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Ensuring that all the teeth surfaces are adequately covered during daily brushing can reduce the risk of several oral diseases.
In this paper, we propose the mTeeth model to detect teeth surfaces being brushed with a manual toothbrush in the natural
free-living environment using wrist-worn inertial sensors. To unambiguously label sensor data corresponding to different
surfaces and capture all transitions that last only milliseconds, we present a lightweight method to detect the micro-event of
brushing strokes that cleanly demarcates transitions among brushing surfaces. Using features extracted from brushing strokes,
we propose a Bayesian Ensemble method that leverages the natural hierarchy among teeth surfaces and patterns of transition
among them. For training and testing, we enrich a publicly-available wrist-worn inertial sensor dataset collected from the
natural environment with time-synchronized precise labels of brushing surface timings and moments of transition. We
annotate 10,230 instances of brushing on different surfaces from 114 episodes and evaluate the impact of wide between-person
and within-person between-episode variability on machine learning model’s performance for brushing surface detection.
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1 INTRODUCTION

Dental disease (caries and gum disease) is very prevalent globally, affecting 53 million people in USA alone. A
primary reason for continued prevalence of dental diseases despite regular brushing is that people may not be
brushing each tooth surface adequately, missing some surfaces completely, while spending disproportionate
time on other surfaces. When saliva combines with particles from food and drinks we consume, a colorless,
sticky biofilm containing bacteria known as dental plaque forms on our teeth. Unmindful or poor brushing
habits allow plaque to accumulate over time, leading to gum disease, tooth decay (and cavities), and tooth loss.
Beyond the pain and suffering, oral health problems affect the ability to eat and swallow, speak and socialize.
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Importantly, because the mouth is the main portal for entry to the body, poor oral health can contribute to a range
of conditions and diseases including respiratory diseases, endocarditis, cardiovascular diseases, and pregnancy
and birth complications. What makes matters even worse is the accompanying steep cost of dental and health
care, that many without insurance struggle to bear. However, the good news is that people can still prevent much
of the complications arising from poor brushing habits through technology-driven awareness.

Smart toothbrushes [3] equipped with Bluetooth connectivity, gyroscopes, and accelerometers are beginning
to address some key aspects of oral hygiene. They use beeps, vibrations, and visualizations on smartphones to
reinforce a recommended routine of spending 30 seconds on each quadrant — upper right, upper left, lower
right, and lower left — for adequate brushing, a key component of proper dental care [7, 26]. Identification and
evaluation of toothbrushing activities coupled with a feedback system to encourage proper brushing has been
a focus of several works on understanding and improving human oral health behavior. They include assistive
technologies to promote brushing habits among children through playful experiences [9, 21]; supporting users in
learning a complex brushing technique with realtime feedback [11, 16, 17]; encouraging regular toothbrushing
using virtual aquarium or mirror [28, 29]; enabling self-examination and creating awareness about common oral
health conditions [25]; creating plaque awareness [36]; and helping handicapped people without arms to brush
their teeth correctly [4]. But, these works use either smart toothbrushes, electric toothbrushes, or toothbrushes
fitted with sensors [11, 12, 15, 28]. As such toothbrushes are still used by a small minority, these advances do not
benefit most people who still use manual toothbrushes.

Wrist-worn inertial sensors in smartwatches and activity trackers are increasingly being used to detect various
activities like eating [33], smoking [31, 32], drinking [13], and hand washing [24]. A recent work [5] presented
the mORAL model to detect the start and end times of brushing and flossing activities. Although this work
enables monitoring of brushing and flossing events for a large population of users still brushing with a regular
toothbrush, the capability of monitoring which surfaces are not adequately being brushed is still lacking.

In this paper, we present a new mTeeth model to detect which tooth surface is being brushed using a regular
uninstrumented toothbrush from data collected by inertial sensors in wrist-worn activity trackers and smart-
watches. We successfully address several challenges in detecting brushing on specific tooth surfaces, which
receive only a few seconds of brushing before a user transitions to another surface.

First, we enhance the utility of a publicly available wrist-worn inertial sensor dataset collected from daily life
of participants by annotating it with fine-grained labels of which surface is being brushed on and moments of
transition. We develop a hierarchical categorization of teeth surfaces in nine types that is suited to detection by
sensors. We analyze the labeled data to quantify between-person variability in brushing patterns, within-person
between-episode variability, and within-episode between-surface variability in brushing duration.

Second, we find that there are time synchronization errors of several seconds between sensor data and associated
video, even though both are collected on the same smartphone. As transition among teeth surfaces last only
milliseconds, we propose an algorithm to tightly synchronize the two data sources that does not have any explicit
anchor event. We find that this improves the F1 score for surface classification by 13%.

Third, we observe that time spent on a brushing surface can be as low as a few milliseconds and as high as few
tens of seconds. This prevents unambiguous label assignment in fixed-length window-based approach to data
segmentation. We observe that an anchor micro-event called brushing stroke occurs during all surface transitions.
We propose a computationally lightweight method to identify brushing strokes using wrist-worn inertial sensors.

Fourth, we identify and compute several features from each brushing stroke. To leverage the hierarchical
organization of teeth surfaces and sequence of transitions among them, we select and train a Dynamic Bayesian
Ensemble model. We train and test on one week of brushing data from 19 participants to analyze the impact of
wide between-person and within-person variability on the performance of machine learning models for dynamic
brushing surface identification using wrist-worn inertial sensors.
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2 RELATED WORKS AND KEY CONTRIBUTIONS

Our proposed mTeeth model assumes that the start and end of a brushing event can be identified from wrist-worn
inertial sensors. Development of such models has progressed from detecting brushing from hand gestures in
the context of detecting a vast amount of activities of daily living (ADL) [8, 14] in scripted settings to recently
proposed models for automatically detecting toothbrushing in the wild using wrist-worn inertial sensors [5, 27].
In the following, we discuss prior works that aim to detect the specific teeth surface being brushed on.

2.1 Toothbrushing Surface Detection from Smart or Instrumented Toothbrushes

In [22] and [23], the authors designed a smart toothbrush fitted with a 3-axis accelerometer and magnetometers
to trace which group of teeth the user was brushing at a particular moment. This work divided the teeth into
several brushing regions before developing a k-means clustering-based model to detect them [22] and determine
if brushing in each of those areas was done appropriately or not. Their smart toothbrush based approach achieved
an overall accuracy of 97.1% for a total of 15 brushing regions. Smart toothbrush based solutions are now
commercially available that guide users on the correct way of brushing. For example, [3] includes a brushing
head capable of giving real-time feedback to the user based on brushing pressure. A paired smartphone provides
visual display to determine which surface is being brushed.

To provide an alternative to smart toothbrushes, [15] proposed a smartwatch based recognition system to
evaluate the brushing quality. They attached magnets to a normal toothbrush to build an arm motion model with
inertial data collected from wrist-worn sensors for real-time detection of brushing gestures. The system was able
to detect brushing surfaces with an average precision of 85.6% by dividing the teeth set into 16 different surfaces
following the Bass technique. In [28], a 3D colored ball was attached at the tail of a toothbrush to estimate which
dental side was being brushed by analyzing the spatial position and orientation of the ball. As these methods rely
on sensors in a toothbrush, they are not applicable to detecting brushing surfaces with regular toothbrushes.

