan e (10)

0€®;(t)

>oopf min 3+ > PG+l eht A

i i,t,0
0€®;(1) Jeuto O’E@j(1+c'?j)
iy = pejegg’l}ﬁ){c?j + TG+ ) (12)

0ed; (1)

The Eq. 12 is the Bellman equation in the reduced state space. The cost functions
J*(i, 1) can be viewed as the optimal expected cost-to-go from node i and time ¢
before realizing the online information.

The above stochastic shortest path problem can be solved using the methods used
for solving the infinite-horizon MDP. This includes value iteration, policy iteration,
and linear programming. We describe various efficient methods for this problem
below:

Value Iteration Method Generally, VI requires an infinite number of iterations to
converge to an optimal solution. However, for the current problem, it converges to an
optimal solution in finite number of iterations (Proposition 3).

Algorithm 2 Value Iteration for adaptive park-and-ride routing.

procedure VI

1:
2 for (i,1) € S’ do
3 Jo(i, t) < oo
4 fort € 7 do
5: jo(d, 1)<« 0
6 for k =0to |N,| do
7 fort € T do
8 fori € N, do
9: Ji(i,1) =0
10: for 0 € ©;(r) do .
I Tl 1) += p’ minjeuiolef; + T (ot + e}
12: forr € 7T do
13: fori € N, do
14 for 0 € ®;(t) do > Computing optimal policy
15: (i, t,0) < argmin {c?j—i—f*(j,t—l—cfj)}
jeu(i,t,0)
return f, T
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Proposition 3 Given a directed acyclic transition graph corresponding to any opti-
mal stationary policy *, the value iteration will yield the optimal cost vector J* in
at most |N,| iterations, when initialized as below:

JHi, 1) =00, Vi, 1) €S, i #d
J*d, 1) =0, Vi €T

The overall value iteration method is summarized in Algorithm 2. If there exists
more than one optimal policy, then the decision maker can simply pick one of the
optimal policies as they all provide the same expected cost.

Proposition 4 The worst case computational complexity of Algorithm 2 is
O(ISIINallAal).

Label Correcting Method The dynamic stochastic shortest path problem can also be
solved exactly using a label correcting algorithm proposed by Cheung (1998). The
algorithm starts by initializing a scan eligible list SE containing the neighbors of
the destination node. Then, it scans elements in the backward direction updating the
label of every node for every time interval. Unlike the value iteration algorithm, it
updates the labels of sets S, S}, etc. described in the proof of the Proposition 4 (see
Appendix B) sequentially in various iterations rather than attempting to update labels
of all the elements of set S’ in each iteration. The overall steps of finding the optimal
policy using label correcting algorithm are summarized in Algorithm 3.

Algorithm 3 Label correcting algorithm for adaptive park-and-ride routing.

1: procedure LC
2: for (i,1) € §' do
3: f(i, 1) < 00
4: for: € 7 do
5: J(d,t) <0
6 SE <« I'Y(a)
7 while SE # ¢ do
8 Remove an element i from SE
9 fort € T do
10: tempJ <0
11: for 0 € ®;(t) do .
12: tempJ += pe minjeu(i’,’g){cigj +J(, t+ C?j)}
13: if tempJ < f(i, t) then
14: f(i, t) < tempJ
15: SE < SEUT i)
16: forr € T do
17: fori € N, do
18: for 6 € ®;(r) do > Computing optimal policy
19: 7 (i, t,0) < argmin {c{; + J*(. 1+ )
jeu(i,t,0)
return f, T
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Proposition 5 The worst case computational complexity of Algorithm 3 is
O(SIAaD.

6 Case Study of -394

In this article, we present a case study of the freeway [-394 in Twin Cities, MN
to show the application of the method presented. I-394 is 9.8 miles long freeway
(E-W) serving the Hennepin County of Minnesota. The major junctions along this
freeway include 1-494 and US-169 in Minnetonka, MN-100 in Golden Valley, and I-
94 in Minneapolis. A High Occupancy Vehicle (HOV) lane was built on this freeway
in May 2005 to maximize its capacity. The HOV lane can be used by buses and
generally provide reliable service when general-purpose lanes are congested.

