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In this paper, we introduce a new I/O characteristic discovery methodology for performance opti-
mizations on object-based storage systems. Different from traditional methods that select limited
access attributes or heavily reply on domain knowledge about applications’ I/O behaviors, our method
enables capturing data-access features as many as possible to eliminate human bias. It utilizes a
machine-learning based strategy (principal component analysis, PCA) to derive the most important set
of features automatically, and groups data objects with a clustering algorithm (DBSCAN) to reveal 1/O
characteristics discovered. We have evaluated the proposed 1/O characteristic discovery solution based
on Sheepdog storage system and further implemented a data prefetching mechanism as a sample use
case of this approach. Evaluation results confirm that the proposed solution can successfully identify
access patterns and achieve efficient data prefetching by improving the buffer cache hit ratio up to
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48.24%. The overall performance was improved by up to 42%.
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1. Introduction

The ever-increasing data demand in many science and en-
gineering domains has posed significant challenges to storage
systems. Parallel/distributed object-based store [21], such as Lus-
ter [3], Ceph [31], and Sheepdog [26], has been widely used to
provide required storage capability, and more importantly, to
deliver high data-accesses speed.

To achieve highly optimized data-access performance of stor-
age systems, understanding and leveraging data-access patterns
have been proven effective. For example, PDLA [35] describes
an I/O data replication scheme that replicates identified data-
access pattern (i.e., spatial-related access pattern), and saves
these reorganized replications with optimized data layouts based
on access cost analysis. Arguably, the better the access pattern is
understood, the better the storage system can be optimized and
tuned.

As a result, numerous studies have been conducted to identify,
characterize, and leverage data-access patterns in storage sys-
tems. One well-known method is to analyze spatial/temporal be-
haviors of data accesses to identify I/O access sequence [9,11,19,
20,34]. Another important method is to analyze semantic infor-
mation such as the access correlations between file blocks/objects
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by mining I/O semantic attributes, which can potentially discover
more complex patterns, especially semantic patterns [6,8,15,
28,33]. Other methods also exist at different I/O layers, such
as application-/client-side trace analysis [20], server-side trace
analysis [16,17], or both server and client I/O analysis [6]. While
existing studies show the feasibility of I/O characteristic discovery
through various approaches, they have three shortcomings as
discussed below, which also motivates this research.

First, many of these approaches are limited to specific and
predefined features. A feature refers to an attribute of a data
access. For example, the object ID of an object access is a feature;
the data access size is another feature. Many existing studies
investigate one or more rather specific, predefined features to
analyze access patterns. The resulting insights, although valuable,
often lead to an incomplete view of access patterns. For example,
object ID and access time help obtain temporal I/O behavior, but,
if access length and offset are considered, spatial correlation of
data accesses can be further derived. In general, more features
indicate more I/O behaviors, i.e., read/write operation code reveals
read/write types and target node ID provides object location.
Given the increasing complexity of I/O behaviors, it is inadequate
to attempt to discover I/O characteristics with only specific or
predefined features. It is critical to analyze abundant features
thoroughly for I/O characteristics discovery.

Second, existing approaches often introduce bias. Clearly,
treating all features equally is not accurate because distinct fea-
tures can have significantly different impacts on I/O character-
ization. However, selecting the desired set of features is often
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daunting and introduces bias, which requires domain knowl-
edge and assumptions about storage systems and applications.
Besides, we will not know whether we have a desired set of
features until we have completed the entire analysis process. For
instance, the authors in study [6] presented an iterative process to
initially select some basic features, e.g., total 1/O size and read-
write ratio for a file, and then add new features if the analysis
results leave some system design choice ambiguous. They still
need to interpret the output results and derive access patterns
by looking at only the relevant subset of features, again using
domain knowledge. Moreover, the system may exhibit various
data-access patterns for a given application. For example, the
scientific computing applications in study [29] show various
data-access patterns for massive data processing. Identifying rep-
resentative features manually would not adapt to this scenario,
and may lead to an untenable analysis. This drawback largely
limits the efficiency of using access patterns for tuning storage
system and optimizing the performance.

Third, existing approaches often have limited adaptability and
have constraints on utilizing discovered I/O characteristics. They
usually focus on either mining spatial/temporal patterns of appli-
cations for I/O acceleration, or exploring more complex patterns
for data/block access optimizations. However, I/O characteris-
tics are very useful in many other scenarios too, such as in
storage system tuning, data prefetching, data placement, data
organization, etc. A comprehensive, holistic design on discovering
I/O characteristics and optimizing storage systems is strongly
desired.

In this paper, we present a new design methodology to over-
come these shortcomings of existing methods discussed above.
Specifically, we propose to capture features of data accesses on
object-based storage systems as many as possible (more than
20 in our test cases), including features like object ID, access
time, target node, and others we can collect, to generalize data-
access pattern discovery for various applications. Based on the
rich set of features, we use access correlations among objects
to identify different patterns. We utilize machine-learning based
strategy (principal component analysis, PCA [13]) to find the most
important “key features” automatically among all collected fea-
tures in an unsupervised way. This eliminates the bias from users
or domain knowledge requires for applications, and provides an
automatic, extensible way to identify the dominant data-access
patterns. Based on the learned key features, we apply a clustering
algorithm (i.e., DBSCAN) to mine the objects’ I/O similarity, partic-
ularly “key feature correlations”, and group highly relevant object
IDs, which can be leveraged to improve the I/O performance.

