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ARTICLE INFO ABSTRACT

Keywords: Mobile sensors can now provide unobtrusive measurement of both stress and cigarette smoking behavior. We
mHealth describe, here, the first field tests of two such methods, cStress and puffMarker, that were used to examine re-
Smoking lationships between stress and smoking behavior and lapse from a sample of 76 smokers motivated to quit
Abstinence . .. . . . . . .

Lapse smoking. Participants wore a mobile sensors suite, called AutoSense, which collected continuous physiological

data for 4 days (24-hours pre-quit and 72-hours post-quit) in the field. Algorithms were applied to the physio-
logical data to create indices of stress (cStress) and first lapse smoking episodes (puffMarker). We used mixed
effects interrupted autoregressive time series models to assess changes in heart rate (HR), cStress, and nicotine
craving across the 4-day period. Self-report assessments using ecological momentary assessment (EMA) of mood,
withdrawal symptoms, and smoking behavior were also used. Results indicated that HR and cStress, respectively,
predicted smoking lapse. These results suggest that measures of traditional psychophysiology, such as HR, are not
redundant with cStress; both provide important information. Results are consistent with existing literature and
provide clear support for cStress and puffMarker in ambulatory clinical research. This research lays groundwork
for sensor-based markers in developing and delivering sensor-triggered, just-in-time interventions that are sen-
sitive to stress-related lapser risk factors.

1. Introduction smoking lapses as well as to reduce the burden on participants to
remember to report the lapses.
In addition to unobtrusive recording of smoking behaviors, a true

understanding of the factors that lead to smoking lapse will require

Despite the successes of anti-smoking public health campaigns
(Shmulewitz et al., 2016), close to one in six American adults were

regular smokers in 2014 (CDC, 2016). Advances in computing, smart
phone technologies, and mHealth applications (apps) specific for health
behaviors, such as smoking, have exploded in popularity over the past
decade. Clinical trials of mHealth tools for smoking cessation have
demonstrated the efficacy of these tools (Whittaker et al., 2009; Whit-
taker et al., 2012; Whittaker et al., 2016). While popular with both users
and researchers, one weakness of mHealth smoking cessation tools is the
over-reliance on self-reports for recording the precise timing of smoking
via ecological momentary assessment (EMA) prompts. This burdens
participants and does not eliminate the need for retrospective recording
of lapses across the day. This, in turn, weakens the value of field
assessment for smoking lapse. Objectively detecting smoking lapses
using unobtrusive sensors has the potential to provide precise timing of

mHealth systems that can not only record smoking behavior and EMA
responding but that can also examine potential mediating or moderating
factors that predict lapse or relapse (Whittaker et al., 2016). Stress is a
known risk factor of smoking initiation (Holliday and Gould, 2016;
Huizink et al., 2009), smoking maintenance (Shaw and al’Absi, 2010),
and relapse (al’ Absi, 2006; al’Absi et al., 2015; Childs and de Wit, 2010;
Dupont et al., 2012; Lemieux and al’Absi, 2016; McKee et al., 2015).
Negative affect reliably, but weakly, also leads to decreased smoking
latency and increased number of puffs during ad libitum smoking ses-
sions (Heckman et al., 2013; McKee et al., 2015), which relate to
increased cravings for tobacco (Heckman et al.,, 2013), increased
distress, increased withdrawal symptoms, and decreased positive affect
(al’Absi et al., 2003). Early work with electronic diaries confirmed that
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field-detected increases in negative affect precede smoking lapses
(Minami et al., 2011; Shiffman and Waters, 2004). Stress queries using
EMAs predicted smoking within 4 h of a lapse, particularly in combi-
nation with other risk factors (Businelle et al., 2016b), and stress-related
EMAs can be used to trigger tailored interventions (Businelle et al.,
2016a).

Creating a system to index stress that does not rely solely on self-
report requires access to psychophysiological signals. Cardiovascular
indices of stress are well characterized (al’Absi et al., 1997; Hellhammer
et al., 2009). Cardiovascular responses to stress differ between chronic
smokers and nonsmokers (al’Absi et al., 2013; al’Absi et al., 2003; Childs
and de Wit, 2009; Girdler et al., 1997; Roy et al., 1994; Tsuda et al.,
1996). For example, chronic smokers show blunted cardiovascular stress
responses relative to nonsmokers (Wiggert et al., 2016), though in
moderate to heavy smokers at rest, HR is higher than nonsmokers
(Cagirci et al., 2009; Yuksel et al., 2016). Following cessation, resting
HR decreases for successful abstainers (Harte and Meston, 2014; Stein
et al., 1996; Yotsukura et al., 1998). In a study using ambulatory
monitoring devices in the natural environment, HR was associated with
cocaine use (Kennedy et al., 2015). This has not been directly tested with
tobacco use.

