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A B S T R A C T   

Due to limited transit network coverage and infrequent service, suburban commuters often face 
the transit first mile/last mile (FMLM) problem. To deal with this, they either drive to a park-and- 
ride location to take transit, use carpooling, or drive directly to their destination to avoid 
inconvenience. Ridesharing, an emerging mode of transportation, can solve the transit first mile/ 
last mile problem. In this setup, a driver can drive a ride-seeker to a transit station, from where 
the rider can take transit to her respective destination. The problem requires solving a ridesharing 
matching problem with the routing of riders in a multimodal transportation network. We develop 
a transit-based ridesharing matching algorithm to solve this problem. The method leverages the 
schedule-based transit shortest path to generate feasible matches and then solves a matching 
optimization program to find an optimal match between riders and drivers. The proposed method 
not only assigns an optimal driver to the rider but also assigns an optimal transit stop and a transit 
vehicle trip departing from that stop for the rest of the rider’s itinerary. We also introduce the 
application of space-time prism (STP) (the geographical area which can be reached by a traveler 
given the time constraints) in the context of ridesharing to reduce the computational time by 
reducing the network search. An algorithm to solve this problem dynamically using a rolling 
horizon approach is also presented. We use simulated data obtained from the activity-based travel 
demand model of Twin Cities, MN to show that the transit-based ridesharing can solve the FMLM 
problem and save a significant number of vehicle-hours spent in the system.   

1. Introduction 

Due to a rise in the number of motor vehicles resulting from increasing travel demand, urban highways are facing an inescapable 
condition of traffic congestion. The congestion on roads can be primarily ascribed to an increase in the use of a personal vehicle for 
traveling. Besides, we have observed that the vehicle capacity is often under-utilized, e.g., National Household Travel Survey 2009 
shows that on an average, only 1.7 out of 4 available seats in cars were utilized (Santos et al., 2009; Masoud and Jayakrishnan, 2017a). 
As the aim is to transport people, not cars, an alternative way to provide mobility is to make efficient use of existing transportation 
infrastructure. Public transportation, which can carry multiple passengers, is widely considered as a practical solution to the 
congestion problem by reducing vehicle-miles traveled (VMT) on roads (Aftabuzzaman et al., 2015). 

To use public transit for travel, one has to walk from origin to a boarding stop to access the service and then walk again from 
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alighting stop to the respective destination. Formally, these walking components of a transit trip are known as “first mile” and “last 
mile,” which describe the beginning and end of an individual transit trip (Fig. 1) respectively. Due to limited transit coverage, it is 
sometimes difficult or impossible to walk to/from transit stop on either end of a transit trip. This inaccessibility problem is also known 
as the first mile/last mile (FMLM) problem for transit. The problem is common among people commuting from low-density areas where 
transit service is not available or less frequent. The limited coverage in these areas is because of the economic in-viability of providing 
transit service. To encourage people living in suburban areas to use transit to commute, transportation agencies need to provide an 
effective transportation service that can help them to cover their first/last mile. Various possible solutions to this problem are driving 
to a park-and-ride facility, use para-transit services, taxi/carpooling, or bike to a transit station. Although these solutions to the FMLM 
problem are feasible, they are either not attractive among commuters or too expensive for daily travel, which drives travelers to use 
personal vehicle for their daily commute. A cheaper solution is to use the existing trips as a feeder service to transit stations. Ride
sharing, which has attracted attention during recent years, can be a potential solution to the transit FMLM problem. In this program, 
both riders and drivers can submit a request in real-time, and an automated system will match them for sharing a ride while satisfying 
the spatial and temporal constraints for both 

The ridesharing programs are becoming popular in cities (Agatz et al., 2011; Masoud et al., 2017). However, a few studies such as 
Masoud et al. (2017) have raised a concern that this increase in the participation in ridesharing programs is shifted from the transit 
ridership. Besides, Wang et al. (2018), using a ridesharing equilibrium model, showed that when driving is faster and more expensive 
than transit, then no cost-sharing strategy can sustain a ridesharing program without shifting the demand from transit mode. In that 
case, ridesharing, which was aimed to reduce congestion on roads, may not be as effective as anticipated, and it will become a 
competitor of transit mode. However, the equilibrium conditions proved in that study is a function of the matching probability and 
does not consider the integration of ridesharing and transit mode. A ridesharing program integrating transit with ridesharing can help 
in shifting the share from single-occupancy vehicles and hence increase transit ridership. In this program, ridesharing can provide a 
fast and reliable mobility service in low-density areas, and transit can provide mobility in high-density areas. 

In this article, we develop a framework to integrate ridesharing with transit to solve the FMLM problem. Riders who are looking for 
an affordable ride to a transit station and drivers who want to join this program to alleviate the negative impacts of car travel and to 
receive a small compensation can submit their request to an automated system. The framework consists of the development of an 
algorithm for transit passenger routing in a schedule-based transit network and a matching optimization program to match riders and 
drivers up to the first mile of the transit trip. Overall, this article makes the following contributions:  

1. Propose the operation of a large scale transit-based ridesharing program,  
2. Development of a schedule-based transit network algorithm for finding feasible matches,  
3. Incorporating the state-of-the-art network search reduction techniques to improve the computational time without compromising 

the solution quality,  
4. Development of a rolling horizon algorithm to solve the dynamic transit ridesharing problem,  
5. Use simulation to assess the efficiency of the proposed method on a large scale transit network of Twin Cities, MN 

The rest of the article is structured as follows. Section 2 reviews previous work on transit FMLM problem and ridesharing matching 
algorithms, which is followed by the motivation for this research. Section 3 introduces the terms and definitions used in this article and 
describes the operation of the transit-based ridesharing program. Then, Section 4 formally defines the transit-based ridesharing 
matching problem. After that, an algorithm to find potential matches and a matching optimization model is developed in Section 5, 
which is followed by the development of a rolling horizon algorithm. Then, Section 6 presents the results of simulation experiments 
and Section 7 describes ways to relax various assumptions in this study. Finally, conclusions and recommendations for future research 
are given in Section 8. 

2. Related work and motivation for this study 

Previous studies have found that access to transit is a significant factor affecting its modal share (Moniruzzaman and Páez, 2012; 
Brons et al., 2009; Kalaanidhi and Gunasekaran, 2013). Therefore, in areas with limited network coverage, it is crucial to provide a 
feeder service to attract riders to use transit service. Various modes of transport have been studied and implemented to improve access 
to transit mode. This includes integrating bikesharing and transit (Martin and Shaheen, 2014; Rietveld, 2000; Martens, 2004), 
designing a demand responsive transit feeder service to solve the FMLM problem (Wang, 2017; Maheo et al., 2017; Cayford and Yim, 
2004; Koffman, 2004; Lee and Savelsbergh, 2017; Quadrifoglio et al., 2008; Shen and Quadrifoglio, 2012; Li and Quadrifoglio, 2009), 
use of park-and-ride facilities (Nassir et al., 2012; Khani et al., 2012; Webb and Khani, 2020), and integrating ridesharing and transit 
(Masoud et al., 2017; Stiglic et al., 2018; Bian and Liu, 2019a; Ma et al., 2019; Chen et al., 2020). We summarize the literature related 
to transit-based ridesharing into three main categories. 

