Compact, Tamper-Resistant Archival of Fine-Grained
Provenance

Nan Zheng
University of Pennsylvania
nanzheng@cis.upenn.edu

ABSTRACT

Data provenance tools aim to facilitate reproducible data science
and auditable data analyses, by tracking the processes and inputs
responsible for each result of an analysis. Fine-grained provenance
further enables sophisticated reasoning about why individual out-
put results appear or fail to appear. However, for reproducibility
and auditing, we need a provenance archival system that is tamper-
resistant, and efficiently stores provenance for computations com-
puted over time (i.e., it compresses repeated results). We study this
problem, developing solutions for storing fine-grained provenance
in relational storage systems while both compressing and protect-
ing it via cryptographic hashes. We experimentally validate our
proposed solutions using both scientific and OLAP workloads.

PVLDB Reference Format:

Nan Zheng and Zachary G. Ives. Compact, Tamper-Resistant Archival of
Fine-Grained Provenance. PVLDB, 14(4): 485 - 497, 2021.
doi:10.14778/3436905.3436909

1 INTRODUCTION

The need to facilitate verifiable, reproducible analyses has driven the
development of many data provenance capture and management
tools. Today provenance is used not only to capture, reproduce, and
certify scientific results, but increasingly it serves a similar role in
audit logging in the enterprise. Provenance management tools must
ultimately provide two types of services: (1) capturing data prove-
nance for common computations in an appropriate provenance data
model, and (2) providing a queriable, auditable, tamper-resistant
provenance-augmented data archive for analysis results.

Provenance capture has been addressed over the past 15 years
in the scientific computing and database communities. File-and-
program level (“workflow”) provenance capture [7, 25, 28] is suf-
ficient to re-run scientific computations to reproduce files. Con-
versely, the database community has developed techniques to track
provenance at the record level (“fine-grained” provenance) [11, 19,
32], tracing through relational and other operators. The benefits of
the latter case are that data scientists can reason about why specific
answers exist [12] or explain why two workflow runs produce different
answers [32]. Enterprises can also trace fine-grained provenance to
verify compliance with the GDPR data protection laws, by showing
whether an analysis result actually uses private records.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 4 ISSN 2150-8097.
doi:10.14778/3436905.3436909

485

Zachary G. Ives
University of Pennsylvania
zives@cis.upenn.edu

Provenance storage has also been studied, both in terms of the
provenance representation (e.g., PROV-DM [8], provenance semir-
ings [19]), as well as encoding in a graph or relational DBMS. Early
fine-grained provenance systems developed middleware over rela-
tional DBMSs, and rewrote queries and updates to automatically
capture provenance [16, 18, 23]. Later work investigated how query
engines themselves could be augmented to capture semiring prove-
nance [19] as part of the evaluation of relational algebra opera-
tors [2, 30, 32], enabling a variety of optimizations. Most recently,
the work of Lee and colleagues [23] considered how to rewrite
or factor relational algebra computations to more efficiently store
provenance for individual queries.

However, two key aspects of provenance archival have been un-
addressed. First, in an archival system, we may need to store many
analyses computed from the same input datasets. Since provenance
is often bigger than the analysis results, compression of repeated
provenance is highly desirable. Second, if provenance is to be used
to certify results for an audit record, it must be tamper-resistant.
While recent work on provenance for blockchains [24, 27, 31] and
networks [33] develops self-certifying techniques, these approaches
do not naturally extend to fine-grained provenance.

In this paper, we focus on how to create a tamper-resistant archive
of data analysis results and their fine-grained provenance generated
over time, to enable reproducibility, querying of individual records’
provenance, and verification of authenticity. We develop techniques
for derivation-based compression: different computational analyses
often share computational structure, and may be computed over
common data sources or over input records. In such scenarios,
we exploit structure and repetition across queries and subqueries.
(We combine this with value-level compression within the storage
system [1].) We consider queries expressed within the relational
algebra, augmented with user-defined functions. This encompasses
OLAP-style queries [30], as well as common ETL and gene sequence
matching [32] operations such as pattern-based extraction, approx-
imate match, and top-k selection.

ExamPLE 1. Consider the following SQL query: SELECT * FROM
REF NATURAL JOIN INPUT I WHERE name = ’Example’. This might be
converted into the simple expression:

Oname='car’((REF) > (INPUT)))

Suppose input relations R and S are as follows (initially disregard the
“prov” column):

R(prov ‘ name code) S(prov ‘ code)
r cat fcatus s1 c lupus
ro S fatus

wolf ¢ lupus

We get a final tuple (cat, fcatus), whose provenance is based on the
tuples whose prov column includes r1 and s. More precisely, if r1, s2

https://doi.org/10.14778/3436905.3436909
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3436905.3436909

are the provenance of the respective input tuples, then the provenance
of the output involves joint use of r1, sy — which we represent as a
provenance expression r1 - sy [19]. We would like to store this tuple
and its accompanying provenance in a form that can be consulted for
reproducibility.

EXAMPLE 2. Now suppose we run a second query over the same
input data, this time projecting only the code field:

Teode(Tname='car((REF) > (INPUT))))

This second query shares a subexpression with the first. Its output and
provenance might be derived from those computed for the first query
— this is what we mean by derivation-based compression.

ExAMPLE 3. Finally, suppose we want to publish the results and
their provenance, ensuring ure the source data and the provenance
steps have not been tampered with. We could share the data and
provenance with cryptographic hashes establishing authenticity.

We develop and study techniques for efficiently capturing fine-
grained provenance while archiving results, in a way that (1) takes
advantage of repeated computation for efficiency, and (2) uses cryp-
tographic hashes that allow the provenance to be self-certifying.
Our encoding schemes enable low-overhead storage as well as fast
provenance queries, and we consider trade-offs between speed and
cryptographic security. Our provenance archival service is suitable
for maintaining a verifiable and reproducible scientific record —
perhaps the most important use case of provenance in data science
— and we also support authenticated audit logs for any generated
reports. We support tracing individual results not only for repro-
ducibility but also for reasoning about the effects of change. Our
methods emphasize provenance integrity-checking given digests of
the input data, rather than requiring full access to the data itself.

Threat model. We assume a trusted execution environment, in
which our own code is not tampered with, and seek to defend
against:

o Users who generate an analysis, and seek to tamper with the
result — changing provenance records for specific (1) input,
output, or intermediate results, (2) query operations run, (3)
versions of the source and/or binary code executed.

o Attackers who, given a published analysis result, wish to
substitute a new result, or provenance for such a result.

The focus of our paper is on maintaining the integrity of individual
results — but our techniques naturally generalize to maintaining
a tamper-resistant directory of all analysis results produced, thus
also preventing an attacker from deleting existing results. We rely
on the use of digital signatures to establish the creator of a result,
which would prevent attackers from forging new results.

Our contributions are as follows:

e Provenance encoding techniques that ensure results com-
puted using the same algebraic expressions over the same input
data will be stored exactly once, irrespective of the number
of queries; and which are self-certifying (tamper-resistant).

o Novel algorithms to compare provenance expressions for
equivalence, and explain where computations diverge.

o A cost model for provenance storage, as well as an under-
standing of when the optimal query evaluation plan also
results in the optimal storage scheme.

486

e An implemented tamper-resistant provenance archival layer
that extends the open-source PROVision [32] system.

e Performance analysis over a variety of workloads taken from
ETL and scientific data management.

Section 2 summarizes our relationship to related work. Section 3
provides background to our approach and Section 4 describes how
we encode fine-grained provenance. Section 5 describes our PRO-
Vision implementation, and Section 6 provides an experimental
evaluation of our approach. We conclude in Section 7.

2 PRIOR WORK

Fine-grained data provenance has been widely studied [11]. We
adopt the provenance semiring model [18, 19]: each tuple is anno-
tated with expressions comprised of tokens representing the input
tuples, the product operator (-) representing joint use of inputs to
produce a result, and the sum operator (+) representing alternate
derivations of the same value. Extensions consider grouping and
user-defined functions [3, 32].

Early provenance systems [16, 21] integrated provenance into
existing DBMSs, generally by rewriting queries to store provenance
as auxiliary information. Lipstick [2], Smoke [30], and PROVi-
sion [32] studied how to incorporate provenance tracking directly
into custom query engines. The order of evaluation of results af-
fects provenance expression size. Lee and co-authors [23] reduce
provenance storage by creating more efficient factorized query ex-
pressions [29].! Their PUG system factors provenance into a d-tree
representation [29] before storing it. Similarly, Bao et al. [6] develop
strategies for factoring out provenance storage for common query
expressions. In contrast to such work, we focus on minimizing
query overhead (the common case) and show that our approach
is optimal under certain (simplifying) assumptions about cost; we
develop mechanisms for “compressing” and authenticating the stor-
age; we support more expressive operations including aggregation.

The encoding of fine-grained provenance has also been studied
extensively. Perm [16] uses witness lists to capture, for each output,
the set of input tuples used; it duplicates the output tuple if there
are multiple witnesses. It can annotate results with their associated
SQL statements. Orchestra [21] maintains a derivation graph us-
ing semiring provenance tokens. Chen et al. [10] targets network
datalog execution, and develops a hash-based encoding scheme for
derivation trees, which eliminates intermediate nodes. Anand et
al. [4] encode provenance for updates to hierarchical data.