I-394 connects various sub-urban areas to Downtown Minneapolis. Due to the
congestion during peak periods, five park-and-ride facilities are provided to the trav-
elers (Table 1) along this freeway. These park-and-ride facilities are served by several
bus routes, connecting them to various locations in Twin Cities such as Downtown
Minneapolis, University of Minnesota campus, Downtown St. Paul, and so on. The
park-and-rides facility locations are shown geographically in Fig. 2, and a list of bus
routes serving these park-and-ride facilities are provided in Table 1.

6.1 Network and Calibration of Distribution of Travel Time and Wait Time

The Minnesota Department of Transportation (MnDOT) has located loop detectors
every 0.5mi along I-394. They collect data about the travel speed of cars, which in
turn gives us the travel time on different sections of the freeway. We used Google
My Maps to create the network. More details about the network topology are given
in Table 2.

It is assumed that the travel time recorded using a particular detector applies to half
of the distance between the upstream detector and current location and similarly half
of the distance between the downstream detector and the current detector location.
We consider only two possible states of the freeway links, namely, “congested” and
“uncongested”. Highway Capacity Manual defines the quality of any freeway on a

g
Medicne Lake [ 5o
2 ond-s, O vattay R
B POy Rosale £ 54
: Golden valle vt
5 ) % wirth

\/‘7‘5
! [P

e 0" [
o Wayzata  ;

Woodland | g ¥ St. Louis Park 2 s

Fig.2 Minneapolis CBD and park-and-ride facilities along I-394 corridor
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Table 1 Park-and-ride locations along 1-394

Order Name Bus routes Address

1 Plymouth Road Transit 652,672, 645, 677 13126 Wayzata Blvd,
Center & Park & Ride Minnetonka, MN 55305

2 1-394 & Co. Rd. 73 Park & 615, 652, 673, 645, 679 1100 Hopkins Crossroads,
Ride Minnetonka, MN 55305

3 General Mills Blvd. & I- 645, 652, 672, 756 8675 Wayzata Blvd.
394

4 Louisiana Avenue Transit 9, 604, 643, 645, 652, 663, 1300 Louisiana Avenue,
Center Park & Ride 672,705, 756 St, Louis Park, MN 55426

5% Park & Ride 645,9 Wayzata Blvd, Minneapo-

lis, MN 55416

*5 being closest to Downtown Minneapolis

scale of A-F known as the level of service (LOS). Any level of service below C is
considered as a “congested” state of the 1freeway, and “uncongested”, otherwise.
For a typical highway, the travel speed below 60mph is considered as the level of
service C. This value of speed is used to determine the probability of a freeway link
being congested or uncongested using the loop detector data collected in April 2017
(Minnesota Department of Transportation 2019). The probability distribution of the
travel time is calibrated for every 30 seconds of the time horizon and the mean value
of travel time in each time interval is used for a particular state of the link. To avoid
inconsistency between the transition of states, each value of travel of time on every
link was rounded to the nearest multiple of 30 seconds.

For this case study, the bus routes which serve the Downtown Minneapolis area
are only considered. The destination node in our network is assumed to be the inter-
section of Hennepin Ave and 12th St, which is located in Downtown Minneapolis.
The actual bus arrival time at various park-and-ride bus stops is obtained from the
historical Automatic Vehicle Location (AVL) data collected by Metro Transit (tran-
sit agency in the Twin Cities region) over one year. Then, the difference between the
actual and the scheduled arrival time at these bus stops is used for the calibration of
the probability distribution of the random wait time of the mode transfer links. Note

Table 2 1-394 network topology

# of nodes 32

# of auto links 23

# of access or egress links 16

Time horizon 6:00 A.M. - 10:00 A.M.
# of time steps 480

# of transit trips 68
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that we also considered the cases when the bus arrived early at the park-and-ride bus
stops. For more applications of transit automated data, readers are referred to Kumar
et al. (2019) and Kumar and Khani (2020), and Kumar et al. (2021). The value of
time () is assumed to be $23/h as recommended by Belenky (2011).