Fig. 1. Components of a tansit trip.  
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1. Designing a feeder service to the transit mode: The transit-based ridesharing problem resembles similarities with the literature focused 
on designing a feeder service to the transit mode such as designing a demand responsive connector (DRC) (Cayford and Yim, 2004; 
Koffman, 2004; Lee and Savelsbergh, 2017; Quadrifoglio et al., 2008; Shen and Quadrifoglio, 2012; Li and Quadrifoglio, 2009) or 
dial-a-ride service with transfers (DART) (Masson et al., 2014; Deleplanque and Quilliot, 2013; Jafari et al., 2016; Häll et al., 2009). 
Cayford and Yim (2004) designed a demand-responsive dial-a-ride service in California. The service was designed to be fixed-route 
during high demand and flexible-route during low demand period. A transit cooperative research program (TCRP) report also 
presents experiences from flexible transit services in various cities in the United States (Koffman, 2004). While designing vehicle- 
scheduling for a demand responsive system, many studies consider zoning in which a vehicle would operate within the zonal 
boundary to pick up the passengers and drop them off at a predetermined transit station (Quadrifoglio et al., 2008; Shen and 
Quadrifoglio, 2012; Li and Quadrifoglio, 2009). Mahéo et al. (2019) proposed the design of a hub and shuttle public transit system 
in Canberra. Wang (2017) proposed a mixed-integer linear program and heuristic techniques to design routing and scheduling for a 
last-mile transportation service. However, the transit-based ridesharing problem we consider in this article, is different from the 
ones discussed above in the following aspects. First, in ridesharing, the drivers are not hired to work for a private entity, so the 
departure and arrival time constraints of both drivers and riders need to be incorporated in the model. Second, we cannot assume an 
unlimited supply of vehicles to serve rider trips (Lee and Savelsbergh, 2017). Third, ridesharing problem is highly dynamic in 
nature, where drivers and riders enter the system on short notice, it is difficult to solve a possible discrete optimization model 
proposed in the studies cited above in real-time. 

2. Ridesharing matching algorithms: The current study proposes a matching algorithm for peer-to-peer (P2P) ridesharing as an alter
native mode of transportation to access transit. The ridesharing matching problem has recently got the attention of many re
searchers. Agatz et al. (2012) and Furuhata et al. (2013) reviewed various forms of ridesharing and outlined the difficulties that 
arise when developing a mechanism for such a system. Agatz et al. (2011) developed a simple optimization model for matching 
single driver and rider while satisfying their time budget constraints and keeping the driver or rider role flexible. Stiglic et al. 
(2015) pointed out the benefits of meeting points in ridesharing. Santi et al. (2014) proposed the idea of a shareability network to 
reduce the size of the matching problem. As the method was only able to match two riders (optimally) and three riders (heu
ristically), Alonso-mora et al. (2017) improved this idea by creating a request-to-vehicle (RV) and a request-to-trip-to-vehicle (RTV) 
graph to solve a high capacity ridesharing problem. Masoud and Jayakrishnan (2017a,b) presented a solution to the general peer- 
to-peer multiple matching problem with transfers in a time-dependent network. They proposed a decomposition algorithm and a 
dynamic programming approach to solve the problem and showed an increase in the total number of matching by using their 
algorithm. Ordóñez et al. (2017),Sutherland and Jarrahi (2018), and Tafreshian et al. (2020) present recent reviews on matching 
algorithms, cost-sharing mechanisms, and traffic equilibrium related to ridesharing.  

3. Integrating ridesharing with transit: To integrate ridesharing with transit, Masoud et al. (2017) used the same dynamic programming 
framework as in Masoud and Jayakrishnan (2017b) to solve the current problem by introducing the transit stops and transfers as 
go-to-points and transit route as an inflexible driver in their algorithm. They considered one transit route and limited the number of 
transfer points to 40 to reduce the computational time. The major obstacle to applying their algorithm to a large-scale transit system 
would be high computational time. Ma et al. (2019) proposed various queueing-theoretic vehicle dispatch and idle vehicle relo
cation algorithms for ridesharing with a possible drop-off of a passenger at a transit stop. Bian and Liu (2019a,b) developed a 
matching optimization program and a Vickrey-Clarke-Groove (VCG) mechanism to determine the optimal vehicle-passenger 
matching, vehicle routing plan, and a customized pricing scheme respectively. The proposed mechanism is proved to be indi
vidual rational, incentive compatible, and price non-negative. Chen et al. (2020) developed a mixed-integer linear programming 
(MILP) to solve the FMLM with autonomous vehicles. A pioneering effort in developing a matching algorithm for this multimodal 
system is described by Stiglic et al. (2018). They presented a matching framework to match riders and drivers for transit, park-and- 
ride, or ridesharing mode. However, they considered a cyclic (frequency-based) time table for transit service, assumed the closest 
stop to the destination as the alighting stop, and selected a transit trip with the least driving distance to make the complex problem 
easier to solve. 

2.1. Motivation 

The following points motivate us to pursue emerging research on transit-based ridesharing problem:  

1. Complexity of a schedule-based (SB) transit service: Previous studies such as Stiglic et al. (2018), Masoud and Jayakrishnan (2017b) 
have considered a cyclic (or frequency-based) transit service while designing a method for transit-based ridesharing. In the case of a 
cyclic timetable with identical trains, the travel time is not dependent on the departure time of the train from a transit station. 
However, large-scale transit systems incorporate traffic congestion and transit demand (to evaluate dwell time) while designing the 
schedule that usually varies during the day. Incorporating schedule becomes even more important when the transit service is not 
frequent, e.g., at park-and-ride stations, where buses arrive almost every hour. In that case, a frequency-based approach will result 
in an inaccurate estimation of wait time. The correct estimation of wait time, walking time, and transfer time are important to 
assess the feasibility of matches. We address this issue by proposing a systematic schedule-based ridesharing algorithm to find 
feasible matches. Furthermore, this would help in developing a transit-based ridesharing app that can provide directions in a 
multimodal transportation network. 

P. Kumar and A. Khani                                                                                                                                                                                              



Transportation Research Part C 122 (2021) 102891

4

2. Drop-off station: Previous studies have considered the closest stop from origin and destination for the drop-off and alighting 
(respectively) of a passenger. However, the closest stop may not give access to a faster transit route. Our proposed algorithm 
considers all the possible boarding and alighting stops. This will improve the possibility of assigning a faster service to the 
passenger.  

3. Storage complexity: Previous studies have used stored shortest transit travel itineraries. However, it is difficult to do so for an SB 
transit network due to huge storage cost. For example, the Twin Cities transit system has 13673 stops in the network and for 1440 
possible departure times in a day, we need to store 2.1e12 possible travel times and itineraries. Furthermore, the change in the 
schedule for various days (weekdays, weekends, or holidays) makes it cumbersome to store such information. One of the contri
butions of this study is to avoid such storage with transit direction computation for different transit schedules using the proposed 
algorithm. 

All the above-cited studies have made important contributions to this challenging problem, however, none of the studies has 
considered the complexities of the transit part of the trip and showed application on a large-scale transit network. The current study 
leverages the schedule-based transit shortest path (SBTSP) algorithm to find potential matches between riders and drivers. The pro
posed algorithm uses the concept of space-time prism of both rider and driver to reduce the size of the network search. To solve this 
problem in real-time, a practical algorithm using a rolling horizon approach is proposed in this paper. The proposed method not only 
matches riders and drivers for the first/last mile of the rider’s trip but also assigns an optimal transit station and a transit vehicle trip 
from the schedule for the rest of the rider’s itinerary. 

3. Preliminaries 

In this section, we discuss operation of a transit-based ridesharing program and describe notations and concepts useful to un
derstand the matching problem. All the notations used in this article are also summarized in Table 6. The ridesharing program receives 
a set of requests (P = R ∪ D) that can be partitioned into a set of riders R, who are looking for a ride and have first mile/last mile 
problem, and a set of drivers D, who are willing to give a ride to the ride seekers to a transit station. Each request p ∈ P is defined by a 
tuple {OR(p),DS(p),τat(p),τpd(p),τpa(p),δ(p),Δ(p)}, indicating its origin OR(p), destination DS(p), announcement time τat(p), preferred 
departure time from origin τpd(p), preferred arrival time at destination τpa(p), maximum acceptable schedule deviation δ(p), and total 
travel delay Δ(p) allowed in the trip. Let tij be the travel time from location i to location j. Using above information, the earliest (τed(p)) 
and latest (τld(p)) departure time from origin, earliest (τea(p)) and latest (τla(p)) arrival time at destination, and maximum ride time 
(tmax(p)) can be calculated as: 

τed(p) = τpd(p) − δ(p) (1a)  

τld(p) = τpd(p) + δ(p) (1b)  

τea(p) = τpa(p) − δ(p) (1c)  

Fig. 2. An example of transit-based ridesharing.  
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τla(p) = τpa(p) + δ(p) (1d)  

tmax = tOR(p),DS(p) + Δ (1e)  

In this ridesharing program, there is an online platform where riders and drivers can submit their requests, and the system would 
match these riders and drivers to travel together. A rider is matched with some driver who can drop off the rider at a transit station, 
from where the rider can take a bus or train to their destination. To get an insight into the problem, let us consider the following 
instance (see Fig. 2): 

A driver j ∈ D is going from OR(j) to DS(j), which takes about 5 min by driving. A rider i ∈ R, going from OR(i) to DS(i) is facing the 
first-mile access problem and cannot take transit, so i must drive to the destination, which takes 6 min of driving time. However, if j 
agrees to give a ride to i, then j can drop i off at a station S(ij), from where i can take transit to her destination and j can drive to her 
destination. The overall auto vehicle-minutes spent on the combined trip with transit-based ridesharing is 7 min in comparison to 5 +
6 = 11 min without ridesharing and 10 min with only ridesharing (i.e., driver j going to rider’s destination DS(i) and then going to her 
destination DS(j)). Due to time constraints, it might not be possible for a driver to give a ride all the way to the rider’s destination but 
can only give a ride to a transit station. This example shows that transit-based ridesharing can save a lot more vehicle-min than any 
other mode considered here and possibly more matching rate than a stand-alone ridesharing program. 