2.2 Toothbrushing Surface Detection from Audio and Video

An initial work [18] evaluated brushing from acoustic signals captured by a smartphone placed next to the sink.
It recorded audio signals from which 12-order Mel-Frequency Cepstral Coefficient (MFCC) features were extracted
to train a Hidden Markov Model (HMM) for recognizing toothbrushing activities. It achieved a classification
accuracy of 78.3%. Similarly, [30] proposed a tooth brushing monitoring system based on acoustic inputs. They
deployed an asymmetrical sound-field detector which had a Bluetooth earphone and a throat microphone to
capture acoustic inputs from the air and human body, respectively. The two different sources of inputs carried a
rich set of characteristics from the environment and a living entity. To reduce computational complexity, a series
of statistical inferences from time and frequency domains were extracted for training different models.

Some works use image analysis to detect teeth surfaces. A computer based web-cam is used in [21] to identify
the position of the smart toothbrush. It has a visual feedback system, equipped with a physical avatar whose
teeth are made of LEDs for tracking children’s tooth-brushing activities in real time. Another work [28] detects
toothbrush and the face of its user with the help of a smartphone’s front camera. The smartphone’s display works
as a “virtual mirror” to locate a person’s face with a toothbrush through a face tracker and replaces the captured
image with that of an avatar. The avatar is able to completely mimic the user’s gestures and expressions, and
points out any wrong movement. As these works rely on some instrumentation of the environment to detect
teeth surfaces, their methods are not directly applicable to address the technical challenges faced in detecting
teeth surfaces being brushed from wrist-worn inertial sensors alone.

2.3 Toothbrushing Surface Detection from Wrist-Worn Inertial Sensors

Even though [15] used an instrumented toothbrush, they also trained a model to detect brushing surfaces using
only wrist-worn inertial sensors, that was further improved by [27]. Sensor data is divided in 1 second segments
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in [15] and 1.2 second segments in [27]. They used either a video or an observer to decide the surface labels of each
data segment. For labels, [15] used 16 Bass technique surfaces, while [27] used 13 teeth surfaces, tongue brushing,
and raised hand state. The number of episodes or the amount of data collected is not reported in either work.
Also, details of how second-level precision was achieved in labeling either from video or observer are missing.
Both trained their participants to brush using the Bass technique. Any brushing sequence not following the Bass
technique are excluded from surface classification in [15]. Naive Bayes classifier together with a Hidden Markov
Model is trained in [15], while an attention-based LSTM is used in [27]. A precision of 75.9% with wrist-sensor
only model is reported in [15], while an accuracy of 97% is reported in [27], both using 10-fold cross-validation.

Our work differs from [15, 27] in several respects and presents an alternative approach to surface classification.
First, the goal of both prior works was to achieve homogeneity in the brushing pattern of participants by training
them. Our goal instead is to observe the natural brushing habits of participants and still aim to detect the surface
being brushed and transitions among them, despite natural variability. Second, a fixed window of 1 or 1.2 seconds
can include brushing on two different surfaces and the transition time, which creates ambiguity in which labels to
assign to these windows. Leaving them unlabelled can exclude 30-40 seconds of data from a 120-second session, as
an average of 30 transitions occur in a 90-second brushing session. Therefore, we use a new anchor micro-event
(i.e., brushing strokes) that naturally occurs between all transitions among surfaces, and thus separates the data
from different surfaces. Third, we find that the number of samples in our data segments (i.e., in a brushing stroke)
consists of only 4-5 data points (at a sampling frequency of 16 Hz). They are sufficient to detect peaks and valleys,
but are not suitable to train a deep learning or other models that identify complex features automatically. But,
the Dynamic Bayesian Ensemble method we present is still able to achieve similar high accuracy (with median F1
scores of 94% to 100%) for distinguishing among in/out, left/center/right, and up/down surfaces.

2.4  Summary of Key Contributions

In summary, the presented work makes the following novel contributions over prior works.

(1) Unambiguous Labeling: Ours is the first work to use the micro-event of brushing strokes to assign clean labels
to each sensor data segment. Prior works on brushing surface detection used fixed-length windows [15, 27]
that may make unambiguous label assignment difficult.

(2) Brushing Stroke Detection: A method to detect brushing strokes using acoustics was presented in [15],
with an average error rate of 10.3%. They posed the task of detecting brushing strokes from inertial sensors
as an open problem. We successfully solve this open problem with less than 4.2% error.

(3) Tight Time-Synchronization We observe that as brushing strokes and transitions usually last < 300
milliseconds, the sensor data and video (that provides a way to obtain precise labels) needs to be tightly
time synchronized. Even though prior works [15, 27] used video to obtain surface labels, ours is the
first work to illustrate the label alignment challenge and presents an algorithm to achieve tight time
synchronization.

(4) Within-Person Variability: Although between-person variability in brushing patterns have been reported
previously in dentistry [10, 35], ours is the first work to report wide within-person between-episode
variability, highlighting that the usual approach of single event observation from each participant may not
suffice to analyze prevalent brushing patterns.

(5) Between-Person Model Generalizability: We quantify between-person variability in brushing patterns from
video data and analyze the challenges it poses in achieving between-person generalizability of machine
learning models for brushing surface detection.

(6) Challenges for Personalized Models: Although personalized models require person-specific training, they
usually perform better than general models. We show that wide within-person between-episode variability
impacts the performance of even personalized models for brushing surface detection.
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(7) Brushing Duration Estimation: Ours is the first work to present estimation of the total duration of brushing
on each surface in a brushing episode, and report a median absolute error of less than 5%.

3 DATA DESCRIPTION, LABELING, AND KEY FINDINGS FROM LABELED DATA

3.1 Dataset Selection

A wrist-worn inertial sensor data set consisting of labels of start/end of brushing and flossing episodes used in
our mORAL [5] study is available publicly. This study recruited participants willing to brush at least twice —
once with a manual toothbrush and once with a SmartBrush and floss at least once a day. Each participant wore
a MotionSense wristband on each wrist during waking hours for seven days that included a 3-axis accelerometer
and a 3-axis gyroscope sampled at 16 and 32 Hz, respectively. A study provided smartphone connected via
Bluetooth technology continuously timestamped and logged incoming sensor data. Besides, participants used the
phone’s front camera to video record themselves (in their homes) during brushing, flossing and/or oral rinsing.
The mORAL dataset currently consists of data from 30 participants (15 males, 15 females; mean age 28.5£10.6
years, 2 left handed) who have contributed 197 brushing episodes with a manual toothbrush.

In the public dataset, the start and end times of brushing episodes are annotated from self-recorded videos. But,
the original annotations in the mORAL dataset ' are insufficient for our modeling because it does not include
any teeth surface annotations within a brushing episode. We used the original videos from this study to label
precise times for when each teeth surface (i.e., groups of teeth portions) was being brushed, including marking of
transitions among the surfaces. See Section 3.3 for details of surface definitions proposed.

3.2 Dataset Curation

Out of 197 brushing episodes, videos for some episodes were not usable for stroke-level annotation of surface
transitions. First, some participants moved sideways, getting outside the camera range, during brushing. Second,
some participants leaned forward to spit out the excess foam and did not revert to an upright posture. Third,
some participants leaned the phone against the back wall or against the sidewall. Because the camera was tilted,
it was pointing diagonally at the mouth, with their hand blocking a clear view of their mouth. Therefore, it was
not possible to unambiguously determine from the video which surfaces participants were actually brushing.