In this study, we used AutoSense, a wearable system that collects
multiple measures, including electrocardiography, respiration, galvanic
skin conductance, skin and ambient temperatures, and 3-axis acceler-
ometer motion sensing ((Ertin et al., 2011). When combined with a
smartphone hosting accompanying software (called mCerebrum; see
https://mhealth.md2k.org/), the sensors in AutoSense allow for two-way
communication between the wearer and the system for EMA delivery
and recording. Further, the computing power of the smartphone and
proprietary software allows recording and processing of the incoming
data. AutoSense has been used in over 25 published analyses of mobile
sensor data, including smoking (Ali et al., 2012; Saleheen et al., 2015)
and physiological activity related to stress (Hovsepian et al., 2015;
Plarre et al., 2011; Sarker et al., 2016). cStress is a computational stress
model that is calculated based on physiological and subjective data
collected by AutoSense. cStress has been field-tested in three studies that
show very promising initial results. In a recent validation trial of cStress,
recall was 89%, false positives were 5%, and the accuracy was 72%
when compared with self-reports (Hovsepian et al., 2015). PuffMarker is
a computational model to detect cigarette smoking behavior from
AutoSense and wrist sensors that are used to track arm movements. Using
only respiration patterns and arm movements from 6-axis inertial sen-
sors to distinguish smoking from walking or eating, puffMarker dem-
onstrates 96.9% accuracy and 1.1% false positives (Saleheen et al.,
2015). These works establish feasibility and reliability of obtaining the
markers of stress and smoking from wearable sensors.

The purpose of this study was to examine the relationship between
stress and smoking lapse in the field environment at the actual, precise
time of lapse. Whether stress, as indexed by cStress, is associated with
smoking lapse as indexed by puffMarker, has not been directly tested in
the field. Based on the relevant literature, we hypothesized that greater
levels of stress would lead to a lapse. We also anticipated that an increase
in cardiovascular activity (i.e., heart rate) would signal an impending
smoking lapse. Another purpose was to replicate the feasibility of puff-
Marker with additional sample to the previous report (Saleheen et al.,
2015). We expected that those who were classified as lapsers would have
greater levels of tobacco exposure (as assessed by carbon monoxide; CO)
than those who were classified as abstainers. In addition, in light of the
literature showing associations between stress, craving, and relapse
(al’Absi et al., 2005; Morrell et al., 2008), we explored the relationship
between cStress and self-reported craving.
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2. Methods
2.1. Overview of the study design

This study included multiple laboratory visits. They were: 1) on-site
medical screening; 2) pre-quit field session (wearing AutoSense for 24 h
while particpants smoked on their own pace); 3) quit field session
(wearing AutoSense during the first 72 h of smoking cessation); 4) post-
cessation visit.

2.2. Participants

Participants initiated contact with study staff as instructed by
recruitment flyers placed around the University of Minnesota on the
Duluth and Minneapolis campuses and by postings on social media or
online classifieds (Craigslist). A preliminary phone screening was fol-
lowed by an on-site medical screening to assess eligibility. Recruited
smokers were accepted if they had a strong desire to quit (> 4on a5
point scale), smoked a minimum of 5 or more cigarettes per day, re-
ported no current nor prior history of significant medical or psychiatric
care, drank <2 alcoholic beverages per day, and had normal sleep pat-
terns (no shift work, bed between 9:00 PM and 12:00 AM and awake
between 6:00 AM and 8:00 AM). Pregnant women and those with cur-
rent medical or psychiatric care were excluded. The Institutional Review
Board of the University of Minnesota approved of, and provided over-
sight for, the consent forms signed by all participants. Although 76
chronic smokers completed data collection, puffMarker lapse was not
available for 10 participants due to lapses that occurred after the final
AutoSense wear period but before the final lab visit. Given this, data are
presented for the 66 participants with both puffMarker lapse and EMA
recordings from the AutoSense system. The average age of this sample
was 37.6 years (SD = 12.2). They had a BMI of 29.6 (SD = 8.9) and
completed 13.5 years of education (SD = 1.9). Approximately half (n =
32; 49%) of the sample was women. They smoked an average of 15.3
cigarettes per day at baseline (SD = 7.2). The mean score on the
Fagerstrom Test for Nicotine Dependence (FTND; Heatherton et al.,
1991) was 4.0 (SD = 2.2), suggesting that these smokers were moder-
ately dependent on nicotine.