We have implemented the data-access pattern discovery and
the prefetching mechanism based on the identified patterns on
Sheepdog, a production object-based store. We evaluated the
performance benefits using standard benchmarks and synthetic
workloads. Our results confirm that our proposed solution can
accurately identify the data-access patterns under various work-
loads and the prefetching strategy can efficiently leverage pat-
tern analysis results to improve the read cache hit ratio (up to
48.24%) and the overall performance (up to 42%). These proof-of-
concept evaluations indicate that our I/O characteristic discovery
methodology is highly promising for I/O tuning and optimiza-
tions. A preliminary study of this research appears in [36]. The
key contributions of this research are five-fold:

e Introduce a new I/O characteristics discovery and data-
access pattern analysis strategy based on a large number of
collectable features of I/O accesses for object-based storage
systems.

e Utilize machine-learning based techniques to identify key
features for I/O accesses and to cluster objects by mining
objects’ I/O similarity for I/O performance optimizations.
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e Eliminate human bias in discovering I/O patterns without
requiring domain knowledge about applications’ I/O behav-
iors.

e Design and implement a data prefetcher prototype based on
I/O characteristic discovery on a real storage system.

e Conduct extensive evaluations on Sheepdog system as a case
study to validate the proposed I/O characteristic discovery
solution.

The rest of this paper is organized as follows: Section 2 intro-
duces the background of object storage and I/O trace. Section 3
describes the design and implementation of I/O characteristic dis-
covery methodology. Section 4 describes the use case of prefetch-
ing by leveraging access patterns for performance improvement.
Section 5 presents extensive evaluation results. Section 6 reviews
the related work and Section 7 concludes this paper.

2. Object storage and I/O trace

In this section, we first introduce the generic I/O software
stack of object storage systems that our proposed characteristic
discovery methods are based upon, and discuss how I/O accesses
can be captured. Then, based on a production-level object-based
storage system, Sheepdog [26], we further describe the trace
collection mechanism, designed and implemented as the basis for
this study.

2.1. Object-based storage and I/O trace

In most object-based storage models, applications access data
files through the POSIX interface. Internally, data files are ab-
stracted as multiple fixed-size data objects and stored in object-
based devices. Under such model, three I/O software stack layers
can be identified [18,23]. The top layer runs on compute nodes
(i.e., clients) within user applications, where the I/O accesses are
issued from. The second layer includes both the client-side file
system libraries and runtime supports. The object-based storage
systems need to implement the functions of file read and write
operations to support the POSIX interface. Data accesses will be
mapped to objects in this layer. At the third layer, these mapped
object requests will be dispatched to different storage nodes for
accessing data.

Data accesses can be traced at any I/O stack layer. For ex-
ample, Darshan [4] collects I/O trace statistics at the first layer
via instrumenting I/O calls made by applications. In this study,
we focus on tracing object accesses at the third layer, i.e., on
the storage nodes (server-side). There are mainly two reasons for
this design decision. First, all first- and second-layer I/O behaviors
will be ultimately turned into object accesses at the third layer.
1/O accesses can be fully collected through tracing on the server
side. Second, tracing server-side accesses does not assume any
domain knowledge or priori information of applications, which
is critical to support a system-level I/O characteristics discovery
methodology for applications.

2.2. 1/0 trace collection

As discussed earlier, tracing object accesses on the storage
node side presents a global and complete view of I/O accesses
of an entire storage system. Hence, we implement our I/O trace
infrastructure at this layer. Note that, the implementation of such
a tracing mechanism will be highly dependent on the architecture
of the object-based storage. Some object-based storage systems
utilize a centralized architecture, where all I/O requests will go
through some system servers (or metadata servers). Therefore,
tracing these system servers would be sufficient [3,27]. On the
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Fig. 1. 1/O trace collection on Sheepdog object-based storage system.

other hand, some other storage systems take a decentralized
design, where I/O requests are directly sent to the storage nodes
(e.g., via consistent hashing algorithm [26]). Although this design
complicates the implementation of tracing as multiple concurrent
tracing instances need to run on all storage servers, collecting
object access traces in a decentralized architecture is still feasible
and practical.

In this study, we focus on a distributed object-based storage
system, Sheepdog, which follows a decentralized design, but at
the same time, assigns some storage servers as the gateway
nodes to receive or forward all 1/O requests. We call the gateway
nodes as aggregators and use them to design and implement the
server-side object access tracing mechanism.

Fig. 1 shows the I/O trace collection on Sheepdog system.
Sheepdog provides block-level storage volumes attached to
QEMU/KVM virtual machines (VMs). Applications run on VMs
that are resident on physical machines. For each VM, the ap-
plication I/O is transformed to read/write operations on vir-
tual disk image file, which is split into objects and stored on
Sheepdog. Although there are numerous tools available to trace
I/O activity [12,32], we embed codes on the implementation of
gateway nodes, in functions gateway_replication_read and gate-
way_forward_request, for lightweight trace collection. For each
gateway node, the trace data is flushed to a trace file at the
background. If there is more than one gateway node configured,
multiple trace files are merged before performing pattern anal-
ysis. By analyzing I/O trace on the aggregator, I/O characteristics
can be mined for the entire storage system. The tracing and I/O
characteristics discovery methodologies can also be applied to
general parallel/distributed storage systems on physical nodes.