For the above reasons, 83 brushing sessions had to be excluded from this modeling work. We annotated the
remaining 114 episodes from 19 participants. For comparison, prior works on analyzing brushing patterns via
video used 96 [35] and 101 brushing episodes [10] and prior works on the detection of brushing surfaces used
data from 12 [15] and 10 participants [27].

3.3 Organizing and Naming of Teeth Surfaces for Labeling

Various works [9, 12, 18-20, 34] organize teeth surfaces between 4 and 16 categories. For teaching brushing, the

Bass technique [1, 6, 15, 22, 27] uses 16 surfaces. When observing brushing habits from self-recorded videos [10, 35],

surfaces are grouped into fewer broad categories due to ambiguity and frequent transitions among teeth surfaces.

We adopt a similar hierarchical organization to obtain nine categories that is suited to sensor-based detection.
We organize teeth surfaces into three layers, as shown in Figure 1a.

Layer 1: In. The inner (tongue facing, i.e., lingual) surfaces of all the teeth and the occlusal (chewing) surfaces
of the posterior teeth (premolars and molars) are labelled as the ‘In’ surface (see the inner arrow in Figure 1b(i)).

Layer 1: Out. The outer surfaces of the teeth (abutting lips and insides of cheeks, i.e., vestibular) are labelled as
the ‘Out’ surface (see the outer arrow in Figure 1b(i)).

Ihttps://mhealth.md2k.org/resources/datasets.html#¥mORAL
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(a) Three layer teeth surface naming (b) Three broader categories of brushing surfaces

Fig. 1. Teeth Surface Categorization: We reorganize the 16 teeth surfaces from the Bass technique into nine surfaces so that
all surface transitions are detectable by wrist-worn inertial sensors. The grayed 7 surfaces are merged as shown.

Layer 2: Center. The ‘Center’ surface encompasses all the anterior incisor teeth (as shown in Figure 1b(ii)).

Layer 2: Left/Right. The posterior region incorporating the premolars/molars on the left and right sides are
labelled as ‘Left’ or ‘Right’, respectively (see Figure 1b(ii)).

Layer 2: Undecidable. Finally, we place the canines (red) in the ‘Undecidable’ class. Depending on the brushing
pattern, these teeth are dynamically assigned to one of the center/left/right surfaces rather than being apriori
assigned all the time. In Figure 1b(ii), red colored teeth are considered as ‘Undecidable’.

Layer 3: Up/Down. We define surfaces of teeth in the upper jaw as the ‘Up’ surface and surfaces from the lower
jaw as the ‘Down’ surface (as shown in Figure 1b(iii)).

Of the 16 surfaces used in the Bass technique, we are unable to disambiguate brushing on chewing surface
from inner surfaces due to frequent overlap, resulting in merging of 8 surfaces (chewing and inner) into 4 (inner)
surfaces. Additionally, when brushing on the outer surfaces, we are unable to disambiguate brushing on upper
and lower surfaces, due to frequent switching and overlap, resulting in merging of 6 (outer up and down) surfaces
into 3 (outer) surfaces. Therefore, we end up with nine surface categories.

For naming of these nine surfaces, as we descend from Layer 1 to Layer 2 (in Figure 1a), and then to the leaf
nodes in Layer 3, we concatenate the respective categories in each layer to derive the name for each leaf surface.
For example, if we traverse the nodes in the order In->Center->Up from Layer 1 to Layer 3, we get the In-Center-Up
(ICU) surface. Names of the other eight surfaces are: In-left-up (ILU), In-right-up (IRU), In-center-down (ICD),
In-left-down (ILD), In-right-down (IRD), Out-center (OC), Out-left (OL), and Out-right (OR).

3.4 Determining the Timings of Teeth Surface Being Brushed On and Transitions from Video

We analyze the video recordings to annotate the start/end times of each teeth surface being brushed on. We
precisely mark the transition among surfaces so that data labeled for a surface is not contaminated by any
transition data, resulting in unambiguous and clean labels for model training and testing. This is arduous and
time-consuming because the duration of brushing on any surface is quite short (less than 5 seconds) and transitions
are rapid (lasting few hundred milliseconds) and frequent (tens of transitions in a brushing episode).

Since achieving precision at such granularity is harder for human eyes, we used ELAN [2], a freely available
software for assistance in labeling the surface and transition times. We developed the following coding definitions
for this labeling to correspond to hierarchical naming of surfaces. We annotated each of the three layers in our
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Fig. 2. Frame-by-frame annotation of left-right-left brushing stroke (in the left set of frames) and up-down-up brushing
stroke (in the right set of frames). Frames (a) in both stroke types mark the start of the stroke, Frames (b) mark the end of
half stroke, and Frames (c) mark the end of the full stroke.

naming hierarchy — Pass-I (Inner and Outer), Pass-II (Center, Left, and Right), and Pass-III (Up and Down). For
each of these, we decide the start and end time as described below. Figure 2 shows two frame-by-frame examples.
Begin time: We assign the start time to the moment whenever a participant touches and starts to go back and
forth or up and down with the brush in a periodic motion in any one of the In/Out/Center/Left/Right/Up/Down
surfaces for the first time or every time after a transition from the previous surface.
End time: We assign end time to the moment whenever the participant stops the periodic back and forth or up
and down motion with the brush at the current surface and begins to leave the surface by changing the motion.
To distinguish a surface from transition, we annotate a surface only if it receives at least three brushing strokes.
Switching interval: We use the following criteria for declaring a transition.

(1) When the participant, in a bid to move to the next surface, starts rotating the brush holding wrist to till the
rotation stops, and the wrist is in a position from where it can start brushing the next surface.

(2) When the brush holding wrist enters the junction of any two surfaces to when it leaves.

(3) When the wrist holding the brush discontinues the periodic back and forth or up and down motion and
slowly takes either a single forward or backward motion.

(4) When the wrist holding the brush suddenly stops brushing the current surface.

Two independent coders labeled all videos to annotate the start and end time of brushing on each surface. The
duration of surface transitions is usually < 300 milliseconds, and our goal was to annotate the timings at the
stroke-level precision. Therefore, instead of using 0.96 seconds [35], we consider annotations from two coders to
match only if the discrepancy for any surface is less than a half-stroke, i.e., 150 milliseconds. We observe 342
discrepancies out of 10,230 surface annotations (3.34%). Discrepancies were resolved via joint viewing of the
segment in doubt, and a consensus was reached regarding the labeling of the event in consideration.

4 KEY OBSERVATIONS FROM LABELED DATA

Brushing patterns from videos have been analyzed in dentistry during habitual brushing [35] and best-effort
brushing [10] to assess shortcomings and to find ways to further improve brushing habits. As these works invited
participants to the study site and recorded one episode from each participant, their observations largely focused
on between-person variability. In contrast, we ask participants to video-record themselves in their homes without
any explicit instructions, providing us repeated measurements from the same person in their natural environment.
This data allows us to analyze within-person and within-episode variability during habitual brushing.

