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Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO,) emitted
by human activities each year', yet the persistence of this carbon sink depends partly
on how plant biomass and soil organic carbon (SOC) stocks respond to future
increases in atmospheric CO, (refs.??). Although plant biomass often increases in
elevated CO, (eCO,) experiments*®, SOC has been observed to increase, remain
unchanged or even decline’. The mechanisms that drive this variation across
experiments remain poorly understood, creating uncertainty in climate
projections®’. Here we synthesized data from 108 eCO, experiments and found that
the effect of eCO, on SOC stocks is best explained by a negative relationship with plant
biomass: when plant biomass is strongly stimulated by eCO,, SOC storage declines;
conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off
appears to be related to plant nutrient acquisition, in which plants increase their
biomass by mining the soil for nutrients, which decreases SOC storage. We found that,
overall, SOC stocks increase with eCO, in grasslands (8 + 2 per cent) but not in forests
(0 £2per cent), eventhough plant biomass ingrasslands increase less (9 + 3 per cent)

thaninforests (23 +2 per cent). Ecosystem models do not reproduce this trade-off,
whichimplies that projections of SOC may need to be revised.

Thefuture of the land sink, especially of SOC, is particularly uncertain®.
Soils can become either sources or sinks of carbon with rising levels
of atmospheric CO,, depending on the prevalence of gains via photo-
synthesis or losses via respiration®®, This uncertainty in terrestrial
ecosystem model projections reflects uncertainty inboth the mecha-
nisms and the parameter values controlling SOC cycling under eCO,".
Plant growth generally increases in response to eCO,*?, with soil
nutrientsidentified as the dominant factor explaining variability across
experiments? ™, The effect of eCO,0n SOC stocks (B,,;) is more equivo-
cal. Although the expectationis that SOC will accrue as eCO, increases
plant growth’, a few experiments show increases in f,;, many show
no change, and some even show losses’. The observed variation in B
across experimentsis puzzling, and thereis wide disagreement regard-
ing the dominant mechanisms explaining this variation”"%,
Apositiverelationship between the effects of eCO, on plant biomass
and SOC pools is expected if increased plant production under eCO,

increases carboninputs (litter) into the soil. Indeed, a positive relation-
shipbetweeninputs and SOC storage is formalized in first-order kinet-
ics'®andis applied in most terrestrial ecosystem models'>*, Because
the effect of eCO, on plant aboveground biomass (8,,.,,) is strongly
correlated with the effect of eCO, on litter production (Extended
DataFig.1a,r=0.81) and onroot production?, a positive relationship
between f,,,,.and B, can thus be expected from first-order kinetics.
This hypothesis, however, ignores SOC losses associated with acceler-
ated soil organic matter decomposition sometimes observed under
eCO0,”8, Plants acquire limiting resources from soils through carbon
investment belowground in root growth, exudates and symbiotic
bacteriaand fungi. Accelerated decomposition of soil organic matter
fuelled by plant carbon inputs can enable plant nutrient uptake (the
“priming effect”??). The return on this belowground carbon investment
is an increase in aboveground biomass production®. However, the
priming effect can decrease SOC’. A negative relationship between
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Fig.1|Meta-analysis of the effect of eCO, on percentage SOCacross
different factors.n=108. Overallmeans and 95% confidenceintervals are
given; weinterpret CO,effects when the zero lineis not crossed by the
confidenceintervals. Arrows represent 95% confidence intervals that extend
beyond the limits of the plot. Soil carbon stocks represent values in ambient
CO, plotsasacontinuous variable, here expressed as intervals of equal sample
sizeforillustration purposes. Valuesin parentheses are sample sizes. CO,
effectsrepresent, onaverage, anincreasein CO,from 372 parts per million
(ppm) to 616 ppm. FACE, Free Air CO,Enrichment; OTC, Open Top Chamber;
AM-ER, mix of AM and ericoid mycorrhizal; N-fixer, fixation of atmospheric
nitrogen.

Byiane@nd B, may thus emerge through the economics of plant resource
acquisition.

Here, we evaluate the mechanisms of S, including its relationship
with B, by synthesizing 268 observations of S, from 108 eCO,
experiments spanning the globe with coupled B,..—Bs.1 data (Sup-
plementary Table 1) using meta-analysis techniques. We explore how
well these mechanisms are represented in ecosystem models, and
scale up the geographical distribution of S,; derived from experi-
ments to identify regions where models might be missing important
processes.