3. 1/O characteristic discovery

In this section, we introduce the design and implementation
of the proposed I/O characteristic discovery methodology. Fig. 2
shows an overview of this method. It begins with a stream
of 1/O traces, which can be collected periodically based on the
description in Section 2.2. Each line/record in the trace file in-
dicates one object access with various features. Fig. 2 illus-
trates part of the real trace data and features we have collected
from Sheepdog. In this specific example, due to the space limit,
we show the following features: (1) access time, (2) object ID,
(3) access length, (4) access offset, (5) operation code, (6) request
ID, (7) object index, (8) object reference count, (9) zone (one
object copy per zone), and (10) target node ID. The trace data
will be pre-processed for feature normalization and formatted
to training datasets. These training data sets are then used by
PCA (principal component analysis) module [13] to derive key
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features (i.e., the important, principal features) from their original
features. Each feature represents one dimension describing an
attribute of data accesses. Learning key features is essentially the
process of dimensionality reduction. Utilizing key features and
training data sets, a DBSCAN-based clustering algorithm [10] is
used to group relevant objects by calculating the correlation of
key features. Based on these I/O characterization results, storage
systems can be tuned and optimized for better performance. We
will describe the feature normalization, learning key features,
clustering, and discuss the efficacy in this section.

3.1. Feature normalization

To discover I/O characteristics, traces need to go through a
feature normalization pre-processing stage to lay out a founda-
tion for the comparison and key feature selection. The reason
is that, in I/O traces, features have values in different units. For
example, in Fig. 2, the access time feature is a 64-bit integer in
milliseconds, while the access offset feature is a 32-bit integer in
bytes. Such a large range of values makes it difficult to compare
different features and identify their importance. To solve this
issue, feature normalization is performed to reduce the range
and variance of different feature values. Further, features with
same or redundant values are ignored because they do not help
distinguish 1/O behaviors. In the current study, we also do not
consider features that are not in numerical values.

There are many data normalization methods, such as min-
max, z-score and decimal scaling normalization methods [25]. We
use the z-score method for feature normalization as the trials of
these methods confirm the z-score delivers the best promise to
reduce the value variance across different features and remove
outliers [25]. The z-score method subtracts the mean from each
feature and further divides it by its standard deviation. It trans-
forms the data set to a distribution with zero mean and unit
variance. The conversion function for feature normalization of
each data access is described as:

X—u
zZ =

(1)
o

where x is one value of the feature (e.g., 81920 in length feature
in Fig. 2), © and o are the average and standard deviation of all
values for the feature. A sample result of feature normalization
is shown in Fig. 2. It can be seen that the features with large
variance are transformed to the same scale, which lays out the
foundation for further key feature selection.

3.2. PCA-based key feature selection

After performing feature normalization, I/O access features are
normalized. However, applications often exhibit complex behav-
iors. It is challenging to select a set of features for 1/O characteris-
tic discovery without any domain knowledge of applications [6].
To solve this problem, we introduce the concept of principal
component to describe and identify I/O behaviors. Assume all data
accesses construct a multi-dimensional space/coordinate. Each
point in the coordinate represents one object access and each
feature represents one dimensionality that describes an attribute
of data access (e.g., the access time feature represents a dimen-
sion that describes when an object is accessed and the object
ID is another dimension describing which object is accessed).
The principal component analysis learns the “main direction”
of data accesses with a dimensionality reduction process. This
“main direction” represents the dominant data-access pattern
of 1/0 behaviors. They keep the key set of descriptive features
and reduce the noises in data accesses without requiring any
expertise or domain knowledge.
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I/0 trace file (Section 2)

timestamp object id length offset opcode reqid index refcount zone targetnode .
14755...9655 | 55620...1025 '81920 ' 462848 | 2 ' 1 | 0 ! 1 ! 0 | 248 !
14755...8067 | 55620...1031 | 16384 ' 3035136 , 2 , O , 1 | 1 | 1 . 247

| | | l : . | I .
[ 1 ] | 1 ] ] 1 1
1 1 1 1 1 1 1 1 1

14755...8387 1 55620...1032 , 8192 , 2572288 1 2 2 244

Feature normalization (Section 3.1)

-2.5954 | -0.9095 | -0.9158 | -0.6964 | -1.6036 | -0.0038 ; -0.0041, -1.1863 | -0.0036 , . |
-2.5950 | -0.9087 | -0.9604 | 1.1055 |, -1.6036 |, -1.3727 | -1.3810, -1.1863! 2.9627 | . .
-2.5948 | -0.9087 | -0.9660 |, 0.7813 | -1.6037 | 1.9201 , -1.3725, -1.0672! -0.0036, » ,

>
Results after applying PCA (Section 3.2)

5.5755 | -0.0753 | 1.0242 | 0.6727 , -0.2181 | 0.7744 , 0.1016 , 1.0250 T
5.5752 ' -0.0752 ' 1.0245 ' 0.6720 ' —0.2180 ' 0.7746 ' -0.2108 ' -1.9954 ' . ' |
8.9861 ! 9.1025 ' -2.9243 '-1.3178 ! 0.3612 ' -2.129 ' -0.1502 | -0.4318 ' . ! .
PCA-based key features learning (Section 3.2)
45, =
= 15t Principal Component 3
40 = 2nd Principal Component||
’\33 = 3rd Principal Component | 2
%3 = 4th Principal Component | E
52 Hoy ’.: T
62 | - S
1 | 0
& =
l l _1 N
0 read G B w— 1 3 3
Key features selection (e.g., the Dimensionality reduction
first four important principal components) (To be intuitive here gives first
two key features)