4.1 Between-Surface Variability in the Time Spent on Brushing Different Surfaces

Table 1 shows the mean and standard deviation duration of brushing on each of the nine surfaces. Figure 4 shows
detailed distribution for each episode from each participant. Similar to [35], we find that the duration of brushing
on left and right sides (across both inner and outer surfaces) are similar. But, we find that the total effective
duration of brushing in our dataset is significantly lower at 92 seconds, compared with 155 seconds in [35] and
207 seconds in [10]. We make several new observations regarding between-surface variability.
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ocC ICD oL ILD OR IRD IRU ILU ICU

0 20 40 60 80 100
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Fig. 3. Three axes of accelerometer and gyroscope magnitude during brushing at different annotated surfaces.

Table 1. Average duration (in seconds) of brushing on each of the nine surfaces

Surfaces Effective
ICU | ICD | IRU ILU ILD IRD ocC OL OR | brushing duration
Duration 2.50 3 5.8 5.9 9 9.2 13.3 20 23 91.7
Mean (£ SD) | (£0.9) | (£1.1) | (£1.7) | (£1.4) | (£2.2) | (£1.9) | (£2.3) | (£2.5) | (£2.7) (£3.4)

To test statistical significance, we take pairwise percentage difference in duration between two brushed surfaces,
i.e., ratio of brushed surfaces for all the brushing episodes across all the participants. We want to find a value a
such that mean of the percentage difference is significantly greater than the value a. Without loss of generality,
we assume the mean of percentage differences is positive (otherwise we switch two duration lists). To find the
value of a, we perform a left tailed ¢-test where the alternative hypothesis is mean p < a. We want to find the
maximum a such that using a ¢-test we can reject the null hypothesis that the mean of the list is a, i.e., Hy : y = a.

OBSERVATION 4.1. Participants spend 40% more time brushing their outer (i.e., buccal or labial) teeth surfaces
than their inner (i.e., lingual and occlusal) teeth surfaces across both upper and lower jaw. (p-value <0.008)

OBSERVATION 4.2. Participants spend 75% less time brushing their center (i.e., anterior) teeth surfaces as compared
to their left or right surfaces (i.e., posterior). (p-value <0.009)

OBSERVATION 4.3. When brushing on inner (i.e, lingual) teeth surfaces, participants spend 75% more time in
brushing down surfaces vs. up surfaces. (p-value <0.009)

OBSERVATION 4.4. The duration of the most brushed surface within an episode is 11 to 19 times the duration of the
least brushed surface. But, the least- and most-brushed surfaces are not the same in all episodes. (p-value <0.0003)

4.2 Between-Person Variability in the Brushing Time on Each Surface

Between-person variability in brushing patterns have been reported previously [10, 35]. As Figures 4 and 5 show,
we also observe substantial within-person between-episode variability in amount of time spend on brushing
surfaces. Our goal here is to quantify these differences to assess the feasibility of developing a common machine
learning (ML) model that can work for all users.
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Fig. 4. Difference in total duration of brushing on different teeth surfaces. (a) Effective brushing duration(b) /n and Out
surfaces, (c) Center, Left, and Right surfaces, and (d) Up and Down surfaces.

4.2.1 Similarity of Persons with the Population Profile in Time Spent on Each Surface. First, we quantify how
many participants have a brushing duration profile that matches the population average. For that, we represent
each brushing episode as a duration vector of all the brushing surfaces, i.e., a nine value vector. This way, we
form a list of vectors with one participant’s data and combine list of vectors from the rest of the participants to
create a population profile. From these two lists of vectors, to find whether a participant’s data approximates the
population profile, we perform the y?-test (Chi-squared test). We repeat this process for all the participants, and
the resulting p-values are shown in Figure 6a. We see that only 2 out of 19 participants share profiles similar to
the population one. Therefore, population-profile is not representative for most individuals.

4.2.2  Person-to-Person Similarity in Time Spent on Each Surface. Next, our goal is to see if there are clusters
of participants sharing a similar profile amongst themselves. We test pairwise independence for all possible
pairs of participants. We form two list of vectors from two participants following a similar method mentioned in
Section 4.2.1 and perform the y? hypothesis test to find if they are similar to each other. We repeat this process
for all possible pairs of participants and present the test results as a heatmap in Figure 6b. Each cell (p;, p;) in the
figure shows the p-value of the test for p; and p;. Only 4 out of 136 pairs show similarities in profile.
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Fig. 6. Between-person similarity in the amount of time spent in each surface: (a) Person-to-population similarity, (b)
Person-to-person similarity. Stars show statistical significance.

4.3  Within-Episode Patterns of Transitions Among Surfaces

Prior work [35] has observed preference among participants for frequent transitions among surfaces with an
average of 45 transitions in brushing episodes lasting 155 seconds, on average. Figure 7a shows the distribution
of average number of surface transitions and Figure 7b shows the average time spent brushing a surface between
transitions in our dataset. We observe significant variability in both the frequency of transitions and the time
between transitions both between-person and within-person.

5 OVERVIEW OF THE MTEETH MODEL

Figure 8 presents an overview of all the steps in the mTeeth model. The input to the model are the inertial sensor
data (accelerometer and gyroscope) and the start/end of brushing episodes from a brushing detection model such
as mORAL [5]. We first define an anchor event (detectable from sensor data) that can be used to segment the time
series data cleanly so each segment can receive the unambiguous label of one surface (in Section 6). Subsequently,
we develop a method to tightly synchronize sensor data with video so that labels of surface transitions correspond
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to the sensor data segments at millisecond precision (in Section 7). Then, we identify and compute event-based
features and select distinctive features for each surface (in Section 8). Finally, we train a Dynamic Bayesian
Ensemble model to assign each data segment to the most likely surface (in Section 9). This generates a sequence
of brushing surfaces in each brushing episodes, with its duration and the number of strokes in it.

6 DEFINING AND DETECTING ANCHOR EVENTS FOR TIME-SERIES SEGMENTATION

There is wide between-person variability in how people brush, including the pattern of back and forth or up and
down motion of the brush, time spent in each surface during brushing, and transition sequence among surfaces.
In our labeled data, we observe that the time spent on a brushing surface varies from a few milliseconds to as
long as 10 seconds. This poses a significant challenge for finding an optimal window of sensor data that can be
treated as a single unit of assessment from which features can be extracted to train a machine learning model.
The traditional approach of sliding or fixed time-based windowing is unlikely to work. If we choose a window
size of few milliseconds to deal with the short duration in some surfaces, we may end up with insufficient data
to find distinguishable feature(s). If the window size is too large, several transitions occurring within it may go
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undetected, resulting in missed transitions and mixing of surfaces in one window, creating both ambiguity and
mismatch in label assignment. Therefore, we seek a dynamic-length event-based approach to data segmentation.

For an event-based approach to succeed, we need anchor events such that the likelihood of not detecting this
event is low, the event should be efficiently detectable, and the event should cleanly isolate data segment belonging
to different surfaces. When developing a model to detect brushing [5], flossing, eating [33], drinking [13], or
smoking [31, 32], a hand-to-mouth gesture works as an anchor event. The events of hand reaching the mouth and
hand coming back from the mouth isolates segments of sensor data that can be treated as a candidate for each
of these hand-to-mouth gesture events and can be tested by the respective machine learning models. But, the
hand-to-mouth gesture only occurs at the start and end of a brushing event and hence can’t be used to segment
the sensor data within a brushing event to distinguish among various teeth surfaces.

