
Journal of Parallel and Distributed Computing 148 (2021) 1–13

a

b

c

g
s
t
p
d

a
h
a
a
t
o
u
t

c
t
h
2
m

(
w

h
0

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

I/O characteristic discovery for storage system optimizations
Jiang Zhou a, Yong Chen b,∗, Dong Dai c, Yu Zhuang b, Weiping Wang a

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
Department of Computer Science, Texas Tech University, Lubbock, USA
Department of Computer Science, University of North Carolina at Charlotte, Charlotte, USA

a r t i c l e i n f o

Article history:
Received 11 August 2018
Accepted 3 August 2020
Available online 28 September 2020

Keywords:
Parallel/distributed file systems
Object-based storage
I/O characteristic discovery
Access pattern analysis
I/O optimization

a b s t r a c t

In this paper, we introduce a new I/O characteristic discovery methodology for performance opti-
mizations on object-based storage systems. Different from traditional methods that select limited
access attributes or heavily reply on domain knowledge about applications’ I/O behaviors, our method
enables capturing data-access features as many as possible to eliminate human bias. It utilizes a
machine-learning based strategy (principal component analysis, PCA) to derive the most important set
of features automatically, and groups data objects with a clustering algorithm (DBSCAN) to reveal I/O
characteristics discovered. We have evaluated the proposed I/O characteristic discovery solution based
on Sheepdog storage system and further implemented a data prefetching mechanism as a sample use
case of this approach. Evaluation results confirm that the proposed solution can successfully identify
access patterns and achieve efficient data prefetching by improving the buffer cache hit ratio up to
48.24%. The overall performance was improved by up to 42%.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

The ever-increasing data demand in many science and en-
ineering domains has posed significant challenges to storage
ystems. Parallel/distributed object-based store [21], such as Lus-
er [3], Ceph [31], and Sheepdog [26], has been widely used to
rovide required storage capability, and more importantly, to
eliver high data-accesses speed.
To achieve highly optimized data-access performance of stor-

ge systems, understanding and leveraging data-access patterns
ave been proven effective. For example, PDLA [35] describes
n I/O data replication scheme that replicates identified data-
ccess pattern (i.e., spatial-related access pattern), and saves
hese reorganized replications with optimized data layouts based
n access cost analysis. Arguably, the better the access pattern is
nderstood, the better the storage system can be optimized and
uned.

As a result, numerous studies have been conducted to identify,
haracterize, and leverage data-access patterns in storage sys-
ems. One well-known method is to analyze spatial/temporal be-
aviors of data accesses to identify I/O access sequence [9,11,19,
0,34]. Another important method is to analyze semantic infor-
ation such as the access correlations between file blocks/objects

∗ Corresponding author.
E-mail addresses: zhoujiang@iie.ac.cn (J. Zhou), yong.chen@ttu.edu

Y. Chen), dong.dai@uncc.edu (D. Dai), yu.zhuang@ttu.edu (Y. Zhuang),
angweiping@iie.ac.cn (W. Wang).
ttps://doi.org/10.1016/j.jpdc.2020.08.005
743-7315/© 2020 Elsevier Inc. All rights reserved.
by mining I/O semantic attributes, which can potentially discover
more complex patterns, especially semantic patterns [6,8,15,
28,33]. Other methods also exist at different I/O layers, such
as application-/client-side trace analysis [20], server-side trace
analysis [16,17], or both server and client I/O analysis [6]. While
existing studies show the feasibility of I/O characteristic discovery
through various approaches, they have three shortcomings as
discussed below, which also motivates this research.

First, many of these approaches are limited to specific and
predefined features. A feature refers to an attribute of a data
access. For example, the object ID of an object access is a feature;
the data access size is another feature. Many existing studies
investigate one or more rather specific, predefined features to
analyze access patterns. The resulting insights, although valuable,
often lead to an incomplete view of access patterns. For example,
object ID and access time help obtain temporal I/O behavior, but,
if access length and offset are considered, spatial correlation of
data accesses can be further derived. In general, more features
indicate more I/O behaviors, i.e., read/write operation code reveals
read/write types and target node ID provides object location.
Given the increasing complexity of I/O behaviors, it is inadequate
to attempt to discover I/O characteristics with only specific or
predefined features. It is critical to analyze abundant features
thoroughly for I/O characteristics discovery.

Second, existing approaches often introduce bias. Clearly,
treating all features equally is not accurate because distinct fea-
tures can have significantly different impacts on I/O character-

ization. However, selecting the desired set of features is often

https://doi.org/10.1016/j.jpdc.2020.08.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.08.005&domain=pdf
mailto:zhoujiang@iie.ac.cn
mailto:yong.chen@ttu.edu
mailto:dong.dai@uncc.edu
mailto:yu.zhuang@ttu.edu
mailto:wangweiping@iie.ac.cn
https://doi.org/10.1016/j.jpdc.2020.08.005

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

d
e
B
f
i
i
w
r
n
b
d
d
s
d
r
a
l
s

h
u
c
f
t
s
o
I
d

c
S
o
2

aunting and introduces bias, which requires domain knowl-
dge and assumptions about storage systems and applications.
esides, we will not know whether we have a desired set of
eatures until we have completed the entire analysis process. For
nstance, the authors in study [6] presented an iterative process to
nitially select some basic features, e.g., total I/O size and read–
rite ratio for a file, and then add new features if the analysis
esults leave some system design choice ambiguous. They still
eed to interpret the output results and derive access patterns
y looking at only the relevant subset of features, again using
omain knowledge. Moreover, the system may exhibit various
ata-access patterns for a given application. For example, the
cientific computing applications in study [29] show various
ata-access patterns for massive data processing. Identifying rep-
esentative features manually would not adapt to this scenario,
nd may lead to an untenable analysis. This drawback largely
imits the efficiency of using access patterns for tuning storage
ystem and optimizing the performance.
Third, existing approaches often have limited adaptability and

ave constraints on utilizing discovered I/O characteristics. They
sually focus on either mining spatial/temporal patterns of appli-
ations for I/O acceleration, or exploring more complex patterns
or data/block access optimizations. However, I/O characteris-
ics are very useful in many other scenarios too, such as in
torage system tuning, data prefetching, data placement, data
rganization, etc. A comprehensive, holistic design on discovering
/O characteristics and optimizing storage systems is strongly
esired.
In this paper, we present a new design methodology to over-

ome these shortcomings of existing methods discussed above.
pecifically, we propose to capture features of data accesses on
bject-based storage systems as many as possible (more than
0 in our test cases), including features like object ID, access

time, target node, and others we can collect, to generalize data-
access pattern discovery for various applications. Based on the
rich set of features, we use access correlations among objects
to identify different patterns. We utilize machine-learning based
strategy (principal component analysis, PCA [13]) to find the most
important ‘‘key features’’ automatically among all collected fea-
tures in an unsupervised way. This eliminates the bias from users
or domain knowledge requires for applications, and provides an
automatic, extensible way to identify the dominant data-access
patterns. Based on the learned key features, we apply a clustering
algorithm (i.e., DBSCAN) to mine the objects’ I/O similarity, partic-
ularly ‘‘key feature correlations’’, and group highly relevant object
IDs, which can be leveraged to improve the I/O performance.