Predictors of SOCaccrual under eCO,

Overall,eCO,increased SOC stocks by 4.6% across experiments (Fig.1;
1.7% to 7.5%, 95% confidence interval, Cl). Given the strong variation
in B, across factors (Fig. 1), we used arandom-forest approachin the
context of meta-analysis (meta-forest) to quantify the importance of
19 potential predictors (Extended Data Table 1), including climate, soil,
plant and ecosystem variables and their interactions, accounting for
covariation across predictors and potential nonlinearities.

Wefound that 8,,,. is the mostimportant predictor of B,,; (Extended
DataFig.2a,b;n=108), revealing astrong coupling between CO,-driven
changesin plant biomass and SOC. In addition, S,,;increased with back-
ground SOC stocks (Fig. 1), also identified as an important predictor.

Contrary to expectations from some first-order models’®?, the
relationship between S, and B, was negative. For the subset
(n=73) of field experiments with intact soils (non-potted plants and
non-reconstructed soils), we found a significant interaction between
Boiane and nitrogen (N) fertilization (Extended Data Fig. 2¢; P < 0.01).
In non-fertilized experiments, the slope between ,; and B,/ was
significantly negative (Fig.2a; P<0.0001, R>*=0.67,n=38), whereasin
fertilized experiments the slope was less pronounced and not signifi-
cant (P=0.34, n=35) (Extended Data Fig. 3a). In non-fertilized experi-
ments, increases in plant biomass were associated with decreasing
SOCstocks (Fig.2a), consistent with the priming effect. In N-fertilized
experiments, eCO, generally increased both plant biomass and SOC
(Extended Data Fig. 3b), in line with first-order kinetics.

We propose a framework to explain the negative relationship
between S, and B,,,.., based on plant nutrient acquisition strategies.
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Fig.2|Elevated CO, experiments show aninverserelationship betweenthe
effects of eCO,on plant biomass and SOCstocks due to plant
nutrient-acquisition. Thisinverse relationship (a) can be explained by the
different efficienciesin plant nutrient uptake (c) between AM and ECM
nutrient-acquisition strategies driving opposite effects on plant biomass and
SOC pools (b), including MAOM stocks (d). The regressionlineinaisbasedona
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quadratic mixed-effects meta-regression model and 95% confidence interval
(R*=0.67,P<0.0001,n=38).Dotsinarepresent the individual experiments in
the meta-analysis, with dot sizes proportional to model weights. Dotsinb-d
represent overall effect sizes from ameta-analysis and 95% confidence
intervals. Datashown here are for non-fertilized experiments (see Extended
DataFig. 3 for nutrient-fertilized experiments).
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Symbiotic associations between plants and fungi—arbuscular mycor-
rhizae (AM) and ectomycorrhizae (ECM)—mediate f,,,,. (Extended
Data Fig. 2d), resulting in much higher B, in ECM-associated
plants than in AM-associated plants when nutrient availability is low
(Fig. 2b). ECM-associated plants efficiently increase N uptake under
eCO, (Fig. 2c; n=12), enhancing f,,,... However, acquiring N from soil
organic matter via priming accelerates SOC losses’, reducing B.,; in
ECM (Fig. 2b). In contrast, eCO, did not significantly affect N uptake
in AMsystems (Fig.2c; n=12, P=0.3460). This outcome limits 3, in
AM systems but stimulates S,; (Fig. 2b), probably owing toincreased
carboninputs through fine-root production and rhizodeposition***
combined with decreased carbon losses®. The composition of the soil
organic matter may mediate this effect as well: AM plants produce more
easily decomposable litter?®, which enhances mineral-associated soil
organic matter (MAOM) formation? and results in a greater fraction
of SOCin MAOM under AM relative to ECM systems®*%. Indeed, eCO,
increases MAOM more strongly in AM systems than in ECM systems
(Fig.2d; n=19).Because MAOM is less accessible to microbial decom-
posers®, greater MAOM in AM systems could limit priming-induced
losses and promote long-term SOC storage.

We considered three alternative mechanisms that could potentially
explain this trade-off. First, grasses allocate more carbon to roots