-
DBSCAN-based data accesses clustering (Section 3.3-3.5)

—0.5 A [ 23 accesses
o 19 accesses
O 19 accesses
—0.6/ 3| <> 18 accesses
Y% 17 accesses
O + 17 accesses
0 17Acs [0 9Acs 2 + 16 accesses
—-0.7, <>+ A 15Acs A 9Acs 16 accesses
| O 14 Acs O 9Acs 1] P | 16 accesses
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—-0.9 v 9Acs v 9Acs
: | 9Acs | 9Acs -2 =]
— 9 Acs — 9Acs
“L0—g55 05 10 15 20 25 i . n . . .
Group highly relevant object IDs by mining objects’ I/0O similarity (the points
with the same color and shape mean tley are in the same group), particularly
key features correlation, and achieve 1/0 optimization (e.g., data prefetching)

Fig. 2. Overview of 1/O characteristic discovery (the real trace data and features are collected on Sheepdog).

More specifically, PCA (principal component analysis) method The input of PCA is the set of normalized features, and the
[13], an unsupervised machine learning analysis is used to learn output of PCA is a new subset of features defined by the princi-
the key features. PCA is a statistical method that captures patterns pal components, usually with less dimensionality. Each principal
in multi-dimensional data set by choosing a set of important component has an eigenvector, which indicates the importance
dimensionality automatically, the principal components or key of this component. These eigenvectors can be calculated from the
features, to reflect covariation among the original coordinate. covariance matrix in the PCA analysis. Assume the eigenvectors
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for n principal components are Aq, A5, ..., Ay, respectively, the
eigenvector proportion of principal component i is:

A

o .
Zj:l Aj

We define the first k principal components as “key features”,

if the below proportion formula is larger than a threshold, such
as 90%.

k
Zj:l Aj
Z;:l Aj

3.3. Object clustering

(2)

(3)

With key features of data accesses, a clustering stage is per-
formed to identify the access similarity among objects for dis-
covering I/O characteristics. As the example in Fig. 2 shows, the
result of PCA is a new multi-dimensional data set, where each
row/record corresponds to one original object access, and each
column indicates a principal component. We use the formula (3)
to select the first k principal components as the key features.
Then, clustering is performed to group data accesses based on
their distances calculated by the key features. As each data access
has an object ID, we can consider the objects in the same group
have high I/O similarity. If there are two or more data accesses for
one object in the same group, we will remove duplicate objects.

We have tried three clustering algorithms, nearest neighbor
(NN) [10], K-means [1] and DBSCAN [10], and selected the DB-
SCAN. The reasons are two-fold. First, DBSCAN is simple in terms
of the algorithm complexity. It allows fast processing of large data
sets with the average time complexity of O(nlog(n)), where n
is the number of data points. In contrast, K-means and NN are
much more time consuming. K-means has the time complexity of
O(nx*kxt), where k is number of clusters, t is number of iterative
calculations. To find the k closest points, the time complexity of
NN is O(nd + kn), where d is the feature number of each data
point.

Second, DBSCAN is a density-based clustering algorithm that
is very robust and handles noisy data well. In fact, according
to our observations, the output data set of PCA stage shows
irregular shapes (e.g., most data points reside close to a straight
line, as seen in Figs. 6 and 7). In this case, K-means has low
efficiency because it is used to identify a set of data points that
congregate around a region in multi-dimensional space (spherical
distribution) [1]. Fig. 3 shows an example of K-means clustering
results after PCA for real traces in Sheepdog (such a small number
of data points is used for an easy illustration). The x axis and y
axis represent two key features (the results have no units after
the PCA stage). It can be seen that K-means algorithm will group
data sets into three clusters, where cluster1 and cluster2 cross two
lines. This is counter-intuitive because data points in the same
line have better similarity. Instead, DBSCAN clusters these data
points along the line (data points with different colors and shapes
means different clusters on the line), and the result is much more
accurate. NN groups the points from two different lines into the
same cluster and does not generate the accurate result.

For clustering objects, DBSCAN uses a distance function to
calculate the distance among data accesses to decide whether ob-
jects are in the same group. We use the Euclid space distance [10]
of key features (key features correlation) to calculate the distance
between two accesses. There are two parameters highly relevant
with the clustering results of DBSCAN. One is a distance threshold
dis_thr that indicates the maximum distance between two objects
allowed in one group. It is actually difficult to obtain an accurate
value. In this study, we present a dynamic method to adjust
the distance threshold dis_thr. More details will be discussed in
Section 3.4. The second parameter is min_samples, the minimum
number of objects in a group. We set the value to 2 to ensure
each group at least has two data access points.
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Fig. 3. Object clustering with K-means.

3.4. Distance threshold adjustment

In this section, we discuss how to tune DBSCAN to conduct an
appropriate number of clusters for grouping objects. As we have
described before, DBSCAN controls the clustering results through
the distance threshold dis_thr. If this value is too small, then the
average cluster size (the number of accesses in a cluster) will be
very large, which cannot distinguish I/O similarity well. On the
other hand, if this threshold is too large, the average cluster size
will be very small, e.g., one access in the cluster, which leads
to no similar objects in the system. To address this challenge,
we dynamically adjust the distance threshold dis_thr until se-
lecting an appropriate value. Specifically, we use the “elbow”
method [14], which examines the variance of the average cluster
size for different thresholds (dis_thr), and chooses appropriate
values for both the threshold value and average cluster size.

