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Abstract—Reed-Muller (RM) codes are an important and
powerful class of codes with several applications in electrical
engineering and computer science. In this work, we prove a
useful property for RM codes namely that they admit a special
systematic generator matrix where the parity component has
embedded in it a surprisingly large triangle of zeros. Asymptoti-
cally, the size in sub-diagonals of this all-zero triangle is shown to
approach the largest possible value ∆? = min(K,N −K) where
K and N are the code dimension and code length respectively.
To demonstrate an application of this result, we introduce the
concept of linear block feedback codes where an open loop
codeword is combined linearly with the feedback signal during
encoding at the transmitter. This is shown to allow strengthening
of a weak code to be as good as any desired code. We then
show that, by virtue of the above property of RM codes, they
can be emulated from an uncoded system using linear feedback
encoding against remarkably large feedback delays.

I. INTRODUCTION

Reed-Muller (RM) codes are some of the oldest and well-
studied code families that remain relevant even today. They
have found application in many research areas such as cryptog-
raphy, distributed computing, theory of randomness (e.g., see
[1] and the references therein). The invention of polar codes
[2] has rekindled intensive research into RM codes due to
their close relationship. Polar codes are known to be provably
capacity achieving for binary-input symmetric discrete mem-
oryless channels (DMCs). Recent developments have shown
that RM codes achieve capacity on the Binary Erasure Channel
[3] and are also long believed to achieve capacity over the
Binary Symmetric Channel, which is strongly supported by
simulations [4], [5]. Table 1 in [6] provides the best known
capacity results for RM codes to date. Systematic RM codes
have been considered from an encoding perspective in [7] and
decoding perspective in [8]. A comprehensive survey on RM
codes, their applications and connections to other research
problems can be found in [9].

In this work, we prove a useful property of RM codes.
We show that RM codes admit a special kind of systematic
generator matrix of the form

G = [IK P(∆)] (1)
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where P(∆) is a K×(N−K) binary matrix with the property
that it has ∆ consecutive all-zero sub-diagonals beginning at
the lower left end. For instance,

P(3) =



× × × × · · · ×
...

...
...

...
...

...
× × × × · · · ×
0 × × × · · · ×
0 0 × × · · · ×
0 0 0 × · · · ×


.

In other words, the parity component P(∆) consists of an
‘all-zero triangle’ of size ∆ embedded from the lower left.
Note that the largest such triangle that can be fit into the K×
(N −K) matrix P(∆) has size ∆? = min(K,N −K) where
K and N are the code dimension and code length respectively.
We show that for RM codes, as the code length increases, the
size of the all-zero triangle ∆ approaches the largest possible
size ∆?.

Availability of feedback in a communication system is
greatly useful and can be employed to either simplify the
communication scheme or improve reliability (e.g., [10]–[14]).
Advanced forms of feedback techniques such as Hybrid Auto-
matic Repeat Request (ARQ) and soft combining are proven to
be important in mobile standards to achieve good performance.
For the point to point AWGN channel, Schalkwijk and Kailath
in a seminal work [15], [16] described a simple linear scheme
(the S-K scheme) that is low complexity, achieves capacity and
has a doubly exponentially decaying probability of error. Their
general idea of sending an uncoded signal in the first channel
use and then performing linear processing of the feedback
signal (mainly through linear encoding of the error realizations
or current error estimate at the receiver) in subsequent channel
uses has been extended and applied successfully to many other
scenarios as well [17], [18].

Inspired by the above, we introduce the idea of linear block
feedback codes where an open loop codeword is combined
linearly with the feedback signal during encoding. We show
that this enables a weak code to effectively be strengthened
to be as good as any desired code. Analogous to the S-K
scheme, our work implies that for binary codes, an uncoded
transmission combined with linear feedback processing can



achieve capacity. We then consider feedback encoding for the
case when there is a delay of ∆ channel uses in the feedback
link. A central problem that arises is to find a code with good
performance that has a generator of the form (1). Our results
demonstrate that RM codes turn out to be a good solution -
it is possible to enhance an uncoded transmssion to a desired
RM code with linear feedback processing against remarkably
large feedback delays.

II. MAIN RESULTS

Denote the vector space of all binary m-tuples as Vm.
A boolean function in m variables f(v1, v2, · · · , vm) is a
mapping from Vm to {0, 1}. By fixing an ordering on
{(v1, v2, · · · , vm) ∈ Vm}, we can uniquely associate to func-
tion f a binary vector f of length 2m whose components
are the result of evaluating f at all possible ordered input
combinations.