than trees, which is associated with greater SOC stocks®"**. Because
grassland species associate with AM fungi and the majority of tree
speciesinthe dataset associate with ECM, the observedincreasein
Bsonin AM systems could be driven by ecosystem type rather than
mycorrhizal type. However, we found that eCO, effects on root bio-
mass and fine-root production were generally lower in grasses than
trees, and were also lower in AM-associated thanin ECM-associated
trees (Extended Data Fig. 4). Second, in non-fertilized experiments
with available data (n =16), eCO, increased litter C:N by 8%, which
could reduce the decomposability of litter and the stabilization of
carbonin the soil?. If litter quality is reduced more in ECM systems
thanin AM systems, this could help explain why eCO,increased SOC
in AM systems, but notin ECM systems. However, the effect of eCO,
on litter quality was similar between mycorrhizal types (Extended
Data Fig. 4). Finally, contrasting S,.; in AM systems versus ECM
systems could be driven by larger background SOC in grasslands
thanin forests, given that higher SOC is associated with higher
B0 (Fig. 1). We found, however, that background SOC was similar
between mycorrhizal types and ecosystem types (Extended Data
Fig.4). Thus, differences in root allocation, litter quality and back-
ground SOC in grasses versus trees cannot explain the trade-off
between B, and B, Instead, losses in SOC associated with plant
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Fig.4|Comparison of modelled and measured relationships between
aboveground biomass and SOCresponsesto CO,. a, Relationship observed
(blue) and modelled (red) across six eCO, experiments. Model results are based
on12models applied to the same six experiments withacommon forcingand
initialization protocol. The experimentsincluded are: Duke FACE (DUKE),
Kennedy Space Center (KSCO), Nevada Desert FACE (NDFF), Oak Ridge FACE
(ORNL), Prairie PHACE (PHAC), and Rhinelander (RHIN). The regressionline

nutrient uptake (priming effect) in ECM systems, and gains associ-
ated with rhizodeposition in AM systems, are probably essential.
Experiments including both AM-associated and ECM-associated
tree species should be targeted to better understand the impacts
of nutrient-acquisition strategies under eCO,.

Scalingup

To explore the potential geographical distribution of S,,;, we simulated
aglobal free-air CO, enrichment (FACE) experiment (Fig. 3a)'2. Unlike
Fig.1, in which predictors are analysed individually, our meta-forest
model can scale up B, from experiments while accounting for all
important predictors simultaneously onagrid (Extended Data Figs. 5,
6;tenfold cross-validated R*=0.51). Grasslands, croplands and shrub-
lands showed a stronger potential to accumulate SOC in response to
experimental eCO, than did forests (Fig. 3a, b). Soils in semi-arid her-
baceous ecosystems were particularly responsive to eCO,, consistent
with theresults from the Mojave desert FACE experiment that showed
eCO,-driven increases in SOC, but not biomass*’. We identified large
areas not currently sampled with eCO, experiments, particularly in the
tropicsand high latitudes (Fig. 3c, d, Extended DataFig. 6), where new
experiments would help to reduce uncertainties.

Data-model comparison

In addition to the negative relationship between S, and B,,,., we
also found a significantly negative relationship between S,; and the
effect of eCO, on aboveground biomass production (Extended Data
Fig.1b; R?=0.55, P< 0.001), which is strongly correlated with litter
production (Extended Data Fig. 1a; R>= 0.63, r=0.81, P< 0.01). This
result questions the positive relationship between litter inputs and
SOC stocks encoded in most ecosystem models. Thus, we investigated
the relationship between B, and B, in models from three different
model ensembles (descriptionin Extended Data Table 2). First, models
from the FACE-MDS project** mimic the experimental treatment in
six eCO, experiments and allow for a direct comparison with respec-
tive observations. Although observations from the six experiments
included in FACE-MDS showed a negative relationship between £,
and B, (blue line in Fig. 4a; R*= 0.99, P< 0.001), the twelve models
simulated a positive relationship when pooled by experiment (red
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across observationsinais based onaquadratic meta-regression model.
Modelled simulations averagedinafor each experimentare fromthe
FACE-MDS project phase 2 (ref.?*). b, ¢, Global-scale relationship simulated by
ecosystem models fromthe TRENDY ensemble for the historicalincreasein
CO,sincetheyear1700 (b) and from the CMIP5 ensemble for anincreasein CO,
from372 ppmto 616 ppmasineCO,experiments (c). Dotted linesare the 1:1
line.

line in Fig. 4a; R*=0.91, P< 0.01). The relationship across all models
individually was positive as well (dashed line in Extended Data Fig. 7a;
R?=0.37,P<0.0001), and none of the individual models was able to
reproduce the observations. Second, to investigate whether the same
relationships emerge across the globe and in simulations where CO,
increases gradually, we evaluated global century-scale relationships
between S, and B, from the TRENDY and CMIP5 model ensembles
(Fig.4b, c). Overall, TRENDY and CMIP5 models did not simulate anega-
tive relationship either (Fig. 4b, c). Instead, most models simulated a
positive relationship and the vast majority of model simulations fellinto
the upper-right quadrant of CO, effect on SOC storage plotted against
CO, effect on biomass carbon (Extended DataFig. 7b, ¢), reflecting that
inputs drive SOC accumulation in the first-order soil decomposition
structure common to the models.