3.1. Network topology 

In this section, we describe the notations related to graphs characterizing the road and transit network as these notations will be 
used throughout the text. 

3.1.1. Road network 
Let GR(NR, AR) be a digraph representing road network, where NR is the set of nodes and AR is the set of links connecting these 

nodes. We consider a static or non-timed road network for this study. Let t : NR × NR → R+ be a function that returns the shortest travel 
time between two nodes in the road network. The efficient shortest path algorithms (such as Dijkstra’s algorithm using binary heap 
data structure) take a fraction of a second to compute the shortest path on a network with thousands of nodes and links. For this 
network, we store the shortest-path trees in the memory (storage cost ℴ(N2

R)) and call it whenever required by the matching algorithm. 
Let us denote the set of origins and the destinations of the participants as O = ∪p∈POR(p) and D = ∪p∈PDS(p) respectively. Note that 
O ∪ D⊆NR. 

3.1.2. Transit network 
A schedule-based (SB) transit network can capture the complexities of the movement of a passenger such as precise waiting time, in- 

vehicle time, and transfer time to other routes. This network GT(NT, AT) is a digraph that is created using service schedule data ob
tained from transit agencies. The General Transit Feed Specification (GTFS) is a standard format of transit schedule data released 
publicly by various transit agencies throughout the world. We use trip-based network representation for modeling the transit network 
(Khani et al., 2014). In this procedure, the main consideration is given to the fact that every deviation from a transit route could not be 
considered as a transfer. Depending upon the acceptable walking time, waiting time, and direction of movement, transfers are created 
between two transit routes. The details about the creation of this network are described in the next paragraph. 

In the schedule data, let us denote the set of transit stops1 as B, set of transit routes/lines2 as L, and set of trips3 as K. Each trip k ∈ K 
is characterized by a route lk ∈ L, set of stops (or nodes) Bk⊂B × K, scheduled arrival/departure time τ : Bk ↦→ R+ at these stops, and a 
sequence ζ : Bk ↦→ N in which these stops are visited. The set of nodes in the transit network are defined as NT = ∪k∈KBk. The set of 
links in the transit network, AT = ATa ∪ ATv ∪ ATw consists of three types of links, namely, acess/egress links ATa , in-vehicle links ATv , 
and walking/waiting transfer links ATw . Let w : (NT ∪ NR) × (NT ∪ NR) ↦→ R+ be the walking distance between two nodes. The access/ 
egress arcs are walking links created between origins and transit stops or between transit stops and destinations if the distance between 
a pair is less than an acceptable walking distance w0 (say 0.75 mi), i.e., ATa = {(i, j) : w(i, j)⩽w0 for some i ∈ O, j ∈ NT} ∪ {(i, j) : w(i, j)
⩽w0 for some i ∈ NT, j ∈ D}. The in-vehicle links ATv = {(i, j) : i, j ∈ Bk for some k ∈ K} are created using itinerary of any transit trip. 
Finally, the waiting/walking transfer links are defined as ATw = {(i, j) | i ∈ Bk, j ∈ Bk′ for some k, k′

∈ K, li ∕= lj, ζ(i) ∕= 1, ζ(j) ∕=

maxm∈Bk′ ζ(m),w(i,j)⩽w1,
⃒
⃒τ(j) −τ(i) −w(i,j)

⃒
⃒⩽ρ}, where ρ is the threshold by which a bus trip can be early or late, and w1 is the acceptable 

walking distance (say 0.25 mi) for transfers. 
Finally, let 𝒵 : NT ↦→ NR be a function which outputs closest road node for any transit node, i.e., 𝒵(s) = argmin{w(n,s) : n ∈ NR}. 

Let Am = {(i, j) : i = 𝒵(j) for some j ∈ NT} be the mode transfer links which are used to access the transit network from a road node and 
vice versa. The overall multimodal network is denoted by G(N, A), where N = NR ∪ NT, and A = AR ∪ AT ∪ Am. 

1 A transit stop is a geographic location from where a traveler can board/alight the bus.  
2 A transit line is defined by a set of stops with a starting and an end point between which buses run back and forth.  
3 A trip is a travel itinerary of a bus with arrival and departure time specified at different stops. 
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3.2. Space-time prism 

Before delving into the matching problem, let us introduce a few more definitions which will help create a network search 
reduction technique later in the Section 5. The following definitions are given in the context of ridesharing, however, more general 
definitions can be found in Miller (2017). 

Because of spatial and temporal limitations, a traveler can only be present in one place at a time due to which the activities 
performed by a traveler in space are restricted by the available time budget. Space-time prism provides us a framework that recognizes 
underlying constraints on human activities in space-time and also provides us an effective way of keeping track of these conditions. 

Definition 1. (Anchor) An anchor is a node in the network at which a traveler begins/ends her journey. For a participant p ∈ P in the 
ridesharing program, OR(p) and DS(p) are possible anchors. 

Definition 2. (Time-forward and time-backward cone) The time-forward cone, FCp(τ), for a participant p ∈ P pointed at the anchor 
OR(p) is the set of nodes that can be reached at time τ within a given time budget. Conversely, the time-backward cone, BCp(τ), for a 
participant p ∈ P pointed at the anchor DS(p) is the set of nodes from where DS(p) can be reached within the remaining time budget 
τla(p) −τ. Mathematically, 

FCp(τ) = {n : τ⩾τed(p) + tOR(p)n, τ⩽τla(p)} (2a)  

BCp(τ) = {n : τ⩽τla(p) − tnDS(p), τ⩾τed(p)} (2b)   

Definition 3. (Space-time prism) The space time prism, STP(p), for a participant p ∈ P is defined as 

STPp(τ) = FCp(τ) ∩ BCp(τ) (3)   

Definition 4. (Potential path area) The space that is accessible to a participant within a given time budget is known as potential path 
area (PPA). 

PPAp = {n : tOR(p)n + tnDS(p)⩽τla(p) − τed(p)} (4)  

The anchors, time-forward cone, time-backward cone, potential path area, and space-time prism are visualized in Fig. 3. The 
constraints defining the space-time prism can be used to reduce the network search for an optimal itinerary. 

Proposition 1. (Potential Path Area) The projection of space-time prism onto space is the potential path area PPAp for participant p. 

Proof. Using (2a) and (2b), we have 

−τ⩽ − τed(p) − tOR(p)n
(5)  

τ⩽τla(p) − tnDS(p) (6)  

Fig. 3. Space-time prism (STP(p)) for participant p.  
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Adding (5) and (6) yields, 

τla(p) − τed(p) − tnDS(p) − tOR(p)n⩾0
⇒ τla(p) − τed(p)⩾tOR(p)n + tnDS(p).

(7)  

which is same as (4). □ 

4. Transit-based ridesharing matching problem 

In this section, we define the transit-based ridesharing problem. We make several assumptions that help in defining our problem. 