For our purpose, we need to find an anchor event that clearly demarcates when brushing surface changes,
this event occurs during most surface transitions, and the event is efficiently detectable from sensor data. As our
goal is to find the start and end times of brushing on each surface, the transition from one surface to another
initially appears to be an obvious choice for an anchor event. But, the transition itself is so short-lived that it is
improbable to detect some of the transitions from sensor data. Moreover, some of these transitions are difficult
even to annotate from the video. Thus, accurate detection of all transitions is quite challenging, and failure to do
so results in mixing of data from two or more surfaces. Therefore, transitions do not qualify as the anchor events.

We observe that there is one activity that is both potentially discernible in sensor signals and is common
across all surface transitions. During brushing, people generally perform back-and-forth or up-and-down periodic
motion with the brush. We select this movement activity, called a brushing stroke, as our anchor event. From
five types of strokes known (e.g., circular) [35], we observe brushing strokes follow either a up-down-up or
back-forth-back motion. Since these are the two primary periodic movements a person makes during brushing, if
and when a surface is brushed with at least one brushing stroke, the chances of its trace remaining in the sensor
data is high, significantly reducing the possibility of a missed stroke. This, in turn, limits the surface identification
error. Moreover, no brushing stroke takes place between transitions, preventing the mixing of any two surfaces
in any segment of sensor data selected for assessment by a machine learning model for surface identification.
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6.1 Brushing Stroke Detection

To efficiently detect brushing stroke from sensor data, we identify the signature of periodic up-and-down or
back-and-forth movement in the wrist-worn accelerometer signal in the form of a peak-valley pair.

Figure 9a shows plots of three axes accelerometer signal and its magnitude during one such surface brushing.
In the signal time series, we define peak as the point in each cycle where the signal is at its maximum, whereas a
valley as where the signal is at its minimum. We mark those peaks and valleys of a signal with black up-pointing
and down-pointing triangles, respectively. Let P = {p1, pa, ..., pn} be the peaks, and V = {v1, vy, ...,v,} be the
valleys. Once we carefully detect all these peaks and valleys using a peak-valley detection algorithm, we define
brushing stroke as a cycle of valley-peak-valley combination, i.e., an i brushing stroke is S; = (v;, pi, vis1).

Now, in Figure 9a, we observe series of peaks and valleys in all the four signals, but most of them are temporally
unaligned across the signals. Since we get four sequences of peak-valley cycles or therefore strokes, out of these
four signals, we need to select the one that will represent the start and end times of the brushing strokes optimally.
We note that even though the magnitude contains information from all the three axes, it is not a suitable choice
due to lack of synchronized alignment across the three axes.

We first define the stretch of a stroke as the difference between the amplitude of its peak and valley. If the
stretch of a stroke along any axis is low, that corresponds to having least wrist movement along that axis at
that moment. Conversely, if the stretch of a stroke along an axis is high, that signifies a likely wrist movement
along that axis during a brushing stroke, making it the dominant axis for this stroke. Hence, we select a brushing
stroke along a particular axis that has the maximum stretch. To brush different surfaces, orientation of the wrist
changes, so does the movement of the toothbrush along with it. Following the movement, the acceleration of the
wrist along a particular axis changes the most. In addition, we observe that the dominant axis remains unchanged
throughout brushing on a single surface. When the user switches to the next brushing surface, depending on the
type of surface, the dominant axis may either change or continue to be the same.

To distinguish brushing from other activities (e.g., walking) which also involves periodic wrist movement, we
define two thresholds, 73, and Ts;rercn such that for any (v;, p;, vi41) peak-valley cycle to be a brushing stroke,
the time difference between v;,; and v; can be at most 7;,, and the stretch needs to be at least T5;resch. The
average duration of a stroke is 230(+60) milliseconds, and the average stretch is 0.57(£0.35)g. We remove all
peak-valley cycles that are two standard deviations away from the mean stroke duration and the mean stroke
stretch. These thresholds retain all the brushing strokes in our data, i.e., achieve 100% recall.

7 FINE-GRAINED TIME SYNCHRONIZATION BETWEEN VIDEO AND SENSOR DATA

A key premise for our categorization of human teeth into nine surfaces is that the pattern of brushing on each
of these surfaces is likely to be sufficiently unique making the corresponding sensor data distinguishable. But,
to enable successful modeling for recognizing each of the nine surfaces from sensor data, a brushing episode
should include at least a few seconds of brushing on each surface interspersed with milliseconds of surface
switching times (Figure 10a). However, in reality (see Figure 10b) some users spend only milliseconds on a surface
before switching to another surface. Thus, for accurate estimation of brushing surfaces from such short spans of
time, precise time synchronization between the sensor and video data becomes critical. More specifically, we
need to synchronize the start of a brushing session extracted from the video data with that of brushing events
automatically detected from inertial sensors [5] at millisecond-level precision.

Even though it was assumed in [5] that the mORAL dataset has tight time synchronization between video and
sensor data, we find that the video and sensor data have a time synchronization error of several seconds (see
Figure 11a for an example). This may be because even though the sensor data from wrist-worn devices were
streamed in real-time to the same phone recording the video, time lapse between the sensor data being received
on the phone and assignment of a timestamp to them may be of the order of seconds. For the task of detecting
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the start and end of a brushing session that lasts 2 minutes, few seconds of time lapse may be tolerable. But, for
our purposes where the brushing duration on a surface and transition times are only few milliseconds long, time
synchronization errors of seconds can render the modeling process extremely challenging. If the lag between
video and sensor data is not adjusted properly, part of sensor data which is actually a surface may be mistaken
for a transition and vice-versa, or data from different surfaces may get mixed. The performance of a machine
learning model will suffer as the quality of these labels drive the accuracy of the model.

7.1 Time Synchronization Problem

We start by defining the time synchronization problem. Let the start time of the i brushing event, based on
video time be 7. From the time at which sensor data is captured by the wrist device to when it reaches the
smartphone and receives a timestamp, there is a time lag. We need to find the offset 0; such that when added to
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t?, it corresponds to the starting time of the i brushing event from sensor data t{. Therefore, 0; = t] — t/. Since
each packet of sensor data contains both accelerometer and gyroscope data, offsets are the same for both.

A brushing event is composed of multiple bushing strokes. Using the brushing stroke detection method
discussed in Section 6.1, we can extract the start times of all brushing strokes and use the first stroke from both
video and sensor data to synchronize. Since this method is based on accurately locating the first stroke in both
video and sensor data, there are at least two cases when this method may fail. First, several participants start
brushing before starting the video, missing the first stroke in video. Second, when participants put toothpaste on
the brush head, even one up-and-down or back-and-forth movement may create a false first brushing stroke
pattern in the sensor data. Therefore, we next propose a more robust method for time synchronization.

7.2 Multi-point Synchronization Approach

We observe that during some transitions from one brushing surface to another, e.g., from left to right, the wrist
rotation is significantly higher than that when brushing on any surface. The gyroscope can detect hand rotation,
and the contrast in magnitude between brushing and some of the surface switching are clearly identifiable from
the gyroscope signal in Figure 11b. Note that for several transitions, the amount of rotation is negligible. But, if
we can detect some surface transitions from the sensors, we can map these detected transitions with annotated
transitions and find the offset for the synchronization. We build upon this idea to solve the time synchronization
problem. Our algorithm consists of three main steps described below.