We have implemented the data-access pattern discovery and
the prefetching mechanism based on the identified patterns on
Sheepdog, a production object-based store. We evaluated the
performance benefits using standard benchmarks and synthetic
workloads. Our results confirm that our proposed solution can
accurately identify the data-access patterns under various work-
loads and the prefetching strategy can efficiently leverage pat-
tern analysis results to improve the read cache hit ratio (up to
48.24%) and the overall performance (up to 42%). These proof-of-
concept evaluations indicate that our I/O characteristic discovery
methodology is highly promising for I/O tuning and optimiza-
tions. A preliminary study of this research appears in [36]. The
key contributions of this research are five-fold:

• Introduce a new I/O characteristics discovery and data-
access pattern analysis strategy based on a large number of
collectable features of I/O accesses for object-based storage
systems.

• Utilize machine-learning based techniques to identify key
features for I/O accesses and to cluster objects by mining
objects’ I/O similarity for I/O performance optimizations.
2

• Eliminate human bias in discovering I/O patterns without
requiring domain knowledge about applications’ I/O behav-
iors.

• Design and implement a data prefetcher prototype based on
I/O characteristic discovery on a real storage system.

• Conduct extensive evaluations on Sheepdog system as a case
study to validate the proposed I/O characteristic discovery
solution.

The rest of this paper is organized as follows: Section 2 intro-
duces the background of object storage and I/O trace. Section 3
describes the design and implementation of I/O characteristic dis-
covery methodology. Section 4 describes the use case of prefetch-
ing by leveraging access patterns for performance improvement.
Section 5 presents extensive evaluation results. Section 6 reviews
the related work and Section 7 concludes this paper.

2. Object storage and I/O trace

In this section, we first introduce the generic I/O software
stack of object storage systems that our proposed characteristic
discovery methods are based upon, and discuss how I/O accesses
can be captured. Then, based on a production-level object-based
storage system, Sheepdog [26], we further describe the trace
collection mechanism, designed and implemented as the basis for
this study.

2.1. Object-based storage and I/O trace

In most object-based storage models, applications access data
files through the POSIX interface. Internally, data files are ab-
stracted as multiple fixed-size data objects and stored in object-
based devices. Under such model, three I/O software stack layers
can be identified [18,23]. The top layer runs on compute nodes
(i.e., clients) within user applications, where the I/O accesses are
issued from. The second layer includes both the client-side file
system libraries and runtime supports. The object-based storage
systems need to implement the functions of file read and write
operations to support the POSIX interface. Data accesses will be
mapped to objects in this layer. At the third layer, these mapped
object requests will be dispatched to different storage nodes for
accessing data.

Data accesses can be traced at any I/O stack layer. For ex-
ample, Darshan [4] collects I/O trace statistics at the first layer
via instrumenting I/O calls made by applications. In this study,
we focus on tracing object accesses at the third layer, i.e., on
the storage nodes (server-side). There are mainly two reasons for
this design decision. First, all first- and second-layer I/O behaviors
will be ultimately turned into object accesses at the third layer.
I/O accesses can be fully collected through tracing on the server
side. Second, tracing server-side accesses does not assume any
domain knowledge or priori information of applications, which
is critical to support a system-level I/O characteristics discovery
methodology for applications.

2.2. I/O trace collection

As discussed earlier, tracing object accesses on the storage
node side presents a global and complete view of I/O accesses
of an entire storage system. Hence, we implement our I/O trace
infrastructure at this layer. Note that, the implementation of such
a tracing mechanism will be highly dependent on the architecture
of the object-based storage. Some object-based storage systems
utilize a centralized architecture, where all I/O requests will go
through some system servers (or metadata servers). Therefore,
tracing these system servers would be sufficient [3,27]. On the

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

o
d
(
c
t
o
a

s
t
n
n
s

S
Q
t
p
t
S
I
g
w
g
b

Fig. 1. I/O trace collection on Sheepdog object-based storage system.

ther hand, some other storage systems take a decentralized
esign, where I/O requests are directly sent to the storage nodes
e.g., via consistent hashing algorithm [26]). Although this design
omplicates the implementation of tracing as multiple concurrent
racing instances need to run on all storage servers, collecting
bject access traces in a decentralized architecture is still feasible
nd practical.
In this study, we focus on a distributed object-based storage

ystem, Sheepdog, which follows a decentralized design, but at
he same time, assigns some storage servers as the gateway
odes to receive or forward all I/O requests. We call the gateway
odes as aggregators and use them to design and implement the
erver-side object access tracing mechanism.
Fig. 1 shows the I/O trace collection on Sheepdog system.

heepdog provides block-level storage volumes attached to
EMU/KVM virtual machines (VMs). Applications run on VMs
hat are resident on physical machines. For each VM, the ap-
lication I/O is transformed to read/write operations on vir-
ual disk image file, which is split into objects and stored on
heepdog. Although there are numerous tools available to trace
/O activity [12,32], we embed codes on the implementation of
ateway nodes, in functions gateway_replication_read and gate-
ay_forward_request, for lightweight trace collection. For each
ateway node, the trace data is flushed to a trace file at the
ackground. If there is more than one gateway node configured,

multiple trace files are merged before performing pattern anal-
ysis. By analyzing I/O trace on the aggregator, I/O characteristics
can be mined for the entire storage system. The tracing and I/O
characteristics discovery methodologies can also be applied to
general parallel/distributed storage systems on physical nodes.

3. I/O characteristic discovery

In this section, we introduce the design and implementation
of the proposed I/O characteristic discovery methodology. Fig. 2
shows an overview of this method. It begins with a stream
of I/O traces, which can be collected periodically based on the
description in Section 2.2. Each line/record in the trace file in-
dicates one object access with various features. Fig. 2 illus-
trates part of the real trace data and features we have collected
from Sheepdog. In this specific example, due to the space limit,
we show the following features: (1) access time, (2) object ID,
(3) access length, (4) access offset, (5) operation code, (6) request
ID, (7) object index, (8) object reference count, (9) zone (one
object copy per zone), and (10) target node ID. The trace data
will be pre-processed for feature normalization and formatted
to training datasets. These training data sets are then used by
PCA (principal component analysis) module [13] to derive key
3

features (i.e., the important, principal features) from their original
features. Each feature represents one dimension describing an
attribute of data accesses. Learning key features is essentially the
process of dimensionality reduction. Utilizing key features and
training data sets, a DBSCAN-based clustering algorithm [10] is
used to group relevant objects by calculating the correlation of
key features. Based on these I/O characterization results, storage
systems can be tuned and optimized for better performance. We
will describe the feature normalization, learning key features,
clustering, and discuss the efficacy in this section.