Definition. The r-th order Reed-Muller (RM) code of length
N = 2m denoted R(r,m) is a linear code that consists of
vectors associated to all boolean polynomials f of degree less
than equal to r in m variables. The dimension of R(r,m) is
K(r,m) =

∑r
j=0

(
m
j

)
and minimum distance is dmin(r,m) =

2m−r [19].

A. A formula for ∆(r,m)

In this section, we prove that the code R(r,m) admits a
generator of the form (1) with ∆ = ∆(r,m) given by

∆(r,m) =

{∑r
j=0

(
m
j

)
−
∑r

j=0

(
2j
j

)
0 ≤ r ≤ bm2 c

∆(m− r − 1,m) bm2 c < r < m
. (2)

We being by showing that if a RM code admits a certain value
of ∆, then so does its dual.

Lemma 1. Suppose that for (r,m) with r ≤ bm2 c, the Reed-
Muller code R(r,m) admits a systematic form [I P

(∆)
1 ]. Then,

its dual R(m − r − 1,m) admits a form [I P
(∆)
2 ], with the

same ∆.

Proof: SinceR(m−r−1,m) is the dual code toR(r,m),

a valid generator matrix is
[(

P
(∆)
1

)T
I

]
. The rest of the steps

are pictorially represented in Fig. 1 where the triangle of zeros
is shown in grey. The steps are
(a) Permute columns as shown.
(b) Apply a row permutation matrix M on the left to rear-

range rows to obtain the form shown.
(c) Apply column permutation matrix MT on the right to

only the first block of columns to obtain the identity
matrix for this block.

We are now ready to state the main theorem.

Theorem 1. For 0 ≤ r < m, R(r,m), the r-th order Reed-
Muller code of length 2m admits a systematic generator matrix
of the form

G(r,m) = [I P(∆(r,m))] (3)

Fig. 1. Sequence of operations in the proof of Lemma 1.

where ∆(r,m) is given by (2).

Remark. Note that R(m,m) consists of all binary 2m-tuples
and its only systematic representation is simply I2m , i.e.,
∆(m,m) = 0.

Remark. When bm2 c < r < m, we have ∆(r,m) = ∆(m −
r − 1,m) which agrees with Lemma 1 since codes R(r,m)
and R(m− r − 1,m) are dual of one another.

Proof: We use an induction argument. Let P(r,m) be the
proposition that R(r,m) admits a generator of the form given
in (3). For the base case we prove P(0,m) and P(1,m). In
the induction step, assuming P(r + 1,m) and P(r,m) to be
true, we prove P (r + 1,m+ 1) to conclude the proof.

Base Case: For r = 0, the generator matrix for R(0,m) is
simply

G(0,m) = [1 1 1 · · · 1]

meaning that ∆(0,m) = 0 ∀m. This agrees with (2), where(
0
0

)
is understood to be 1. For r = 1, we need to show that

∆(1,m) = (m + 1) − (1 + 2) = m − 2. This is most easily
seen by induction. For the base case, R(1, 3) has the generator
matrix

G(1,3) =


1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 .
The row operation to transform the above to a systematic form
is to add rows 2, 3, · · · ,m+ 1 to row 1 which gives

G(1,3) =


1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 .
Hence, ∆(1, 3) = 1 = 3−2. Now, suppose that the hypothesis
is true for R(1,m). It is known that [19]

R(1,m+ 1) = {(u,1 + u),u ∈ R(1,m)}

where 1 is the all-one codeword. Hence, the generator for
R(1,m + 1) after row operations and column permutations
can be put in a form shown in Fig. 2. The ‘triangle’ of zeros
for R(1,m) is of size m− 2 and shown shaded. Finally, the
column vector [0, 0, · · · , 1]T is adjoined to Im to obtain a
systematic form for R(1,m+1). When 2m−(m+1) > m−2
which indeed holds for ∀ m ≥ 3, we see that the size of the
triangle is guaranteed to increase by 1, i.e., ∆(1,m + 1) =
∆(1,m) + 1 = m− 1 = (m+ 1)− 2 proving that P(1,m) is
true.
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Fig. 2. Proof of base case proposition P(1,m) of Theorem 1.