We apply cryptographic hashing to provenance. This has been
considered in network diagnosis [33], where it was used to sign
distributed system events in a log. Additionally, several efforts have
integrated provenance into smart transactions in a blockchain [27,
31] and into storing coarse-grained provenance [24]. To the best of
our knowledge, we are the first to consider cryptographic hashing as
both a security and sharing mechanism for fine-grained provenance
using extensions of the semiring model.

3 BACKGROUND AND APPROACH

Fine-grained provenance capture involves recording, for each tuple
derivation, the relationship between the inputs (which are each
assigned unique provenance tokens as IDs) and the output (for which

!Factorization has also been applied to workflow provenance [9].

we can also assign tokens). We begin this section with an overview
of the formal model. For provenance archival, our goals are twofold:
(1) create provenance tokens in a way that ensures the same ex-
pressions result in the same tokens, i.e., repeated computations
receive identical token values; (2) create provenance tokens in a
way that prevents forgery or tampering. This section reviews the
work providing foundations for our approach, and in Section 4
we discuss our novel algorithmic implementation. We assume the
query processor computes provenance as it derives results [30, 32].

3.1 Provenance Semiring Expressions

We adopt the provenance semiring model [18, 19], which annotates
tuples with provenance polynomial expressions satisfying the prop-
erties of an algebraic semiring. Relational algebra expressions that
are equivalent under bag semantics have provenance polynomials
that are equivalent. Here, base tuples are annotated with unique
IDs called provenance tokens. As relational algebra operators are
applied, we annotate each derived tuple with an expression over
the provenance of the input tuples. Operators in the expression
may be the product (-) representing joint use of inputs to produce a
result, or the sum operator (+) representing alternate derivations of
the same value. If we let P[t] designate the provenance expression
for tuple ¢, and look at inputs and outputs as paired tuples and their
provenance — then the rules are:

Expr. Inputs Outputs
ag(T) (¢, P[t]) (¢, Pt])
4(T) (t, Pt]) (t, Pt])
TiUT; | (41, Pltal), (f2, Plt2)),

hehh=hel, (t1, P[t1] + P[2])
Ty =Ty | (t1, Pt1]), (t2, Pl£2]),

helh, el ((t122), P[t1] - P[t2])

Provenance management systems [16, 18, 21] often encode the
polynomials in relational form (in effect as expression trees or
graphs). Under this model, while multiple provenance expressions
are equivalent, the order of evaluation of the relational algebra
expressions notably affects their overall size.

Extensions to the semiring model support aggregation func-
tions [3], as well as user-defined aggregate and extraction func-
tions [32]. Since this paper is focused more on the structure of
provenance expressions rather than semantics, we briefly sketch
how this works here, and refer the reader to [32] for details.

For each UDF, we introduce a function symbol in the provenance
polynomials. A given UDF, e.g., information extractor, typically
extracts data from within some datatype-specific location specifier
within a field (e.g., a substring within a string attribute). Finally,
a series of function- and datatype-specific equivalence rules may
define how different provenance expressions are equivalent.

ExaMPLE 4. Consider a gene sequence matching workflow [13],
specified using the relational algebra and UDFs. This workflow can
be captured using physical query operators, as follows: (1) file-scan
operators over input text files, reading from them source and reference
genome relations S and R; (2) a UDFp f x that extracts a prefix from the
sequences in S and R; (3) a join matching the prefixes extracted from
the sources; (4) a filter expression 0 which returns results exceeding
some overall similarity criterion. We might encode this as:

99 (udfpfx(refseq)(scan(R)) s udfpfx(seq)(scan(s))))

487

\: ry - pfx(r;) - s, - pfx(s,)| (abcetd, ccatg, cca, cccage, ccca) \

s, - pfx(s,)| (cccage, ccca)]

\/ s, | (cccage)) | pfx(s,) | (ceca))

\: r, - pfx(r,) - s, - pfx(s,) | (edceeq, aaattg, aaat, aaatgc, aaat) \

[r; - pfx(r;)| (abcetd, ccatg, ccca)

UDFyp

—E* pix(ry)| (ccca)
1 (abeetd, cecatg) |

\: r, - pfx(r,)| (edceeq, aaattg, aaat) | s, pfx(s,)| (aaatge, aaat) ‘

TN \
4‘ pfx(r,)| (aaat) ‘
N

= pix(sall (aaat) |

r, | (edceeq, aaattg)

\/ s, | (aaatgc) \

Figure 1: Provenance graph for Example 4 query.

where the UDF calls function pfx over each tuple. Suppose input
relations R and S are as follows:

R(prov ‘ name refseq)
abcetd cccatg
edceeq aaattg

S(prov ‘ seq)
s1 cceage
$2 aaatgc

r
r2

Suppose function pref returns the first 4 characters of the sequence;
then for tuplesry and sy we will get substring ccca and for tuplesry and
s we will get prefix aaae. The two pairs of tuples will join. Assuming
the threshold is met, we get final tuples ("abcetd’,’ cccatg’,’ cccage”)
and ("edceeq’,” aaaedf’,” aaaeij’).

Here, join operators correspond to product operations (-) in the
provenance polynomials. Following [32], user-defined functions are
a kind of joint use (combination or Cartesian product) of the input
source tuple values from s combined with the results of the UDF, f(s):
s f(s)?. Thus, each result tuple is annotated with a new provenance
expression containing function f’, the input provenance, and addi-
tional information (a location specifier [32]) identifying the data
used by f to return its result.

For example, if we take tuple R(edceeq, aattg) with provenance
token ry and apply the UDF pfx over it, the result will be a tuple
(edceeq, aattg, aaat) with provenance expression ry - p fx(r2) where
pfx’ represents a predicate extracting a new token (“location speci-
fier”) based on ry and the semantics of function pfx.

3.2 Computing Query Results with Provenance

Section 5 describes our implementation, but at a high level, PRO-
Vision’s relational query operators not only compute a stream
of output tuples from the input tuples; but annotate such tuples
with provenance expressions derived from the input tuples’ prove-
nance [32]. As query results are computed in memory, provenance
expressions are encoded as objects passed by reference, so inter-
nally each tuple’s associated provenance annotation is an object
representing a rooted expression tree (consisting of semiring opera-
tions, function symbols, and provenance tokens). Any intermediate
node links to the provenance annotation nodes on the input tuples,
and so on, back to the provenance over the source data.

2The dependent join [15] ™ models parameter passing to a function as a join.

ExAMPLE 5. See Figure 1 for the provenance graph corresponding
to Example 4. Each base tuple (r1,r2,s1,s2) is fed to the UDF pfx,
producing a result (orange) that is combined with the input tuple. The
results are joined (-) to produce the boldfaced outputs.

This paper considers how to persist the in-memory structure in
relational storage, (1) allowing sharing of graph nodes across queries
and query subresults, (2) enabling rapid lookups of subexpressions,
and (3) cryptographically certifying the provenance. To do this, we
develop a strategy for assigning node IDs, such that two provenance
subgraphs have the same node if they are isomorphic, and the node
IDs include a cryptographic hash of the subgraph contents.

4 ENCODING PROVENANCE GRAPHS

We now consider how to take provenance that is computed during
query processing, and map it to persistent storage. As described
in the previous section, the provenance for a running query is en-
coded in-memory as a directed acyclic graph, where nodes represent
expressions and implicitly have edges to their subexpressions, cap-
tured as object references. The basic query processing model of
Section 3.2 creates the graph on a per-query basis.

As a provenance graph node is being mapped to disk, intuitively
we assign its identity as a hash of its provenance polynomial expres-
sion. This allows us to take a provenance polynomial expression,
and quickly look it up (create a new node if it does not exist). Edges
are simply binary relations between hashes.

We outline our approach, then describe our storage scheme and
its tamper resistance. We conclude the section by looking at the
conditions under which we expect the provenance graph to be
space-efficient if the query optimizer is minimizing execution cost.

4.1 Provenance Encoding for Archival

Our goal is to support the storage of many derived query results,
each accompanied by semiring provenance expressions. We assert
that such an archival system should support subexpression sharing
for efficiency, and, as a means of enabling auditing, it must also
enable certification of authenticity that results and their inputs have
not been forged or tampered with.

Cross-query sharing. If we define a test for semantic equivalence
of source (Section 4.1.1), then if two queries perform the same alge-
braic query expression over the same source tuples, we can consider
the derivation tree (the results and the provenance) to be the same.
Under those assumptions, we should store the subtree for such an
expression (a derivation) once, and include it in the provenance
of both queries (derivation-based compression). We can maintain
a single provenance directed acyclic graph that shares common
subexpressions — resulting in more efficient storage. This requires
a compositional encoding scheme for provenance expressions, in
which a provenance expression can be composed from other prove-
nance subexpressions through factoring and substitution.