3.1. Feature normalization

To discover I/O characteristics, traces need to go through a
feature normalization pre-processing stage to lay out a founda-
tion for the comparison and key feature selection. The reason
is that, in I/O traces, features have values in different units. For
example, in Fig. 2, the access time feature is a 64-bit integer in
milliseconds, while the access offset feature is a 32-bit integer in
bytes. Such a large range of values makes it difficult to compare
different features and identify their importance. To solve this
issue, feature normalization is performed to reduce the range
and variance of different feature values. Further, features with
same or redundant values are ignored because they do not help
distinguish I/O behaviors. In the current study, we also do not
consider features that are not in numerical values.

There are many data normalization methods, such as min–
max, z-score and decimal scaling normalization methods [25]. We
use the z-score method for feature normalization as the trials of
these methods confirm the z-score delivers the best promise to
reduce the value variance across different features and remove
outliers [25]. The z-score method subtracts the mean from each
feature and further divides it by its standard deviation. It trans-
forms the data set to a distribution with zero mean and unit
variance. The conversion function for feature normalization of
each data access is described as:

z =
x − µ

σ
(1)

where x is one value of the feature (e.g., 81 920 in length feature
in Fig. 2), µ and σ are the average and standard deviation of all
values for the feature. A sample result of feature normalization
is shown in Fig. 2. It can be seen that the features with large
variance are transformed to the same scale, which lays out the
foundation for further key feature selection.

3.2. PCA-based key feature selection

After performing feature normalization, I/O access features are
normalized. However, applications often exhibit complex behav-
iors. It is challenging to select a set of features for I/O characteris-
tic discovery without any domain knowledge of applications [6].
To solve this problem, we introduce the concept of principal
component to describe and identify I/O behaviors. Assume all data
accesses construct a multi-dimensional space/coordinate. Each
point in the coordinate represents one object access and each
feature represents one dimensionality that describes an attribute
of data access (e.g., the access time feature represents a dimen-
sion that describes when an object is accessed and the object
ID is another dimension describing which object is accessed).
The principal component analysis learns the ‘‘main direction’’
of data accesses with a dimensionality reduction process. This
‘‘main direction’’ represents the dominant data-access pattern
of I/O behaviors. They keep the key set of descriptive features
and reduce the noises in data accesses without requiring any

expertise or domain knowledge.

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

[
t
i
d
f

Fig. 2. Overview of I/O characteristic discovery (the real trace data and features are collected on Sheepdog).
More specifically, PCA (principal component analysis) method
13], an unsupervised machine learning analysis is used to learn
he key features. PCA is a statistical method that captures patterns
n multi-dimensional data set by choosing a set of important
imensionality automatically, the principal components or key
eatures, to reflect covariation among the original coordinate.
4

The input of PCA is the set of normalized features, and the
output of PCA is a new subset of features defined by the princi-
pal components, usually with less dimensionality. Each principal
component has an eigenvector, which indicates the importance
of this component. These eigenvectors can be calculated from the
covariance matrix in the PCA analysis. Assume the eigenvectors

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

f
e

c
N
p

i
t
i
l
e
c
d
r
o
a
t
d
l
l
p
m
a
s

c
j
o
b
w
d
a
v
t
S
n
e

3

a
d
t
a
v
o
w
t
w
l
m
s
v

c
a
c
S
T
a
t
(
a
t

or n principal components are λ1, λ2, . . . , λn, respectively, the
igenvector proportion of principal component i is:

λi∑n
j=1 λj

. (2)

We define the first k principal components as ‘‘key features’’,
if the below proportion formula is larger than a threshold, such
as 90%.∑k

j=1 λj∑n
j=1 λj

(3)

3.3. Object clustering

With key features of data accesses, a clustering stage is per-
formed to identify the access similarity among objects for dis-
covering I/O characteristics. As the example in Fig. 2 shows, the
result of PCA is a new multi-dimensional data set, where each
row/record corresponds to one original object access, and each
column indicates a principal component. We use the formula (3)
to select the first k principal components as the key features.
Then, clustering is performed to group data accesses based on
their distances calculated by the key features. As each data access
has an object ID, we can consider the objects in the same group
have high I/O similarity. If there are two or more data accesses for
one object in the same group, we will remove duplicate objects.

We have tried three clustering algorithms, nearest neighbor
(NN) [10], K-means [1] and DBSCAN [10], and selected the DB-
SCAN. The reasons are two-fold. First, DBSCAN is simple in terms
of the algorithm complexity. It allows fast processing of large data
sets with the average time complexity of O(n log(n)), where n
is the number of data points. In contrast, K-means and NN are
much more time consuming. K-means has the time complexity of
O(n∗k∗ t), where k is number of clusters, t is number of iterative
alculations. To find the k closest points, the time complexity of
N is O(nd + kn), where d is the feature number of each data
oint.
Second, DBSCAN is a density-based clustering algorithm that

s very robust and handles noisy data well. In fact, according
o our observations, the output data set of PCA stage shows
rregular shapes (e.g., most data points reside close to a straight
ine, as seen in Figs. 6 and 7). In this case, K-means has low
fficiency because it is used to identify a set of data points that
ongregate around a region in multi-dimensional space (spherical
istribution) [1]. Fig. 3 shows an example of K-means clustering
esults after PCA for real traces in Sheepdog (such a small number
f data points is used for an easy illustration). The x axis and y
xis represent two key features (the results have no units after
he PCA stage). It can be seen that K-means algorithm will group
ata sets into three clusters, where cluster1 and cluster2 cross two
ines. This is counter-intuitive because data points in the same
ine have better similarity. Instead, DBSCAN clusters these data
oints along the line (data points with different colors and shapes
eans different clusters on the line), and the result is much more
ccurate. NN groups the points from two different lines into the
ame cluster and does not generate the accurate result.
For clustering objects, DBSCAN uses a distance function to

alculate the distance among data accesses to decide whether ob-
ects are in the same group. We use the Euclid space distance [10]
f key features (key features correlation) to calculate the distance
etween two accesses. There are two parameters highly relevant
ith the clustering results of DBSCAN. One is a distance threshold
is_thr that indicates the maximum distance between two objects
llowed in one group. It is actually difficult to obtain an accurate
alue. In this study, we present a dynamic method to adjust
he distance threshold dis_thr. More details will be discussed in
ection 3.4. The second parameter is min_samples, the minimum
umber of objects in a group. We set the value to 2 to ensure
ach group at least has two data access points.
 p

5

Fig. 3. Object clustering with K-means.