4.1. Assumptions  

1. All buses and trains are assumed to have sufficient capacity. Passengers do not face denied boarding due to capacity constraints.  
2. Transit service is reliable, which means that all buses and trains arrive on time according to their schedule.  
3. Time spent in boarding and alighting a transit vehicle or getting on or off a car is negligible and can be incorporated as a service 

time (tser). The service time can also be used to account for delays in the schedule.  
4. Transfer of a passenger between several drivers (multi-hop) is not allowed as this can be inconvenient for a rider and reduce the 

attractiveness of the program. 

4.2. Problem statement 

The transit-based ridesharing matching problem is defined as follows. Given a set of requests P, a road network GR, and a transit 
network GT, find the following:  

1. An optimal match between drivers and riders for ridesharing so that a given objective function is optimized, and  
2. Optimal drop off transit stops location s ∈ B for the riders, and  
3. Optimal transit itinerary ℐ for the riders.  

Definition 5. (Feasible match) A match (r,d,s,ℐ) between a rider r and driver d, drop off stop location s, and transit trip itinerary ℐ is 
feasible if and only if it satisfies the following constraints:  

1. d should depart from OR(d) after τed(d)

2. d should reach at OR(r) after τed(r)
3. r should reach at DS(r) before τla(r)
4. d should reach at DS(d) before τla(d)

5. ℐ should be optimal for r i.e., best possible transit path from stop s consisting of different weights to transit trip components 

A feasible match between a driver and a rider must satisfy time constraints associated with the earliest departure and latest arrival 
time. They restrict passenger access to each node in the network at different times. The space-time prism in (3) captures above four 
conditions. By making use of it, we make the following proposition. 

Proposition 2. A driver d ∈ D and a rider r ∈ R can share a ride together if and only if OR(r) ∈ STPr(τ) ∩ STPd(τ) as well as 
𝒵(sk) ∈ STPr(τ) ∩ STPd(τ), where sk ∈ NT is the drop-off node of r. 

Fig. 4. Feasible region where r and d can meet.  
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Proof. (⇒) We prove this by contradiction. Let J = {OR(r),𝒵(sk)}. Let us assume that J ⊊ STPd(τ), then for some n ∈ J,n ∕∈ PPAd, i.e., 
τed(d) + tOR(d)n + tnDS(d) > τla(d), which means d cannot reach to her destination in time, thus violating the time constraints which is a 
contradiction according to (2a)–(4). Furthermore, OR(r) is clearly in STP(r) as this node is the anchor of time-forward cone. However, 
if 𝒵(sk) ∕∈ STPr(τ), then, 𝒵(sk) ∕∈ PPAr, i.e., τed(r) + tOR(r)𝒵(sk) + tskDS(r) > τla(r), resulting in the violation of time constraints for a 
feasible match.(⇐) If J⊆STPr(τ) ∩ STPd(τ), then both nodes present in J are accessible by r and d without violating the time budget 
constraints for any of them, which means they can be present at these nodes at the same time, making it possible to share a ride. 
Therefore, the proposition holds. □ 

Following Proposition (2), STPr(τ) ∩ STPd(τ) provides us the set of potential nodes in the network where r and d can be present at 
the same time τ. These nodes can be used for potential rideshare between r and d as shown in Fig. 4. This approach will greatly reduce 
the size of the network to be considered for ridesharing and thus reduce the computational time for finding a feasible match between a 
rider and driver. 

5. Solving transit-based ridesharing matching problem 

For simplicity, we present a methodology for riders facing the first-mile access problem, i.e., no transit access at the origin for 
inbound trips due to limited transit network coverage or infrequent service in suburbs but sufficient transit access to destinations in the 
city center. The procedure can be reversed for the last mile access problem (for outbound trips), a discussion on which is given in 
Section 5.1.1. The process of finding optimal matches for transit-based ridesharing follows a two-step procedure. The first step finds a 
set of feasible matches between drivers and riders, and in the second step, we use a matching optimization program to assign riders to 
drivers. They are described in detail below: 

5.1. An algorithm to find feasible matches 

The proposed method leverages schedule-based transit shortest path (SBTSP) in developing an algorithm for finding feasible matches. 
The quickest path in an SB transit network may not be optimal for a passenger. For example, the quickest path may have several 
transfers that are less attractive to a passenger. By assigning different weights to the cost of different links, SBTSP finds an optimal path 
according to user route choice behavior. For example, waiting and transfers are considered onerous components of a transit trip and 
hence can be assigned a higher weight. The developed algorithm returns a set of feasible matches for the riders and drivers partici
pating in this program. We assume that the reader is familiar with shortest path labeling algorithms for the discussion to follow in the 
paragraph below: 

Given that r departs from node n ∈ NT, we find the labels γn that specify the latest time r should depart from n in order to reach DS(r)
before τla(r). Let SEL be a scan eligible list, ξi be the predecessor of node i in shortest path, Γ−1(i) = {j | (j, i) ∈ AT} be the backward star 
of node i (i.e., collection of all adjacent nodes from where node i can be reached). We now define weights associated with different 
types of links in GT for calculating a generalized cost. Let ηa, ηv, and ηw be the weights associated with links in set ATa, ATv, and ATw 

respectively. Using weighted sum of the cost of traversing different types of link in the transit network, a generalized cost label γgc
n is 

maintained for each node n ∈ NT. 
Bellman’s principle of optimality: For any node i ∈ NT, γgc

i should satisfy the following condition: 

γgc
j = min

j∈Γ(i)
{γgc

i + tij} (8)  

Pseudocode for finding feasible matches is given in Algorithm 1. The algorithm starts with the initialization of a set of potential 
matches as ℳ = ϕ. For every rider r ∈ R, we run a backward shortest path from DS(r). We initialize a scan eligible list (SEL) and 
maintain two different types of labels–time labels γ and generalized cost labels γgc. The time labels are used to check if the time 
constraints are satisfied for both riders and drivers while the generalized cost labels γgc are used to maintain a minimum generalized 
cost for a rider which is calculated as the weighted sum of the cost of traversing different types of link in the transit network (line 
11–16). Line 18 checks the Bellman’s principle of optimality (8) and restrict the network search by using driving time as a lower bound 
on transit time from OR(r) to node j. While updating labels of each node j ∈ NT, each driver d ∈ D is checked for her compatibility with 
given rider r. Line 23 checks if d can reach OR(r) by τed(r), then we further check if d can reach DS(d) before τla(d). In other words, these 
two if statements check if j ∈ STPd(γ) ∩ STPr(γ). If all these conditions are satisfied, then we add (r, d, j, ξ) to ℳ to ℳ. The node j and 
predecessor set ξ can be used to retrieve the drop off station location s and optimal itinerary ℐ for r. The procedure will be reversed for 
the last mile problem, in which case, we run the algorithm in the forward direction. 

P. Kumar and A. Khani                                                                                                                                                                                              



Transportation Research Part C 122 (2021) 102891

9

Algorithm 1. Pseudocode for finding rider driver feasible matches  

To illustrate the use of above algorithm, consider an example network given in Fig. 5. In this graph, 

NR = {OR(r), OR(d), n1, n2, DS(r), DS(d)}

B = {s1, s2, s3, s4, s5}

NT = {u1, u2, u3, u4, u5, u6, u′

1, u′

2, u′

3, u′

4, u′

5, u′

6}

Assume τed(d) = 0 min, τla(d) = 20 min, τla(r) = 40 min, and τed(r) = 10 min. Suppose the driver d starts at τed(d) = 0 min and reach 
OR(r) at 10 min, from where she has option to go to n1 or n2. However, going to n2 and then DS(d) will make the driver late as τla(d) =

20 min. So d can drop-off r at n1, from where rider can walk to station s1. The service time in getting off and walking to the transit 
station is included in the access links. We assume weights to different types of transit links as ηa = 1,ηw = 2,ηv = 1. Now there are three 
possible paths to go from s1 to DS(r), namely 

π1 = {(s1, u1), (u1, u
′

1), (u
′

1, s3), (s3, u6), (u6, u
′

6), (u
′

6, s4), (s4, DS(r))}

π2 = {(s1, u2), (u2, u′

2), (u′

2, s4), (s4, DS(r))}

π3 = {(s1, u3, ), (u3, u′

3), (u′

3, s4), (s4, DS(r))}

The time of arrival at DS(r) using π1,π2, and π3 are 36 min, 38 min, and 44 min. Therefore, π3 is not feasible as time of arrival at DS(r) is 
greater than τla(r) = 40 min. We can see that π1 is the quickest path to DS(r). However, the generalized cost to reach DS(r) using π1 and 
π2 are 43 min and 40 min respectively. The higher generalized cost of π1 can be attributed to transfers and the waiting involved. In real 
transit networks, sometimes this can greatly affect user perception and should be incorporated in shortest path calculations. Moreover, 
a path involving more transfers may not be reliable and can result in more waiting time than scheduled. Therefore, the rider would 
prefer to take π2 to reach her destination. 