(Step 1) Rotation-based Transition Detection: During brushing, the wrist moves linearly back and forth
or up and down, which are captured by accelerometers. When transitioning from one surface to another, if the
wrist holding the brush changes the direction of movement, a rotational change is seen in gyroscope.

To find rotation-based transitions, we first compute the gyroscope magnitude from the 3-axes gyroscope data.
Then, we normalize the gyroscope magnitude. To amplify the differences between rotation during brushing and
rotation during transition, we take the exponential of each value of the normalized gyroscope magnitude sample.
We find a threshold such that if the gyroscope value is higher than the threshold, we consider it as the beginning
of a transition. To find the threshold, we first apply the Gaussian Mixture Model (GMM) to find two clusters:
one for the lower values (during brushing or stationary) of the signal and the second for higher values (during
transition). All the points in Cluster 2 are considered as transitions and time of those points are stored in 7.

(Step 2) Candidate Offset Detection: Let 7g be the transitions from the video annotation. We seek to
maximize the matching between the detected transitions from sensor and video. Therefore, we compute all the
possible offset values to identify candidate offsets as O = {(¢ — ty) }re 71, e75-

(Step 3) Selecting the Best Offset: To find an offset that maximizes the number of matching, we find total
matchings for each candidate offset value. We align the timing of the detected transitions by adding a candidate
offset to the timestamp of each transition. We then find the closest distance from the marked transitions from
video (i.e, ground-truth). If this distance is < €, we consider it a match. Then, we compute the number of detected
transitions with a match. Finally, we select the offset that maximizes the number of matching to align the
timestamp between video and the sensor data.

8 STROKE-WISE FEATURE EXTRACTION AND SELECTION

After identifying brushing strokes as events within a brushing episode to segment the sensor data stream, we
identify and compute several features from sensor data comprising each brushing stroke. We identify those
features that are expected to vary during brushing of different surfaces, contributing to successful differentiation
among each of them from the sensor data using a trained machine learning model.
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8.1 Accelerometer Features

In Figure 9c, we define brushing stroke i as a tuple of three points in a signal. Let (time(v;), value(v;)) be the
(timestamp, amplitude) of the valley v; and (time(p;), value(p;)) be the (timestamp, amplitude) of the peak p; of
the i'" brushing event. We identify 8 distinct features that are computed from the accelerometer 3-axes signal.

e Peak Amplitude: Peak amplitude corresponds to the amplitude value (value(p;)) in each stroke duration,
where the signal is at its maximum.

o Valley Amplitude: Valley amplitude corresponds to the amplitude value (value(v;)) in each stroke duration,
where the signal is at its minimum.

e Rising Stretch: Rising stretch is defined as the difference in amplitude of the peak (value(p;)) and the
valley immediately appearing before it (value(v;)) of the i brushing cycle/stroke duration (see Figure 9c).

o Falling Stretch: Falling stretch is defined as the difference in amplitude of the peak (value(p;)) and the
valley immediately following it (value(v;y1)) of the it stroke duration (see Figure 9c).

o Rise-Fall Ratio: Rise-Fall ratio is defined as the ratio of rising stretch to the falling stretch.

¢ Rising Duration: Rising duration corresponds to the time elapsed from a valley of a stroke duration, to
the subsequent peak (see Figure 9c).

o Falling Duration: Falling duration corresponds to the time duration between a peak and the subsequent
valley in a stroke duration (see Figure 9c¢).

e Stroke Duration: Stroke duration is the sum of rising and falling duration.

We compute the above eight time-domain features for each of the 3-axis and magnitude signal of the accelerom-
eter for a brushing stroke, resulting in a set of 32 features. In addition to these features, we compute Correlation
measure that expresses the extent to which two variables are linearly related. As a result, three more correlation
features among X, Y and Z axes are added, namely corrXY, corrYZ, and corrZX. In total, we have a set of 35
features computed for each brushing event or stroke.

8.2 Gyroscope Features

In addition to the accelerometer features, we also compute several features from gyroscope data. Since the
gyroscope captures the amount of rotation in each axis, which is used to capture the surface switching/transition,
we compute several statistical features, such as mean and standard deviation, to obtain the transition and the
amount of rotation within each stroke. In total, we compute six features from three axes.

8.3 Orientation Features

The wrist’s orientation with respect to gravity during brushing varies from surface to surface because of the
position of the surface and angle of the wrist with the elbow. Recall that a brushing stroke consists of one forward
movement (from the valley to peak in the signal) and one backward movement (from peak to next valley). During
these two movements, the wrist has linear acceleration, but at the peak, the wrist gets stable, i.e., no linear
acceleration, and prepares to move in the other direction. To capture the wrist’s orientation, we compute roll,
pitch, and yaw when the wrist is at the peak, i.e., at a stable state.

9 MODEL SELECTION AND TRAINING

During routine dental care, people generally initiate brushing sequence with the outer surface, followed by the
inner surfaces. We observe a similar pattern among the study participants where they start and more importantly,
cover all the portions of the outer surface first before moving onto the inner surface. To capture the natural
layered hierarchy that is also captured in our organization of teeth surfaces (i.e., in/out, left/right/center, and
up/down) as well as sequence of transition from one surface to the next, we select a hierarchical model that
allows leveraging of any sequence patterns. We train a Hierarchical Bayesian Network for our model training,.
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Fig. 12. Bayesian network with state transition

9.1 Bayesian Ensemble Method

A Bayesian network is a type of probabilistic graphical model that uses Bayesian inference for probability
computations. Bayesian network aims to model conditional dependence, and therefore causation, by representing
conditional dependence through edges in a directed graph.

Architecture of the Bayesian network for our brushing surface detection problem is shown in Figure 12. We
organize the nine surfaces in the three surface layers as S0 = {I,0},SCIR = {C,L,R},SYP = {U, D, *}, with *
denoting the ambiguity between up and down for the outer surfaces. Since any surface label is a combination of
nodes from the tree layers, the class label set for the nine brushing surfaces is,s € S STO x SCLR 5 gUD

Now, for a given feature vector f € F of a brushing stroke, the model computes the likelihood of each surface
label s € S as the predicted class using conditional probability Pr[S = s|F = f]. The model then outputs the class
with the maximum probability as the final prediction for the brushed surface, i.e., s = argmaxsesPr[S = s|F = f].

Inference: For any feature vector f of brushing stroke, to compute probability of any surface s = (x, y, z),
where s € S, x € ST°, ye SCLR and z € SUP, we use the following joint probability distribution function,

Pr[S =s|F = f] = Pr[S'0 = x, SR =y, SYP = £|F = f]
= (Pr[S' = x|F = f] x Pr[S“!R = y|F = f,5'° = x]
x Pr[SUP = z|F = f,5'0 = x, SR = y]) 1)
For example, probability of surface label S = ICU is computed as,
Pr[S=ICUIF = f] = (Pr[S"° = I|F = f]
X Pr[SCIR = C|F = f,5'° = 1]
x Pr[SYP = U|F = £,8'° = [,s“*® = C]) )

To compute these conditional probabilities, we learn a machine learning classifier—Random-forest model in
each layer (a brief description of all the models is listed in Table 2). We then ensemble the outputs of these
machine learning models using Equation 1 to produce the final output of the model.