In TRENDY and CMIP5 model simulations, S,; was estimated over a
muchlonger time period thaninexperiments (Extended Data Table 2).
Given the relatively slow turnover times of SOC pools, and the slow
pace of changes in species composition and evolutionary pressures
onboth plants and soil microbes, long-term effects are likely to differ
fromthose found inexperiments. However, first-order models simulate
a positive relationship f,..:Bs1 When they are forced to simulate the
temporal scale of experiments (Fig. 4a), suggesting that important
processes are missing in models. By including explicit links between
plantgrowth, belowground carbon allocation and SOC decomposition
rates, models may more effectively reproduce the observed negative
relationship between S and f,.,.and improve long-term projections.

To estimate the error in terrestrial ecosystem model projections of
Bsoi caused by ignoring the trade-off between S, and ..., we calcu-
lated the ‘expected’ B, as a function of our scaled-up ... and theratio
Bsoi/ Byiane Simulated by CMIP5 models. CMIP5 models overestimated
B..ifor forests (reddishshadesinFig. 3e, f). In contrast, CMIP5S models
underestimated S,,; in large areas dominated by grasses (bluish shades
inFig. 3e, f), probably because they do not account for the effects of
rhizodeposition on B (ref.?). Results with TRENDY models were simi-
lar (Extended Data Fig. 8).

Discussion

In summary, our synthesis of experiments shows that SOC stocks can
increase by approximately 5% in response to a 65% step increase in CO,



concentrations, withastrong coupling between CO,-driven changesin
plant aboveground biomass and SOC. However, the coupling between
plant biomass and soilsis aninverse relationship (Fig. 2a, Extended Data
Fig.1b), opposite to that simulated by many ecosystem models (Fig. 4).
Theeffectof eCO,0onSOCsstorageis dependent onafinebalance between
changesininputsand changesinturnover’, where thelatteris dependent
onroot—-microbe-mineral interactions in the rhizosphere. Our results
suggest that rhizosphere responses, and especially priming, explain
much of the variation in S,,; across experiments (Fig. 2). Most models
focus on carbon inputs and underestimate rhizosphere effects™*%,
probably explaining the disagreement in §,,; between observations and
models (Figs. 3,4). We propose aframework to explain S,,; based on nutri-
entacquisitionstrategies™**¥, Onone end of the spectrum, substantial
acquisition of soil N is possible via priming’ in ECM-associated plants,
causing a stronger plant biomass sink at the expense of SOC accrual.
Ontheother end, low nutrientavailability strongly constrains the plant
biomass sink®® in AM-associated plants. However, the ecosystem-level
sinkisnot necessarily eliminated; instead, eCO, cantrigger SOC accrual
through plant carbon allocation belowground®*?, When plant growth
is severely limited by N or other nutrients, eCO, may cause only a tran-
sient priming effect in ECM systems with high soil decomposition and
insufficient plant nutrient uptake producing no ecosystem-level sink®.
Ourresults emphasize the potential of grassland soils to store carbon
asatmospheric CO, levels continue torise. The results also suggest that
state-of-the-art models may overestimate the SOC sequestration poten-
tial of forestsinlarge parts of the world. Previous studies suggest that the
potential of vegetationto take up CO, will slow later this century owing to
nutrient constraints?**3° Qur synthesis indicates that these nutrient
constraints extend to carbon storage in ecosystems as awhole—through
a partial tradeoff between increased plant growth and SOC storage,
whereby ecosystems where plant growthis more nutrient-limited accu-
mulate more carbon belowground. The apparent mismatch between
observations and how most models represent the biomass-to-soil link
suggests that many terrestrial ecosystem models do not adequately
represent the critical processes driving SOC accumulation. Models are
evolving toinclude more sophisticated representations of soil nutrient
cycling, and some now include microbial activity explicitly***°. This
change towards coupled carbon-nutrient cycling mediated by plant-soil
interactions isimportant for more realistic and accurate modelling of
the carbon cycle today and for projecting the land sink in the future.
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Methods

Overview

Here, we collect data on the effects of eCO,on SOC stocks (B,,;) inboth
relative and absolute terms and synthesize them through meta-analysis.
We also collect data on climatic, experimental and vegetation charac-
teristics that could potentially explain variability in B,,; (‘predictors’).
InFig.1, we show a descriptive meta-analysis of overall §; across differ-
ent predictor factors. We next combine the strengths of meta-analysis
(for example, accounting for within-study variability, weights) with
random-forest (for example, computational efficiency, nonlinearities,
interactions)—thatis, meta-forest—to quantify the relative importance
of19 predictorsinexplaining variationin 8, in the dataset. In Fig. 2, we
describe the regression between S, and its mostimportant predictor
(Bpian), and explore the possible mechanisms underlying this relation-
ship.InFig.3, we apply the data-trained meta-forest model toscale up
B..i- Finally, we investigate whether the emerging relationship between
Bsoiand B, found in experiments is represented in models (Fig. 4).