Algorithm 1 Clustering threshold selection

1: procedure THRESHOLD_SELECTION(INPUT : (t;, ¢;), ..., (j, ¢j))
2 B:(tj—ti,Cj—C,')

3 b=b/|b]|

4: fork=ik++; k<jdo

5: a=(tk—ti,Ck—Ci)

6 v=|a—(a~lA))'lA7|

7 if tmp < v then

8 tmp =v

9: elbow_point = k

10: end if
11: end for

12: end procedure

The algorithm and pseudo-code of selecting dis_thr are shown
in Algorithm 1. We first calculate the average cluster size itera-
tively by increasing the threshold dis_thr from 0 with an adjust-
ment of t, in every step, till the average cluster size reaches a
constant value. The constant value means the cluster size reaches
a stable value (e.g., equal to one), regardless of how dis_thr
changes. For each value of thr_adj = (to, t1, ..., t;), we use DB-
SCAN to calculate average cluster sizes clu_arr = (co, €1, ..., Cp).
Thus we get a curve describing the relationship between the
adjustment values and the average cluster size. The points on
the curve are p = {po,p1,...,Dn}, Where po = (to, Co), p1 =
(t1,¢1)y...,Pn = (ty, cy). Then we remove the points whose
average cluster size is one. The choice of an appropriate distance
threshold dis_thr is to find the best trade-off point in the points
p" = {pi, Pit1, .., pj}, where the i,j values are the indices of
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-1

-2

Fig. 4. An illustration of high-density cluster.

remaining points after removing these points whose average
cluster size is one. The evaluations are shown in Section 5.1.

3.5. Re-clustering for data accesses

By adjusting the distance threshold dis_thr, we derive ap-
propriate parameters for DBSCAN to cluster data accesses and
group objects. However, in some cases, with the trained threshold
dis_thr, there might be a few clusters with an extraordinarily large
number of data points compared with others. For example, in
one evaluation based on real-world traces, the sizes of almost all
clusters are less than 20 except that one larger than 300. This is
because that DBSCAN is a density-based clustering algorithm and
there are data points concentrating on nearly the same position
in the coordinate. If we continue to reduce the trained threshold
dis_thr at this time, it will affect the results of other clusters
(i.e., each data point is regarded as a noise point). We call this
extraordinarily large-size cluster “high-density cluster”, which
cannot be well clustered through one iteration.

To solve this problem, data points in the “high-density cluster”
will be identified and automatically re-clustered. A new smaller
temporary threshold dis_thr’ will be selected until appropriate
cluster sizes are obtained. Fig. 4 shows an illustration of high-
density cluster with more than 300 points, where the x axis and
y axis represent two identified key features.

4. Use case of I/O characteristic discovery

To validate the feasibility and to evaluate the efficacy of the
newly proposed 1/O characteristic discovery method, we further
design and implement a data prefetching mechanism as a use case
in this study. The prefetching mechanism is implemented on the
Sheepdog storage system [26].

4.1. Data prefetching use case

To speed up 1/O performance, the vanilla Sheepdog provides
an object cache layer (e.g., solid state disks), where objects can
be cached and then flushed asynchronously into hard disks. The
object cache is actually a local file system directory in the storage
node for object store and independent for each storage node. The
object cache can speed up reads too, but it does not work well
yet due to the low cache hit ratio observed in our evaluations
(varied from 2.87% to 19.83% as shown in Section 5.3). We lever-
age the 1/O characteristic discovery method to implement a data
prefetching mechanism with a hope to improve the object cache
hit ratio and thus the overall performance of Sheepdog.

As show in Fig. 1, 1/O traces are collected on the gateway nodes
via a lightweight tracing layer that periodically collects object
I1/O requests, where the latest accesses are used for prefetching.
The I/O characteristic discovery (as seen in Fig. 2) provides an
off-line analysis process by reading the trace file and clusters
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objects into groups according to their similarity. Then the object
prefetching process retrieves the clustering results from the pat-
tern analysis and predicts future possible object accesses based on
current object access. The prefetching process will send requests
of predicted future object accesses to the data retrieval thread,
which is in charge of fetching objects from hard disks to the
object cache. Whenever conducting a disk read, the prefetching
process will first check the object cache. If the object is not in the
cache yet, it then issues requests to the underlying disks. Other-
wise, the prefetching process will return data to the application
immediately, without fetching data from disks.

The prefetching mechanism is based on the clustering results
of objects. If an object in one group is accessed, other objects in
the same group are read in advance to the object cache. We use
the object ID as a unique value to identify different objects in a
group. We remove duplicate objects to make each object distinct
in the group. Then an I/O prefetch table (IOPT) is constructed for
each storage node to maintain the similarity relationship among
objects. Given the key is object ID, the value is a candidate object
list that have high I/O similarity with it (the objects in the same
group). As an object may appear in multiple groups, we combine
the candidate objects for it. We use binary search tree (BST) to
manage the table to further minimize the search time. When
reading an object, the storage node will first search it in the object
cache. Upon a miss, the storage node will read the demanded
object from hark disks to the cache and simultaneously prefetch
objects. For each trace analysis, the IOPT will be reconstructed to
reconcile the applications.