.4. Distance threshold adjustment

In this section, we discuss how to tune DBSCAN to conduct an
ppropriate number of clusters for grouping objects. As we have
escribed before, DBSCAN controls the clustering results through
he distance threshold dis_thr. If this value is too small, then the
verage cluster size (the number of accesses in a cluster) will be
ery large, which cannot distinguish I/O similarity well. On the
ther hand, if this threshold is too large, the average cluster size
ill be very small, e.g., one access in the cluster, which leads
o no similar objects in the system. To address this challenge,
e dynamically adjust the distance threshold dis_thr until se-

ecting an appropriate value. Specifically, we use the ‘‘elbow’’
ethod [14], which examines the variance of the average cluster
ize for different thresholds (dis_thr), and chooses appropriate
alues for both the threshold value and average cluster size.

Algorithm 1 Clustering threshold selection

1: procedure Threshold_selection(INPUT : (ti, ci), . . . , (tj, cj))
2: b⃗ = (tj − ti, cj − ci)
3: b̂ = b/| b |

4: for k = i; k + +; k ≤ j do
5: a⃗ = (tk − ti, ck − ci)
6: v =| a − (a · b̂) · b̂ |

7: if tmp < v then
8: tmp = v

9: elbow_point = k
10: end if
11: end for
12: end procedure

The algorithm and pseudo-code of selecting dis_thr are shown
in Algorithm 1. We first calculate the average cluster size itera-
tively by increasing the threshold dis_thr from 0 with an adjust-
ment of ta in every step, till the average cluster size reaches a
onstant value. The constant value means the cluster size reaches
stable value (e.g., equal to one), regardless of how dis_thr

hanges. For each value of thr_adj = (t0, t1, . . . , tn), we use DB-
CAN to calculate average cluster sizes clu_arr = (c0, c1, . . . , cn).
hus we get a curve describing the relationship between the
djustment values and the average cluster size. The points on
he curve are p = {p0, p1, . . . , pn}, where p0 = (t0, c0), p1 =

t1, c1), . . . , pn = (tn, cn). Then we remove the points whose
verage cluster size is one. The choice of an appropriate distance
hreshold dis_thr is to find the best trade-off point in the points
′

= {p , p , . . . , p }, where the i, j values are the indices of
i i+1 j

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

r
c

3

p
g
d
n
o
c
b
t
i
d
(
e
c

w
t
c
d
y

4

n
d
i
S

4

a
b
o
n
o
y
(
a
p
h

v
I
T
o

t
a
t
w
b
l
p
c
t

g
s
b
s
r
t

4

b
l
i
r
c
p
e
s
b

5

t
a

Fig. 4. An illustration of high-density cluster.

emaining points after removing these points whose average
luster size is one. The evaluations are shown in Section 5.1.

.5. Re-clustering for data accesses

By adjusting the distance threshold dis_thr, we derive ap-
ropriate parameters for DBSCAN to cluster data accesses and
roup objects. However, in some cases, with the trained threshold
is_thr, there might be a few clusters with an extraordinarily large
umber of data points compared with others. For example, in
ne evaluation based on real-world traces, the sizes of almost all
lusters are less than 20 except that one larger than 300. This is
ecause that DBSCAN is a density-based clustering algorithm and
here are data points concentrating on nearly the same position
n the coordinate. If we continue to reduce the trained threshold
is_thr at this time, it will affect the results of other clusters
i.e., each data point is regarded as a noise point). We call this
xtraordinarily large-size cluster ‘‘high-density cluster’’, which
annot be well clustered through one iteration.
To solve this problem, data points in the ‘‘high-density cluster’’

ill be identified and automatically re-clustered. A new smaller
emporary threshold dis_thr’ will be selected until appropriate
luster sizes are obtained. Fig. 4 shows an illustration of high-
ensity cluster with more than 300 points, where the x axis and
axis represent two identified key features.

. Use case of I/O characteristic discovery

To validate the feasibility and to evaluate the efficacy of the
ewly proposed I/O characteristic discovery method, we further
esign and implement a data prefetching mechanism as a use case
n this study. The prefetching mechanism is implemented on the
heepdog storage system [26].

.1. Data prefetching use case

To speed up I/O performance, the vanilla Sheepdog provides
n object cache layer (e.g., solid state disks), where objects can
e cached and then flushed asynchronously into hard disks. The
bject cache is actually a local file system directory in the storage
ode for object store and independent for each storage node. The
bject cache can speed up reads too, but it does not work well
et due to the low cache hit ratio observed in our evaluations
varied from 2.87% to 19.83% as shown in Section 5.3). We lever-
ge the I/O characteristic discovery method to implement a data
refetching mechanism with a hope to improve the object cache
it ratio and thus the overall performance of Sheepdog.
As show in Fig. 1, I/O traces are collected on the gateway nodes

ia a lightweight tracing layer that periodically collects object
/O requests, where the latest accesses are used for prefetching.
he I/O characteristic discovery (as seen in Fig. 2) provides an
ff-line analysis process by reading the trace file and clusters
 s

6

objects into groups according to their similarity. Then the object
prefetching process retrieves the clustering results from the pat-
tern analysis and predicts future possible object accesses based on
current object access. The prefetching process will send requests
of predicted future object accesses to the data retrieval thread,
which is in charge of fetching objects from hard disks to the
object cache. Whenever conducting a disk read, the prefetching
process will first check the object cache. If the object is not in the
cache yet, it then issues requests to the underlying disks. Other-
wise, the prefetching process will return data to the application
immediately, without fetching data from disks.

The prefetching mechanism is based on the clustering results
of objects. If an object in one group is accessed, other objects in
the same group are read in advance to the object cache. We use
the object ID as a unique value to identify different objects in a
group. We remove duplicate objects to make each object distinct
in the group. Then an I/O prefetch table (IOPT) is constructed for
each storage node to maintain the similarity relationship among
objects. Given the key is object ID, the value is a candidate object
list that have high I/O similarity with it (the objects in the same
group). As an object may appear in multiple groups, we combine
the candidate objects for it. We use binary search tree (BST) to
manage the table to further minimize the search time. When
reading an object, the storage node will first search it in the object
cache. Upon a miss, the storage node will read the demanded
object from hark disks to the cache and simultaneously prefetch
objects. For each trace analysis, the IOPT will be reconstructed to
reconcile the applications.

To further tune the prefetching mechanism, we consider two
factors for data prefetching. One is the object access time. As
he prefetching strategy intends to retrieve the data for future
ccesses, we compare the first access time of each object in the
race file with the object ID. Given an object x, only the objects
hose access time are larger than x in the same group will
e added to its candidate object list. The other factor is object
ocality. Distributed storage systems often have replicas for data
lacement. When prefetching an object to the object cache, we
hoose the copy on the local node as the first priority to reduce
he latency of a remote access.