2.3. Measures

2.3.1. Self-report and physiological measures in the field using AutoSense

All participants were carefully instructed on the wear and use of
AutoSense. The system includes a chest band, fit with a strain gauge, for
measurement of respiration, a two-lead electrocardiogram (ECG), and a
3-axis accelerometer. Two inertial sensors, in the form of wrist-bands,
with 3-axis accelerometer and 3-axis gyroscope were also worn on
each wrist. Signals from the 3-accelerometer placed on the chest were
used to screen high physical activity. That is, if the majority of ten-
second window inside the minute was classified as moderate-to-high
activity, that entire minute was labeled as physical activity and
removed from the analysis (Hovsepian et al., 2015). We adapted
methods that focused on threshold-based approach to detect physical
movement (Rahman et al., 2014). As a result, we limited the application
of cStress to data with no or low physical activity intervals. ECG was
sampled at 128 HZ and Respiration was sampled at 21.3 HZ (Hovsepian
et al., 2015). R-R intervals (interbeat interval) were extracted from ECG
and respiration cycles were extracted from respiration measurements.
These were then used to compute 51 features from 1 min worth of
measurements. Features computed from ECG signals included: mean R-R
interval, 80th percentile of R-R intervals, variance of R-R intervals,
quartile deviation, low frequency power (LF: 0.1-0.2 Hz), medium fre-
quency power (MF: 0.2-0.3 Hz), high frequency power (HF: 0.3-0.4 Hz),
and HF:LF ratio. Respiration-related features included: breath rate;
mean inspiration: expiration (IE) ratio; median IE ratio; median stretch;
and inspiration minute volume (Hovsepian et al., 2015). We used three
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steps to retain valid signals (e.g., each minute of data was examined for
ECG data that retained standard characteristic morphologies, automated
detection of R peaks of the QRS complex, and normalization of the R-R
intervals to remove any components due to subject or session (Hovse-
pian et al., 2015). We conducted a laboratory study administering
validated stress tasks to collect data on the ‘ground-truth’ of stress
response (Hovsepian et al., 2015). Participants wore Autosense device
for continuous measurement of physiological and subjective measures
throughout the study. A standardized lab stress protocol with clear onset
of stressors enabled to create a fine-tuned model of physiological stress
response (Hovsepian et al., 2015). Selected discriminative features were
then used to train a machine learning model to produce stress likelihood
in each minute of data. These features were used to develop the cStress
algorithm that was used to compute cStress scores for each participant.

Each participant was given a smart phone that continuously received
and recorded sensor data from AutoSense. It was also used for prompting
self-report assessments using EMAs (see below). Technical details of the
system, algorithm development, and validation for cStress and puff-
Marker can be found elsewhere (Ertin et al., 2011; Hovsepian et al.,
2015; Saleheen et al., 2015). Briefly, raw data were streamed from the
AutoSense sensors to the smartphone and stored for later uploading. The
data were then culled for missing or incomplete signal epochs and the
cStress and puffMarker algorithms were applied to produce minute-to-
minute output values. cStress uses ECG and respiration measurements,
described above, when not confounded by significant physical activity
(detected by accelerometers in AutoSense chest band). Data classified as
physical activity were removed in light of previous studies reporting
potential confounding effects of physical activity on the link between
cardiovascular measures and stress (Kamarck et al. 2012). puffMarker
uses respiration features (described above) collected from the AutoSense
chest band and hand-to-mouth movements captured via 6-axis inertial
sensors (3-axis accelerometers and 3-axis gyroscopes) worn on wrists
(Saleheen et al., 2015). Outputs included a binomial variable for puff-
Marker (smoking detected yes/no; Saleheen et al., 2015) and the prob-
ability (p) that the minute represents a stressed response for cStress;
probability range of 0-100. The puffMarker classifier of individual puffs
on lab data has been shown to have excellent cross-validation with
96.9% accuracy in the recall rate and a false positive rate of 1.1%
(Saleheen et al., 2015). From the output of this puff detection model, a
smoking lapse event was identified if four or more puffs are detected in
close proximity.