Induction Step: Assume that P(r+ 1,m) and P(r,m) are
true. By the well-known Plotkin (u,u + v) construction, a
valid generator for R(r + 1,m+ 1) is

G(r+1,m+1) =

[
G(r+1,m) G(r+1,m)

0 G(r,m)

]
.

It is clear that G(r+1,m+1) can be put into a form shown
in Fig. 3.(a) by row operations on the top and bottom block,
followed by suitable column permutations. The next steps to
obtain a systematic form are illustrated in Fig. 3:

I: Suitable row operations are done to zero out the matrix
marked with a crosshatch pattern shown in 3.(a).

II: The newly obtained block
[
0
I

]
is then moved as shown

in 3.(b) resulting in a systematic form shown in 3.(c).
The systematic form obtained admits a ‘triangle’ of zeros
in its parity matrix component as illustrated in Fig. 3.(d).
The guaranteed number of consecutive all-zero sub-diagonals,
beginning at the lower left end can be seen to be

∆(r + 1,m+ 1) = min{∆1 + q,∆2 + p}, (4)

where ∆1 = ∆(r + 1,m), ∆2 = ∆(r,m) and

p =

m∑
j=r+2

(
m

j

)
, q =

r∑
j=0

(
m

j

)
.

Our goal is to show that the expression in (4) matches with the
hypothesis (2) for all 0 ≤ r < m. The proof will extensively
use the well-known Pascal’s identity(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
, (5)

and the symmetry property of the binomial coefficients
(
n
k

)
=(

n
n−k
)

which are recalled here for ease of exposition.
Case 1: r + 1 ≤ bm2 c
The above assumption implies that r ≤ bm2 c and r + 1 ≤

bm+1
2 c. From (2) then, we have

∆1 =

r+1∑
j=0

(
m

j

)
−

r+1∑
j=0

(
2j

j

)
, ∆2 =

r∑
j=0

(
m

j

)
−

r∑
j=0

(
2j

j

)
.

Note that

(p+ ∆2)− (q + ∆1) =
m∑

j=r+2

(
m

j

)
−

r+1∑
j=0

(
m

j

)
+

(
2r + 2

r + 1

)
(i)

≥ 0,

Fig. 3. Steps in the proof of Theorem 1.

where (i) is proved in the following Lemma.

Lemma 2. For ` ≤ bm2 c, we have that

m∑
j=`+1

(
m

j

)
≥
∑̀
j=0

(
m

j

)
−
(

2`

`

)
. (6)

Proof: We have,
m∑

j=`+1

(
m

j

)
−
∑̀
j=0

(
m

j

)
=

m−`−1∑
j=0

(
m

j

)
−
∑̀
j=0

(
m

j

)
.

For ` ≤ bm−1
2 c, m−`−1 ≥ ` meaning that (6) holds. For odd

m, bm−1
2 c = bm2 c and there is nothing left to prove. When

m is even, say m = 2q, the only case left to prove is for
` = bm2 c = q. This holds trivially since both the LHS and
RHS in (6) simplify to

∑2q
j=q+1

(
2q
j

)
.

From (4) and (5) then,

∆(r + 1,m+ 1) = q + ∆1 =

r+1∑
j=0

(
m+ 1

j

)
−

r+1∑
j=0

(
2j

j

)
,

settling case 1.
Case 2: r > bm2 c
In this case, we have r + 1 > bm2 c and r + 1 > bm+1

2 c.
From (2),

∆1 =

m−r−2∑
j=0

(
m

j

)
−

m−r−2∑
j=0

(
2j

j

)

∆2 =

m−r−1∑
j=0

(
m

j

)
−

m−r−1∑
j=0

(
2j

j

).
Here, we have (p + ∆2) − (q + ∆1) = −

∑r
j=m−r

(
m
j

)
−(

2(m−r−1)
m−r−1

)
< 0. From (4) then,

∆(r + 1,m+ 1) = p+ ∆2

=

m−r−1∑
j=0

(
m+ 1

j

)
−

m−r−1∑
j=0

(
2j

j

)
,

which is indeed the form in (2) and case 2 is settled.



Case 3: r ≤ bm2 c, r + 1 > bm2 c and m = 2s even.
The above assumptions simplify to r = s. We also have

r + 1 = s+ 1 > s = bm+1
2 c. From (2),

∆1 =
s−2∑
j=0

(
2s

j

)
−

s−2∑
j=0

(
2j

j

)
, ∆2 =

s∑
j=0

(
2s

j

)
−

s∑
j=0

(
2j

j

)
.