Data collection

We compiled the publicly available Report of Mutualistic Associations,
Nutrients, and Carbon under eCO, (ROMANCE) version 1.0 dataset*!
with dataonSOC and plant biomass from eCO, experiments. Expanding
van Groenigen et al.’s 2014 meta-analysis’ of 53 experiments report-
ing SOC data, we used Google Scholar to gather a total of 166 studies
related to eCO, experiments, published from 1January 2013 to 1 May
2019.Searchterms were either “elevated CO,”, “increased CO,” or “CO,
enrichment” and either “soil carbon” or “plant biomass”. To account
for experiments that could have been omitted by van Groenigen et al.
before 2013, we consulted the Global List of FACE Experiments from the
Oak Ridge National Laboratory (http://facedata.ornl.gov/global_face.
html) and the database described by Dieleman et al.*>. We recorded the
structure of each eCO, experiment from the papers, taking into con-
sideration the start date and total duration of the experiment (years),
andthelocation of the experiment (coordinates). When the data were
presented in figures, mean values and standard error were extracted
using WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/).

For this meta-analysis, only one datum per experiment was consid-
ered to avoid pseudoreplication. The effects of eCO, on soil C pools
are modulated by increases in soil C inputs from plant litter as well as
feedbacks between plants and soils altering soil biogeochemical cycles
that can take several years to occur. Thus, we used the most recent
measurements in each experiment as the most representative data of
the effect of eCO,0on SOC.

For plant biomass, measurements across different time points were
combined so that only one effect size was analysed per study. The com-
bined effect size and variance that account for the correlation among
the different time-point measurements was calculated following the
method described in Borenstein et al.*}, using a conservative approach
by assuming non-independency of multiple outcomes (r=1) and per-
formed using the MAd package inR**. We collected data onboth above-
ground biomass stocks and production. When aboveground biomass
production data were unavailable, we collected plant data in the fol-
lowing order of preference: net primary productivity, aboveground
biomass increment, foliage production and yield. When biomass or
soil data were not reported, studies were excluded. We also included
the dataonlitter production reported by Song and Wan* to study the
interactions with aboveground biomass and production data.

Soil carbon measurementsin the dataset were reported at different
depths, varying from 5 cm to 30 cm maximum depth, with an average
depth of about 20 cm. When scaling up eCO, effects on SOC through
meta-forest, weincluded afixed value of 0-30 cmin depth as a covari-
ate to control for the influence of soil depth, interpolating predictions
for the same soil depth of models. SOC datareported in concentration
were transformed to stocks (ingrams per square metre) using soil bulk

density. When bulk density was not reported, we used data reported
for similar experiments within the same site or assumed a bulk density
of 1gcm. Assumptions are indicated in the dataset.

Studies from ROMANCE version 1.0 were not included in the
meta-analysis if they met any of the following exclusion criteria: (1)
studies with no SOC data; (2) papers with no plant biomass data; (3)
studies where the duration of the eCO, experiment lasted less than
0.5yr.Atotal of 138 independent experiments were collected, of which
108 wereincluded in the final analysis based on these exclusion criteria.

Meta-analysis

Twotypes of effect size were calculated: (1) the log response ratio (mean
response in elevated-to-ambient CO, plots), to measure effect sizes
inrelative terms (in percentage) for each experiment; and (2) the raw
meandifference, to compute effect sizes in absolute terms (in units of
grams per square metre). For each experiment, we collected data on
SOC stocks, standard deviation and sample size under elevated and
ambient (control) CO, plots. Effect sizes were calculated using the escalc
function from the R package metafor*®. We calculated overall effectsin
aweighted, mixed-effects model using the rma.mv functionin metafor.
The potential non-independency of studies within the same site (for
example, different species, different treatments) was accounted for
by including ‘site’ as a random effect. Effect size measurements from
individual studies in the meta-analysis were weighted by the inverse
of the variance®. Standard deviations were not reported in 13% of the
studies, and were thus imputed using Rubin and Schenker’s* resam-
pling approach from studies with similar means. These calculations
were performed using the R package metagear®.