9.2 Dynamic Bayesian Ensemble (DBE) Method

Despite the wide variability in the brushing duration on each surface, we also observe stable patterns in surface
transitions [15] for most of the participants, as shown in Figure 13. Dynamic Bayesian Ensemble (DBE) method
uses the transitions to update the probabilities when it computes the probability of a surface that is different
from the previously detected surface. Let T" be the transition probability matrix, where each T}'; is the transition
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Table 2. All the models that generate all required conditional probabilities

’ Models \ Tasks (Generates probabilities of surfaces) \ Outputs
Mo (f) ‘in’ and ‘out’ from feature vector f of a stroke (Pr[S™© =1|f], Pr[S™° = O|f])
Mcrrir(f) | ‘center’, ‘left’, and ‘right’ from f given SO =7 (Pr[SCIR = C|I, f], Pr[SCIR = L], f]
, PrSSR = R|L f1)
Mcrrio(f) | ‘center’, ‘left, and right’ from f given ST = O (Pr[SCIR = C|O, f], Pr[SIR = L]0, f]

, Pr{STR = RIO, f1)

Mypiic(f) | ‘up’ and ‘down’ from f given S0 =Tand SR = C | (Pr[SYP = U|C, L, f], Pr[SYP = D|C, I, f])

Mypr.(f) | ‘up’ and ‘down’ from f given ST© =T and SIR = L | (Pr[SUP = U|L, I, f], Pr[SUP = DIL, I, f])

Mypr(f) | ‘up’ and ‘down’ from f given S0 =Tand STR = R | (Pr[SYP = U|R I, f], Pr[SYP = DIR, I, f])
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Fig. 13. Consistency in state-to-state transitions

probability from surface i to surface j, where i, j € S. We use the * in a symbol to denote that the states can
be over all nine surfaces or only over the groups of surfaces. We end up with four transition matrices, one for
all nine surfaces and one each for the three layers. Note that we only consider transition probability when the
current surface is changed, i.e., T;; = 0. Therefore, the updated probabilities are computed as follows,

Pr[S; = x|F; = f;] Jif Sy ==x

Pr'(S; =x|F = 11,5/ _,] =
L5 IFe = i Sea {a*Pr[S;‘=x|Ft=ft]+(1—a)*T;,x ,elseif S} | ==y, Vy # x

Here, f; is the feature vector of t brushing stroke, « is the parameter of the weighted average of two values, and
Pr[S; = x|F; = f;] is computed using Equation 1. We use Pr’ to denote the updated probability.
Inference: The selected class of t™ brushing stroke is given by

s; = argmax Pr'[S; = s|F; = f;, 811 = s¢-1],
seS

where (fi, f2, ..., fm) denotes a sequence of features. The model produces the surface sequence, i.e., {51, S2, ..., Sm)-

10 MODEL EVALUATION

The dataset we use confirms the wide between-person variability reported in dentistry [10, 35]. Additionally, it
reveals substantial within-person between-episode variability not analyzed in prior works due to lack of such
data. Recent works on detecting brushing patterns from wrist-worn inertial sensors [15, 27] collected multiple
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Fig. 14. Performance of the stroke detection method.

episodes from the same participants, but used 10-fold cross-validation. Hence, between-person generalizability
of a machine learning model for detecting brushing surfaces has not yet been studied. The dataset we use
has a larger number of episodes compared with [10, 35], more participants as compared with [15, 27], and is
unique in representing natural brushing patterns in the users’ home environment, without any specific brushing
instructions (as in [15, 27]) that may reduce the natural between-person variability. To evaluate the between-
person generalizability of our model, we start with Leave-One-Subject-Out-Cross-Validation (SCV), but also
present 10-fold cross-validation (10CV) results to both allow a comparison with recent works on brushing surface
detection and to show the impact of between-person variability in natural brushing on the model’s performance.
In addition, to study the impact of within-person variability among brushing episodes, we also perform Leave-
One-Episode-Out-Cross-validation (ECV), where for each participant, we take one brushing episode as test
data and the remaining episodes from that participant as training data, yielding a personalized model for each
participant.

We start by evaluating the accuracy of detecting brushing strokes, which is a key enabling and distinguishing
aspect of our model. Next, we evaluate the performance of our model for surface detection via all three validation
methods. Finally, we study the impact of time synchronization on model performance, and conclude our evaluation
by reporting the accuracy of estimating the total brushing duration on each surface, that can improve oral care.

10.1  Accuracy in Detecting Brushing Strokes

To evaluate the accuracy of our brushing stroke detection method (see Section 6.1), we compare the number
of brushing strokes detected in each brushed surface from sensor data with that from video annotation. As
annotating each brushing stroke (lasting only milliseconds) for all the episodes is even more arduous than
annotating each brushing surface, we limit our annotation to 1,456 brushing strokes from 100 surfaces. For each
surface, we count each and every periodic movement (valley-peak-valley) with no condition imposed on brushing
strokes for each of the x, y and z-axis of the accelerometer separately and also through our brushing stroke
detection model discussed in Section 6.1. We calculate the difference between the counts of brushing strokes
from sensor data and that from video annotation for each annotated episode and present the results in Figure 14a.
We observe from the distributions that our proposed method results in the lowest error (mean absolute error is
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Table 3. Classification performance for identifying broad teeth surface categories. Median values are reported here.

Mio(f) Mcrrii(f) Mcrrio(f) Mypirc(f) Mypirr(f) Mypir(f)
SCV | 10CV | SCV | 10CV | SCV | 10CV | SCV | 10CV | SCV | 10CV | SCV | 10CV

Recall(%) 77.57 | 94.05 | 83.85 | 94.12 | 85.82 | 96.75 | 86.84 | 100 | 65.43 | 96.55 | 77.48 | 97.06
Precision(%) | 79.29 | 94.07 | 84.09 | 94.38 | 88.92 | 96.86 | 100 100 | 81.33 | 96.87 | 78.53 | 97.37
F1-Score(%) | 77.4 | 93.93 | 82.23 | 94.15 | 84.98 | 96.75 | 91.67 | 100 | 60.98 | 96.51 | 72.13 | 97.07

1.5). In Figure 14b, the scatter plot shows the counts of brushing strokes from the video and sensor data using
our proposed method. We observe that most of the errors are limited to no more than 2 strokes, even when the
number of strokes are as high as 40 (in a brushing surface). We note that [15] estimated the number of brushing
strokes using acoustic sensors with an average error of 10.3%, leaving the task of stroke detection using inertial
sensors open. Our stroke detection algorithm solves this open problem with less than 4.2% error.

10.2 Impact of Between- and Within-Person Variability on Brushing Surface Detection

We trained Naive Bayes (NB), Random Forest (RF), Bayesian Ensemble (BE), and Dynamic Bayesian Ensemble
(DBE) for brushing surface detection (see Figure 15a) and find that the DBE produces the best performance (for 10
CV). Hence, we use DBE for subsequent evaluations. As brushing recommendations are usually based on broad
surface category, we begin by evaluating the performance for detecting the three surface layers. Recall that our
Bayesian Ensemble model consists of six models each of which is a Random-forest classifier, as shown in Table 2.
We evaluate the performance of each model for classification at each teeth surface layer and present the results
in Figure 15b. Note that any model in the form of M, |, is trained on a filtered dataset belonging to surface label y
from the upper layer. For example, Mcyg|r is trained on only the feature set from inner surface. Table 3 shows the
results for both SCV and 10CV. The My p|;c model for inner-center surfaces achieves the best performance.