We have (p+ ∆2)− (q+ ∆1) = −
(

2s
s

)
−
(

2(s−1)
s−1

)
< 0. Thus,

from (4),

∆(r + 1,m+ 1) = p+ ∆2 =
s−1∑
j=0

(
2s+ 1

j

)
−

s−1∑
j=0

(
2j

j

)
which agrees with the hypothesis.

Case 4: r ≤ bm2 c, r + 1 > bm2 c and m = 2t+ 1 odd.
The assumptions imply r = t, r + 1 = bm+1

2 c and

∆1 =
t−1∑
j=0

(
2t+ 1

j

)
−

t−1∑
j=0

(
2j

j

)

∆2 =
t∑

j=0

(
2t+ 1

j

)
−

t∑
j=0

(
2j

j

).

We have (p+ ∆2)− (q + ∆1) = −
(

2t
t

)
< 0. Hence,

∆(r + 1,m+ 1) = p+ ∆2 =
t+1∑
j=0

(
2t+ 2

j

)
−

t+1∑
j=0

(
2j

j

)
,

which is the desired form, hence settling all cases and com-
pleting the induction.

B. Asymptotic scaling of ∆(r,m)

In this section, we study how ∆(r,m) behaves asymptoti-
cally. Denote the coding rate by

γ(r,m) =
K(r,m)

2m
=

∑r
i=0

(
m
i

)
2m

. (7)

The implication of Theorem 1 is illustrated in Fig. 4. RM codes
admit a systematic generator matrix where one can almost fit
an all-zero triangle of size

∆? = min (K(r,m), 2m −K(r,m))

in the parity component except that there is a gap g(r,m) from
∆? given by

g(r,m) =

{∑r
j=0

(
2j
j

)
γ(r,m) ≤ 0.5∑m−r−1

j=0

(
2j
j

)
γ(r,m) > 0.5

. (8)

We show that for long RM codes of constant rate, g(r,m)
∆? ≈

0. Note that γ(r,m) in (7) can be interpreted to be the
probability that a random binary m-tuple has Hamming weight
at most r, i.e.,

γ(r,m) = Pr(X1 +X2 + · · ·Xm ≤ r) (9)

where {Xj} are i.i.d. Ber
(

1
2

)
. Then, by the central limit

theorem, long Reed-muller codes (i.e., m → ∞) of constant

Fig. 4. A systematic form for RM codes where the parity component has a
large triangle of zeros. Also shown is the gap g(r,m) from ∆? (Eq. (8)) for
code rates (a) γ(r,m) < 0.5 and (b) γ(r,m) > 0.5. For long RM codes,
g(r,m)

∆? ≈ 0.

rate 0 < α < 1 can be obtained by letting r to scale with m
as

r =
m

2
+

√
m

2
Φ−1(α) (10)

where
Φ(x) =

1√
2π

∫ x

−∞
e−

t2

2 dt (11)

is the standard Gaussian CDF.

Theorem 2. 1) For long RM codes R(r,m) of constant-
rate α < 0.5 with r scaling as (10), we have

lim
m→∞

∆(r,m)

K(r,m)
= lim

m→∞
∆(r,m)

∆?
= 1. (12)

2) For long RM codes R(r,m) of constant-rate α > 0.5
with r scaling as (10), we have

lim
m→∞

∆(r,m)

2m −K(r,m)
= lim

m→∞
∆(r,m)

∆?
= 1. (13)

Proof: For 0 < α < 0.5, (10) becomes r = m
2 − β

√
m
2

where β = −Φ−1(α) > 0 and (12) is

lim
m→∞

∆(r,m)

K(r,m)
= 1− lim

m→∞

∑r
j=0

(
2j
j

)
K(r,m)

.

Since K(r,m)
2m → α, all that remains to be shown is that∑r

j=0 (2j
j )

2m → 0. To see this, simply note∑r
j=0

(
2j
j

)
2m

<

∑r
j=0 4j

2m
<

4

3
22r−m→0

where the first inequality follows from the identity 4n = (1 +
1)2n =

∑
k

(
2n
k

)
.