To further tune the prefetching mechanism, we consider two
factors for data prefetching. One is the object access time. As
the prefetching strategy intends to retrieve the data for future
accesses, we compare the first access time of each object in the
trace file with the object ID. Given an object x, only the objects
whose access time are larger than x in the same group will
be added to its candidate object list. The other factor is object
locality. Distributed storage systems often have replicas for data
placement. When prefetching an object to the object cache, we
choose the copy on the local node as the first priority to reduce
the latency of a remote access.

The prefetcher fetches relevant objects after analyzing the
given application access patterns. It can also be applied in a
setting where many applications run concurrently. It is feasi-
ble because our I/O characteristics discovery method provides a
system-level 1/O pattern analysis, which does not differentiate
requests from concurrent applications. The traces are collected on
the server-side and include the I/O requests from all applications.

4.2. Other use cases

More use cases of utilizing discovered I/O characteristics could
be found in practice. One example is to determine the optimal
layout of data striping in parallel file systems [5]. Specifically,
instead of distributing data on multiple storage nodes in a round
robin fashion, file systems can take advantage of the known 1/O
characteristics to place relevant data strips together in the same
place to minimize applications’ overall data access cost. Another
example is to achieve efficient data replication in distributed
storage systems [27], where objects with similar I/O patterns can
be identified and replicated together.

5. Evaluation

In this section, we present various experimental evaluations of
the proposed I/O characterization methodology. We implemented
a lightweight 1/O tracing layer in Sheepdog to collect server-
side traces, which include more than 20 features such as access
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time, object ID, length, offset, target node, etc. We also imple-
mented the prefetching mechanism in the object cache layer of
Sheepdog to evaluate the accuracy and effectiveness of identified
data-access patterns.

The experiments were conducted on a local 26-node cluster,
including 20 storage nodes and 6 compute nodes hosting VMs.
Each storage node has dual 2.5 GHz Xeon 8-core processors, 64
GB memory, a 500 GB Seagate SATA HDD and a 200 GB Intel
SSD. The compute nodes are used for running VM clients, where
each client is emulated by KVM/QEMU and configured with 2
vCPUs and 8 GB RAM. We conducted the experiments using both
standard file system benchmark FIO and application workload
BigdataBench [30]. We used one storage node as the gateway
node to collect all I/O accesses and analyze access patterns.

5.1. Distance threshold selection

To identify 1/O characteristics, we leverage the clustering al-
gorithm to group relevant objects according to I/O similarity.
It is important to choose an appropriate distance threshold as
the threshold affects the clustering results. In this section, we
report the results of distance threshold selection. We launched
one or six VM clients on different computer nodes to perform FIO
benchmark tests.

We performed four types of tests which represent different file
access modes. Among them, FIO 2Randr 2Randw 1r 1w means tests
on 6 VMs, in which two FIO for rand read, two FIO for rand write,
one FIO for sequential read and one FIO for sequential write. We
analyzed all the traced data (from 170K to 500K I/O requests
records) and showed the training results of distance threshold
adjustment in Fig. 5. In this test, we set the threshold adjuster
t; as 0.00001. Though this adjustment takes multiple rounds of
calculation to obtain the appropriate threshold (from 20 to 250

iterations), the total cost is actually small because each iteration
time is short (average time from 1.48 s to 6.67 s as shown below
in Table 1).

Fig. 5 shows results with varying threshold values, where the
x axis is threshold and y axis is average cluster size. Two observa-
tions can be made. First, the average cluster size increases with
larger thresholds. It is comprehensible that more data accesses
will be grouped in the same cluster if the distance threshold
dis_thr is large. Similarly, at the beginning, the average cluster
size is large because many data points are regarded as noisy data
due to too small distance threshold, which in turn reduce the total
number of clusters.

The second observation is that all tests have an “elbow posi-
tion” that can be calculated in the relationship curve. Before or
after the “elbow position”, the average cluster size of grouping
objects is not a reasonable fit for data prefetching. For example,
in FIO sequential read, we can find the “elbow point” in threshold
0.000065. This point gives us good clustering results as the aver-
age cluster size is less than 5. For other trace results, the “elbow
point” occurs in different positions with the moderate average
cluster size from 7 to 13.

5.2. /O characteristics analysis

In previous tests, we dynamically adjusted the threshold to
select an appropriate threshold for clustering. In this section, we
report the detailed results of 1/O characteristics discovery. We
first conducted the evaluations with FIO benchmarks on one or
multiples VMs. For the test on one VM, we launched FIO with data
size of 50 GB and request size of 4 MB. For the test on multiple
VMs, we launched FIO with 128 jobs, where each job accessed an
independent file with 100 MB in an asynchronous way with the
request size of 4 MB.
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Table 1
Statistics of 1/O characterization results.
Trace type Number of I/O traces Ave. seconds for each iteration Num. of clusters Distance threshold
Object access Whole object access (4 MB)
Sequential read 171,760 3691 1.483 32,388 0.000065
Sequential write 386,783 113,217 6.675 29,640 0.000063
Rand read 495,465 4535 5.361 49,217 0.005
Rand write 535,097 4903 5.986 48,496 0.005
3Randr 3r 334,957 11,897 3.506 43,894 0.0001
2Randr 2Randw 1r 1w 228,709 6424 1.877 20,910 0.000025

Fig. 6 shows the results of key features learning from I/O
accesses with FIO running on 1 VM. Each point in the coordinate
indicates an object access. To be intuitive, we plot 40K accesses
based on the first principal component (1st PC) and second prin-
cipal component (2nd PC) after PCA. Supposing the data accesses
as points distribution in a multi-dimensional basis coordinate,
the two principal components (x axis and y axis) reflect the
dominant /O behavior for I/O trace in the new 2-dimensional
basis coordinate.