Tamper resistance and threat model. We seek for provenance
structure that is self-certifying, protecting against attacks on the
integrity of the data or code used in a result. We assume a trusted
query execution environment, and that standard cryptographic
signatures can be used to prevent forged results. We assume a
model in which the source data and binary operations (UDFs) will

488

remain available in archival form on the Internet, accompanied by
signatures — e.g., through GitHub, public repositories, or archived
storage — but that a derived result and its associated provenance
structure (a) might be tampered with in order to manipulate the
record, or (b) might be alleged to have been derived from a different
source or using different code. We do not assume that standard
cryptographic hash functions are collision-free, but assume that
we will use a combination of cryptographic hashes that makes it
highly improbable that an aspect of the provenance can be modified
without affecting a hash value in a tamper-evident fashion. We
address both problems through the careful choice of provenance
tokens and cryptographic hashing.

4.1.1 Encoding Source Tuple Provenance. A first question is how
to ensure the provenance structure “certifies” the value of the in-
puts. To do this, we assign values to provenance tokens with cryp-
tographic signatures of the data. In fact, there are a number of
subtleties in how we might formalize this, all having to do with
the context of a data record: should provenance consider where
a record appears (considering, e.g., the file’s full contents, the
file’s name or semantic description, the record’s position) or just
what its value is? We consider three formulations which preserve
increasing amounts of context:

(1) Value-equivalent: only the data matters, so we create a token
by hashing the record.

(2) Origin-equivalent: here we consider data to be different if it
appears in a different place (within the file, if there are duplicate
records; or across files). We create a token by hashing the file
URI and timestamp, plus the location of the data.

(3) Content-and-origin-equivalent: the provenance of a tuple further
depends on the specific file and version in which it appears. Here,
we create a token by hashing a digest of the file contents, file
URI, and the location of the data.

Other definitions are possible, but we feel these three definitions
represent the majority of use cases encountered in data science.

Note that the choice of contextual information not only provides
different levels of detail about the source, but affects when two
provenance derivations are considered equivalent. As we include
more contextual information in the token, there are fewer cases
when source results are considered the same.

4.1.2 Encoding Derived Expressions. Next we consider provenance
expressions for derived results. Generally, one would need to reason
about algebraic equivalence to determine if two provenance expres-
sions are equivalent. However, a sound-but-incomplete scheme for
testing for algebraic equivalence is to look at whether the prove-
nance expressions are structurally equivalent (i.e., the same re-
lational algebra expression over the same inputs) with the same
inputs. We develop a scheme that derives the provenance token in
a deterministic way that ensures the same subexpression evaluated
over the same input data always has the same value. This property
allows us to (1) store the provenance token and its derivation exactly
once in memory, and (2) quickly determine that two expressions
are identical if their tokens are identical. We can achieve this by
applying strongly collision resistant (cryptographic) hash functions
to the provenance expressions.

Hay Haa
H [Seleer. Hy) H|Seles, Hyy) Ly
Hay Hiz L;
Hiloim, Hyy Hyy) H{Joim, Hyy. His)
T —— e
o — .
o = -
Hyy Hy Hys Hyy L,
H[m#, H“,nJI: H[M?, Hysld JI: H[m#, H“,B,J” H[S“?, H|'{,|D,3|:
Hyy Hia Hys Hyy L
B f e By) H{fine) H{fimen

:n.[Fr 1imel n[Fi ine2 o[Faitinel] n__[fo line2] 'Ly

1 |{abcetd, cocatg) (edceeq. aaaltp) {cocage) (aaatge) '

"""""""""""""""" [0 - T

Figure 2: Merkle tree for Example 4 query.

A natural question is when two operations are equivalent. For
relational algebra operations, the physical operators implementing
the same logical operator (e.g., different join implementations) are
considered equivalent. For user-defined functions, this gets more
complex: our implementation assumes that there exists a digest for
each function, and that functions are identical if their digests are
identical. Of course, if the functions have dependencies to external
libraries, or if different runtime conditions affect operation, one
would need to generalize this approach. Such approaches require
substantial engineering but would fit naturally into our approach
(the digest would include all relevant dependencies).

Using cryptographic hash functions as the basis of provenance
expression identification provides us with a second opportunity.
We can produce an encoding that is self-certifying, in the sense that
we can verify that an output was produced through a particular
derivation from a given input, and any tampering with the structure
or data would not satisfy the hash. To do this, we adopt the Merkle
tree [26, 31], a data structure that has recently been popularized
in blockchain protocols [31] and used for auditing and account-
ability [20]. (Our Merkle tree implementation supports variable
arity for intermediate nodes.) A Merkle tree in effect uses recursive
hashing: an intermediate node is assigned the hash of its children’s
hashes, and so on to the leaf level.

For a provenance expression, we derive a provenance token as
the cryptographic hash of the root operator and any inputs (which,
for intermediate nodes, are themselves recursively computed as
cryptographic hashes of their inputs, all the way back to the leaf
nodes, whose tokens are computed as cryptographic hashes of the
original input tuples as in Section 4.1.1). This both ensures the prove-
nance is tamper-resistant, and also guarantees that a provenance
token derived from the same expression and inputs will always
have the same value®.

EXAMPLE 6. Figure 2 shows the Merkle tree of Example 4. The
leaves are the records from the reference genome file fi and source
genome file f>. Each line of file fi encodes a tuple from relation R,
and similarly for f, and relation S. Each such input will be assigned
a provenance token, here computed as the hash of the filename and

*Note by “same expression” here, we refer to an algebraic expression with the same
ordering and structure.

489

position (origin-equivalent). The first operator, extract prefix, will
take the input tuples and generate a token (e.g., Hz,1 as an example)
for each output, by hashing the operator name (extractyrqf) and
input token (H1,1). Each operator assigns a provenance token to its
output, generated by hashing the unique value of the operator type,
parameters and input tokens. The token for each output takes the hash
of its child hash values (augmented with additional information),
forming a Merkle tree structure of the hash tokens.

In PROVision, we consider two ways of protecting provenance
with Merkle trees. The simplest approach is to use large enough
cryptographic hashes to make it effectively impossible to find a hash
collision and forge a result. Here provenance can be verified without
access to the input data. A second approach is to use a smaller
hash function in the Merkle tree, where collisions are incredibly
improbable but not computationally intractable to find — but then
to restrict the range of possible values an attacker can use, by using
input data which is permanently available and signed.

4.2 Storing the Provenance Graph

Our goal is to encode the graph on disk in relations, in part be-
cause this is broadly applicable across a wide range of DBMSes
and applications. Our on-disk representation is based on a general-
ization of a labeled, ordered edge relation for a directed graph. We
focus on compression at the logical-level, relying on existing DBMS
physical-level data compression to complement our work. Here, we
have an n-ary relationship between input expressions (by token),
an operator, and a result. Conceptually, the schema of the PTable
(“provenance table”) relation is:

({input, label, index, derived)

where input is the ID of an input node, label defines the algebraic
operation or versioned UDF, index represents the index of the or-
dered edge with respect to the derived node, and derived represents
the ID of the newly derived node.

The derived value is generated by hashing the derived tuple’s
key fields, the operator that produced the tuple, and the list of
input tuples’ tokens. It is deterministically computed based on the
tuple value and provenance polynomial expression. However, even
strong cryptographic hash functions may produce collisions. Thus,
the actual, unique node identifier we use is the RID (unique row
ID in the storage system) of the first edge stored for this derived
node. Each of the input IDs in the record above is in fact the RID
of the record defining the input tuple’s derivation, as opposed to
the actual hash value for that tuple’s derivation.

4.2.1 Basic Relational Algebra. As described in Section 4.1.1, the
provenance nodes for raw input tuples are given node IDs derived
from the tuple values and the appropriate level of context. The tuple
keys and context are stored as the node identifier, and the remaining
fields can be stored as node content. Selection and projection do
not create new nodes in the provenance graph. Join () and union
(+), as binary operators, yield two provenance derivation edges.

ExaMPLE 7. The join output of Example 1 is represented as two
records, one for each input to the join (-) operation:

PTable{rig;p.(-), 0, h(rl,rg,’join’))
PTable{szp;p- (), 1, h(r1,72,” Join”))

where h(r1,r2,” Join’) represents the cryptographic hash of the expres-
sion, 1, represents the unique row ID of the Oth derivation record
forri, and sz, represents the unique row ID of the Oth derivation
record for s3.

Union has an analogous structure.

4.2.2 Aggregate & User-Defined Functions. Grouping and aggre-
gation (whether through standard or user-defined functions) are
encoded analogously to join, but an aggregation may be computed
over an arbitrary number of rows. Here, given n inputs to some
aggregate function f, we will have n rows of the form:

PTable(r;, f',i,h(r1, ... Ty ostn,” f))

i < n,’f’ represents the name of the function, and
as before h() represents the function responsible for generating a
deterministic node hash.

where 1 <

Table-valued functions. PROVision supports table-valued func-
tions, which return multiple result rows that must be joined with
the grouping keys. To incorporate this, we add an additional field
to the schema, to capture the output row index.

Equivalent-but-not-identical query expressions. Our strategy
compresses results produced via the same provenance polynomial
expression. This means they must be produced by query subexpres-
sions that (other than selection and projection conditions), follow
the same evaluation order. A question we studied was whether we
could rewrite the subexpressions to equivalent expressions in order
to increase sharing (if an existing result used a different evaluation
order). Unfortunately, because query expressions are computed
bottom-up, sub-expressions are produced before super-expressions,
making techniques for rewriting the provenance polynomial from
one expression to another ineffective in reducing storage overhead.
We thus rely on the fact that the optimal evaluation plan for the
same subexpression will be the same, even under minor variations
to the selection and projection conditions. In Section 4.4 we discuss
how the query optimizer’s choice of plans affects the size of the
provenance graph.