The prefetcher fetches relevant objects after analyzing the
iven application access patterns. It can also be applied in a
etting where many applications run concurrently. It is feasi-
le because our I/O characteristics discovery method provides a
ystem-level I/O pattern analysis, which does not differentiate
equests from concurrent applications. The traces are collected on
he server-side and include the I/O requests from all applications.

.2. Other use cases

More use cases of utilizing discovered I/O characteristics could
e found in practice. One example is to determine the optimal
ayout of data striping in parallel file systems [5]. Specifically,
nstead of distributing data on multiple storage nodes in a round
obin fashion, file systems can take advantage of the known I/O
haracteristics to place relevant data strips together in the same
lace to minimize applications’ overall data access cost. Another
xample is to achieve efficient data replication in distributed
torage systems [27], where objects with similar I/O patterns can
e identified and replicated together.

. Evaluation

In this section, we present various experimental evaluations of
he proposed I/O characterization methodology. We implemented
lightweight I/O tracing layer in Sheepdog to collect server-

ide traces, which include more than 20 features such as access

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

t
m
S
d

i
E
G
S
e
v
s
B
n

5

g
I
t
r
o
b

a
o
o
a
r
a
t
c

Fig. 5. Relationship between the threshold values and average cluster sizes.
ime, object ID, length, offset, target node, etc. We also imple-
ented the prefetching mechanism in the object cache layer of
heepdog to evaluate the accuracy and effectiveness of identified
ata-access patterns.
The experiments were conducted on a local 26-node cluster,

ncluding 20 storage nodes and 6 compute nodes hosting VMs.
ach storage node has dual 2.5 GHz Xeon 8-core processors, 64
B memory, a 500 GB Seagate SATA HDD and a 200 GB Intel
SD. The compute nodes are used for running VM clients, where
ach client is emulated by KVM/QEMU and configured with 2
CPUs and 8 GB RAM. We conducted the experiments using both
tandard file system benchmark FIO and application workload
igdataBench [30]. We used one storage node as the gateway
ode to collect all I/O accesses and analyze access patterns.

.1. Distance threshold selection

To identify I/O characteristics, we leverage the clustering al-
orithm to group relevant objects according to I/O similarity.
t is important to choose an appropriate distance threshold as
he threshold affects the clustering results. In this section, we
eport the results of distance threshold selection. We launched
ne or six VM clients on different computer nodes to perform FIO
enchmark tests.
We performed four types of tests which represent different file

ccess modes. Among them, FIO 2Randr 2Randw 1r 1wmeans tests
n 6 VMs, in which two FIO for rand read, two FIO for rand write,
ne FIO for sequential read and one FIO for sequential write. We
nalyzed all the traced data (from 170K to 500K I/O requests
ecords) and showed the training results of distance threshold
djustment in Fig. 5. In this test, we set the threshold adjuster
a as 0.00001. Though this adjustment takes multiple rounds of
alculation to obtain the appropriate threshold (from 20 to 250
7

iterations), the total cost is actually small because each iteration
time is short (average time from 1.48 s to 6.67 s as shown below
in Table 1).

Fig. 5 shows results with varying threshold values, where the
x axis is threshold and y axis is average cluster size. Two observa-
tions can be made. First, the average cluster size increases with
larger thresholds. It is comprehensible that more data accesses
will be grouped in the same cluster if the distance threshold
dis_thr is large. Similarly, at the beginning, the average cluster
size is large because many data points are regarded as noisy data
due to too small distance threshold, which in turn reduce the total
number of clusters.

The second observation is that all tests have an ‘‘elbow posi-
tion’’ that can be calculated in the relationship curve. Before or
after the ‘‘elbow position’’, the average cluster size of grouping
objects is not a reasonable fit for data prefetching. For example,
in FIO sequential read, we can find the ‘‘elbow point’’ in threshold
0.000065. This point gives us good clustering results as the aver-
age cluster size is less than 5. For other trace results, the ‘‘elbow
point’’ occurs in different positions with the moderate average
cluster size from 7 to 13.

5.2. I/O characteristics analysis

In previous tests, we dynamically adjusted the threshold to
select an appropriate threshold for clustering. In this section, we
report the detailed results of I/O characteristics discovery. We
first conducted the evaluations with FIO benchmarks on one or
multiples VMs. For the test on one VM, we launched FIO with data
size of 50 GB and request size of 4 MB. For the test on multiple
VMs, we launched FIO with 128 jobs, where each job accessed an
independent file with 100 MB in an asynchronous way with the
request size of 4 MB.

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

T
S

a
i
b
c
a
t
d
b

t
w
m
t
T
w
n
r

(
s
V
(

Fig. 6. Two key features after PCA method with FIO on 1 VM. The x axis is the 1st PC and the y axis is the 2nd PC. There are no units for key features after PCA.
able 1
tatistics of I/O characterization results.
Trace type Number of I/O traces Ave. seconds for each iteration Num. of clusters Distance threshold

Object access Whole object access (4 MB)

Sequential read 171,760 3691 1.483 32,388 0.000065
Sequential write 386,783 113,217 6.675 29,640 0.000063
Rand read 495,465 4535 5.361 49,217 0.005
Rand write 535,097 4903 5.986 48,496 0.005
3Randr 3r 334,957 11,897 3.506 43,894 0.0001
2Randr 2Randw 1r 1w 228,709 6424 1.877 20,910 0.000025
c
t
a
m
T
s

p
t
F
t
t

Fig. 6 shows the results of key features learning from I/O
ccesses with FIO running on 1 VM. Each point in the coordinate
ndicates an object access. To be intuitive, we plot 40K accesses
ased on the first principal component (1st PC) and second prin-
ipal component (2nd PC) after PCA. Supposing the data accesses
s points distribution in a multi-dimensional basis coordinate,
he two principal components (x axis and y axis) reflect the
ominant I/O behavior for I/O trace in the new 2-dimensional
asis coordinate.
Two observations can be made from the PCA results. First,

he results show that data-access patterns vary with different
orkloads (mean different shapes in the coordinates). But we see
ost data points reside close to different straight lines. All of

hem formed linear clusters locally and located in certain regions.
he I/O similarity can be accurately identified as DBSCAN works
ell for this distribution. Specifically, the dark region with a large
umber of points means ‘‘high-density cluster’’, which will be
e-clustered.

Second, besides FIO sequential read, other three benchmarks
sequential write/rand read/rand write) also have strong object
imilarities. One reason we infer is that the operation system in
M can also have its behaviors and affect the access patterns

e.g., the operation system call, I/O scheduling).