6.2 Results

After creating the network, calibrating the required probability distributions and
reducing the state space, we use both value iteration (Algorithm 2) and label correct-
ing (Algorithm 3) methods to solve the stochastic shortest path problem presented in
Section 5.2. We calculated the online shortest path during morning peak hours from
6:00 A.M. to 10:00 A.M., from different nodes of the freeway to the specified desti-
nation in Downtown Minneapolis. The number of states generated for this experiment
after reducing the state space was 11,562. A typical value of transit fare 7y = $3 and
parking cost 7, = $12 for one day is assumed for this experiment. Usually, the park-
ing is free at park-and-ride locations, so we did not consider any cost associated with
it. The value iteration method for this small network took 24 iterations and 18 minutes
to converge to the optimal solution. On the other hand, the label correcting method
outperformed the value iteration method and took only 1.42 minutes to converge.
Before delving into the results produced by the algorithm, let us first explore the
congestion conditions on 1-394. Figures 3 and 4 show heatmaps of the travel time
during both congested and uncongested conditions. The links are shown on the hori-
zontal axis in the E-W direction whereas the vertical axis shows the time of the day.
The node numbers increase in the direction of travel. We can see that during con-
gested conditions (Fig. 4), the overcrowding happens after 7:00 A.M. along three
different stretches of the freeway. The first stretch is upstream before the first park-
and-ride location. The second and third stretch of overcrowding is between Node
273 and 277 and after 279 up to central downtown respectively. Intuitively, taking
park-and-ride between node 273 and 278 seems to be a reasonable choice.

09:50:30
09:40:30
09:30:30
09:20:30
09:10:30

o =
) 3

-45

Clock

|
w
8

Travel time (sec)

I

Jr—

269 270 271 272 273 274 275 276 277 278 279 280 281 282 284 286 288 290
Towards downtown

Fig.3 Travel time (sec) on links during uncongested conditions (For interpretation of colors in this figure,
the reader is referred to the web version of this article)
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Fig. 4 Travel time (sec) on links during congested conditions (For interpretation of colors in this figure,
the reader is referred to the web version of this article)

6.2.1 Expected cost

Figure 5 shows the results of the expected cost of travel (in seconds) from various
nodes to node 291 (destination) computed using Algorithm 2. The four-digit nodes
represent park-and-ride nodes along the freeway, which are also marked with the
letter P in the figure. The figure shows an increase in the congestion as the time
increases on the time scale with severe congestion between 7:00 A.M.-9:45 A.M.
However, the availability of the bus at the park-and-ride nodes provides a reduction in
the expected travel time during several periods. This is evident from the light yellow-
colored stripes appearing within the red-colored region. This reduction in travel time
is due to the policy of taking transit at a park-and-ride location. The figure clearly
shows the time of the day when park-and-ride mode becomes more attractive in com-
parison to auto as this will provide faster access to the destination. We observe this
significant reduction in the travel time when the buses are not frequent. In case if
Metro Transit provides frequent service, we expect to see further improvement in the
travel time of the commuters.
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Fig. 5 Travel cost (sec) of from different nodes to downtown (For interpretation of colors in this figure,
the reader is referred to the web version of this article)
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6.2.2 Optimal Policy

The output of the Algorithm 2 also yields the optimal policy for different node states.
The policy will help a traveler to decide which downstream arc to take when arriv-
ing at any node. The point of interest in this research is when does taking the transit
from any park-and-ride location becomes optimal. To observe this behavior, we plot-
ted the optimal policy for a traveler at park-and-ride exit nodes, which are plotted
on the vertical axis in Fig. 6, with the time of arrival at different nodes on the hor-
izontal axis. Figure 6(a) and 6(b) depict the optimal policy when the road network
is in the congested and the uncongested state respectively. The policy shows that the
park-and-ride option becomes more attractive during the congested conditions than
uncongested conditions. Moreover, it is interesting to note that taking transit from I-
394 & Co. Rd. 73 Park & Ride and Plymouth Road Transit Center & Park & Ride
(which are located upstream) is more frequent than the other park-and-ride facilities.

We use the Monte-Carlo simulation to evaluate the variability of the optimal pol-
icy 7*. For a given time interval, we generate 1000 random trajectories following
policy 7 * starting from the farthest end (node *269’ in Fig. 5) and ending at the spec-
ified destination. In particular, for every sample and node-time (i, t) pair, we draw
a random state 6 € ©;(t) based on the discrete probability distribution { pe}ge@i -
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Fig.6 Optimal policy for park-and-ride nodes at different arrival times (Black (1) indicates park-and-ride
and Blue (0) indicates auto mode)
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Figure 7 shows the results of the simulation that includes the distribution with mean
and standard deviation of travel time at different times of arrival at node ’269’. We
can observe that the standard deviation ranges from 20 to 80 seconds for most time
intervals except 7:30 A.M. at which it rises to 222 seconds. This is because of one
particular trajectory with a travel time equal to 300 seconds.