4.2.3 Lookup and Tracing. The PTable table is indexed (1) by row
ID, allowing direct random-access lookups to the first derivation of
a node, as well as sequential lookups of the remaining derivations;
(2) by node hash, allowing lookups by hashing the provenance
expressions. The latter is used to determine if there are multiple
colliding nodes with the same hash value, or to determine if a
subexpression has been previously computed. In the latter case we
can share the subexpression.

Provenance querying frequently involves tracing from a subset
of the PTable relation P, namely those output nodes that satisfy
predicate ¢, via transitive closure until we get to the input data.
Algorithm 1 traverses the edges in P to return those that are part of
the subgraph. A second common type of provenance query involves
looking for overlap or differences in results (either within or across
queries). Here, we can immediately detect commonality by checking
the provenance token values as we trace.

490

Algorithm 1 RetrieveProvenance(P, ¢)

1: Ret = {ele € P A $(e)} {Edges satisfying ¢}

2. Parents = {edge.input|edge € P}

3. if Parents # 0 then

4 Ret = Ret |J ProvSubgraph(P, Ae : e.RID € Parents) { New
¢: edge e’s RID appears in Parents }

: end if

6: return Ret

v

4.3 Tamper Resistance

Our discussion in this section has largely focused on the use of
cryptographic hashing of provenance expressions as a way of gen-
erating a (nearly) unique signature for each expression. However,
recall from Section 4.1.2 that we actually propose not to precisely
hash each provenance expression, but rather to build a Merkle tree
to assign a cryptographic hash to it — making it tamper-resistant,
and thus useful for maintaining an audit trail, as is needed for a
provenance archive.

As in our example of Figure 2, provenance is generated by the
PROVision query engine bottom-up, starting with the leaf-level
table scan operators. As records are read (and filtered with any
pushed-down predicates), their values are cryptographically hashed
and added as nodes to our provenance graph edge relation (if an
identical node does not already exist). Each node n has a (nearly
impossible to forge, but not fully collision-free) cryptographic hash
(n.derived) and upon insertion receives a unique ID (n.RID).

At the next relational operator, we take the derived tuple n” and
create a set of derivation edges, each linking to the input tuple(s) (via
the unique RID). The cryptographic hash n’.derived is formulated
as the hash of the list of inputs’ hash values and any additional
parameters, e.g., the derivation operation. We do not rely on the
integrity of the rows in the provenance graph storage system, which
could in fact be vulnerable to tampering. Instead, we use the Merkle
tree to ensure integrity.

Each time PROVision makes a derivation, it looks in the stored
provenance graph to see if the derivation has previously been per-
formed — if so, we simply reuse the node, sharing the representation
of the subexpression in the graph. This repeats recursively all the
way until the root of the tree (the provenance expression of the
tuple output by the query) is computed and stored.

We may want to ensure the integrity not only of individual
output records, but of an entire output table, i.e., to certify that no
records have been added, deleted, or replaced. Here, we can either
attach a digest of the result (as is sometimes done when sharing
files), or, more commonly we add one more level to the Merkle tree
(hashing the hashes of all records) and use that as a digest.

4.4 Query Optimization and Provenance Size

Prior work [23] has studied factorized representations [29] to reduce
overall provenance size. Our scenario is somewhat more complex:
PROVision attempts to compute results and provenance efficiently,
and thus includes a cost-based query optimizer. We opportunistically
exploit shared subexpressions as they occur.

The size of the provenance graph is determined by the expres-
sion used to compute the query. One might develop a dynamic

programming-style cost optimizer to minimize the size of the prove-
nance graph, since space overhead is as easy to estimate as running
time. This has some drawbacks, e.g., it would have to rely on heuris-
tics to determine which physical operators to use for each logical
step (each results in the same physical storage cost). However,
we observe that the provenance graph size is proportional to the
amount of intermediate state generated during the query — which
is also correlated with execution cost. In this section we seek to un-
derstand this relationship, by considering under which assumptions
would a minimum-work query plan, as produced by an optimizer,
also produce a minimum-size provenance graph for a given query.
Intuitively, if we ignore access path selection and the choice of
algorithms, the query optimizer cost model emphasizes minimizing
the number of intermediate results, which minimizes the amount
of I/O and work done. Under certain assumptions, the number
of “expensive” computations in the query mirrors the number of
provenance nodes and edges in the provenance graph.

e Assume all selection and projection operations are maximally
pushed down. Suppose we have an index such that only those
tuples satisfying the selection conditions are retrieved, and we
must retrieve an entire tuple to project the desired fields. For a
relation R with n tuples, this results in the loading and parsing
of n tuples, at some cost cj,,4. If in the provenance graph we
only store those nodes satisfying the pushed-down selection
conditions, this correspondingly results in the creation of n nodes
at storage cost csource-

e Assume a single join implementation, a hash join (or a merge join
if data is sorted) with adequate RAM. Given tables R, S with sizes
m and n, respectively, a hash join performs O(m+n) hashes during
the build and probe stages. It performs |R > T| Cartesian product
operations (cjoin, Which typically are the dominant factor in the
cost) to produce the join output tuples. The provenance graph
will include |R < T| new derivations from source tuples with
storage cost ¢y, oduct-

o Assume only one group-by implementation that calls an aggre-
gate function expressed as a UDF. Then for g groups averaging
size ng, the group-by will call the UDF g times, at cost ¢, 4y,
each over an average of ny inputs, resulting in g outputs. The
provenance graph will include g nodes representing the groups,
linking to ng input nodes, and producing g result nodes; assume
these links take storage cost cagg.

If the above assumptions are met, and we can find a single weight
w relating query processing time vs provenance storage time, such
that cjoqq = W * Csource Cjoin = W * Cproduct> and cygp = w -
Cagg> then minimizing the query cost also minimizes the size of
the provenance graph. Of course, some of these assumptions may
not hold in practice, but nonetheless it is clear that, with a single
implementation for each operator, optimizing for query running
time is a reasonable heuristic for optimizing provenance graph size.

5 PROVISION IMPLEMENTATION

We now describe our implementation within our custom prove-
nance management and in-memory query/workflow engine, PRO-
Vision [32]. PROVision is an execution engine for processing struc-
tured data stored in files, serving a similar role to Python with
Pandas, Apache Spark, etc. Users will typically write scripts that

491

Result analysis

tools
Queried
Queries Provenance
Results
> plan |Provenance
View / UDF Generator Queries
ist
SEEY Provenance
- Storage
L Optimizer 4
Statistics
Input Files l
/
. - Toke
Relations Query- oxen Token
Strucm'_’ Provenance _ Maintenance
records Engine Hash

Figure 3: PROVision system architecture.

execute multiple queries in steps, and/or they may compose queries
over views. We allow queries to be written both in SQL and in a
lower-level, manually-defined, physical algebra form. Both SQL
and algebraic queries can call user-defined functions in Java and
Python, which is essential for supporting many kinds of operations
in scientific data processing, including gene sequence matching as
well as ETL-style data cleaning and record linking.

Our query engine [32] supports standard relational algebra (SPJGU)
operations, as well as UDFs, and automatically annotates each tu-
ple with provenance. PROVision allows “eager” computation of a
query’s output results with provenance, as well as “lazy” computa-
tion in which the user may select specific outputs for which he or
she wants provenance. This paper focuses on eagerly computing
all provenance and storing it for archival.

5.1 System Architecture

Figure 3 depicts the modules of PROVision. Given a query con-
taining user-defined functions, PROVision looks up any references
to view definitions or user-defined functions in a centralized Reg-
istry. The Plan Generator takes any combination of SQL queries,
relational algebra expressions, and (Java and Python) UDFs, and
generates a single query plan.

Query optimization. PROVision uses a Volcano-style rewrite-
based query Optimizer [17] to find a more efficient rewriting of
the plan to execute. It consults a data catalog which includes sta-
tistics about sources (cardinalities, numbers of unique values) that
are cached across query runs. The optimizer’s cost estimator uses
information about key-foreign key dependencies, as well as in-
put cardinalities, to estimate intermediate result sizes and costs.
User-defined functions (which may return table-valued results, in
addition to single values or tuples) are included in the search space.

Query execution. The Query-Provenance Engine implements a
pipelined relational query processor in Java. User-defined functions
may be written in Java or Python (via Jython); UDFs use an API to
provide detailed provenance information to PROVision [32]. PRO-
Vision maintains its own internal representation of provenance as
expressions annotating each tuple: As described in Section 3.2, each
provenance expression is rooted as an in-memory object, which
links by reference to the provenance expressions associated with
input tuples, forming a recursive data structure across tuples.

Provenance storage. The focus of this paper is on the rightmost
two modules. We leverage BerkeleyDB to persist data within PRO-
Vision. To enable tuples and provenance to be stored externally,
PROVision uses a Token Maintenance system to generate glob-
ally unique IDs for provenance nodes as they are derived (described
next), and it stores corresponding provenance graph edge informa-
tion in a Provenance Storage system (Section 4.2).