Varyingimportance and scaling-up approach

We coded 19 potential moderators (Extended Data Table 1). Including
all 19 moderators in a meta-regression risks overfitting the model,
so we applied the R package metaforest® to identify potentially rel-
evant moderators in predicting f,,; across the complete dataset of
108 studies. The approach is based on the machine-learning ‘random
forest’ algorithm, which is robust to overfitting, and is integrated in
ameta-analytic context by incorporating the variance and weight of
each experiment as in classic meta-analysis (see above).

As aninitial step, we conducted variable pre-selection by including
the 19 predictors in metaforest with 10,000 iterations and replicated
100 times with arecursive algorithminthe preselect function from meta-
for**. Moderators that consistently displayed negative variable impor-
tance (thatis, that showed areductionin predictive performance) were
dropped using the preselect vars function. Moderators that improved
predictive performance were then carried forward to optimize the
model. Parameters of the meta-forest model were optimized using
the train function from the caret package®, and we calculated tenfold
cross-validated R?with 75% of the data used as training data and 25% for
validation. Unlike maximum likelihood model-selection approaches,
thismethod can handle many potential predictors and their interactions
and considers nonlinear relationships. Partial dependence plots were
produced that visualize the association of each moderator with the effect
size, while accounting for the average effect of all other moderators.

Asasensitivity test, and toidentify important interactions between pre-
dictors, werananalternative model-selection procedure using maximum
likelihood estimation. For this purpose, we used the rma.mv() function
from the metafor R package*® and the glmulti() function from the glmulti
R package® to automate fitting of all possible models containing the
five mostimportant predictors and theirinteractions (at level 2). Model
selection was based on Akaike Information Criterion corrected for small
samples (AICc), withthe relative importance value for a particular predic-
torequalto the sum of the Akaike weights (the probability thata model is
the most plausible model) for the modelsin which the predictor appears.

Finally, the data-trained meta-forest model was applied to global
gridded data of pre-selected predictors (see Extended Data Table 1for
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gridded data sources) to estimate the effect of elevated CO, on SOC.
The resulting global maps are geographically constrained to ecosys-
tems best represented by experiments. We remove the estimates for
latitudes comprised between -15° and 15°, corresponding to tropical
ecosystems not sampled by experiments (green dots in Fig. 3c), and
from 60°to 90°.

Nitrogen fertilization and soil disturbance

We used theinformationreportedinthe papersto assess whether the
soils were exposed to external inputs of N fertilization (yes) or not
(no). Experiments were also classified as either having ‘disturbed’ or
‘intact’ soils as noted in the papers. If not, experiments that used pots
or reconstructed soils were categorized as ‘disturbed’. We used the
same approach and classification as in ref. %,

To scale up the effect of nitrogen fertilization and disturbance
on B, we reclassified the ESA CCI land cover map: http://www.
esa-landcover-cci.org/. Reclassification files are available from:
https://figshare.com/articles/dataset/Reclassification_of_ESA_land_
cover/11710155. For example, we classify ‘Cropland, rainfed’ to ‘Her-
baceous cover’ (class 11) and ‘Cropland, irrigated or post-flooding’
(class 20) as ‘fertilized".

Nutrient-acquisition strategy classification

We considered the importance of the type of symbiotic association
as adriver of eCO, effects on soil C. Mycorrhizal status includes AM,
ECM and a mix of AM and ER mycorrhizal plant-fungal associations.
Here we also considered some plant species known to associate with
N-fixing microorganisms. We refer to this classification as ‘symbiotic’,
becauseitincludes both mycorrhizal status and N-fixation. Together,
these four symbiosis types represent different mechanisms plants use
toacquire nutrients®.

We assessed theimpact of the dominant symbiotic association type
by classifying all studies as ECM, AM, AM-ER and N-fixers, using the
checklists by Wang et al.>* and Maherali et al.*, with additional classi-
fications derived fromtheliterature. Species that associate with both
ECM and AM (for example, Populus spp.) were classified as ECM because
these species can potentially benefit from increased N-availability
owing to the presence of ECM fungi*®. Most of the N-fixers in the dataset
were associated with both N-fixing symbionts as well as AM fungi, but
we classified them as N-fixers because these species can potentially
benefit from N acquired through N-fixation.