8

Similar to the test results on 1 VM, most of the data accesses
onstruct line distribution in different regions for multiple VMs
ests, as shown in Fig. 7. But, unlike the patterns on 1 VM, there
re few regions with ‘‘high density clusters’’. We can see that
ost of the data accesses concentrate in several parallel lines.
he object similarities can also be found with DBSCAN in such
cenarios.
To show the exact eigenvector proportion accounted for each

rincipal component (which is also used for key features selec-
ion), we gave the values of first four principal components in
ig. 8. It can be seen that the first principal component in the
ests accounts for a large eigenvector proportion. Specifically,
he 1st PC of FIO read accounts for up to 44.3% eigenvector
proportion. Other trace can account from 27.9% to 38.2%, thus
more principal components can be used until getting the major
proportion. PCA does return a less dimensional data set in most
cases. However, each dimensionality actually corresponds to a
combination of multiple features/attributes of the original data
set, instead of representing a single, determinate selected feature.
In our evaluations, although the first four principal components
reach more than 90% of the variance, they do not mean only four
features of the original data set take effect. They represent the
most important characteristics of I/O accesses that can be used as
key features for pattern analysis. Also, Fig. 8 represents only one

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

l

Fig. 7. Two key features after PCA method with FIO on 6 VMs. The x axis is the 1st PC and the y axis is the 2nd PC. There are no units for key features after PCA.
T
c
a
c
a
w
t
o
s
c
a

a
d
n
m
t
I

Fig. 8. The proportion of variance for principal components with different FIO
tests running on 1 VM and 6 VMs.

case. In fact, if the features have large variations, more principal
components will be selected as ‘‘key features’’.

Table 1 reports statistics of analysis results for different work-
oads. The whole object access means the request data size is 4 MB
(also is the object size). As the number of clusters is large, we
choose the first 20 largest clusters for each test (excluding ‘‘high-
density clusters’’, indeed the number of ‘‘high-density clusters’’
is less than 3 in each test), as shown in Figs. 9 and 10. These
results are beneficial for data prefetching in two-fold. One is that
we identify the objects with high similarity in I/O behaviors in the
same group. The other is that the cluster sizes are appropriate for
our data prefetching. (The average cluster size is from 2 to 25, the
maximum cluster size is less than 30.)
9

5.3. Evaluation of prefetching use case

To validate the feasibility and to study the effectiveness of
our methodology, we use data prefetching in Sheepdog as a
use case to leverage pattern analysis results. Besides FIO, we
use BigdataBench [30] to emulate real applications workloads
and performed tests on three VMs. BigDataBench is a big data
benchmark suite, which is widely used to emulate real-world
applications and synthetic data sets. In BigDataBench, we se-
lect three application simulations, including Hadoop, Spark and
Hive, for our tests. They are all popular data intensive computing
applications in large-scale data centers.

We ran the application simulations to collect and analyze
the I/O trace for data read operations. The vanilla Sheepdog
system does not have any prefetch capabilities enabled (basic).
o compare the performance of prefetching, we calculated the
ache hit ratio by replaying the applications. We replayed the
pplication for two times. First, we still used the default object
ache layer without prefetching (Replay). We did it to test the
bility of object cache in Sheepdog as the cache layer has been
armed with data. Second, we replayed the application with
he prefetching mechanism enabled for data prefetching in the
bject cache (Replay with prefetching). During the tests, we used
olid state disks as object cache storage devices with the cache
apacity 10 GB. For each test, we generated 30 GB data volume
nd calculated the average cache hit ratio.
Table 2 shows the comparison of cache hit ratio before and

fter data prefetching. We got the value of hit ratio through
ividing the number of object hitting on the cache by the total
umber of object accesses. All tests use the default cache replace-
ent strategy, i.e., the random replacement, in Sheepdog. The first

wo tests (basic and replay) are on the vanilla Sheepdog without
/O prefetching, where the values vary from 2.87% to 19.83%.

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

Fig. 9. Object clusters with 20 largest-size with FIO on 1 VM. The cluster sizes vary from 12 to 23. The points with the same color and shape mean they are in the
same group. The results show strong object similarities for access patterns.

Fig. 10. Object clusters with 20 largest-size with FIO on 6 VMs. The cluster sizes vary from 11 to 29.

10

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

T
C

able 2
omparison of cache hit ratio (%).
Trace FIO Hadoop Spark Hive query

Read Random read 3Randr 3r Sort Grep Wordcount Sort Grep Wordcount Aggregation Join Select

Basic 8.57 6.15 7.38 3.42 5.89 2.87 13.15 16.52 12.36 6.92 8.17 9.53
Replay 10.61 8.59 9.04 4.35 6.21 3.47 15.62 19.83 14.72 7.58 9.26 11.31
Replay with prefetching 48.24 29.83 32.36 39.67 46.31 37.2 42.95 44.17 35.78 37.05 42.18 47.82
Fig. 11. Overall performance improvement for data prefetching with I/O
characterization.

Although the result of replay) is better than that of basic) test (due
to warmed object cache), the cache hit ratio is still low. With our
prefetching strategy, the cache hit ratios increase from 29.83% to
48.24%, which are nearly improved to more than 10 times. The
reason is that when an object is accessed, the objects with high
similar I/O behaviors will be prefetched into the cache. Thus the
system can find the future requested data in the object cache. The
tests prove the effectiveness of our prefetching strategy with I/O
characteristics discovery.

Fig. 11 further describes the overall performance improvement
with data prefetching for BigdataBench evaluations. With the in-
crease of cache hit ratios, the execution time of Hadoop and Hive
applications has been significantly reduced, with a percentage
of up to 42%. This is because the storage system can retrieve
cached objects from fast SSDs. Note that Spark achieves more
performance improvement as it persists an RDD in memory [2],
allowing it to be reused efficiently for the tests replay. The results
show that our prefetching mechanism can significantly reduce
the latency for big data applications.

6. Related work

Numerous studies have been conducted in recent years for
I/O characteristic discovery and performance optimizations. We
discuss existing studies in this section and compare them with
this research.

6.1. I/O profiling, tracing, and feature analysis

A number of tools have been developed to profile and trace I/O
activities, such as Darshan [18], LANL-Trace [12], RIOT I/O [32],
etc. Existing tools record I/O behaviors for user applications.
However, most of them focus on the collection of I/O statisti-
cal information without providing effective ways to understand
data-access patterns.

There is a rich set of literature on the topic of I/O features
analysis and pattern discovery. These approaches mainly focus
on two categories: I/O access sequence analysis and I/O semantic
attribute analysis. The I/O sequence analysis is based on various
11
parameters of data accesses, including spatial locality, tempo-
ral sequence, and repeating operations [9,11,19,20,34]. However,
these analyses were performed to look for the periodicity of an
application’s I/O behavior based on prior workload expectations.
It lacks consideration in analyzing the I/O behaviors that have no
knowledge to assume any application to possess certain patterns.