Self-report assessments using EMAs, installed on the smart phone
first asked whether participants were available for responding to ques-
tions or whether they preferred a delay (e.g., due to driving). Twelve
random prompts were sent daily to record recent smoking with the
question “How many cigarettes have you had since the last prompt?”. A
zero response was classified as no smoking and responses with one or
higher were classified as smoking. These prompts also included mood
items related to positive affect and distress (items were adapted from
Lundberg and Frankenhaeuser, 1980) as well as withdrawal symptoms
and craving (Minnesota Withdrawal Scale (MNWS); Hughes and Hat-
sukami, 1986). Other questions asked contextual information and cur-
rent behavior (not reported here). The phone also logged user response
patterns, such as the number of EMAs that were completed but delayed
and the amount of time required to complete an EMA.

2.3.2. Self-report measures collected in the laboratory (baseline measures)

Questionnaires regarding demographics (sex, age, and education),
history of smoking, drug and alcohol use, and caffeine consumption
were collected at a pre-cessation on-site medical screening session.
Smoking history included age at smoking onset, average cigarettes per
day, and years smoking at the current rate. Severity of smoking de-
pendency was assessed using the FTND (Heatherton et al., 1991).
Expired carbon monoxide (CO) was measured using Bedfont Micro+
monitors (coVita, Haddonfield, NJ). A questionnaire to assess each
user’s personal experience with the AutoSense device was also
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administered. This form included statements about participants’ expe-
rience during data collection (e.g.,“It was easy to enter my response
today”), phone usage (e.g., “The phone interfered with my social in-
teractions”), and chest band usage (e.g., “The chest band caused physical
discomfort today.”). Participants responded with one of four options:
Strongly agree, Agree, Disagree, and Strongly Disagree.

2.4. Procedures

The pre-quit and quit lab visits began between noon and 1:00 PM to
control for diurnal variability. The first day of pre- and quit labs con-
sisted of reviews of smoking history, study procedures, and training for
use of AutoSense. Participants left that afternoon with instructions on
using the system, including EMA prompt responses, and they were
required to wear the AutoSense system until bedtime, when AutoSense
was removed and recharged overnight. The next morning, the system
was put on immediately upon waking and worn until they returned to
the lab later that day. During the pre-quit field session, participants were
able to smoke at their own pace. After the pre-quit session, participants
set a quit day and agreed that the start of their 72-h abstinence was to
begin when they came to their lab visit on their quit date. There were
approximately two weeks between the pre-quit and the second (post-
quit) sessions; and participants were allowed to smoke ad libitum during
this interim period. For the next 72 h following that second visit, the
participants were encouraged to remain abstinent and they returned to
the laboratory each day for psychosocial support and to assess potential
problems with the use of AutoSense. Smoking lapse was reviewed at each
visit and lapsers were encouraged to re-start their abstinence. Self-
reported measures and CO samples collected in post-quit visits were
used to determine smoking abstinence. On the final day of the 72-h
period, AutoSense was returned to the laboratory, participants were
debriefed, and they were compensated for their time and effort.

2.5. Data reduction and analysis

2.5.1. Signal processing & algorithm calculation

The first smoking episode (lapse) was unobtrusively identified using
the puffMarker algorithm. Given that the puffMarker designation used
here was restricted to the first lapse, we avoid the term “relapse” due to
its very specific clinical definitions and meaning (Hughes et al., 2003)
that are not captured in this analysis of the first lapse. Consistent with
our previous procedures (Hovsepian et al., 2015), we retained for
analysis only those minutes throughout recording that had no missing
nor distorted signals and no evidence of high physical activity (e.g. ex-
ercise), as measured by the magnitude of accelerometers in AutoSense
worn around the chest. From the total time of acceptable recordings, the
raw probability that each a minute represented a stress state (range
0-100) was computed for each participant. In addition, AutoSense
recorded HR per minute over the entire recording period using raw ECG
waveforms.

2.5.2. Assessing baseline smoking measures as a function of lapse
classification by puffMarker

For descriptive purposes, the puffMarker assigned lapse groups were
compared using t-test on smoking variables (FTND, cigarettes per day,
CO) to characterize these smokers. In all cases, omnibus tests of signif-
icance were set at p < .05.