MAOMdata

We retrieved data on MAOM and particulate organic matter for the
subset of studies employing size or density fractionation of soil organic
matter (n=19). Because of methodological differences, particulate
organic matter is loosely defined as organic matter recovered in the
total coarse (typically >53 um) or light (typically <1.6 g cm ) soil fraction.
Where MAOM was not reported, it was estimated based on mass balance
by subtracting the particulate organic matter fraction from total C.

FACE-MDS

We use data from the FACE MDS Project Phase 2>+ ¢, inwhich 12 models
were applied to six eCO, experiments. Each model covered the time
periods representative of the FACE experiments, following a standard-
ized protocol including meteorological forcing, CO, concentration,
site history and vegetation characteristics for each site.

Experiments included in the FACE-MDS Project Phase 2 were Duke
FACE®?, Kennedy Space Center®’, Nevada Desert FACE®*, Oak Ridge
FACE®, Prairie PHACE®**® and Rhinelander®’. Models included were
CLM4.0%, CLM4.5, DAYCENT, CABLE, JULES®, LPJ-GUESS, OCN, TECO,
ORCHIDEE”, GDAY, ISAM, and SDGVM. See ref. ¢° for an overview of
modelstructures and processes. Asin the observational data, we com-
paredrelative changes in aboveground biomass and SOC stocks of each
experiment for eCO, relative to control treatments.

TRENDY models

We use model outputs fromthe TRENDY version 7 S1simulations, where
eachmodelisdrivenby standardized forcings of observedincreasing
CO, for the years 1700-2018, and constant preindustrial climate and
land use. We selected six models that provided outputs for above-
ground vegetation carbon (taken as the sum of wood and leaf carbon),
SOC and net primary productivity (CABLE-POP”!, CLM5.07%, ISAM”,
LPJ-GUESS™, ORCHIDEE”® and ORCHIDEE-CNP?). Wood carbon often
includes coarserootsinmodels. Here, we evaluate relative changes and
numbers are not sensitive to the exact definition. Description of models
canbe foundinref.”. Briefly, ORCHIDEE-CNP includes aninteractive N
and phosphorus cycle, whereas ORCHIDEE is a C-only model. Therest
have coupled C-N cycles. Relative changes were calculated based on
means over ten initial years (i, varying depending on the model) and
Jj=2008-2017 as (C; - C))/C.. To reduce effects of discrepant response
timescales of soil C and biomass, we estimated the steady-state soil
Cstorage (C*) as:

C

* _ J
C_l AG

NPP;

where AC;is the change in soil Cover the years 2008-2017. The relative
changeinsoil Cisthentakenas (C*-C)/C,. DatashowninFig.4isbased
on pooled data from all six models. We randomly sampled outputs
from n gridcells for each model in order not to bias the visualization
towards models with a large number of gridcells (that is, higher reso-
lution). Here nis chosen as the number of gridcells in the model with
the coarsest resolution.

Expected f,; from CMIP5 models

Weused projected SOC (C,,;) and biomass pool (C,.,) responses to rising
CO, as simulated by CMIP5 models as a comparison for the scaled-up
values we derive from experiments. Specifically, we used data from the
experiment ‘esmFixClim1’,inwhich CO,isincreased by 1% per year from
285 ppm.Inthe esmFixClimlexperiment, theincreasein[CO,] affects
only vegetation and not the radiation code of the models, enabling a
quantification of the effect of eCO, in isolation (for example, exclud-
ing warming), and thus a close comparison with eCO, experiments.
At a[CO,] increasing rate of +1% yr™, [CO,] reaches 372 ppm (average
concentrationinambient CO, plotsinthe dataset) inthe 28thyear and
616 ppm (average concentrationin elevated CO, plotsin the dataset) in
the 78thyear. AC,;and AC,,; were calculated as the difference between
the respective carbon stocks in the 28th and the 78th year.