5.1.1 Token Maintenance. At each step of provenance computa-
tion, the Token Maintenance module returns a canonical node ID
(provenance token) based on the operator or versioned user-defined
function being executed, the inputs, and any other parameters (see
Section 4.2). Generally, we will directly use a cryptographic hash
of the corresponding provenance derivation step, i.e., the root op-
eration list of hashes of the input tokens, and the parameters, as
per the Merkle tree structure of Section 4.3). Suppose this is D, in
which case the cryptographic hash is A(D). Unfortunately, at scale
and for corner cases, we may have to deal with a situation in which
two values of D have the same h(D).

Detecting Collisions. We maintain a hash-input map (as a B-Tree
with a large in-memory cache) from h(D) to the set of possible
Ds that hash to the same value. Every time we receive (or wish
to look up) a new derivation D, we compute h(D), then look up
any matching entries in the hash-input map. If there is no entry,
or if h(D) maps to D, then we are collision-free, so h(D) can be
used to look up all tuples related to derivation D in the PTable
relation encoding the graph. We use the Provenance Storage module
(described below) to look up the first tuple matching k(D) and return
its node ID as a “pointer” to the node entry in the table.

Resolving Collisions. In the event of a collision, A(D) is not a
unique key, thus cannot be used to look up or update the hash node.
If this is the first occurrence of derivation D, we call the Provenance
Storage module to add all tuples related to this derivation to the
PTable, and retrieve the row ID of the first derivation. In a collision
map structure, we record a mapping from D to this row ID. We can
look up D in the collision map to retrieve and return the row ID,
as the identity of the node. We expect collisions to be rare, so the
overhead of token maintenance should be as low as possible. The
collision map (while persistent) should easily fit into memory. We
study the overhead in Section 6.

5.1.2 Provenance Storage. The PTable structure described in Sec-
tion 4.2 is mapped to a B+ Tree. Each derivation, which may involve
several edges, is written transactionally. The storage manager re-
trieves the row ID of the first derivation edge as a unique location
for the node. Additionally, the PTable relation is indexed by the
derivation hash, so it is possible to look for provenance derivations
based on the cryptographic hashes at the roots of their Merkle trees.
Additionally, we store the persistent state of the Token Mainte-
nance module in B+ Trees. For each of these structures, we rely on
buffering and batching to queue up writes, and we rely on buffer
pool management to cache frequently accessed values.

5.2 Tamper-Resistance vs. Speed/Space

While cryptographic hashes are nearly collision-free, they impose
notable overhead — not just computationally, but also in terms
of space. Many cryptographic hash functions output 256 or more

492

bits. For PROVision, we looked at the space of cryptographic hash
functions and identified the Blake2 algorithm [5] as having a good
trade-off of computational speed (it is faster than MD5 and the SHA
family) and security (its security analysis indicates it is as secure as
SHA3 with a 512-bit digest). Moreover, Blake2, while slower than
Java’s built-in hashCode(), in practice added negligible overhead
to our overall running times. Blake2 is “tunable” to hash digest
sizes from 1 byte to 64 bytes, with stronger security guarantees
and fewer collisions as we increase the size of the digest. Security
trade-offs for the different sizes can be considered based on the
probability of a collision [5]; in the next section we empirically look
at the performance trade-offs (I/O cost, cost of resolving collisions)
of different hash sizes.

6 EXPERIMENTAL EVALUATION

Our evaluation of PROVision studies its overhead versus its ability
to compress provenance and to certify the integrity of results.

Tasks and queries. Fine-grained provenance has a range of appli-
cations, including loading, wrangling, querying, and analysis. We
consider simple OLAP queries based on TPC-H, scientific Genome
sequence matching, and common ETL tasks such as schema match-
ing (Magellan [22]) and data cleaning (DuDe [14]).

TPC-H: We use the TPC-H data generator with Scale Factor
0.1 (107MB) to generate 8 input tables with a total of 867K rows.
We pick single-block SQL queries (Q1, Q3, Q5), avoiding negation.
PROVision executes these queries directly over the CSV files, since
its engine focuses on outside-the-database tasks. Q1 does a single
aggregation; Q3 joins three tables; Q5 joins six tables.

Gene sequence alignment (Genome). Scientists often seek to quan-
tify the genes and related proteins from DNA-sequenced tissue.
A query cleans the sequence records (trim), aligns trimmed se-
quences against a reference “library” of genes, and finally looks up
the genes to determine which proteins are coded. We use compo-
nents from the STAR alignment toolkit as Python UDFs in PROVi-
sion. Our experiments use 145.5M sequences.

Entity matching (Magellan). The Magellan [22] entity matching
toolkit provides algorithms for linking records. Magellan includes
stages for blocking (comparing subsets of record pairs to find an
alignment) and matching (determining which pairs match above a
threshold). Building on example queries provided with Magellan,
we link entities between the ACM Digital Library (1813 records)
and DBLP (1780 records).

Data cleaning (DuDe). Another common ETL task involves clean-
ing records within a data set. The DuDe [14] data cleaning frame-
work searches for pairs of tuples that represent the same real-world
object (deduplication). Our experiments use a standard DuDe exam-
ple, cleaning a compact disc dataset with 9763 records comprised
of 107 (possibly null) attributes.

Workload generation and data. We generate workloads as se-
quences of queries over subsets of data. For the TPC-H queries,
we use the standard query generator to create and parameterize
queries Q1, Q3, and Q5; we use tables from the data generator.
For our scientific and ETL tasks, we simulate the execution of
similar data analysis tasks across time: subsequent queries are sim-
ilar but may use different UDFs or selection predicates, and some
may be over the same input tables whereas others will be over new

data. We define two configuration parameters: the proportion of
repeated sub-segments of the input data within a query or across
queries (see below for details on data generation) and the simi-
larity between queries in a workload. Each query is generated by
parameterizing a template with randomly chosen values, as follows:

e Genome. Gene sequence alignment first performs up to 8
trimming conditions. A given query may take any subset of
these trimming conditions. For the second step, we choose
one of three versions (2.3.0, 2.3.1 and 2.4.0) of STAR.

o Magellan. Magellan record linking templates are divided into
blocking and matching steps. The template for blocking tests
for attribute equivalence, or instead uses rules. The matching
stage chooses one of several string similarity measures.

e DuDe. DuDe performs duplication detection. As with Magel-
lan, the template randomly chooses a similarity function.

In each workload step, we may apply the query over a different set
of input relations sampled from the original dataset. We control both
the sizes of the inputs and the amount of duplication (which is im-
portant for measuring the benefits of subexpression sharing). Given
a source relation with n records, we sample k records uniformly
at random. Then starting from each chosen record, we include the
next m consecutive rows. We sample with replacement until we
reach our target of n’ records. This gives us a set of records with a
duplicate-record ratio of (k x m)/n.

Environment. Experiments were conducted on an Intel Xeon E5-
2630 running at 2.20GHz with 24 cores and 64GB of RAM. Our
implementation used the OpenJDK 1.11.0, Python 3.6, PostgreSQL
10.12, BerkeleyDB JE 7.5.11, and the BLAKE2b cryptographic hash
implementation. Results are averaged over 5 runs and we present
95% confidence intervals. We experimentally answer the following:

(1) What are the space and time overhead of cryptographic hash-
ing, and of token management? Can we trade off probabilistic
security guarantees for space? (Section 6.1.)

(2) How effectively does our scheme compress provenance, both
within and across queries? (Section 6.2.)

(3) How effectively does our encoding scheme support tracing
and comparing provenance? (Section 6.3.)

6.1 Space and Time Overhead

A concern with cryptographic hashing is the amount of overhead
that is incurred. In some cases, a provenance token may be larger
than the input data records! Moreover, cryptographic hashing tech-
niques are computationally intensive. Thus, we begin by looking at
different space/security (and collision frequency) trade-offs.

Baseline performance. To establish a baseline for our measure-
ments, we record the performance characteristics of the queries
without provenance capture, in Table 1. Note the diversity in input
sizes, output state size, and execution time. We do not view our
PROVision platform as interchangeable with PostgreSQL, since it
runs over unindexed external data and is written in Java as opposed
to highly-memory-optimized C; nonetheless we include PostgreSQL
running times for TPC-H queries to calibrate our performance. We
are unaware of a system that can run our other queries’ UDFs and
trace their provenance.

493

Table 1: Baseline workflow, no provenance computation.

input size | outputs | exec time | PostgreSQL
load+exec

TPC-H Q1 71MB 735B 5.2s 2.7+1.2s
TPC-H Q3 90.4MB 747B 4.9s 3.2+0.18s
TPC-H Q5 90.5MB 258B 7.4s 3.3+0.14s
Genome 3.5GB 127GB 13.4hr -
Magellan 615KB 615KB 4.3min -
DuDe 4.6MB 116GB 25.3min -

This table sets the baseline against which we will later plot
normalized execution times and space overhead. (Space will be nor-
malized against input, output, and stored intermediate result sizes.)
We consider several additional baselines for provenance capture
and storage. The ProvCSV method captures provenance in memory
as polynomial expressions, and ultimately writes them alongside
the output in a CSV file [32]. The Perm system [16] extends Post-
greSQL with (non-compressed, non-tamper-resistant) provenance,
for queries that run in PostgreSQL. Finally we adapted the prove-
nance compression techniques of Chen et al. [10], in consultation
with the authors, to work with PROVision’s query model.