2.5.3. Assessing changes in subjective mood and withdrawal symptoms
(EMA) as a function of lapse classification by puffMarker

All continuous variables were assessed for normality and log-
transformed as needed prior to analysis. We used MANOVA models to
assess positive affect, distress, withdrawal symptoms, and craving from
the EMAs across time. Grouping variables included assessment of puff-
Marker lapse status (abstain/lapse) and sex (male/female).
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2.5.4. Assessing the relationship between the onset of the first lapse and HR
and cStress using mixed effects autoregressive interrupted time series models

Restricted to the participants who lapsed, we used interrupted time
series models to analyze the temporal characteristics of HR and cStress
before and after the first lapse. For each participant who lapsed, we
temporarily registered their HR and cStress data to the time that they
lapsed so that these temporal profiles are comparable across partici-
pants. We used mixed effects autoregressive interrupted time series
models of the form

Yie = @Yi1 +boi + (Bo + (1 +bii)t + pycraving(t) )1(pre — lapsed;(t) )
+ (yo + (7, + cui)t + rocraving;(t) )1(post — lapsed;(t) ) + €

where y;; denotes either HR or cStress for participant i at time t, ¢ cap-
tures the temporal dependence in HR or cStress measurements, 5y and
yo are fixed effects that capture the population-level average, by; is a
random intercept that accounts for the heterogeneity in each partici-
pant’s baseline HR or cStress, 1 and y; are fixed effects that capture
population-level temporal trends, with by; and cy; as random effects to
capture participant-specific deviations, 3 and y; are fixed effects that
capture the effect of craving, 1(pre — lapsed;(t)) and 1(post — lapsed;(t))
are indicator functions, where the former is equal to 1 at all time points
prior to participant i’s first lapse and 0 afterwards, and the latter is equal
to 0 at all time points prior to participant i’s first lapse and 1 afterwards,
respectively. To place the EMA reports on the same time scale as the
cStress and HR data, we assumed that the craving as reported from the
EMA is constant between two random prompts. In other words, we
assumed that their craving at one random prompt remained the same
unless this changes as determined by the next random prompt. Given the
time stamps of the random prompts, we could then temporally register
each participant’s craving with the cStress and HR data. We also
considered two variants of this model, the first where we do not account
for craving, and the second where we do not account for the lapse. The
latter model is the simplest time series model we considered, and we
henceforth refer to this as the null model. Furthermore, in order for the
models to be temporally localized around the moment of the first lapse,
we restricted the time indices t to be within a certain range from the time
of the first lapse, where the range was picked by maximizing a leave-one
out mean-square prediction error criteria, yielding a window of 93 and
83 min pre- and post-lapse for HR and cStress, respectively. Finally, we
estimate all parameters in each model using restricted maximum like-
lihood (REML).

To conduct statistical inference about the model parameters, we used
the non-smoking data from each participant’s pre-quit days to create a
pseudo-data set from which we repeated our analyses in order to create a
null distribution for the model parameters. Our algorithm was as fol-
lows. First, for each participant, we randomly selected one of their pre-
quit sessions. Second, because the participants had not yet lapsed during
a pre-quit session, we randomly selected a time point within the pre-quit
session to declare as their pseudo-lapse time. We thus created a pseudo-
data set using the timestamp of the pseudo-lapse time and the EMA, HR,
and cStress data recorded and temporally registered during the pre-quit
session. Third, we fit the above models on the pseudo-data set to obtain
estimates of the model parameters. Fourth, we repeated each of the
above steps 10,000 times to obtain a null distribution for each model
parameter. Finally, we compared our estimates of the model parameters
from the lapse sessions to their respective null distributions to obtain p-
values. The random construction of the pseudo-lapse time ensured that
any relations between the pseudo-lapse time with their HR and cStress
were purely coincidental, yielding a valid null distribution for each
model parameter. Furthermore, by using data from each participant’s
own pre-quit sessions, our null distributions better reflected the vari-
ability that arises from within and between participants.
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3. Results
3.1. Lapse description