Although plants in both experiments and our CMIP5 dataset see a
similar increase in [CO,], experiments simulate a step increase in CO,
over half a decade, whereas the increase in CO, in CMIP5 models is
much slower and occurs over the course of 50 years (Extended Data
Table2). As soil organic matter turns over slowly, the resulting f,,; from
experiments is lower than AC,,; from models, and the comparison is
not meaningful. We thus focus on the specific relationship B,;,:Bs01in
experiments versus models. Here, we calculated the spatially explicit
ratio of AC,eycmip) t0 AC,uicmiry- This was done for five Earth system mod-
els in the CMIP5 ensemble with esmFixClim1 simulations (CanESM2;
GFDL-ESM2M; HadGEM2-ES; IPSL-CM5A-LR; and MPI-ESM-LR). Then,
we calculate the ‘expected’ B,; (in units of megagrams of C per hectare)
from CMIP5, applying the same B, used for experiments with the
model-average AC, g cwip) t0 AC qiicmip) Fatio, as follows: B X ACqicmip/
AC,egcmipy Where B, represents the effect of elevated CO, on plant
biomass derived from eCO, experiments. We then computed the dif-
ference between the expected (modelled) and observed (scaled up)
effects of elevated CO, on f3,;. As both expected and scaled-up S,
use the same f,,..., this transformation allows us to tackle the conse-
quences of the different B,,;/B,1.n, ratios between experiments and
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models directly. We acknowledge, however, that the ratio is likely to
change over time, so the comparison needs to be interpreted with
caution. We found, however, that first-order models also simulate a
positive relationship between S, and B, when forced to simulate
over the same duration as experiments (Fig. 4a), suggesting that the
sign of the B,;:Bp1nc relationship in CMIP5 models would probably not
reverse if CMIP5 models were forced to simulate astepincrease in CO,
over 5yr, as in experiments.

Data availability

Allthe empirical data that support the main findings of this study have
been deposited in Figshare (https://figshare.com/projects/Effects_
of_elevated_CO, on_soil_and_ecosystem_carbon_storage/74721) and
GitHub (https://github.com/cesarterrer/SoilC_CO,). FACE-MDS data
can be accessed at https://www.osti.gov/dataexplorer/biblio/data-
set/1480327. CMIP5 data can be accessed at https://esgf-indexl.ceda.
ac.uk/search/cmip5-ceda/. TRENDY data can be requested at http://
dgvm.ceh.ac.uk/index.html.

Code availability

The R code used in the analysis presented in this paper is available
in GitHub and can be accessed at https://github.com/cesarterrer/
SoilC_CO,.
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Extended DataFig.1|Effects ofeCO,onaboveground biomass production
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eCO, experiments (n=10,and n=35, respectively). Grey shading around
regression linesrepresents the 95% confidence intervals. Dotsrepresent
individual experiments, with dot sizein b proportional to the weightsinthe
meta-regression.
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Extended Data Table 1| List of predictors used to examine and to scale up the effects of eCO, on SOC

Predictor Source Upscaling
Mean annual temperature (MAT) reported in papers scaled from CRU7?
Mean annual precipitation (MAP) reported in papers scaled from CRU”’

Duration of the experiment
Experiment type

Ecosystem type

Vegetation type
Symbiotic type

Effect of elevated CO> on plant
biomass

Disturbance

Nitrogen fertilization

Soil carbon stock in control plot

Soil depth of carbon measurements
Soil C:N ratio

Soil pH

Soil available P

Maximum Leaf Area Index
(LAImax)

Mean Leaf Area Index (LAImean)
Maximum fraction of absorbed
photosynthetically active radiation
(fPARmax)

Mean fraction of absorbed

photosynthetically active radiation
(fPARmean)

reported in papers
reported in papers

reported in papers

reported in papers
reported in papers

reported in papers

reported in papers

reported in papers

reported in papers
reported in papers
80

79

81

1 km year 2012 v2
land.copernicus.eu/global/products/I
ai

1 km year 2012 v2

1 km year 2012 v2
land.copernicus.eu/global/products/
fapar

1 km year 2012 v2

non-important
scaled for FACE only

scaled from ESA land cover:
http://maps.elie.ucl.ac.be/CCI/view
er/download.php

non-important
78
scaled from ref

scaled from ref!?

scaled from ESA land cover:
http://maps.elie.ucl.ac.be/CCI/view
er/download.php

scaled from ESA land cover:
http://maps.elie.ucl.ac.be/CCI/view
er/download.php

scaled from ref””
scaled for 0-30 cm depth
80

Non-important

81

land.copernicus.eu/global/products/1
ai

non-important
land.copernicus.eu/global/products/

fapar

non-important

Data for each experiment (‘reported in papers’) was extracted from the references in Supplementary Table 1. Data are from refs. 7%,
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Extended Data Table 2 | Synthetic description of the basic characteristics of three model ensembles in terms of their

treatment of CO, effects

Model ensemble Spatial extent CO; concentration Time CO; exposure CO; increase

FACE-MDS 2 Site-level From current levels to elevated CO, (“future”) ~ 10 years Step increase
(6 sites)

TRENDY v7 S1 Global From preindustrial levels to current CO, (“historical”) 1700-2018 Gradual

CMIPS5 esmFixCliml Global From current levels to elevated CO, (“future”) 50 years Gradual

Experiments Site-level From current levels to elevated CO; (“future”) ~1-10 years Step increase
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