We further use the same Monte-Carlo simulation to evaluate the attractiveness
of various park-and-ride facilities. Figure 8 shows the frequency of use of different
park-and-ride facilities at various times of arrival out of 10,000 sample trajectories.
Through this analysis, we can make similar observations as made in Fig. 6. The park-
and-rides I-394 & Co. Rd. 73 Park & Ride and Plymouth Road Transit Center & Park
& Ride (which are located upstream) are more attractive than the other park-and-ride
facilities.

6.2.3 Comparison with Offline Algorithm

To show the benefits of adaptive routing, we compare the expected cost computed
using Algorithm 2 with the offline algorithm (Expected Value (EV) algorithm) pro-
posed by Miller-Hooks and Mahmassani (2003). The offline algorithm computes the
least expected time (LET) paths in the stochastic and time-varying transportation net-
work. The output of the algorithm provides the least expected cost from each node
to the destination node for possible departure times in the time horizon. A short
description and a pseudo code of the algorithm is provided in Appendix A for refer-
ence. However, readers interested in more details can refer to the original article by
Miller-Hooks and Mahmassani (2003).

Figure 9 shows the expected cost of travel (on the vertical axis) from origin to the
destination for different departure times (on the horizontal axis). We can observe a
difference in the expected cost computed by both algorithms. The adaptive routing
algorithm proposed in this paper shows a reduction in travel cost at various departure
times in comparison to the offline path computed by the EV algorithm. The savings
using adaptive routing algorithm is as high as 120 seconds around 8§ A.M.
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Fig.8 Frequency of use of different park-and-ride facilities out of 10,000 sample trajectories
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6.2.4 Sensitivity Analysis

To see how parking cost 7, at the destination location and transit fare 7 affects the
optimal policy, we performed a sensitivity analysis on these two parameters. The
value of 77 and 7, was varied from $1 —$5 and $0—$30 respectively. The transit fare
cost is added twice as we also consider the cost of taking transit for the reverse com-
mute. We calculated the percentage of times when park-and-option opted as a mode
of travel in the optimal policy. The Figs. 10(a) and (b) depicts that the park-and-ride
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mode is attractive when the transit fare is low and parking cost is high. With no
parking fee and $3-5 transit fare, we observe the lowest share of park-and-ride option
in the optimal policy, i.e., 12.82% and 14.78% during uncongested and congested
conditions respectively. On the other hand, with $30 parking fee and $1-2 transit
fare, we observe the highest share of park-and-ride option in the optimal policy, i.e.,
21.10% and 23.11% during uncongested and congested conditions respectively. We
also performed a sensitivity analysis on the individual use of park-and-ride facilities
for varying parking costs and transit fares. However, we did not find any significant
change in the behavior of park-and-ride location choice.

7 Conclusions

The decision of park-and-ride is often made adaptively based on the realized state
of traffic on a freeway. We modeled this phenomenon using a stochastic shortest
path problem in a network with time-dependent and stochastic link travel times. The
study was innovative as it not only provides the optimal policy in the auto network
but also provides the optimal park-and-ride location choice, and transit itinerary to
the traveler. The routing of the passenger in the transit network is performed using a
schedule-based transit shortest path algorithm. This is a label setting algorithm that
computes the optimal path for a passenger based on different weights assigned to
different components of the transit network. The online shortest path problem, which
is formulated as an MDP, evaluates the routing in the auto network. We proposed
two different methods for solving the corresponding stochastic shortest path problem.
The first method was the value iteration method that was proved to converge in the
finite number of iterations for directed acyclic transition graphs for stationary policy
obtained in this problem. The second method was the label correcting algorithm,
which has a polynomial-time complexity and outperforms the value iteration method
in terms of computational time.