When α > 0.5, we have r = m
2 + β

√
m
2 where β =

Φ−1(α) > 0 and we get

lim
m→∞

∆(r,m)

2m −K(r,m)
= lim

m→∞
1−

∑m−r−1
j=0

(
2j
j

)
K(m− r − 1,m)

= 1,

for the same reasons as above, hence proving (13).
Theorem 2 thus implies that asymptotically for constant-

rate RM codes, the gap g(r,m) relative to ∆? vanishes and
∆(r,m) ≈ ∆?.

III. FEEDBACK ENCODING APPLICATION

In this section, we introduce the concept of linear block
feedback codes and demonstrate an application of our results.



A. Linear Block Feedback Encoding

Consider a memoryless binary symmetric channel (BSC)
with an input-output for each channel use i of

yi = ci ⊕ ei (14)

where yi ∈ {0, 1} is the received bit, ci ∈ {0, 1} is the
transmitted bit, ei ∈ {0, 1} is memoryless additive noise with
Pr(ei = 1) = 1 − Pr(ei = 0) = p, ⊕ is mod-2 addition.
Traditional error control coding analysis is open-loop, meaning
that the transmitted signal is independent of all past, current,
and future noise realizations. Instead, consider the problem of
closed-loop error control coding and assume that the transmit-
ter has causal access to the received signal. This means that
prior to channel use i, the transmitter has perfect knowledge
of {yj}i−1

j=0. Because the transmitter perfectly knows {cj}i−1
j=0,

this side information is equivalent to the transmitter having
knowledge of the past noise realizations {ej}i−1

j=0 prior to
channel use i.

Inspired by the successes of linear schemes for AWGN and
related channels, consider the use of linear block feedback
codes with encoding function of the form

ci = φclosed,i
(
m, {ej}i−1

j=0

)
=

K−1∑
j=0

mjgj,i ⊕
i−1∑
`=0

e`f`,i, (15)

where m = [m0,m1, · · · ,mK−1] is the message string and
{gj,i}j,i, {f`,i}`,i ∈ {0, 1}. In particular, expressing (15) in
vector form

c = mG︸︷︷︸
open-loop component

⊕ eF︸︷︷︸
noise-shaping

, (16)

G is the K×N open-loop generator matrix and F is a N×N
binary matrix that represents feedback encoding in the form
of linear noise-shaping. Since ci cannot possibly depend on
future errors {ej}N−1

j=i , we must have fi,j = 0 ∀i ≤ j. In other
words, causality enforces F to be strictly upper-triangular.
Using (16), the receiver observes

y = c⊕ e = mG⊕ e (I⊕ F) . (17)

Eq. (17) indicates transmission of an open-loop codeword
over a channel with a special kind of correlated Bernoulli
noise. Since F is strictly upper-triangular, (I⊕F) has linearly
independent columns and is full rank over GF (2). What is the
effect of noise-shaping on the error detection and correction
capabilities of the system? Let H denote a parity-check
corresponding to G, and suppose that the receiver calculates
the syndrome [19] to be

s = yHT (a)
= eH̃T (18)

where (a) follows from setting H̃ = H (I⊕ F)
T and noting

that GHT = 0. From (18), it is clear that the use of feedback
allows us to detect and correct error patterns as robustly as
an open-loop code with the parity check matrix H̃. Since
G(I ⊕ F)−1H̃T = GHT = 0, G̃ = G(I ⊕ F)−1 and
H̃ = H (I⊕ F)

T can be thought of as the effective open-loop

generator and open-loop parity-check matrices respectively
that we hope is an improvement when G or H is relatively
weak.

Suppose now that a system is equipped with a relatively
weak (N,K) code with the generator G. Without loss of
generality, we assume that the K × K submatrix of G
comprising of its first K columns is full rank and we can
let G be of the form G = [IK PK×(N−K)]. To improve
performance, we employ linear feedback encoding as in (16)
by means of a noise-shaping matrix F. We have the following
result:

Theorem 3. By means of noise-shaping, G = [I P] can be
strengthened to have performance equivalent to that of any
desired linear code.