6.1.1 Hashing Schemes vs Space. Figures 4 and 5 show the space
overheads incurred in tracking and storing provenance, for our
various workloads. The TPC-H queries include joins and simple
aggregation, whereas the scientific and ETL tasks involve substring
extraction, approximate match, and ranked, thresholded computa-
tions. These sizes are without physical-level data compression. As
noted, we normalize against Baseline space overhead; and against
ProvCSV, which computes provenance in-memory, and stores prove-
nance expressions as strings. Where feasible, we also compare
against Perm (for TPC-H); and Chen et al. [10]’s compression strat-
egy, re-implemented for our query model in consultation with the
authors, which we term NetworkProv.

PROVision stores and cryptographically certifies the entire query
expression. In contrast, Perm only stores the input “witnesses” re-
sponsible for an output tuple; and the NetworkProv approach stores
inputs and output while eliminating intermediate nodes. A nat-
ural question is how our encoding compares to the alternatives.
From the figures, we see that Perm and NetworkProv exhibit similar
characteristics, with little overhead for TPC-H Q3 and Q5 (which
have small result sizes) and fairly substantial overhead for TPC-H
Q1 (which has fairly many witnesses of each output due to aggre-
gation). For the ETL tasks, NetworkProv shows overhead similar
to PROVision-64 (slightly worse for DuDe and slightly better for
Genome). Note that both Perm and NetworkProv will need to do
more computation at query time to produce intermediate results.

To get insights into the overhead of tamper resistance vs. stor-
age scheme, we compare different settings for PROVision, trading
between token size (which affects I/O and even computation costs)
and collisions and probabilistic security guarantees: we explore full
cryptographic hashing and compare with options that fit within the
storage system’s highly efficient long and int datatypes. The cryp-
tographically secure method (the PROVision-F bar, which uses full
512b Blake2 hashes) adds 4-50% overhead versus prior approaches
like NetworkProv. For applications that need strong security guar-
antees, this overhead, while nontrivial, is certainly not prohibitive.

Dude

Genome

Dude it Q3 Q5

I

[Baseline

L1

[Provstore-I [l ProvStore-64

Il

. Baseline

erm

llind

I ProvCSV

I ProvStore-32 [l ProvStore-F

il

l Baseline [] PROVision-I [l PROVision-64 [] BDB [F] Compute [l Storage

[NetworkProv l FrovCSV I Provstore-32 [l ProvStore-F

Figure 4: Space overhead: TPC-H queries.

Table 2: Theoretical tamper resistance vs space overhead.

Sys. Setting Nbr. Ops. | Space Overhead
PROVision-F 2756 40% to 90%
PROVision-64 232 15% to 39%
PROVision-32 216 10% to 20%

Table 3: Actual collisions observed in workloads.

PROVision Q1 | Q3 | Q5 | Genome | Magellan | DuDe
PROVision-I 115 | 123 | 129 11.4K 1245 241K
PROVision-32 | 104 | 116 | 119 10.5K 1223 238K
PROVision-64 0 0 0 0 0 0
PROVision-F 0 0 0 0 0 0

In some settings, e.g., if the source data is cryptographic signed,
users may be able to tolerate reduced tamper resistance in the
provenance structure — so we consider several alternatives. The
PROVision-I configuration uses the computationally efficient Java
String hashCode(), which is fairly weak. PROVision-32 uses the
same space, but replaces the standard hash function with a 32b
version of the Blake2 cryptographic hash. Finally, PROVision-64
uses a larger, 64b version of the Blake2 hash, which should have
much better collision resistance as well as limited tamper resistance.
We see that PROVision-32 is preferable to PROVision-I, because it
has fewer collisions with the same space overhead (10-20%). A
reasonable trade-off that has high collision resistance and some
tamper resistance is PROVision-64, with 15-39% space overhead.
However, testing for tampering here requires access to a signed
copy of the original database, since collisions among hashes in the
Merkle tree can be fairly easily generated by an adversary.

Table 2 shows the theoretical trade-off between the security
level and the space efficiency: “Nbr. Ops” represents the number of
hashing operations before we expect a collision. In expectation, an
adversary needs this many operations to find a value that could be
substituted for the actual input. In principle, PROVision-F needs 22°°
hash attempts to find a collision. For our actual datasets and query
workloads, we did not observe any collisions with 64-bit or higher
hashing, as shown in Table 3. For 32-bit hashing, we see that the
Java hash function (PROVision-I) is actually reasonably close to the
32-bit cryptographic hash (PROVision-32) in collision resistance,
even if it does not provide the same theoretical guarantees.

Sources of provenance overhead. PROVision requires space pro-
portional to a query’s intermediate state: each intermediate tuple
results in a node in the graph; each provenance expression is stored
in multiple PTable rows (n rows for an nary operator). TPC-H Q1

Figure 5: Space overhead: ETL tasks.

494

[Provcsv [PROVision-32 [l PROVision-F

Figure 6: Time overhead for provenance.

(aggregation over a single input table) and the Magellan query —
which compute many intermediate results that are aggregated or
selected through top-k computations — have the highest overhead
relative to their input + output size. The other queries tend to prune
more of the input data and produce proportionally larger output
results, so their relative overhead is less. In later experiments, we
will show that these intermediate results often can be efficiently
shared if they appear repeatedly across queries.

Physical-level data compression. Our discussion has focused
on the logical-level data encoding. PROVision also leverages Post-
greSQL’s CStore_FDW columnar storage extension and its physical-
level data compression techniques. This provides a substantial com-
pression ratio, of approximately 2.5-3.5 times, for all encodings.

6.1.2 Hashing Schemes vs Execution Time. We consider the execution-
time overhead of query computation, provenance graph I/O, and
token management I/O, for the different configurations described in
the previous section. In all cases our optimizer produces the same
query plan. Figure 6 breaks down query costs into three compo-
nents: provenance storage I/O (dark lower portions of the bars),
query computation (longer, middle segment of the bar), and token
management I/O (top of the bar). Provenance storage I/O is a rela-
tively small fraction of the overall running times, since PROVision
extensively caches reads in the graph and buffers writes.

Naturally, the query execution overhead depends on the compu-
tations being performed within the queries. Significant overhead
(approximately 5x versus the baseline) occurs for the DuDe work-
load: this query computes an internal Cartesian product, requiring
many intermediate results and the computation of their provenance,
before it prunes to the most promising duplicates. All other queries
are notably more efficient, with most adding 10-30% overhead un-
der the different hashing schemes. We observe that PROVision-32
is slightly (1% to 3%) slower than the other hashing schemes. This
is because it is both a fairly expensive hash function to compute,
yet it suffers from many collisions. PROVision-64 and PROVision-F
are indistinguishable, suggesting that the internal Blake2 algorithm
does the same amount of work independent of the output hash size.
PROVision-I is slightly faster due to its low CPU overhead, despite
suffering from many collisions (recall Table 3).

We observed that provenance token management added approx-
imately 5% overhead to the total execution time.

6.2 Provenance Reuse

To evaluate PROVision’s ability to share storage across common ex-
pressions, we simulate a series of computations. Each makes small

b & ES
i &

Space overhead(normalized)
Space overhead(normalized)

2
2

Space overhead(normalized)

0.25 0.50 0.75 1.00 0.25
-~ Baseline = ProvCSV - PROVision

(a) Genome query.

— Baseline —

(b) Magellan query.

0.50 0.75 1
ProvCSV — PROVision

°
=3

0.25 00

— Baseline —

.00 0.50 0.75 1.
ProvCSV — PROVision

(c) DuDe query.

Figure 7: Space overhead for multi-query workloads, plotted against ratio of unique values.

) @ »

Space overhead (normalized)

04 05 06 07 08 09 10
Ratio of unique records
E30rigin—Equivalents2Content-Origin-Equivalent

0.3

Figure 8: Space overhead vs. source equivalence scheme.

variations in its selection predicates and user-defined functions,
over different input data files. We simulate the evolution of queries
and datasets by varying: (1) the percentage of input records in com-
mon across different query executions; (2) the amount of overlap
in the query plans being executed. We show the PROVision-64
configuration, which is representative of the other configurations.

Inputs with repeated sub-segments. To study the effects of re-
peated input data, for each scientific or ETL application we generate
10 queries Q1, . . ., Q10 from the associated query template, and run
each successive query over a different input set. For each applica-
tion, we also generate 10 sets of input files, D1, ..., D1g. Within
these input sets, we control the number of repeated records (mea-
sured by the ratio of unique inputs to the total number of inputs).
We ultimately run each Q; over the corresponding D;.

Figures 7(a)-(c) show, for our three respective query workloads,
how the provenance space overhead changes as repetition occurs
in the inputs. On the left side of the plot, duplicates are common
(the ratio of unique input values is low); PROVision approaches the
cost of the baseline, because provenance space is amortized across
many repetitions. As we reduce duplication, PROVision dominates
the ProvCSV approach until about 45-75% of the values are unique.
The crossover point for Genome (which is aggregation-heavy) is
lower than the other two tasks, which are more join-heavy. While
our experiment studies repetition within the input file(s), the same
“compression” benefits apply for queries executed across different
inputs that share records.