6.2. I/O semantic attribute analysis

On the other hand, by extracting semantic attributes from
file systems, semantic attribute mining approaches can analyze
more complex I/O patterns and get the correlations among data
accesses, such as C-Miner [15], Farmer [33], Block2Vec [7], and
many others [6,8,28]. Although these methods look at trace for
I/O characteristics discovery, they perform the pattern analysis
with only one or few specific features at a time. Chen et al. [6]
proposed a multi-dimensional, statistical correlation trace anal-
ysis with K-means data clustering algorithm to identify access
patterns. It can obtain comprehensive data access behavior, but
require domain knowledge for selecting the set of descriptive
features and interpret the output results. Different from them, we
introduce the principal component concept to automatically select
key features from a vast number of access features. It reduces
the bias introduced by domain knowledge or priori information
of the applications. In addition, we also utilize DBSCAN, a multi-
dimensional statistical data clustering algorithm to analyze I/O
similarity and dynamically adjust the distance threshold for clus-
tering. It can identify groups of highly similar I/O accesses without
any assumption of the number or shape of result clusters and
achieve I/O characterization.

6.3. I/O optimizations

With the analysis on data-access patterns, the storage sources
can be better leveraged to boost the performance of applications.
It has motivated various I/O optimizations including prefetch-
ing [11], data layout [33], and scheduling techniques [17]. Model-
based algorithms, such as using neural network [20], Markov
models [22], grammar-based model [9] and so on [24], have been
studied and their efficiency proven for prefetching in many cases.
However, existing prefetching strategies mainly focus on spa-
tial/temporal I/O behaviors or specific access features to prefetch
future data and achieve performance optimization. In contrast,
we address the limitations of current prediction systems for data
accesses with high I/O similarity. We use PCA-based method
and data clustering algorithm to analyze key feature correlations
among objects from I/O behavior. With the results of pattern anal-
ysis, we can achieve an efficient data prefetching for object-based
storage system and significantly reduce the I/O latency.

7. Conclusion

Many scientific and commercial applications in critical areas
have become highly data intensive, which pose significant perfor-
mance challenges on the storage systems. To achieve the best I/O
performance, identifying and leveraging the data access pattens is
a critical strategy. Numerous studies have been conducted in this

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13

s
d
k

a
f
a
s
(
o
i
f
t
d
m
I
m
t
p
a
w
i
m

D

c
t

A

F
C
i
C
t
S

R

pace. However, most of them are either limited to specific, user-
efined features for pattern analysis or heavily rely on domain
nowledge about the running applications, limiting their usage.
In this paper, we have introduced a new method for I/O char-

cteristic discovery in object-based storage systems. Different
rom existing approaches, this method intends to capture data-
ccess features as many as possible to eliminate the bias for
pecific workloads. It utilizes the principal component analysis
PCA) to retrieve key features from traces automatically. Based
n learned key features, a density-based clustering, i.e., DBSCAN,
s performed to mine objects correlation and to group objects
or revealing I/O characteristics. In this manner, the I/O charac-
eristics and patterns are analyzed and discovered without any
omain knowledge. We further implemented a data prefetching
echanism on Sheepdog storage system as a use case of such

/O characteristic discovery method. This use case also serves as a
echanism to validate the feasibility of the proposed method and

o evaluate its efficacy. The evaluation results confirmed that the
roposed solution can successfully identify object access patterns
nd achieve efficient data prefetching. The buffer cache hit ratio
as improved by up to 48.24% and the overall performance was

mproved by up to 42%. In the future, we plan to further study
ore use cases for I/O optimizations.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This research is supported in part by the National Science
oundation, USA under grant CCF-1409946, CNS-1526055,
CF-1718336, OAC-1835892, and CNS-1817094. This research
s also supported by Beijing Municipal Science and Technology
ommission, China under Project No. Z191100007119002 and
he Strategic Priority Research Program of Chinese Academy of
ciences, Grant No. XDC02010900.

eferences

[1] E. Alpaydin, Introduction to Machine Learning, MIT Press, Cambridge, 2004.
[2] Apache spark documentation, 2017, URL https://spark.apache.org/

documentation.html.
[3] P.J. Braam, The Lustre Storage Architecture, White Paper, 2003.
[4] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, K. Riley, 24/7 characterization

of petascale I/O workloads, in: Proc. of Cluster Computing and Workshops,
2009.

[5] P.H. Carns, W.B. Ligon III, R. Ross, R. Thakur, PVFS: A parallel file system for
Linux clusters, in: Proc. of the 4th Annual Linux Showcase and Conference,
2000, pp. 391–430.

[6] Y. Chen, K. Srinivasan, G. Goodson, R. Katz, Design implications for
enterprise storage systems via multi-dimensional trace analysis, in: Proc.
of SOSP’11, 2011, pp. 43–56.

[7] D. Dai, F.S. Bao, J. Zhou, Y. Chen, Block2Vec: A deep learning strategy
on mining block correlations in storage systems, in: Proc. of the 45th
International Conference on Parallel Processing Workshops, 2016.

[8] D. Dai, Y. Chen, D. Kimpe, R. Ross, Provenance-based object storage
prediction scheme for scientific big data applications, in: Proc. of the IEEE
International Conference on Conference on Big Data, 2014.

[9] M. Dorier, S. Ibrahim, G. Antoniu, R. Ross, Omnisc’IO: a grammar-based
approach to spatial and temporal I/O patterns prediction, in: Proc. of the
SC’14.

[10] M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for
discovering clusters in large spatial databases with noise, in: Proc. of the
KDD’96.

[11] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, X. Sun, I/O
acceleration with pattern detection, in: Proc. of the HPDC’13, 2013, pp.
25–36.
12
[12] HPC open source software projects: LANL-Trace, 2017, URL http://institute.
lanl.gov/data/software/lanl-trace.

[13] I. Jolliffe, Principal Component Analysis, John Wiley and Sons, Ltd, 2002.
[14] D.J. Ketchen Jr., C.L. Shook, The application of cluster analysis in strategic

management research: an analysis and critique, Strateg. Manage. J. 17 (6)
(1996) 441–458.

[15] Z. Li, Z. Chen, Y. Zhou, Mining block correlations to improve storage
performance, ACM Trans. Storage 1 (2) (2005) 213–245.

[16] Y. Liu, R. Gunasekaran, X. Ma, S.S. Vazhkudai, Automatic identification of
application I/O signatures from noisy server-side traces, in: Proc. of the
FAST’14, 2014, pp. 213–228.

[17] Y. Liu, R. Gunasekaran, X.S. Ma, S.S. Vazhkudai, Server-side log data
analytics for I/O workload characterization and coordination on large
shared storage systems, in: Proc. of the SC’16, 2016.

[18] H. Luu, B. Behzad, R. Aydt, M. Winslett, A multi-level approach for
understanding I/O activity in HPC applications, in: Proc. of the Cluster’13.