Proposition 3. Algorithm 1 terminates after a finite number of iterations and produces optimal transit path for riders. 
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Proof. As the number of riders |R|and drivers |D| are finite in the program, the number of iterations by two for loops (Line 3 and 21) 
should be finite (|R||D|). While finding an optimal itinerary for a rider up to current node j, the labels cannot be unbounded as link costs 
are non-negative and any node enters SEL only once. Therefore, the algorithm terminates in the finite number of iterations. Also, the 
algorithm satisfies (8), hence the labels should be optimal. □ 

Remark 1. Algorithm 1 will not cut off any feasible solution if and only if ηa = ηw = ηv = 1 

Consideration of varying weights to different links may cut off feasible solutions that are not attractive to the passenger. But if we 
want to consider all the feasible solutions, the coefficients should be ηa = ηw = ηv = ηt = 1. For practical purposes, this input should be 
user-specified. 

Proposition 4. The worst case computational complexity of Algorithm 1 is ℴ(|R|(|D||AT |log|NT| + |NT |log|NT|)). 

Proof. Lines 2, 4–6 can be done in ℴ(1) time. Assuming that the shortest path algorithm is implemented using Binary heap data 
structure, Line 7–20 consists of two major steps, finding the node i with minimum label γgc from SEL (Line 8), which can be done in 
ℴ(|NT|log(|NT|)) and updating labels of new nodes which can be done in ℴ(|AT|log(|NT|)) time. While updating labels of each node j, 
they are checked for possible drop-off location for rider. The space-time prism constraints are incorporated in Line 18 and 22–25, can 
be done in ℴ(1) time and are repeated for each driver d ∈ D. So, updating of labels should be multiplied with the cardinality of set D. 
Also, the shortest path algorithm is run for each r ∈ R, the overall complexity should be multiplied by the cardinality of set R. Hence, 
the worst case computational complexity of Algorithm 1 is ℴ(|R|(|D||AT|log|NT| + |NT|log|NT|)). 

Remark 2. If |D||AT| = Ω(|NT |), then the worst case computational complexity of Algorithm 1 can be given as ℴ(|R||NT|log|NT |)). 
However, the actual cost will be much lower than the worst case. For example, a small number of nodes will be added to SEL due to the 
strict constraint in line 18. 

5.1.1. Last mile access problem 
In this case, a passenger can access transit for the first mile but cannot reach her destination due to the unavailability of transit 

service to complete the last mile. This is a common problem faced by commuters going back to home from a high-density area to a low- 
density area. To solve this problem, a driver also going in the same direction can pick up the passenger from alighting stop and drop her 
off at the respective destination. Algorithm 1 can be modified by running the forward shortest path from OR(r) and checking if driver 

Fig. 5. An example network to illustrate the processing of Algorithm 1.  
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d driving from OR(d) to a transit node j can reach before bus/train arrival time at j, drive from that station to DS(r) and then DS(d)

without violating the time constraints. Specifically, line 23–25 in Algorithm 1 can be replaced with the following constraints: 

τed(d) + tOR(d)𝒵(j)⩽γnew (9)  

γnew + t𝒵(j)DS(r)⩽τla(r) (10)  

γnew + t𝒵(j)DS(r) + tDS(r)DS(d)⩽τla(d) (11)  

5.2. Optimal assignment of drivers to riders 

The second step of the procedure is to find an optimal match between riders and drivers among the feasible matches found by 
Algorithm 1. This is formalized as an Integer Linear Program (ILP). The goal of this optimization program is to find optimal matches out 
of feasible matches that optimize a given objective. The optimization problem is described below: 

5.2.1. Variables 
Let ℳr = {m ∈ ℳ : r ∈ m} be the set of all feasible matches of r present in ℳ. Similarly, ℳd = {m ∈ ℳ : d ∈ m} be the set of all 

the feasible matches in ℳ involving d ∈ D. The set of feasible matches can be seen as edges between riders and drivers in a graph 
shown in Fig. 6, in which a rider can appear more than once with different drop off location and itinerary. Let us assume a binary 
variable ∊k, which takes the value 1, if edge k ∈ ℳ is selected, and 0 otherwise. Let tdrive

k , ttransit
k , twalk

k , t#trans
k , twait

k , dvmi
k and tvhrs

k be the 
driving time, transit time, walking time, number of transfers, waiting time, vehicle-miles savings and vehicle-hrs savings associated 
with edge k ∈ ℳ. These parameters can be used to define different objectives for the matching optimization program. The vehicle-hrs 
savings tvhrs

k can be computed by subtracting tdrive
k from sum of driving time when there is no ridesharing (12). 

Fig. 6. An illustration of bipartite graph in case of transit-based ridematching.  
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tvhrs
k = tOR(r)DS(r) + tOR(d)DS(d) − tdrive

k for r, d ∈ k ∀k ∈ ℳ (12)  

5.2.2. Objective 
There can be several objectives for matching riders and drivers. We consider two different objectives for this problem:  

1. Maximize total number of matches, Z1 =
∑

k∈ℳ∊k  

2. Maximize veh-hrs savings, Z2 =
∑

k∈ℳtvhrs
k ∊k 

5.2.3. Constraints 
There are two types of constraints which are given below:  

1. Each rider should be assigned to at most one driver. 
∑

k∈ℳr

∊k⩽1 ∀r ∈ R (13)    

2. Each driver should be assigned to at most one rider. 
∑

k∈ℳd

∊k⩽1 ∀d ∈ D (14)   

The overall optimization problem to optimally assign riders with drivers can ve written as follows: 

maximize
∊

Z

subject to
∑

k∈ℳr

∊k⩽1 ∀r ∈ R
∑

k∈ℳd

∊k⩽1 ∀d ∈ D

∊k = {0, 1} ∀k ∈ ℳ

(15)  

Remark 3. The solution obtained by LP relaxation of (15) produces an integral solution. 

Proof. (Informal) This is because the problem can be formulated as a minimum cost flow problem with integer capacities and the 
corresponding polytope defined by the constrains satisfies the totally unimodularity condition. As each edge is unique, each column of 
the matrix produced by the set of constraints will still have at most two non-zero values. Of course, each entry of the matrix would be 
either 0 or 1, and rows of the matrix can still be partitioned into two sets with non-zero values in separate sets. □ 

5.3. A rolling horizon algorithm for dynamic transit-based ridesharing 

The ridesharing matching problem is dynamic in nature as requests arrive continuously overtime throughout the day. This requires 
solving the given problem several times during the day since future requests are unknown and drivers and riders enter and leave the 
system continuously over time. This type of uncertainty is usually managed using rolling horizon strategy (Agatz et al., 2011; Wang et al., 
2017). Using this strategy, the matching problem is solved in several instances, and matches are not finalized until necessitated by the 
deadline. The frequency of optimization can be determined using two approaches-event driven or fixed time step approach (Najmi et al., 
2017). The event-driven approach initiates optimization at each time a new request is received. However, this may lead to syn
chronization issues if a new request is received before solving the previous problem. For the framework proposed in this study, it is 
efficient to use a fixed time-step approach with predefined time steps. Pseudocode for using a rolling horizon approach to solve transit- 
based ridesharing matching problem is proposed in Algorithm 2. The algorithm starts with initializing set Dsys(τ) and Rsys(τ) repre
senting driver and rider requests currently in the system. At each time step κ, we consider all new rider and driver requests (Dnew and 
Rnew respectively) received by the platform during the time interval of length σ. We add these new requests to the set of existing 
requests Dsys(τ) and Rsys(τ). We then maintain a set of feasible match ℳ for d ∈ Dsys(τ) and r ∈ Rsys(τ). To make it computationally 
efficient, we run Algorithm 1 for new riders and drivers only (line 12–13). The new feasible matches found using Algorithm 1 are added 
to the set ℳ. Then, an optimization problem is called to decide a set of optimal matches ℳ* for given feasible matches ℳ. After this, a 
subset of matches ℳfin⊆ℳ* are finalized for the requests which are expiring in next time step. A lead time μ is also subtracted from 
τld(p) to allow some flexibility to riders and drivers to get ready for the trip. The requests which are finalized and the ones which did not 
found any optimal matches and expiring in the next step are also removed from the system. Then, the horizon is rolled over to the next 
time step and the process is repeated. The results of a simulation experiment are given in Section 6.7. 
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Algorithm 2. Pseudocode for dynamic ridesharing using rolling horizon policy   