puffMarker classified 38 individuals as lapsed and 28 as abstinent and
the post-quit interview revealed that 42 people claimed to have lapsed
and 24 were abstinent. Only two smokers who were identified as a lapser
by puffMarker did not disclose via self-report that they had returned to
smoking. In contrast, 6 cases (9%: 6/66) who self-reported a smoking
lapse were classified as non-lapsers by puffMarker. Three of these cases
were mis-classified due to significant sensor data loss, 2 cases were mis-
classified due to smoking while not wearing the device, and 1 case was
due to missing relapse information in the laboratory visit and therefore
demonstrating that these were not a false negative. As a result, the
sensitivity of puffMarker in lapse episode was 85% (36/42). CO levels
taken on the last day of the 72-hour session were higher among those
who were classified as lapsers by puffMarker (mean = 8.8 ppm; SEM =
1.2) than among those who were classified as abstainers (mean = 5.0
ppm; SEM = 0.9), p = .02. Lapsers identified by interviews (mean = 9.4
ppm; SEM = 1.1) had higher CO levels than abstainers (mean = 3.4 ppm;
SEM = 0.5), p < .001. These results support the validity of lapse/
abstinent classification. There was no significant difference between
abstainers and lapsers (defined by puffMarker) on any of the de-
mographic variables except years of education (see Table 1). There were
also no lapse group differences in baseline FTND, average cigarettes per
day, nor MNWS in a baseline session (medical screening).

In total, participants initiated 3838 self-report assessment of EMAs
during the 72-hour post-quit study period. Of those, the delay option
was used in 197 (5.1%) recordings and 138 (3.6%) of the total EMAs
were incomplete, indicating very high compliance with EMA prompts.
On average, it took 2.0 min (SD = 0.8) to complete one EMA. A sig-
nificant smoking status by sex interaction was found in the total
number of EMAs completed (p = .02). A greater number of EMAs were
completed by male lapsers (mean = 53.3; SEM = 2.1) than male ab-
stainers (mean = 45.6; SEM = 2.7), p = .03, with no differences be-
tween female lapsers (mean = 49.7; SEM = 1.8) and abstainers (mean
= 52.6; SEM = 2.2), p = .31. Analysis of the device experience ques-
tionnaire found that lapsers were more likely than abstainers to
endorse that the phone interfered with their daily activities during the
study period (51% vs. 19%, p = .008).

3.2. Self-reported mood (EMA) and withdrawal change from pre-quit to
72-h abstinence

As expected, mood and withdrawal symptoms collected via EMA
shifted over the three days of abstinence. Positive affect declined slightly

Table 1
Baseline sample characteristics for puffMarker defined lapse.

Lapse status from puffMarker

Abstained Lapsed
Count Count p-Value
Race? White/Caucasian 20 24 0.48
Non-Caucasian 7 12
Sex female 14 18 0.83
male 14 20
Mean SEM Mean SEM
Age of participant 37.4 2.3 37.7 1.9 0.93
Years of education 14.1 0.4 13.0 0.3 0.01
Body mass index 29.4 1.4 29.8 1.7 0.90
Caffeine consumption (cups) 1.4 0.4 1.9 0.6 0.50
Age of smoking onset 16.0 1.2 14.9 0.6 0.39
Cigarettes per day 14.9 1.3 15.6 1.3 0.73
Duration at this level 14.8 2.6 13.1 1.8 0.59
FTND 3.7 0.4 4.3 0.4 0.28

Note. All continuous tests utilized t-test.
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across the sessions (p = .06). Distress (p = .02) and withdrawal symp-
toms (p < .001) increased from baseline to the first day of abstinence (ps
< 0.04; see Fig. 1). Craving remained stable during the first two days of
abstinence then declined significantly (p = .03) from the second to the
final day (p = .02). There were no puffMarker lapse category main effect,
sex main effect, or interaction between puffMarker and time in positive
affect, distress, withdrawal symptoms, and craving.

3.3. HR & cStress prediction of first lapse

We illustrate the temporal trends in HR and cStress in Fig. 2a and
present the data in Table 2. For HR, we see an increase in heart rate
leading up to the onset of the first lapse, and then a slower increasing
temporal trend in HR after the first lapse. On the other hand, cStress
increases prior to the first lapse, and then decreases after the first lapse.
We model and test for these temporal trends using the interrupted time
series models.