The research also presents a case study of freeway I-394 in Minneapolis. Using
historical loop detector data, the probability distribution of travel time on differ-
ent links of the auto network was obtained. Based on the recommendations of the
Highway Capacity Manual, the methodology was tested for two different states-
congested and uncongested. The results computed the time and state of the realized
traffic when park-and-ride mode becomes an attractive mode. For example, the park-
and-ride mode provides faster access to the destination during severe congestion
between 7:00-9:45 A.M. We expect to see further improvement in the travel time if
more frequent service of buses is provided by Metro Transit on 1-394. In terms of
attractiveness among park-and-ride locations, Co. Rd. Park-and-Ride and Plymouth
Road Transit Center were found to be more attractive parking locations than others.
The standard deviation of travel time obtained by using the adaptive policy varies
between 20-222 seconds. We also showed the benefit of online routing by com-
paring its expected cost with the offline algorithm. The online algorithm provides
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savings as high as 120 seconds in comparison to the offline algorithm. Finally, a sen-
sitivity analysis on the parking cost at the destination location and transit fare was
conducted. We found that the higher parking cost and lower transit fare make the
park-and-ride mode more attractive to commuters. With $2 increase in the transit
fare at $15 parking cost, we see a 2% decline in the share of park-and-ride option
in the optimal policy. Similarly, with $15 increase in the parking cost at $2 transit
fare, we see a 4% increase in the share of park-and-ride option in the optimal pol-
icy. We also found that by using adaptive policy, a commuter will save around 36
hours every year. Finally, the opportunity value of the research presented in this arti-
cle will be high when this type of algorithm is implemented as an online cellphone
application.

8 Limitations and Future Research

There are several assumptions made in this study, and the authors would like to throw
some light on how to relax these assumptions in future research. First, the park-
and-ride lot and bus capacity is assumed to be sufficient, but in congested systems,
this may not be the case. The capacity of park-and-ride and transit vehicles can be
incorporated into the current model. This requires augmentation of the state space
by including the online information about finding a parking spot and availability of
seats for a particular transit trip when arriving at a park-and-ride node. Depending
upon the available capacity, there will be limited actions that will affect the following
transitioning state. For example, if the parking lot is full, then the only action avail-
able is to take the freeway link further. Second, the travel time on the transit network
is assumed to be reliable. This is because the possibility of missing transfers makes
the transit online shortest path problem more complex. This complexity has been dis-
cussed in the literature by Rambha et al. (2016) and Khani (2019). Future research
should look into ways of modeling this issue and efficiently solving it. Third, the
routing passengers are assumed to be expected-cost-minimizers. However, they may
consider other factors such as risk, preferences towards different modes, etc. as part
of their utility. One way to address this issue is to consider an adaptive routing pol-
icy based on a discrete choice model. For example, Gao et al. (2008) studies adaptive
route choice models for stochastic time-dependent auto networks. Fourth, we con-
sidered only one-way routing of a commuter, but in reality, nearly all commuters
have to return home. The park-and-ride policy found for one-way routing may not
provide an optimal tour. The problem can be addressed using the network transfor-
mation proposed by Nassir et al. (2012) for finding the multi-modal multi-destination
tour. The development of an efficient algorithm for solving such a problem needs fur-
ther research. For example, efficient reinforcement learning algorithms can be used
to solve the problem with large state spaces. Finally, finding the optimal park-and-
ride facility locations in the network considering adaptive routing will be another
interesting research problem to investigate.
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Appendix A:EV Algorithm (Miller-Hooks and Mahmassani 2003)

The Expected Value (EV) algorithm generates a priori LET paths with their associ-
ated expected cost from all origins to a single destination for each possible departure

k

time in a given time horizon. Let §;;(t) = {si i }k 1 be the set of possible realiza-
>

tions of travel time on link (i, j) € N, which happens with probability { pfj }k 1
>

such that ), pf.‘j = 1. Let us denote A{(¢) as the expected travel cost along path
¢ from node i to the destination d departing at time ¢. For each + € 7T, the
minimum expected cost from each node is sought. In this label-correcting algo-
rithm, we maintain a set of labels A{. These labels are called pareto-optimal (or
p-optimal) because each label is potentially optimal for one or more time inter-
vals. Let pathList[i] be the set of p-optimal paths from node i to d. A scan
eligible list SE is maintained whose elements (j, u) are characterized by a node
j € N, and path u € pathList[j]. A set of path pointers pred Node and
predPath are also maintained to trace back the optimal path after the algorithm
terminates.