6. Numerical experiments 

In this section, we present results from simulation experiments to get more insights and analyze the benefits of the proposed transit- 
based ridesharing program. We implemented Algorithms 1 and 2 in Python 2 on a standard PC with Core i5 3.00 GHz processor with 
16 GB RAM. 

6.1. Simulation setup 

The simulation environment is based on the 2010 activity-based travel demand model for Twin Cities, MN developed by Metro
politan Council (Cambridge Systematics, 2015). The Twin Cities metropolitan region is spread over 8,120 mi2 area with a population of 
about 3.55 million. There are more than 11 million trips occurring every day. The activity-based model takes input from travel 
behavior surveys and outputs simulated trips for the entire metropolitan region. The model output used for this study consists of trip 
origin, destination, activity purpose, the mode used, departure time, and arrival time. For this ridesharing program, we consider only 
the commuting and school trips during morning peak hours (6:00 AM to 9:00 AM). The departure and arrival time of each trip in this 
data is available on a 30-min scale, so we added a uniform random number between 0 to 30 min to represent the variation in the 
departure time of trips. The Twin Cities transportation network has 3030 traffic analysis zones (TAZs), 23,812 nodes, and 56,688 links. 
Using a static traffic assignment program (Kumar, 2017), we calculated the value of equilibrium travel time on links for an hourly 
demand obtained from the above model. For each trip, the value of the shortest path travel time is increased by a certain proportion, 
known as time flexibility. The latest arrival time {τla(p), p ∈ P} at passengers’ destination are obtained by adding this increased travel 
time to the earliest departure time {τed(p),p ∈ P}. Then a uniform random number between 0 and 60 min is further subtracted from 
{τed(p), p ∈ P} to calculate the value of announcement time {τat(p), p ∈ P} of trips. After this, unlike other studies, we explicitly selected 
trips with the transit first-mile access problem (i.e., no transit stop within a buffer distance of 0.75 mi). This is important to assess the 
efficiency of a matching algorithm designed to solve the first-mile problem. The driver or rider role to a given trip is also assigned 
randomly based on the driver-rider ratio. Other specifications are given in Table 1. 

Metro Transit is the primary transit agency in the Twin Cities region, offering an integrated network of buses, light rails, and a 
commuter train. The schedule-based transit network is created using the GTFS data obtained from Minnesota Geospatial Commons 
(2016) with the help of an R script (Kumar and Khani, 2019). The script produces different types of transit network links AT based on 
the set of pre-defined parameters. The time to traverse an access link (i, j) is calculated by dividing the distance between i and j and 
speed of walking, which we considered as 3 mi/hr. The Metro Transit GTFS feed contains 191 routes, 13,672 stops, and 9,042 vehicle 
trips. The number of different types of transit network links generated is given in Table 2. The standard implementation of schedule- 
based transit shortest path using binary heaps is also shared as open-source code (Khani, 2018). 

In the following subsections, we first present the results for a static matching problem, in which case the requests are known before 
the start of the day. Then, a dynamic simulation experiment results using the rolling horizon policy is presented in Section 6.7. The 
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sensitivity analysis of different parameters, such as participation rate, rider, and driver time flexibility, and the driver-rider ratio is also 
presented. The results are computed for different objective functions given in Section 5.2. 

6.2. Static simulation 

For this experiment, the driver-rider ratio is equal to 1.0, i.e., an equal number of drivers and riders in the system and a partici
pation rate of 1% (1,087 riders and 1,092 drivers) among travelers facing the transit first-mile access problem. We provide time 
flexibility of 40% to the drivers and 80% to the riders as transit travel time is likely to be higher than the auto travel time. To avoid any 
bias, we draw five different samples and calculate the average of the results obtained. The results obtained using different samples with 
different matching objectives are given in Table 3. We can observe that for 1,088 drivers and 1,097 riders, Algorithm 1 took an average 
of 7.7 min and produced 12,338 feasible matches. It only took a fraction of a second to solve the matching optimization problem (15). 
The average number of optimal matches found using objective Z1 exceeds objective Z2 by a small number. However, the average veh- 
hrs savings found using objective Z2 is significantly more than the value found using Z1. As Z2 is about maximizing veh-hrs savings, the 
average detour time of drivers found using objective Z1 is more than Z2 by 2 min. On the other hand, the average shared time between a 
rider and a driver up to a transit station and average transit time using objective Z2 is more than Z1. The average walking time of riders 
using both objectives is almost similar to without a transfer, the walking component of the transit trip should be between the desti
nation and closest transit station only. The waiting time is negligible which shows only a few optimal trips have a waiting transfer, 
which is assigned a higher weight in the algorithm. 

Table 1 
Characteristics of simulation setup.  

Trips Commuting and school trips  
having first mile access problem 

Driver-rider ratio 1 
Acceptable walking distance to/from bus stop 0.75 mi 
Acceptable transfer distance for walking 0.25 mi 
Walking speed of riders 3 mi/h 
Maximum wait time at transit stop 10 min 
tser  2 min 
η  {1.5, 2.0, 1.0, 2.0} 
Vehicle capacity 2 seats  

Table 2 
Twin Cities schedule-based transit network.  

Number of nodes 490,112 
Number of in-vehicle links 481,065 
Number of waiting transfer links 241,187 
Number of walking transfer links 5,082,747 
Number of access/egress links 8,496,605 
Total number of links 14,301,604 
Computational time to generate transit network 8 min  

Table 3 
Static simulation results.  

Sample number 1 2 3 4 5 Average 

Number of participants 1,120 D, 1,059 R 1,035 D, 1,144 
R 

1,096 D, 1,083 
R 

1,092 D, 1,087 
R 

1,099 D, 1,080 
R 

1,088 D, 1,097 R 

Run time of Algorithm 1 (min) 7.55 7.46 7.64 7.47 8.4 7.704 
Number of feasible matches found 22,397 10,415 9,936 10,021 8,924 12,338 
Number of riders and drivers in feasible 

matches 
364 R, 604 D 218 R, 344 D 178 R, 299 D 182 R, 334 D 187 R, 346 D 263 R, 386 D 

Objective Z1  Z2  Z1  Z2  Z1  Z2  Z1  Z2  Z1  Z2  Z1  Z2  

Run time of optimization program (sec) 0.1 0.12 0.08 0.08 0.07 0.08 0.07 0.15 0.07 0.09 0.09 0.1 
Optimal number of matches found 319 316 192 192 155 154 166 166 168 166 200 198 
Total vehicle-hrs savings 107.4 122.47 55.97 67.03 48.81 57.15 48.14 55.97 47.17 58.7 61.5 71.6 
Average driver detour time (min) 10.12 7.65 11.58 8.82 11.39 8.48 11.78 9.08 11.95 8.29 11.36 9.2 
Shared time between driver and rider 

(min) 
29.54 29.9 27.86 28.1 29.54 29.44 28.36 28.24 28.12 28.52 28.68 34.4 

Average transit time (min) 6.06 6.41 6.44 6.59 6.59 7.64 5.43 5.76 5.29 6.32 5.29 6.32 
Average walking time (min) 10.75 10.85 10.1 11 11 10.85 10.24 10.01 10.57 10.46 10.532 10.452 
Average waiting time (min) 0.5 0.63 0.59 0.61 0.61 0.64 0.58 0.54 0.463 0.4 0.5486 0.574  
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Fig. 7. Different components of travel time for riders and drivers.  
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To closely examine different components of individual driver and rider-trips, we created a stacked bar chart for the average value of 
different travel time components (Fig. 7). Fig. 7a shows the driver trips, and Fig. 7b shows the rider-trips. A particular ID in both panels 
represents a match using objective Z2. This match ID can be compared in both plots to see the relationship between different com
ponents of the trip time. As we can see drivers spent most of the time driving a rider to a station. Drivers also spent a significant amount 
of time driving from their origin to a rider’s origin. The driving time from station drop off location to drivers’ destination is low as 
compared to the other two components of the drivers’ itinerary. The average driver detour time of 9.2 min (Table 3) shows that while 
maximizing the vehicle-hours savings, drivers are assigned to riders whose drop-off transit stations are close to drivers’ destinations. 