Proof: The resulting linear block feedback code has
performance equivalent to the open-loop linear code with
generator G̃ = G(I ⊕ F)−1. Suppose that the desired linear
code has generator G0 = [I Q]. For example, one could
choose G0 to be the systematic generator of a capacity-
achieving code. Then, we set

F =

[
0K×K Q⊕P

0(N−K)×K 0(N−K)×(N−K)

]
. (19)

For this specific choice, F2 = 0N×N and (I⊕F)−1 = (I⊕F).
Hence we have G̃ = G(I⊕F)−1 = G(I⊕F) = [I Q] = G0

and we are done.
Consider an uncoded system, i.e., G = [I 0]. Suppose we

wish to enhance it to a code with generator G̃ = [I Q]. As
discussed in theorem 3, we set

F =

[
0 Q
0 0

]
. (20)

From (16) then, the codewords are given by

c = m[IK 0]⊕ e

[
0 Q
0 0

]
= [ m0 m1 · · · mK−1︸ ︷︷ ︸

Systematic Tx

| [e0 e1 · · · eK−1]Q︸ ︷︷ ︸
Noise-Shaping

]
(21)

where ei is the noise bit that corrupts message bit mi, for i =
0, 1, · · · ,K−1. Systematic message bit transmission followed
by noise-shaping of only the initial error bits is thus sufficient
to mimic any arbitrary open-loop code.

B. Delayed Feedback

In Section III-A, we assumed that any feedback sent after
one channel use was immediately available to the transmitter
to be used for the next subsequent channel use. Now suppose
that there is a delay of ∆ channel uses between the time that
feedback is sent and when it can be used for encoding at the
transmitter. The encoding function changes to

ci = φclosed,i
(
m, {ej}i−1−∆

j=0

)
=

K−1∑
j=0

mjgj,i ⊕
i−1−∆∑
`=0

e`f`,i.



In vector form, this is expressed as

c = mG︸︷︷︸
open-loop component

⊕ eF︸︷︷︸
noise-shaping

where the noise-shaping matrix F is strictly upper triangular
additionally with ∆ all-zero diagonals above the main diago-
nal, i.e., fi,j = 0 ∀i ≤ j + k for k = 0, 1, · · · ,∆.

Let S(∆) be the set of all (N,K) open-loop systematic
linear codes induced by a generator matrix of the form

G = [IK P(∆)] (22)

as in (1). The class of linear codes that can be emulated
from an uncoded system, when there is feedback delay is
characterized by the following theorem.

Theorem 4. Suppose that we start with an uncoded system
with G =

[
IK 0K×(N−K)

]
. For any choice of linear block

feedback encoding with complete causal feedback and ∆
units of feedback delay, the new code obtained is effectively
equivalent to some code in S(∆). Conversely, every code in
the set S(∆) can be emulated with suitable encoding.

Proof: Let F be the noise-shaping matrix chosen for
encoding. Denoting

(I⊕ F) =

[
J

(1)
K×K J

(2)
K×(N−K)

0(N−K)×K J
(3)
(N−K)×(N−K)

]
, (23)

the effective generator matrix is G̃ = [I J(2)J(3)−1

]. Since F
has ∆ all-zero diagonals above its main diagonal and J(3)−1

is upper-triangular, the matrix Q = J(2)J(3)−1

has ∆ all-
zero sub-diagonals beginning at the lower left corner. In other
words, G̃ essentially is of the form G̃ = [I P(∆)] and the first
part of the theorem is proved. To see the converse, consider
emulating an arbitrary code from S(∆) with generator G̃ =

[I P
(∆)
1 ], and note that a valid choice of feedback encoding is

to simply set

F =

[
0 P

(∆)
1

0 0

]
.

From Theorem 4, an uncoded system can be transformed to
a code of the form (22) (and no better) when there is a delay
of ∆ units in the feedback link. A central question is thus
whether there exists a good code or a good class of codes that
has a generator of the form (22) with a possibly large ∆. The
larger the value of ∆, the larger is the feedback delay that can
be tolerated. Our results in Theorems 1 and 2 imply that RM
codes prove to be a good candidate in that they have excellent
performance and admit very large values of ∆. Thus, a RM
code can be emulated from an uncoded system by means of
linear noise-shaping against a feedback delay that is nearly
as large as ∆? = min(K,N −K).

IV. CONCLUSION

In this work, we proved a novel result for RM codes,
showing that they admit a systematic generator matrix whose

parity component has a rather large number of contiguous all-
zero sub-diagonals. We then introduced the concept of linear
block feedback encoding with and without feedback delay
and showed that it can be employed to emulate a stronger
code from a weaker one. Our result on RM codes implies that
they can be emulated from an uncoded system against large
feedback delays. An interesting open question is whether for
finite r and m, R(r,m) admits a systematic form (1) with a
∆ larger than what is proved in Theorem 1.
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