At each iteration, an element (j, u) is selected from SE and for each neighboring
node i of j € N,, atemporary cost label {«; (¢)};c7 is computed (Line 14). After this,
we check for the Pareto-optimality of temporary labels (Line 16). If the new path is
p-optimal, we add it to the pathList[i] and update the optimal cost labels and path
pointers. After the algorithm terminates, a single best path from each node and for
each possible departure time is selected.
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Algorithm 4 EV Algorithm by Miller-Hooks and Mahmassani (2003).
1: procedure OFFLINEALGORITHM(G )

2: fort € T do

3: fori € N, do

4 forc e {1,2,.., M} do > M is large enough to store required
p-optimal paths

5 Ai(t) =00

6 A =0VreT

7: predNodeli, c] = oo, pred Pathli,c] = o00,Vi € Ny, c € {1,2, ..., M}
8: pathList[d] = {1}

9

: SE ={(d, 1)} > Node-label pair

10: while SE do

11: Take first element (j, 1) out of SE

12: fori € I'"1(j) do

13: for: € T do

14: ki (1) = 4Lk (6) + M5+ sEon1pf ()

15: predNodeli, temp] = j, pred Pathli, temp] = 1

16: Check for pareto optimality. {k;(t)};e7 is pareto-optimal iff fc e
pathList[i] such that A{ (1) < «;(¢), ¥t € T and 3t € T such that A{(1) < «; (¢).

17: if {k; (¢)};c7 is pareto-optimal then

18: Add this path to pathList[i]

19: Fix the path pointers in step 15

20: Update the minimum cost label for each r € 7 from node i.

21: else

22: Discard this path

23: Check if all the paths in pathList[i] are still p-optimal, otherwise
remove them

24: Evaluate the minimum cost label for each ¢t € 7 from node i using the

available paths in pathList[i], Vi € N,

Appendix B: Proofs of Various Propositions

Proof (Proposition 1) Lines 2-4 can be done in O(1) time. Assuming that the shortest
path algorithm is implemented using Binary heap data structure, Line 5-13 con-
sists of two major steps, finding the node i with minimum label y$¢ from SEL
(Line 6) that can be done in O(|N;|log(|N;|)) and updating labels of new nodes
which can be done in O(]A;|log(|N;|)) time. Therefore, the worst case computa-
tional complexity of Algorithm 1 is O(]|A;|log |N;| + |N;|log|N;|)). However, if
|As| = Q(|N¢]), then the worst case computational complexity of Algorithm 1 can
be given as O(|N¢|log | N¢]))- O
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Proof (Proposition 2) Without the loss of generality, let us assume that there exists
a cyclic path of minimum length 2. Let P{[(i, t, 0), (j, ¢/, 0)], [(j. ', 0", (i, t,0)]}
be that path. Since, 1’ = C?j +1t, Vi, j # d, implying that ¢’ + c?i = t, which is a
contradiction unless c;?j = c% = 0, in which case there does not exist such transition.
Hence, there does not exist a cyclic path of length 2. One can extend this argument

for a cyclic path of any length. [

Proof (Proposition 3) To show this, let us consider various subsets of the state space
created as below:

Sy = {d,0):teT) (13)

@Go: Y Pa [0 G+l 0)] =0.¥) ¢ Uk oS f k=01, (14)
0:7%(i,1,0)=],
G/EI')I’(H»([Q/-)

/
Skt1

The above construction of sets adds various states in the backward direction of the
destination node. For example, S7 will contain all the states associated to the nodes
in the sets Z and I'"'(d). Let S 7 be the last of these sets that is non-empty. In view
of the acyclicity and proper stationary optimal policy assumptions, we have k < |N,|
and UK

0 Sm = S’. After this, one can show using induction that

(T*D) G, 1) = J*G, 1), YG, 1) € K _ Smk=1,...,k (15)

The mathematical induction part is same as the proof given in Bertsekas (2012). [

Proof (Proposition 4) Lines 2-5 can be done in O(1) time. The control compu-
tation in line 11 can be performed in O(]A,|). The previous operation should be
performed for every (i, 7, 6) € S, repeatedly |N,| number of times. Therefore, lines
6-11 can be performed in O(|S||Ny||Aq]). Furthermore, lines 12-15 can be per-
formed in O(|S||A4]). Therefore, the overall complexity of the Algorithm 2 is equal
to O(|S|INallAal)- O

Proof (Proposition 5) Assuming that the elements of SE are removed according to
the FIFO rule, lines 1-15 are standard Bellman-Ford algorithm and can be performed
in O(|S||A4|) time. The computational complexity of finding the optimal policy
(lines 16-19) can be performed in O(|S||A4]|). Therefore, the overall complexity of
the Algorithm 3 is equal to O(|S||Aq4]). O
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