Looking at rider itineraries, for most of the riders, the drive time from the origin location to the transit station is a significant 
component of the trip followed by in-vehicle time and then walking time. Walking time is higher in most of the itineraries because of 
the unavailability of the actual destination location in the data due to which a walking component from the centroid of TAZ to alighting 
stop is specified. We can observe that most of the riders are assigned a trip without any walking and waiting transfer to the other routes 
due to their higher weight in the algorithm. About 31% of the riders were found to have one or two transfers on their trip. 

One of the common objectives for the matching optimization program (15) in the literature (Agatz et al., 2011; Agatz et al., 2012) is 
to maximize the vehicle-miles savings. The overall vehicle-miles savings is calculated as Z3 =

∑
k∈ℳdvmi

k , where savings due to in
dividual matches dvmi

k can be computed using (16). We conducted an experiment using the objective function Z3 and found results close 
to maximizing Z2. We found that the average number of matches, vehicle-hrs savings, and vehicle-miles savings using (Z2, Z3) are equal 
to (198, 199), (71.6, 64.46) veh-hrs, and (10069, 10940) veh-miles respectively. This is not surprising, as for average speed, the 
distance remains proportional to time. Furthermore, the objective Z2 is quite popular in the system-optimal design of transportation 
systems (Sheffi, 1985). Therefore, for further experiments in this article, we keep Z1 and Z2 only. 

dvmi
k = distOR(r)DS(r) + distOR(d)DS(d) − distdrive

k for r, d ∈ k ∀k ∈ ℳ (16)  

6.3. Sensitivity to time flexibility 

To better understand the effect of time flexibility, we performed a sensitivity analysis on the time flexibility of the drivers and 
riders. We kept the participation rate 1% and a driver-rider ratio equal to 1.0, similar to previous tests. For varying rider and driver 
time flexibility (25 % to 150%), the results are compiled for computational time, number of feasible matches, number of optimal 
matches, and vehicle-hrs savings using both objectives. Fig. 8a shows the effect of varying time flexibility on the computational time of 
Algorithm 1. With more time flexibility in rider and driver travel time, the runtime of Algorithm 1 increases. The increase in 
computational time with an increase in the drivers’ flexibility is due to an increase in the number of feasible rider matches. The in
crease in rider time flexibility can significantly increase the computational time due to a higher number of nodes in space-time prism of 
riders resulting in a higher number of feasible matches. The effect of rider time flexibility on computational time is more than driver 
time flexibility. Fig. 8b shows the number of feasible matches found for an increase in rider and driver time flexibility. In this figure, we 
can observe an abrupt increase in the number of feasible matches with the increase in rider and driver time flexibility. This is due to the 

Fig. 8. The effect of time flexibility of riders and drivers on (a) run time of Algorithm 1 and (b) number of feasible matches found.  
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increase in the number of feasible transit stops and transit trip itineraries. 
Figs. 9 and 10 show the effect of varying rider and driver time flexibility on the number of optimal matches found and vehicle-hrs 

savings using different objectives. In general, the number of optimal matches found increase with an increase in the time flexibility of 
both riders and drivers. As expected, the number of optimal matches are more in case of objective Z1 in comparison to Z2. Similarly, the 
veh-hrs savings in case of objective Z2 is higher in comparison to Z1. Interestingly, the effect of rider flexibility on the number of 
optimal matches found is more in comparison to driver time flexibility. However, in the case of veh-hrs savings, the driver time 
flexibility has more effect on objective Z1, and rider time flexibility has more effect on objective Z2. 

6.4. Sensitivity to participation rate 

Using 150% time flexibility for riders, 50% time flexibility for drivers, and the driver-rider ratio of 1.0, results for different 
participation rates varying from 0.5% to 2% are stated in Table 4. With increasing participation rate, run time of Algorithm 1, the 
number of feasible matches, the percentage of drivers and riders matched, and veh-hrs savings increase. With a 2% participation rate, 
the amount of veh-hrs savings can be as high as 230.8 veh-hrs using objective Z2. This experiment shows that a higher participation 
rate can result in batter matching results. 

Fig. 9. The effect of time flexibility of riders and drivers on optimal number of matches.  

Fig. 10. The effect of time flexibility of riders and drivers on veh-hrs savings.  
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6.5. Sensitivity to driver-rider ratio 

To see how the number of riders and drivers in the system affect results, we performed a sensitivity analysis on the driver-rider 
ratio. The time flexibility was kept 80% for riders and 50% for drivers and the participation rate was kept 1%. The driver-rider 
role in the data was assigned randomly varying from 0.5 to 4.0. As we can see in Fig. 11 that with more number of riders in the 
system, the runtime of Algorithm 1 and number of feasible matches, |ℳ|is higher. The highest value of both quantities was observed 
when the number of drivers and riders are equal in the system. 

A similar trend can be observed in case of the optimal number of matches and veh-hrs savings (Fig. 12 and Fig. 13). With a higher 
number of riders in the system, more riders can be matched resulting in higher matching rate and higher veh-hrs savings. Fig. 12 shows 
both objectives result in an almost similar matching rate. However, objective Z2 results in significantly higher veh-hrs savings in 

Table 4 
Sensitivity to participation ratio.  

Participation % |ℳ| % drivers matched % riders matched veh-hrs savings   

Z1  Z2  Z1  Z2  Z1  Z2  

0.5 32,377 22.44 21.91 24.28 23.71 25.53 36.85 
1 131,405 28.09 27.45 28.64 27.99 65.68 93.81 
2 676,671 30.68 30.21 30.09 28.55 161.06 230.48  

Fig. 11. The effect of driver-rider ratio on (a) run time of Algorithm 1 and (b) number of feasible matches found.  

Fig. 12. The effect of driver-rider ratio on optimal number of matches found.  
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comparison to objective Z1(Fig. 13). 
The effect of driver-rider ratio on the value of transit travel time components of matched participants is negligible after driver-rider 

ratio equal to 1.0. Overall, the average shared time between riders and drivers has a higher value in comparison to other components 
(Fig. 14). 

6.6. Combining transit-based ridesharing with stand-alone ridesharing 

In Section 3, we presented a hypothesis that combining the transit-based ridesharing with stand-alone ridesharing would improve 
the matching rate and overall savings in veh-hrs. The matching rate is defined as the number of matches divided by the average number 
of riders and drivers in the system. To get insights into this hypothesis, we run simulations in three different settings:  

1. Stand-alone ridesharing (RS): In this setting, we find matches between riders and drivers, in which case, the complete trip of a rider is 
covered by the driver. We use the method proposed by Agatz et al. (2011) to compute the feasible matches and then solve the 
optimization program (15) to find optimal matches.  

2. Stand-alone transit-based ridesharing (TRS): In this setting, we run Algorithm 1 to find feasible matches and solve the optimization 
program (15) to find optimal matches. 

Fig. 13. The effect of driver-rider ratio on veh-hrs savings.  

Fig. 14. The effect of driver-rider ratio on different time components of rider itinerary.  
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3. Combining stand-alone ridesharing and transit-based ridesharing (RS + TRS): In this setting, we allow drivers to cover the rider’s 
complete trip. We find feasible matches using both Algorithm 1s and the method proposed by Agatz et al. (2011), and solve the 
optimization program (15) to find optimal matches. 