Results from the interrupted time series models are shown in Table 2.
The null model only has an autoregressive term and the intercepts is also
presented in Table 2. Model 1 has only the temporal trend pre/post-
lapse, and Model 2 has both the temporal trend and is adjusted for
craving pre/post-lapse. From Table 2, we see that the HR increases prior
to the first lapse time (p < .05), with no evidence of a temporal trend
after the first lapse. Without accounting for craving, there is also evi-
dence of increasing cStress values up to the lapse time (p < .05); how-
ever, temporal changes in cStress before and after the lapse may be
explained by its negative association with the craving scores both before
and after the lapse. We computed the AIC for each model for each of the
HR and cStress data, from which we can use to compare fit. For HR, the
AIC values were 20,870.21, 20,798.39, and 20,798.03 for the null model
and Models 1 and 2, respectively. This suggests that accounting for the
temporal trend and the onset of the first lapse improves model fit; and
accounting for craving yielded a slightly better fit to the HR data. Sta-
tistically, the Null vs. Model 1 was significant (p < .001) and Model 1 vs.
Model 2 was not significant (p = .11), confirming that the improvement
in model fit after accounting for the time effect. Accounting for craving

Positive affect
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led to a better fit (lower AIC), but the improvement was not statistically
significant.

For cStress, the AIC values were — 3872.745, —3890.85, and —
3894.10 for the null model and Models 1 and 2, respectively. This
suggests that accounting for both the onset of the first lapse and for
craving improves model fit relative to the null model that only accounts
for temporal autocorrelation and Model 1 that accounts for the onset of
the first lapse and temporal trends, but not craving. Statistially, there
were significant differences between Null vs. Model 1 (p < .001) and
Model 1 vs. Model 2 (p = .03), indicating the improvement in model fit
after accounting for both the time effect and craving. Model 2 demon-
strates that with craving accounted for, the increase in HR pre-lapse is
significant for both Models 1 and 2 (p < .01, see Table 2 and Fig. 2), but
cStress does not show pre- and post-lapse temporal trends.

4. Discussion

We provide novel findings in this study of two new mHealth tools
designed to identify unobtrusively physiological stress states (cStress)
and lapse (puffMarker) during a clinical study of smoking cessation.
First, we note that controlling false positives when detecting rare events,
such as smoking lapse using sensors that collect and analyze data
continuously is challenging. This is because in 12 h of sensor wearing per
day, there are over 15,000 respiration cycles, each of which can contain
a smoking puff. A model with as low as 1% false positive rate will pro-
duce 150 false positives per day. In contrast, the first lapse detection
from puffMarker did not produce a false positive first lapse detection for
22 (out of 24) abstinent participants. Collectively, participants wore
sensors for 66 person days, resulting in a very low false positive rate.
Second, HR and cStress showed somewhat different patterns of changes
related to a first smoking lapse episode. Both HR and cStress showed an
increase prior to a lapse episode. However, while HR increased post-
lapse, cStress decreased after a lapse episode. Third, EMA distress and
withdrawal symptoms changed from pre-quit to abstinence (Hughes and
Hatsukami, 1986; Morrell et al., 2008; Shiffman and Paty, 2006),
although there were no differences between abstainers and lapsers.

Withdrawal symptoms

21 1 20 -
19 A 17.5 A
17 T T T 15 T T T "
Pre-quit Abstinence Abstinence Abstinence Pre-quit Abstinence Abstinence Abstinence
(day 1) (day 2) (day 3) (day 1) (day 2) (day 3)
Distress
5. Craving
4 A
10.5 4
3.25 A
9 T T T
Pre-quit Abstinence Abstinence Abstinence 25 T T T 1
(day 1) (day 2) (day 3) Pre-quit Abstinence Abstinence Abstinence
(day 1) (day 2) (day 3)

Fig. 1. Withdrawal symptoms across the 72-hour abstinence (n = 66). Note. All noted effects represent a main effect of time. There were no main effects of sex nor

puffMarker and there were no puffMarker interactions.
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Fig. 2. (a) Average heart rate pre-/post-lapse. (b) Average cStress pre-/post-lapse. In each figure, the red lines correspond to the temporal trends in either the average
heart rate or average cStress, pre- and post-lapse. The vertical gray lines correspond to the onset of the first lapse. The analysis included 22 individuals who had HR
and cStress data and also lapsed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fourth, adding craving to the time series model did not improve the HR
model, but it did reveal a significant negative association with cStress.
Temporal changes were not significant pre- nor post-lapse for cStress
when craving was considered.