Different source token equivalence schemes. The above exper-
iments adopt a value-equivalent formulation to encode the source
tokens: records are considered to match based on value-equivalence,
independent of input file. Section 4.1.1 proposed several alternative
definitions. To study how stricter definitions of equivalence affect

495

provenance reuse, we simulate the evolution of data and queries
over time as follows. We take 10,000 input sequences from the
Genome dataset. We generate 10 files, each containing 1K sam-
ples from the input, with controlled overlap. We randomly assign
a name to each file (potentially giving two files the same name,
representing different versions of the file over time), and execute
the Genome query. Here, the same record may occur in a file with
a different name (making it no longer origin-equivalent) and/or a
different hash signature (making it no longer content-equivalent).
Figure 8 shows, over randomized runs, how our different equiva-
lence definitions affect storage overhead, when compared to value-
equivalence (the blue line). The x-axis shows the ratio of unique
records (by value) across the workload, and the y-axis shows the
space overhead versus the original data size. Note that when the
ratio of unique records is low (left side of the plot), the storage
overhead for COE and OE shows high variance and is considerably
higher than for value equivalence. As the ratio of repeated records
decreases, the schemes converge towards similar overhead.

Variations in queries across the workload. Our previous ex-
periments repeated the same basic query (with different selection
predicates) over different data — yielding the same query plan, and
thus producing the same provenance structures over the same input
data. To study the impact of changing queries, we define a very sim-
ple measure of query expression overlap. We consider two relational
algebra operators to be identical if they have the same parameters,
predicates, and user-defined function code. With this measure, we
take a set of queries, and compute the ratio of identical operators as
a proportion of the total number of operators; in essence this is a
Jaccard similarity between two query expressions. Figure 10 plots
the provenance space overhead (normalized against the setting
where there are no common subexpressions) versus this ratio of
identical operators, for the variations on our three basic queries.
The figure clearly shows that as the number of shared operations
increases, there are increasing efficiencies in storage as PROVision
exploits common subexpressions. The aggregation-heavy Genome
query benefits the most from sharing.

6.3 Provenance Retrieval and Comparison
We often need to query provenance — e.g., for reproducibility, to

assess trust, or to compare different queries’ results [21, 32].

Tracing to a fixed depth. We evaluate the provenance tracing
times for different proportions of the overall output, in Figure 9

1250+

1000+

750-

250-

(seconds)
s 3 3 8
(seconds)
N £ o
(seconds)
2
<

025 050 075 1.00 0.25 050 0.75 1.00 0.25 0.50 0.75 1.00
— Depth1 — Depth2 — Depth3 — Depth1 — Depth2 — Depth3 — Depth1 — Depth2
(a) Tracing Genome query output. (b) Tracing Magellan query output. (c) Tracing DuDe query output.

Figure 9: Provenance tracing times vs proportion of query output, to different depths.

e °
3 LJ

o
LJ

Query time(ms)
= N
= S
5 5
Query time(ms)
o 2
< <

Space overhead (normalized)

03: 250 500 750 1000 250 500 750 1000
0.00 0.25 0.50 0.75 Number of different output Number of different inputs
workflow — Dude * Genome = Magellan —Dude—Genome—Magellan —Dude—Genome—Magellan
Figure 10: Space vs. Jaccard distance. Figure 11: Divergent derivations query. Figure 12: Transitive closure query.
(a)-(c). For each query, we plot tracing time against the fraction of retrieved in the PTable (Table 4). Consistent with our prior query
the output traced. Each line represents the cumulative time to reach experiments, Genome has the highest rate of increase due to its
a given tracing depth (1 — 3 hops, which was the maximum depth higher fan-in, whereas DuDe and Magellan are fairly similar.

of our queries). Tracing times are roughly linear in the size of the
selected output, although for the Genome and Magellan queries at
Depth 3, execution times slightly tail off at about 75% of the output
size. These queries include an aggregation step that has high fan-in.

Table 4: Look-ups/edges in the transitive closure.

Workflows | Depth | Num. lookups
Divergent derivations. Scientists may need to compare slightly ;Z‘é‘;‘lrl‘:n i gﬁ;‘l*
different queries, to see where their results are identical and where Dude 3 3500
they diverge [32]. This involves tracing from the two queries’ out-
puts, determining which paths trace back to common provenance

derivations, and which do not (divergent derivations).We create a

frontier set with the selected output nodes. Iteratively, we copy (and 7 CONCLUSIONS AND FUTURE WORK

remove from the frontier) any nodes that are shared between the In this paper, we developed a strategy for encoding fine-grained
two query results: this can be tested by looking at expression equiv- (semiring) provenance, such that repeated computations would be
alence, generally just by comparing token hash values. Such values stored only once (derivation-based compression) and that prove-
represent common derivations. We then trace from the remaining nance would be tamper-resistant. Cryptographic hashing provides
nodes on the frontier to their inputs, and repeat the process. Each a mechanism for quickly determining if a subexpression has been
node represents a derivation that is unique to one of the queries, tampered with, and allows us to compare whether two subexpres-
and is included as a divergent derivation. Figure 11 shows that sions are identical. We developed a storage scheme for this model,
DuDe and Magellan run in time approximately linear in the size including for collision resolution. Using our PROVision system, we
of the outputs being traced, whereas Genome’s times increase at a studied the trade-offs between probabilistic security guarantees and
significantly higher rate due to large amounts of tuple grouping. performance. For future work, we would like to explore integration

with GitHub and dependency managers for tracking binary and
code versions; and to explore whether we might store provenance
“templates” instead of full trees, to capture patterns more compactly.

Transitive closure. A third type of provenance query traces back
to inputs via transitive closure — to determine if output records are
based on trustworthy inputs, or if they make use of certain records.
Our last experiment randomly selects different numbers of inputs

as starting nodes, and then computes their transitive closure in the ACKNOWLEDGMENTS

provenance graph. Figure 12 shows that the query times are mostly We thank the anonymous reviewers for their feedback. This work
linear in the size of the given inputs. Query time depends on the was funded in part by NSF grants I1I-1910108, ACI-1547360, CCF
number of edges in the transitive closure, i.e., the number of rows 1763514, and NIH grant 1U01EB020954.

496

REFERENCES

[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-

sion and execution in column-oriented database systems. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, Chicago, Illinois,
USA, June 27-29, 2006, Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis
(Eds.). ACM, 671-682. https://doi.org/10.1145/1142473.1142548

Yael Amsterdamer, Susan B. Davidson, Daniel Deutch, Tova Milo, Julia Stoy-
anovich, and Val Tannen. 2011. Putting Lipstick on Pig: Enabling Database-
style Workflow Provenance. Proc. VLDB Endow. 5, 4 (2011), 346-357. https:
//doi.org/10.14778/2095686.2095693

Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for
aggregate queries. In Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2011, June 12-16, 2011,
Athens, Greece, Maurizio Lenzerini and Thomas Schwentick (Eds.). ACM, 153-164.
https://doi.org/10.1145/1989284.1989302

Manish Kumar Anand, Shawn Bowers, Timothy M. McPhillips, and Bertram
Ludéscher. 2009. Efficient provenance storage over nested data collections. In
EDBT 2009, 12th International Conference on Extending Database Technology, Saint
Petersburg, Russia, March 24-26, 2009, Proceedings (ACM International Conference
Proceeding Series), Martin L. Kersten, Boris Novikov, Jens Teubner, Vladimir
Polutin, and Stefan Manegold (Eds.), Vol. 360. ACM, 958-969. https://doi.org/10.
1145/1516360.1516470

Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian
Winnerlein. 2013. BLAKEZ2: simpler, smaller, fast as MD5. Available from https:
//blake2.net/blake2.pdf.

Zhifeng Bao, Henning Kohler, Liwei Wang, Xiaofang Zhou, and Shazia Wasim
Sadiq. 2012. Efficient provenance storage for relational queries. In 21st ACM
International Conference on Information and Knowledge Management, CIKM’12,
Maui, HI, USA, October 29 - November 02, 2012, Xue-wen Chen, Guy Lebanon,
Haixun Wang, and Mohammed J. Zaki (Eds.). ACM, 1352-1361. https://doi.org/
10.1145/2396761.2398439

Louis Bavoil, Steven P. Callahan, Carlos Eduardo Scheidegger, Huy T. Vo, Patricia
Crossno, Claudio T. Silva, and Juliana Freire. 2005. VisTrails: Enabling Interactive
Multiple-View Visualizations. In 16th IEEE Visualization Conference, IEEE Vis 2005,
Minneapolis, MN, USA, October 23-28, 2005, Proceedings. IEEE Computer Society,
135-142. https://doi.org/10.1109/VISUAL.2005.1532788

Khalid Belhajjame, Reza B’Far, James Cheney, Sam Coppens, Stephen Cresswell,
Yolanda Gil, Paul Groth, Graham Klyne, Timothy Lebo, Jim McCusker, Simon
Miles, James Myers, Satya Sahoo, and Curt Tilmes. 2013. PROV-DM: The PROV
Data Model. https://www.w3.org/TR/prov-dm/

Adriane Chapman, H. V. Jagadish, and Prakash Ramanan. 2008. Efficient prove-
nance storage. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008,
Jason Tsong-Li Wang (Ed.). ACM, 993-1006. https://doi.org/10.1145/1376616.
1376715

Chen Chen, Harshal Tushar Lehri, Lay Kuan Loh, Anupam Alur, Limin Jia,
Boon Thau Loo, and Wenchao Zhou. 2017. Distributed Provenance Compression.
In Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu,
Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 203-218.
https://doi.org/10.1145/3035918.3035926

[11] James Cheney, Laura Chiticariu, and Wang Chiew Tan. 2009. Provenance in

Databases: Why, How, and Where. Foundations and Trends in Databases 1, 4
(2009), 379-474.