Two observations can be made from the PCA results. First,
the results show that data-access patterns vary with different
workloads (mean different shapes in the coordinates). But we see
most data points reside close to different straight lines. All of
them formed linear clusters locally and located in certain regions.
The I/O similarity can be accurately identified as DBSCAN works
well for this distribution. Specifically, the dark region with a large
number of points means “high-density cluster”, which will be
re-clustered.

Second, besides FIO sequential read, other three benchmarks
(sequential write/rand read/rand write) also have strong object
similarities. One reason we infer is that the operation system in
VM can also have its behaviors and affect the access patterns
(e.g., the operation system call, I/O scheduling).

Similar to the test results on 1 VM, most of the data accesses
construct line distribution in different regions for multiple VMs
tests, as shown in Fig. 7. But, unlike the patterns on 1 VM, there
are few regions with “high density clusters”. We can see that
most of the data accesses concentrate in several parallel lines.
The object similarities can also be found with DBSCAN in such
scenarios.

To show the exact eigenvector proportion accounted for each
principal component (which is also used for key features selec-
tion), we gave the values of first four principal components in
Fig. 8. It can be seen that the first principal component in the
tests accounts for a large eigenvector proportion. Specifically,
the 1st PC of FIO read accounts for up to 44.3% eigenvector
proportion. Other trace can account from 27.9% to 38.2%, thus
more principal components can be used until getting the major
proportion. PCA does return a less dimensional data set in most
cases. However, each dimensionality actually corresponds to a
combination of multiple features/attributes of the original data
set, instead of representing a single, determinate selected feature.
In our evaluations, although the first four principal components
reach more than 90% of the variance, they do not mean only four
features of the original data set take effect. They represent the
most important characteristics of I/O accesses that can be used as
key features for pattern analysis. Also, Fig. 8 represents only one
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case. In fact, if the features have large variations, more principal
components will be selected as “key features”.

Table 1 reports statistics of analysis results for different work-
loads. The whole object access means the request data size is 4 MB
(also is the object size). As the number of clusters is large, we
choose the first 20 largest clusters for each test (excluding “high-
density clusters”, indeed the number of “high-density clusters”
is less than 3 in each test), as shown in Figs. 9 and 10. These
results are beneficial for data prefetching in two-fold. One is that
we identify the objects with high similarity in I/O behaviors in the
same group. The other is that the cluster sizes are appropriate for
our data prefetching. (The average cluster size is from 2 to 25, the
maximum cluster size is less than 30.)

5.3. Evaluation of prefetching use case

To validate the feasibility and to study the effectiveness of
our methodology, we use data prefetching in Sheepdog as a
use case to leverage pattern analysis results. Besides FIO, we
use BigdataBench [30] to emulate real applications workloads
and performed tests on three VMs. BigDataBench is a big data
benchmark suite, which is widely used to emulate real-world
applications and synthetic data sets. In BigDataBench, we se-
lect three application simulations, including Hadoop, Spark and
Hive, for our tests. They are all popular data intensive computing
applications in large-scale data centers.

We ran the application simulations to collect and analyze
the 1/O trace for data read operations. The vanilla Sheepdog
system does not have any prefetch capabilities enabled (basic).
To compare the performance of prefetching, we calculated the
cache hit ratio by replaying the applications. We replayed the
application for two times. First, we still used the default object
cache layer without prefetching (Replay). We did it to test the
ability of object cache in Sheepdog as the cache layer has been
warmed with data. Second, we replayed the application with
the prefetching mechanism enabled for data prefetching in the
object cache (Replay with prefetching). During the tests, we used
solid state disks as object cache storage devices with the cache
capacity 10 GB. For each test, we generated 30 GB data volume
and calculated the average cache hit ratio.

Table 2 shows the comparison of cache hit ratio before and
after data prefetching. We got the value of hit ratio through
dividing the number of object hitting on the cache by the total
number of object accesses. All tests use the default cache replace-
ment strategy, i.e., the random replacement, in Sheepdog. The first
two tests (basic and replay) are on the vanilla Sheepdog without
I/0 prefetching, where the values vary from 2.87% to 19.83%.
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Table 2
Comparison of cache hit ratio (%).
Trace FIO Hadoop Spark Hive query
Read Random read  3Randr 3r  Sort Grep Wordcount  Sort Grep Wordcount  Aggregation  Join Select
Basic 8.57 6.15 7.38 3.42 5.89 2.87 13.15 1652 12.36 6.92 8.17 9.53
Replay 10.61 8.59 9.04 4.35 6.21 347 15.62 19.83 14.72 7.58 9.26 11.31
Replay with prefetching 4824  29.83 32.36 39.67 4631 372 4295 44.17 35.78 37.05 4218  47.82

== Vanilla Sheepdog
== Sheepdop with prefetching

Time (s)

500

0 Spark

P
(Sort, Grep, Wordcount)

Hadoop
(Sort, Grep, Wordcount)

Hive Query
(Aggregation, Join, Select)

Fig. 11. Overall performance improvement for data prefetching with /O
characterization.