For the driver-rider ratio equal to 1, the results are presented for all of the above settings in Table 5. For 1035 drivers, and 1144 
riders in the system, the optimal matches found in three different settings are 562, 192, and 575 respectively. Combining the RS with 
TRS increases the matching rate in the case of both objectives (Z1 and Z2). However, the savings in the case of Z2 is significantly higher 
in comparison to Z1. If we look at the results, we can see that the average savings per match by transit-based ridesharing setting are 21 
veh-min in comparison to 14 veh-min in case of stand-alone ridesharing. The average savings is calculated by dividing the veh-hrs 
saving by the number of final matches. This shows that involving transit trips can significantly help in reducing congestion. More
over, with better results, by combining both types of ridesharing settings, we have more confidence in the gain from adopting the 
proposed system and promoting transit. 

6.7. An experiment on dynamic ridesharing using rolling horizon policy 

To deal with the dynamics of a transit-based ridesharing system, we presented a rolling horizon algorithm in Section 5.3. In this 
section, we prepare a simulation environment to see how the rolling horizon approach works. We assumed a time step, σ = of 5 min for 
this experiment. Depending on the demand, σ plays an important role in deciding if one iteration of Algorithm 2 can be solved within a 
time interval of σ. For this experiment, we consider driver-rider ratio equal to 1.0, rider, and driver flexibility to be equal to 150% and 
50% respectively, and 1% participation rate during the morning peak. Fig. 15 shows simulation results from 5:00 AM to 9:00 AM. The 
computational time results are presented in Fig. 15a. The maximum computational time of 4.23 min was observed at 7:20 AM when 
there were 412 participants in the system. This shows that Algorithm 2 can run successfully for a 1% participation rate with given σ. 
The optimization time remains a fraction of second for each iteration and most of the time was spent in finding feasible matches using 
Algorithm 1. 

Fig. 15b shows the number of riders and drivers present and added in each interval. We can observe a peak demand between 7:00 AM- 
8:00 AM. The number of matches finalized in each time step is almost equal to the number of rider and driver requests being expired due 
to the unavailability of match satisfying given constraints. Overall, about 54% of the participants found a successful match during the 
simulation. This example shows that the given algorithm can handle uncertainties arising in this dynamic matching problem. 

7. Discussion 

The proposed research attempts to solve the transit FMLM problem using ridesharing under certain assumptions mentioned in 
Section 4.1. We discuss the possible implications of these assumptions and possibilities to resolve those issues. First, we assumed that 
transit vehicles have unlimited capacity. However, the congested transit systems often face the problem where passengers fail to board 
the train due to limited capacity. This will result in extra waiting time, which was not considered when finding feasible matches. A 
time-dependent origin-destination flow matrix (Kumar et al., 2018; Nassir et al., 2011; Kumar et al., 2019) can help in evaluating a 
failure to board probability to incorporate in the model. Second, it was assumed that the travel time on both road and transit network is 

Table 5 
Comparing matching results for three different setting of ridesharing.    

RS TRS RS + TRS  

No of participants 1,035 D, 1,144 R 1,035 D, 1,144 R 1,035 D, 1,144 R  
Number of riders and drivers in the feasible matches 925R 716 D 218R 344 D 936R, 720D  

Maximize savings Final matches found 562 192 575 (123 TRS, 452 RS) 
Matching rate 51 % 18 % 53 % 
Vehicle-hrs savings 138 67 149 
Average driver ride time (min) 37.80 45.83 37.63 
Average rider ride time (min) 22.40 47.10 26.97 
Driver detour time (min) 7.66 8.82 7.47 
Shared time(min) 22.40 28.10 22.55  

Maximize matching Final matches found 583 192 593 (104 TRS, 489 RS) 
Matching rate 53 % 18 % 55 % 
Vehicle-hrs savings 109.73 55.34 114 
Average driver ride time (min) 39.52 48.86 39.62 
Average rider ride time (min) 20.43 46.15 23.90 
Driver detour time (min) 9.14 11.85 9.29 
Shared time(min) 20.43 27.92 20.62  
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Fig. 15. Algorithm 2 simulation results.  
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reliable. However, the travel time experienced by passengers is often subject to uncertainty. This uncertainty is more prominent in the 
case of bus transit service. One way to address this problem is to create matches in the framework which allow drop-off only at stops 
served by high-frequency routes. The higher the frequency of transit service, lesser is the waiting time. Another way is to formulate this 
problem as an online shortest path problem, which accounts for the uncertainty in the travel time and provides optimal policies for 
each possible realization (Waller and Ziliaskopoulos, 2002; Khani, 2019). Future work is required to develop an algorithm that creates 
feasible matches based on online information. Third, better calibration of service time based on the dwell time models is needed. 

Finally, for the success of a transit-ridesharing program, we need to design a mechanism such that all the players participating in 
this program are well-off. In the initial phase, transit agencies and the Government can provide subsidies to attract more drivers to 
participate in this program. Riders can pay for the service, and in return, they do not have to worry about the parking and gas cost. 
Drivers can be encouraged to participate in this program to reduce the negative externalities of congestion and for minimal 
compensation. Bian and Liu (2019a,b) designed such a mechanism, but further research is needed in this area to develop a more 
efficient mechanism. 

8. Conclusions and future research 

This research proposes ridesharing as a promising solution to the transit FMLM problem. To integrate ridesharing with fixed-route 
transit, we developed a labeling algorithm to find feasible matches between drivers and riders. The algorithm uses a schedule-based 
transit shortest path to generate optimal itineraries for riders, which captures various complexities of a transit network such as precise 
waiting time, in-vehicle time, transfer time, and access time. To reduce the size of the network search, the algorithm uses the concept of 
space-time prism (STP) which provides constraints on rider and driver movement based on the available time budget and location. 
Using a matching optimization program, the riders and drivers are matched together up to the first mile of the rider trip. Two different 
objectives are considered for the problem; maximizing the total number of matches and maximizing the total vehicle-hrs savings. Using 
simulation experiments on real data from a large scale network, we found that the proposed ridesharing program can save a significant 
amount of veh-hrs spent in the system. The number of matches found using both objectives were found to be close to each other. 
However, maximizing veh-hrs savings can save a lot more veh-hrs than maximizing the total number of matches. This shows that 
maximizing the matching rate is not a good objective. We also observed different trip components of drivers and riders and found that 
driving from riders’ origin to drop-off stations is a significant component of both riders and drivers’ itinerary. This is due to less time 
flexibility in riders’ schedule as transit travel time is generally higher than the corresponding driving time. We also performed a 
sensitivity analysis on the participation rate, time flexibility, and driver-rider ratio. With an increase in time flexibility and partici
pation rate, the runtime of the algorithm increases, producing a higher number of feasible matches. An equal number of riders and 
drivers in the system maximizes the matching rate. By combining the stand-alone ridesharing with the transit-based ridesharing 
program, we obtained a better matching rate and veh-hrs savings. We also proposed an algorithm to solve the given ridesharing 
matching problem in real-time using a rolling horizon approach. For a 1% participation rate among travelers facing the FMLM 
problem, a time step of 5 min is adequate for solving the given problem on a regular desktop computer. Furthermore, computational 
time can be further reduced by using parallelization techniques. Using simulation experiments, we observed that about 46% of riders 
and drivers did not find a suitable match due to the lack of a feasible partner or time flexibility. Twin Cities sub-urban region being 
large and sparse has a lower number of trips generated in those regions. The lower matching rate is due to less number of requests. With 
a higher number of requests (e.g., in denser urban areas such as Manhattan region), the matching rate can be higher. 

The current research can be expanded in multiple directions. To improve the matching rate of the current program, there is a need 
to develop a multiple-matching algorithm. One possibility is to sequentially grow the number of feasible riders for a given driver by 
checking different time constraints. It is also challenging to develop such an algorithm for riders facing both first and last mile problems 
which means there is no transit access at both ends of a transit trip. There is a need to develop an algorithm that can generate several 
ridesharing modal choices for users. 
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