Laura Chiticariu and Wang Chiew Tan. 2006. Debugging Schema Mappings with
Routes. In Proceedings of the 32nd International Conference on Very Large Data
Bases, Seoul, Korea, September 12-15, 2006, Umeshwar Dayal, Kyu-Young Whang,
David B. Lomet, Gustavo Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun
Cha, and Young-Kuk Kim (Eds.). ACM, 79-90. http://dl.acm.org/citation.cfm?
id=1164136

Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski,
Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R Gingeras. 2013. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics 29, 1 (2013), 15-21.

Uwe Draisbach and Felix Naumann. 2010. DuDe: The duplicate detection toolkit.
In Proceedings of the International Workshop on Quality in Databases (QDB).
Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. 1999. Query
Optimization in the Presence of Limited Access Patterns. In 15émes Journées
Bases de Données Avancées, BDA 1999, Bordeaux, 25 - 27 octobre 1999. (Informal
Proceedings), Christine Collet (Ed.). Actes, 41-60.

Boris Glavic and Gustavo Alonso. 2009. Perm: Processing Provenance and Data
on the Same Data Model through Query Rewriting. In Proceedings of the 25th
International Conference on Data Engineering, ICDE 2009, March 29 2009 - April
2 2009, Shanghai, China, Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng
(Eds.). IEEE Computer Society, 174-185. https://doi.org/10.1109/ICDE.2009.15

(17]

(18]

[19

[20

[21

[22

[24

[25

[26

[27

(28]

[29

@
=

(31

[32

[33

Goetz Graefe and William J. McKenna. 1993. The Volcano Optimizer Generator:
Extensibility and Efficient Search. In Proceedings of the Ninth International Con-

ference on Data Engineering, April 19-23, 1993, Vienna, Austria. IEEE Computer
Society, 209-218. https://doi.org/10.1109/ICDE.1993.344061

Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. 2007. Up-
date Exchange with Mappings and Provenance. In Proceedings of the 33rd Interna-
tional Cunference on Very Large Data Bases, University of Vienna, Austria, Septem-
ber 23-27, 2007, Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh
Srivastava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan,
Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold
(Eds.). ACM, 675-686. http://www.vldb.org/conf/2007/papers/research/p675-
green.pdf Amended version available as Univ. of Pennsylvania report MS-CIS-
07-26.

Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance
semirings. In Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 11-13, 2007, Beijing, China,
Leonid Libkin (Ed.). ACM, 31-40. https://doi.org/10.1145/1265530.1265535
Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. 2007. PeerReview:
Practical accountability for distributed systems. ACM SIGOPS operating systems
review 41, 6 (2007), 175-188.

Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. 2010. Querying data
provenance. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010,
Ahmed K. Elmagarmid and Divyakant Agrawal (Eds.). ACM, 951-962. https:
//doi.org/10.1145/1807167.1807269

Pradap Konda, Sanjib Das, AnHai Doan, Adel Ardalan, Jeffrey R Ballard, Han Li,
Fatemah Panahi, Haojun Zhang, Jeff Naughton, Shishir Prasad, et al. 2016. Mag-
ellan: toward building entity matching management systems over data science
stacks. Proceedings of the VLDB Endowment 9, 13 (2016), 1581-1584.

Seokki Lee, Bertram Ludischer, and Boris Glavic. 2019. PUG: a framework and
practical implementation for why and why-not provenance. VLDB Journal 28, 1
(2019), 47-71.

Xueping Liang, Sachin Shetty, Deepak K. Tosh, Charles A. Kamhoua, Kevin A.
Kwiat, and Laurent Njilla. 2017. ProvChain: A Blockchain-based Data Provenance
Architecture in Cloud Environment with Enhanced Privacy and Availability. In
Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGRID 2017, Madrid, Spain, May 14-17, 2017. IEEE Computer
Society / ACM, 468-477. https://doi.org/10.1109/CCGRID.2017.8

Bertram Ludischer, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew B. Jones, Edward A. Lee, Jing Tao, and Yang Zhao. 2006. Scientific
workflow management and the Kepler system. Concurr. Comput. Pract. Exp. 18,
10 (2006), 1039-1065. https://doi.org/10.1002/cpe.994

Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption
Function. In Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and
Applications of Cryptographic Techniques, Santa Barbara, California, USA, August
16-20, 1987, Proceedings (Lecture Notes in Computer Science), Carl Pomerance (Ed.),
Vol. 293. Springer, 369-378. https://doi.org/10.1007/3-540-48184-2_32

Ricardo Neisse, Gary Steri, and Igor Nai Fovino. 2017. A Blockchain-based
Approach for Data Accountability and Provenance Tracking. In Proceedings of
the 12th International Conference on Availability, Reliability and Security, Reggio
Calabria, Italy, August 29 - September 01, 2017. ACM, 14:1-14:10. https://doi.org/
10.1145/3098954.3098958

T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover, C. Goble, A.
Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens, A.
Wipat, and C. Wroe. 2006. Taverna: lessons in creating a workflow environment
for the life sciences. Concurrency and Computation: Practice and Experience 18,
10 (2006), 1067-1100.

Dan Olteanu and Jakub Zavodny. 2015. Size bounds for factorised representations
of query results. ACM Transactions on Database Systems (TODS) 40, 1 (2015), 2.
Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-grained Lineage at Interactive
Speed. Proc. VLDB Endow. 11, 6 (2018), 719-732. https://doi.org/10.14778/3184470.
3184475

Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin, Beng Chin Ooi,
and Meihui Zhang. 2019. Fine-grained, secure and efficient data provenance on
blockchain systems. Proceedings of the VLDB Endowment 12, 9 (2019), 975-988.
Nan Zheng, Abdussalam Alawini, and Zachary G. Ives. 2019. Fine-Grained
Provenance for Matching & ETL. In 35th IEEE International Conference on Data
Engineering, ICDE 2019, Macao, China, April 8-11, 2019. IEEE, 184-195. https:
//doi.org/10.1109/ICDE.2019.00025

Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Haeberlen, Boon Thau
Loo, and Micah Sherr. 2011. Secure network provenance. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles 2011, SOSP 2011, Cascais,
Portugal, October 23-26, 2011, Ted Wobber and Peter Druschel (Eds.). ACM, 295-
310. https://doi.org/10.1145/2043556.2043584

https://doi.org/10.1145/1142473.1142548
https://doi.org/10.14778/2095686.2095693
https://doi.org/10.14778/2095686.2095693
https://doi.org/10.1145/1989284.1989302
https://doi.org/10.1145/1516360.1516470
https://doi.org/10.1145/1516360.1516470
https://blake2.net/blake2.pdf
https://blake2.net/blake2.pdf
https://doi.org/10.1145/2396761.2398439
https://doi.org/10.1145/2396761.2398439
https://doi.org/10.1109/VISUAL.2005.1532788
https://www.w3.org/TR/prov-dm/
https://doi.org/10.1145/1376616.1376715
https://doi.org/10.1145/1376616.1376715
https://doi.org/10.1145/3035918.3035926
http://dl.acm.org/citation.cfm?id=1164136
http://dl.acm.org/citation.cfm?id=1164136
https://doi.org/10.1109/ICDE.2009.15
https://doi.org/10.1109/ICDE.1993.344061
http://www.vldb.org/conf/2007/papers/research/p675-green.pdf
http://www.vldb.org/conf/2007/papers/research/p675-green.pdf
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1807167.1807269
https://doi.org/10.1145/1807167.1807269
https://doi.org/10.1109/CCGRID.2017.8
https://doi.org/10.1002/cpe.994
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1145/3098954.3098958
https://doi.org/10.1145/3098954.3098958
https://doi.org/10.14778/3184470.3184475
https://doi.org/10.14778/3184470.3184475
https://doi.org/10.1109/ICDE.2019.00025
https://doi.org/10.1109/ICDE.2019.00025
https://doi.org/10.1145/2043556.2043584

	Abstract
	1 Introduction
	2 Prior Work
	3 Background and Approach
	3.1 Provenance Semiring Expressions
	3.2 Computing Query Results with Provenance

	4 Encoding Provenance Graphs
	4.1 Provenance Encoding for Archival
	4.2 Storing the Provenance Graph
	4.3 Tamper Resistance
	4.4 Query Optimization and Provenance Size

	5 PROVision Implementation
	5.1 System Architecture
	5.2 Tamper-Resistance vs. Speed/Space

	6 Experimental Evaluation
	6.1 Space and Time Overhead
	6.2 Provenance Reuse
	6.3 Provenance Retrieval and Comparison

	7 Conclusions and Future Work
	References