Although the result of replay) is better than that of basic) test (due
to warmed object cache), the cache hit ratio is still low. With our
prefetching strategy, the cache hit ratios increase from 29.83% to
48.24%, which are nearly improved to more than 10 times. The
reason is that when an object is accessed, the objects with high
similar I/O behaviors will be prefetched into the cache. Thus the
system can find the future requested data in the object cache. The
tests prove the effectiveness of our prefetching strategy with 1/O
characteristics discovery.

Fig. 11 further describes the overall performance improvement
with data prefetching for BigdataBench evaluations. With the in-
crease of cache hit ratios, the execution time of Hadoop and Hive
applications has been significantly reduced, with a percentage
of up to 42%. This is because the storage system can retrieve
cached objects from fast SSDs. Note that Spark achieves more
performance improvement as it persists an RDD in memory [2],
allowing it to be reused efficiently for the tests replay. The results
show that our prefetching mechanism can significantly reduce
the latency for big data applications.

6. Related work

Numerous studies have been conducted in recent years for
I/O characteristic discovery and performance optimizations. We
discuss existing studies in this section and compare them with
this research.

6.1. I/0 profiling, tracing, and feature analysis

A number of tools have been developed to profile and trace I/O
activities, such as Darshan [18], LANL-Trace [12], RIOT 1/O [32],
etc. Existing tools record I/O behaviors for user applications.
However, most of them focus on the collection of I/O statisti-
cal information without providing effective ways to understand
data-access patterns.

There is a rich set of literature on the topic of I/O features
analysis and pattern discovery. These approaches mainly focus
on two categories: 1/O access sequence analysis and I/O semantic
attribute analysis. The I/O sequence analysis is based on various
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parameters of data accesses, including spatial locality, tempo-
ral sequence, and repeating operations [9,11,19,20,34]. However,
these analyses were performed to look for the periodicity of an
application’s 1/0 behavior based on prior workload expectations.
It lacks consideration in analyzing the I/O behaviors that have no
knowledge to assume any application to possess certain patterns.

6.2. /0 semantic attribute analysis

On the other hand, by extracting semantic attributes from
file systems, semantic attribute mining approaches can analyze
more complex I/O patterns and get the correlations among data
accesses, such as C-Miner [15], Farmer [33], Block2Vec [7], and
many others [6,8,28]. Although these methods look at trace for
1/0O characteristics discovery, they perform the pattern analysis
with only one or few specific features at a time. Chen et al. [6]
proposed a multi-dimensional, statistical correlation trace anal-
ysis with K-means data clustering algorithm to identify access
patterns. It can obtain comprehensive data access behavior, but
require domain knowledge for selecting the set of descriptive
features and interpret the output results. Different from them, we
introduce the principal component concept to automatically select
key features from a vast number of access features. It reduces
the bias introduced by domain knowledge or priori information
of the applications. In addition, we also utilize DBSCAN, a multi-
dimensional statistical data clustering algorithm to analyze 1/O
similarity and dynamically adjust the distance threshold for clus-
tering. It can identify groups of highly similar I/O accesses without
any assumption of the number or shape of result clusters and
achieve I/O characterization.

6.3. I/O optimizations

With the analysis on data-access patterns, the storage sources
can be better leveraged to boost the performance of applications.
It has motivated various I/O optimizations including prefetch-
ing [11], data layout [33], and scheduling techniques [17]. Model-
based algorithms, such as using neural network [20], Markov
models [22], grammar-based model [9] and so on [24], have been
studied and their efficiency proven for prefetching in many cases.
However, existing prefetching strategies mainly focus on spa-
tial/temporal 1/O behaviors or specific access features to prefetch
future data and achieve performance optimization. In contrast,
we address the limitations of current prediction systems for data
accesses with high I/O similarity. We use PCA-based method
and data clustering algorithm to analyze key feature correlations
among objects from I/O behavior. With the results of pattern anal-
ysis, we can achieve an efficient data prefetching for object-based
storage system and significantly reduce the I/O latency.

7. Conclusion

Many scientific and commercial applications in critical areas
have become highly data intensive, which pose significant perfor-
mance challenges on the storage systems. To achieve the best I/O
performance, identifying and leveraging the data access pattens is
a critical strategy. Numerous studies have been conducted in this
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space. However, most of them are either limited to specific, user-
defined features for pattern analysis or heavily rely on domain
knowledge about the running applications, limiting their usage.

In this paper, we have introduced a new method for I/O char-
acteristic discovery in object-based storage systems. Different
from existing approaches, this method intends to capture data-
access features as many as possible to eliminate the bias for
specific workloads. It utilizes the principal component analysis
(PCA) to retrieve key features from traces automatically. Based
on learned key features, a density-based clustering, i.e., DBSCAN,
is performed to mine objects correlation and to group objects
for revealing I/O characteristics. In this manner, the I/O charac-
teristics and patterns are analyzed and discovered without any
domain knowledge. We further implemented a data prefetching
mechanism on Sheepdog storage system as a use case of such
1/O characteristic discovery method. This use case also serves as a
mechanism to validate the feasibility of the proposed method and
to evaluate its efficacy. The evaluation results confirmed that the
proposed solution can successfully identify object access patterns
and achieve efficient data prefetching. The buffer cache hit ratio
was improved by up to 48.24% and the overall performance was
improved by up to 42%. In the future, we plan to further study
more use cases for I/O optimizations.
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