[19] T.M. Madhyastha, D. Read, Exploiting global input output access pattern
classification, in: Proc. of the ACM/IEEE Conference in Supercomputing,
1997.

[20] T.M. Madhyastha, D.A. Read, Learning to classify parallel input/output
access patterns, IEEE Trans. TPDS 13 (8) (2002) 802–813.

[21] M. Mesnier, G.R. Ganger, E. Riedel, Object-based storage, IEEE Commun.
Mag. 41 (8) (2003) 84–90.

[22] J. Oly, D. Reed, Markov model prediction of I/O requests for scientific
applications, in: Proc. of the International Conference on Supercomputing,
2002.

[23] K.H. P. MCarns, W. Allcock, C. Bacon, S. Lang, R. Latham, R. Ross, Un-
derstanding and improving computational science storage access through
continuous characterization, ACM Trans. Storage (2011).

[24] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, J. Zelenka, Informed
prefetching and caching, in: Proc. of the SOSP, 1995, pp. 79–95.

[25] L.A. Shalabi, Z. Shaaban, B. Kasasbeh, Data mining: A preprocessing engine,
J. Comput. Sci. 2 (9) (2006) 735–739.

[26] Sheepdog project, 2017, URL https://github.com/sheepdog/.
[27] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file

system, in: Proc. of the IEEE 26th Symposium on MSST, 2010.
[28] M. Sivathanu, V. Prabhakaran, F.I. Popovici, T.E. Denehy, A.C. Arpaci-

Dusseau, R.H. Arpaci-Dusseau, Semantically-smart disk systems, in: Proc.
of the FAST’03, Vol. 3, 2003, pp. 73–88.

[29] L. Wang, Y. Ma, A.Y. Zomaya, R. Ranjan, D. Chen, A parallel file system with
application-aware data layout policies for massive remote sensing image
processing in digital earth, IEEE Trans. TPDS (2015).

[30] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S.
Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, B. Qiu, Bigdatabench: a big data
benchmark suite from internet services, in: Proc. of HPCA, 2014.

[31] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, Ceph: A scalable,
high-performance distributed file system, in: Proc. of the OSDI’06, 2006.

[32] S.A. Wright, S.D. Hammond, S.J. Pennycook, R.F. Bird, J.A. Herdman, I. Miller,
A. Vadgama, A. Bhalerao, S.A. Jarvis, Parallel file system analysis through
application i/o tracing, Comput. J. (2013).

[33] P. Xia, D. Feng, H. Jiang, L. Tian, F. Wang, FARMER: a novel approach to file
access correlation mining and evaluation reference model for optimizing
peta-scale file system performance, in: Proc. of the HPDC’08, 2008.

[34] Y. Yin, S. Byna, H. Song, X.H. Sun, R. Thakur, Boosting application-specific
parallel I/O optimization using IOSIG, in: Proc. of the CCGrid’12.

[35] Y. Yin, J. Li, J. He, X. Sun, R. Thakur, Pattern-direct and layout-aware
replication scheme for parallel I/O systems, in: Proceedings of the IPDPS’13.

[36] J. Zhou, D. Dai, Y. Mao, X. Chen, Y. Zhuang, Y. Chen, I/O characteristics
discovery in cloud storage systems, in: Proc. of the 2018 IEEE International
Conference on Cloud Computing (Cloud’18), 2018.

Jiang Zhou received the Ph.D. degree in computer
architecture from the Institute of Computing Tech-
nology, Chinese Academy of Sciences, in 2014. He is
an Associate Professor in the Institute of Information
Engineering, Chinese Academy of Sciences. His research
interests include file and storage systems, parallel
and distributed computing, metadata management, I/O
optimization, and data security.

http://refhub.elsevier.com/S0743-7315(20)30345-2/sb1
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb3
http://institute.lanl.gov/data/software/lanl-trace
http://institute.lanl.gov/data/software/lanl-trace
http://institute.lanl.gov/data/software/lanl-trace
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb13
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb14
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb14
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb14
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb14
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb14
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb15
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb20
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb20
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb20
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb21
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb21
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb21
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb23
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb23
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb23
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb23
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb23
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb25
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb25
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb25
https://github.com/sheepdog/
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb29
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb29
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb29
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb29
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb29
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb32
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb32
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb32
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb32
http://refhub.elsevier.com/S0743-7315(20)30345-2/sb32

J. Zhou, Y. Chen, D. Dai et al. Journal of Parallel and Distributed Computing 148 (2021) 1–13
Yong Chen is an Associate Professor and Director
of the Data-Intensive Scalable Computing Laboratory
in the Computer Science Department of Texas Tech
University. He is also the Site Director of the National
Science Foundation Cloud and Autonomic Computing
Center at Texas Tech University. His research inter-
ests include data-intensive computing, parallel and
distributed computing, high-performance computing,
computer systems, and cloud computing. More infor-
mation about him can be found from: http://www.
myweb.ttu.edu/yonchen/.

Dong Dai is an Assistant Professor with the Com-
puter Science Department, University of North Carolina
at Charlotte. He received his B.S. and Ph.D. degrees
in computer science from the University of Science
and Technology of China. His major research inter-
ests are building high-performance storage systems,
such as parallel file systems, metadata management
systems, and graph storage to facilitate data-intensive
applications.
13
Yu Zhuang is an Associate Professor and Under-
graduate Program Director in the Computer Science
Department of Texas Tech University. He received his
Ph.D. in Computer Science (parallel scientific comput-
ing methods) and his Ph.D. in Mathematics (semigroups
of operators and application to generalized stability for
evolution equations) both in 2000 at Louisiana State
University. He was a visiting assistant professor at
the computer science department of Illinois Institute
of Technology from April to July of 2001, and has
been with Texas Tech computer science department

since September 2001. His current research interests include machine learning,
data mining, physical unclonable functions, big data, and high performance
computing.

Weiping Wang received the Ph.D. degree in computer
science from Harbin Institute of Technology, China, in
2008. He is a Professor in the Institute of Information
Engineering, Chinese Academy of Sciences. His research
interests include database and storage systems.

http://www.myweb.ttu.edu/yonchen/
http://www.myweb.ttu.edu/yonchen/
http://www.myweb.ttu.edu/yonchen/

	I/O characteristic discovery for storage system optimizations
	Introduction
	Object storage and I/O trace
	Object-based storage and I/O trace
	I/O trace collection

	I/O characteristic discovery
	Feature normalization
	PCA-based key feature selection
	Object clustering
	Distance threshold adjustment
	Re-clustering for data accesses

	Use case of I/O characteristic discovery
	Data prefetching use case
	Other use cases

	Evaluation
	Distance threshold selection
	I/O characteristics analysis
	Evaluation of prefetching use case

	Related work
	I/O profiling, tracing, and feature analysis
	I/O semantic attribute analysis
	I/O optimizations

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