For nine-surface classification, the model obtains median recall, precision and F1-score of 65.26%, 65.30% and
63.14% for SCV, which improves to 82.14%, 82.66% and 79.50% for ECV, and further improves to 87.06%, 86.96%
and 86.02% for 10CV. Low performance for SCV as compared with 10CV (used in prior works on brushing surface
detection [15, 27]) can be explained by wide between-person variability. As described in Section 4.2, there does
not exist a population profile or even clusters of participants with similar brushing patterns (see Figures 5 and 6).
Hence, a model trained on other participants’ data performs poorly when tested on a different participant.

We observe that training a personalized model for ECV improves the performance substantially from SCV, but
still falls short of the 10CV performance due to within-person between-episode variability exhibited in natural
brushing habits of participants (see Section 4.2). Figure 16b displays breakdown of the result by participant
with individual precision, recall and F1-score to show participant wise between-episode variability. We compute
between episode variability as follows: as discussed in Section 4.2, each episode is represented as a duration
vector of all the brushing surfaces, i.e., a nine value vector, and we use the Euclidean distance metric to compute
the distance between two such vectors. We compute Euclidean distance of all pair-wise combinations of a
participant’s episodes and take the mean of the distances as a representative of the between-episode variability
for that participant. To show the relative variation over the participants, we plot the normalized measurements of
all the participants. We observe that between-episode variation in the total time spent in the nine surfaces highly
affects the performance of correctly identifying the surfaces. As discussed in Section 4.2, we observe that some
participants completely miss some surfaces in many of the brushing episodes due to their personal brushing
habits. So, when the model is trained with mostly missing data for a surface from most of the episodes and asked
to detect the surface when it is present in the test episode, it fails to do so.
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10.3 Impact of Time Synchronization on Nine Surface Classification

We first manually check if the proposed method correctly synchronizes the sensor data to the video-obtained labels.
We find that 101 out of 114 episodes (88.59%) are correctly synchronized. We carefully analyze the remaining 16
episodes and observe that wrist movement during brushing is too slow to detect the significant rotation required
to identify transitions and make a cluster. We manually synchronized these 16 episodes. Next, to analyze the
impact of time synchronization, we train a model without performing the time synchronization step. We find
that the surface detection accuracy (using 10CV) drops significantly to recall, precision, and F1-score of 75.09%,
74.02%, and 73.34% respectively, showing a drop in F1-score by almost 13%.
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Fig. 17. Accuracy of estimating total duration of brushing in different surfaces

10.4  Accuracy of Estimating Total Brushing Duration on Each Surface

Thus far, we have presented the accuracy of detecting when each surface is being brushed. As we present in
Section 4, participants switch frequently between surfaces, coming back to a surface multiple times. For oral
health purposes, both users and their providers may be interested in determining the total time a user spends in
brushing of each surface in a brushing episode. Figure 17 shows the percent error (as compared with labeled data
from video) in estimating the total duration of brushing on surface groups and for each of the nine surfaces.

We observe that the median absolute error is < 7.5% for in vs. out, < 2.5% for center vs. left vs. right, < 7.5%
for up vs. down and < 7% for all of the nine surfaces. Even the first and third quartiles are < 5% in most cases.
We notice that most errors are from confusing some instances of out with in, right with left, and down with up.

Finally, we note that using mTeeth model can improve the estimates of start/end times of brushing (and total
duration of brushing, a widely-used clinical variable) by models such as mORAL [5]. Our assumption is that
mTeeth will be triggered upon detection of the start of a brushing event by mORAL. mORAL considers the start
of the event from when the hand is in the upward direction, which includes putting the paste on the brush-head
and preparing to brush; and end of the event when the hand moves to the downward position. Error in start/end
times is 4.1% for the mORAL model. Once mTeeth model is activated by mORAL, by using our stroke-based
approach, the error in estimating the total brushing duration will be reduced from 4.1% to < 0.5%.

11 LIMITATIONS AND FUTURE WORK

The work presented here has several limitations that open up opportunities for future work. First, our video
annotation did not disambiguate between occlusal and lingual surfaces. As users are known to spend more time
brushing occlusal and less time on lingual surfaces [35], future work can improve on video annotation and model
training to seperately estimate the time spent on these two kinds of surfaces.

Second, this work did not estimate the pressure being applied during brushing, which is also an important
component of brushing efficiency. Future work can develop methods that can leverage the stroke detection and
characterization approach presented here to estimate the pressure applied during brushing of different surfaces.

Third, this work analyzed a week worth of daily brushing data from 19 participants during their natural
brushing sessions. This work found significant variability between episodes of the same participant, and even
greater variability among participants. As a result, although it achieved very high accuracy of classification in
10-fold cross-validation, but found the accuracy drop for leave-one-episode-out training and drop even further for
leave-one-subject-out training. As between-person generalizability is important for real-life adoption of machine
learning models, future work can increase the number of episodes per person and the number of participants
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to determine the level at which clusters emerge among both episodes and among users that exhibit sufficient
similarity. These clusters can then be used to develop group specific models which can more accurately detect
brushing surface for each brushing episode and for each person.

Fourth, the time synchronization method presented here missed 16 out of 122 episodes, due to very slow
brushing pace of some participants. Future work can investigate better methods that can automatically synchronize
video labels and sensor data for all episodes without manual intervention.

Fifth, the algorithms presented here for stroke detection and time synchronization found specific thresholds
that was suitable for the current dataset. Future work can develop adaptive thresholds or other adaptive algorithms
that can generalize to unseen datasets without retraining. Finally, this work only observed the natural daily
brushing behavior of participants and did not attempt to teach them better brushing habits. Future work can
leverage the mTeeth model to develop interventions that can help users self-reflect on their brushing habits,
detect regularly missed surfaces, and present personalized behavioral nudges to help individuals optimize their
oral self-care routines and proactively tackle teeth surfaces at-risk for plaque accumulation.

12 CONCLUSIONS

The orientation of a toothbrush changes noticeably when brushing different tooth surfaces, resulting in detectable
changes if inertial sensors are embedded in or attached to the brush itself, as in smart or instrumented toothbrushes.
However, inferring tooth surface coverage from wrist-worn sensors is much more challenging because the changes
are very subtle as the general orientation of the hand does not change much when transitioning from one teeth
surface to another. Give that most brushes are manual and lack sensors, we develop a model for leveraging sensor
data from ubiquitous smartwatches to infer brushing coverage. This work presents several insights for detecting
these subtle signatures and constructs a model to distinguish among teeth surfaces and transitions between
them. By doing so, it opens up a new frontier in the detection of rare daily events such as brushing, flossing,
eating, drinking, and smoking by allowing finer-grained characterization (i.e., detecting even more ephemeral
embedded micro-events) of self-care activities in natural environments. This may motivate new methods for
successful characterization of other rare events such as detecting smoking with e-cigarettes that only consists of
one or two puffs at a time, classifying among different kinds of food or drink in an eating or drinking episode by
distinguishing the subtle differences in the hand-to-mouth gesture involved, and similar other daily behaviors.
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