

EGU21-6224, updated on 27 Aug 2021 https://doi.org/10.5194/egusphere-egu21-6224 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Methane emissions from high-latitude peatlands during the Holocene from a synthesis of peatland records

Claire C. Treat^{1,2,3}, Miriam C. Jones⁴, Laura S. Brosius², Guido Grosse^{1,5}, Katey Walter Anthony², and Steve Frolking³

¹Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany (claire.treat@awi.de)
²University of Alaska Fairbanks, Water and Environmental Research Center, Institute for Northern Engineering, Fairbanks, AK. USA

³University of New Hampshire, Institute for the Study of Earth, Oceans & Space, Durham, NH, USA

The sources of atmospheric methane (CH₄) during the Holocene remain widely debated, including the role of high latitude wetland and peatland expansion and fen-to-bog transitions. We reconstructed CH₄ emissions from northern peatlands from 13,000 before present (BP) to present using an empirical model based on observations of peat initiation (>3600 14 C dates), peatland type (>250 peat cores), and contemporary CH₄ emissions in order to explore the effects of changes in wetland type and peatland expansion on CH₄ emissions over the end of the late glacial and the Holocene. We find that fen area increased steadily before 8000 BP as fens formed in major wetland complexes. After 8000 BP, new fen formation continued but widespread peatland succession (to bogs) and permafrost aggradation occurred. Reconstructed CH₄ emissions from peatlands increased rapidly between 10,600 BP and 6900 BP due to fen formation and expansion. Emissions stabilized after 5000 BP at 42 ± 25 Tg CH₄ y⁻¹ as high-emitting fens transitioned to lower-emitting bogs and permafrost peatlands. Widespread permafrost formation in northern peatlands after 1000 BP led to drier and colder soils which decreased CH₄ emissions by 20% to 34 ± 21 Tg y⁻¹ by the present day.

⁴U.S. Geological Survey, Florence Bascom Geoscience Center, Reston, VA, USA

⁵University of Potsdam, Institute of Geosciences, Potsdam, Germany