Time series analysis of cStress at the time of lapse suggests that cStress
was associated with lapse when taking into account craving. While un-
derlying mechanisms are not clear at this time, this likely reflects the
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complex, multifactorial nature of cStress. cStress was developed based
upon multiple indices calculated from ECG and respiration signals.
Which aspects of this algorithm are sensitive to self-reported craving and
to smoking relapse needs to be determined in future work. In addition,
future research should examine psychophysiological changes during
withdrawal phase of quitting and their relationships to lapse in the
natural environment.
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Table 2
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Model parameter estimates (se) for each interrupted time series model. The entries for time and craving effects for cStress are x10°. Resampling-based p-values: * p <
.05, ** p < .01, *** p < .001. The analysis included 22 individuals who had HR and cStress data and also lapsed.

Null Model

Model 1: Time

Model 2: Time + Craving

Heart rate cStress

Heart rate

cStress Heart rate cStress

Autocorrelation parameter (¢) 0.543 (0.015)*** 0.651 (0.015)***
Time effect, pre-lapse (/1)
Time effect, post-lapse (y1)
Craving effect, pre-lapse
(B2)

Craving effect, post-lapse

(r2)

0.473 (0.016)***
0.032 (0.011)**
0.018 (0.011)

0.618 (0.015)***
0.444 (0.161)
—0.169 (0.164)

0.471 (0.016)***
0.034 (0.010)*
0.018 (0.012)
—0.036 (0.286)

0.617 (0.015)***
0.478 (0.158)
—0.214 (0.157)
—6.757 (3.467)*

—0.507 (0.296) —8.025 (2.526)*

The current study provides unique findings and demonstrates the
feasibility and utility of mobile sensors and these two mHealth tools, but
it is not without limitations. Limitations in this study are related pri-
marily to issues of EMA timing and data acquisition. Data loss due to
signal loss is a critical weakness of the existing AutoSense system that
warrants further work. While we used multiple steps to retain valid
signals (see Methods section), the exact amount of data that was lost due
to loss in the ECG/respiration signal is unknown. Although these initial
results are promising, increased data retention for processing will be
important in future studies, particularly within prospective smoking
cessation studies which are time-consuming and expensive. Better data
retention would also facilitate further analysis of sex differences, which
was limited in this study due to sample size. Issues related to missing
sensor signals and data loss during processing are not unusual in sensor-
based studies, such as EEG, EMG, and EKG (Venkatachalam et al., 2011),
but could be improved to minimize subject loss. Methodologically,
reliance on baseline self-report measures and on low-density of EMAs
across waking hours are also limitations. Future analyses will benefit
from EMA-based assessment of affect, craving, and withdrawal imme-
diately preceding smoking and lapse behaviors. Inclusion of these
measures in algorithms may improve computational models to predict
smoking behavior and relapse. Improvement in data collection timing
and sequencing (e.g., triggered by passive sensing of stress) in future
studies will set the stage for using this technology to cue delivery of
interventions. Finally, due to technical challenges in preprocessing, we
examined temporal trends for HR and cStress surrounding the first lapse
using separate models. Future research should examine HR and cStress in
one model.

These results have important implications for future development
and refinement of sensor-enabled, just-in-time interventions. For
example, associations between cStress and smoking behaviors may differ
between individuals; and that difference may be important in predicting
lapse. In future studies, smokers who show a negative association be-
tween cStress and cigarettes smoked per day immediately preceding a
planned quit date (suggesting a strong association between stress relief
and smoking) may have greater sensitivity to the stress of withdrawal
and may be at higher risk of lapsing. Finally, further work to clarify the
sources of proposed differences in rate of response between HR and
cStress would be helpful. The current data suggest that HR and cStress are
not redundant, both are important sources of information for predicting
a lapse.

In conclusion, the mobile sensor AutoSense shows excellent promise
for use in clinical studies of smoking and other addictions, particularly
field studies of natural smoking behavior. The current study of these
mHealth tools supports the use of cStress and puffMarker as unobtrusive
markers of lapse and relapse and the physiological disturbance associ-
ated with stress. Utilizing puffMarker in future studies of smoking
cessation will allow for more precise analysis of lapse behaviors and will
facilitate development of phone-based, just-in-time mHealth in-
terventions (Nahum-Shani et al., 2018; Rabbi et al., 2017). It will also
allow for correlation with not only physiological signals via cStress, but
also with other markers of the hypothalamic-pituitary-adrenal axis and
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autonomic activity. Despite the limitations of the current study, this
analysis supports the appropriateness of taking the next step in refine-
ment of the system and cStress. Such just-in-time mHealth interventions
are likely to have important application to not only studies of stress and
addiction but also studies of stress and other health behaviors or chronic
medical conditions.
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