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ABSTRACT: What we emphasize and reward on assessments signals
to students what matters to us. Accordingly, a great deal of scholarship
in chemistry education has focused on defining the sorts of
performances worth assessing. Here, we unpack observations we
made while analyzing what “success” meant across three large-
enrollment general chemistry environments. We observed that
students enrolled in two of the three environments could succeed
without ever connecting atomic/molecular behavior to how and why
phenomena happen. These environments, we argue, were not really
“chemistry classes” but rather opportunities for students to gain
proficiency with a jumble of skills and factual recall. However, one of
the three environments dedicated 14−57% of points on exams to
items with the potential to engage students in using core ideas (e.g.,
energy, bonding interactions) to predict, explain, or model observable events. This course, we argue, is more aligned with the
intellectual work of the chemical sciences than the other two. If our courses assess solely (or largely) decontextualized skills and
factual recall we risk (1) gating access to STEM careers on the basis of facility with skills most students will never use outside the
classroom and (2) never allowing students to experience the tremendous predictive and explanatory power of atomic/molecular
models. We implore the community to reflect on whether “what counts” in the courses we teach aligns with the performances we
actually value.
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■ INTRODUCTION

What we emphasize and reward on assessments operationalizes
what we really care about. If most of the points in a course may
be earned by performing disaggregated skills and factual recall,
that course is about skills and facts, regardless of what the
syllabus or instructor says.1−5 Indeed, gaps between the
rhetoric used to justify the importance of courses and the
performances awarded on exams have led to the perspective
that there exists a “hidden curriculum” defined, in part, by the
strong implicit messages sent by assessments.6

The central role of assessments in defining what “success”
means in a course has led many chemistry education scholars
to consider the sorts of performances that should be assessed.
Early work focused on “problem-solving” found that students
were perfectly capable of “plugging and chugging” their way to
a numerical answer without understanding the physical
meaning of that answer.7−10 This informed calls for the
inclusion of more open-ended “conceptual” problems on
exams and fewer close-ended “algorithmic” tasks.7,11 Unfortu-
nately, ambiguity surrounding what “conceptual” means,12 how
“open-ended conceptual tasks” should be integrated into
assessments, and what positive outcomes come about by

emphasizing such problems has limited the practical impact of
the problem-solving literature.
More recent scholarship has sought to define what we want

students to know and be able to do with sufficient precision to
inform research and practice. For example, we13−17 and
others18,19 have drawn on the construct of 3-dimensional (3D)
learning20,21 to describe science learning as blending large-
grain core ideas (e.g., energy, bonding interactions) to engage
in science practices (e.g., developing and using models,
argumentation) as framed by crosscutting lenses (e.g., cause
and effect, patterns). Aligning prompts with specific core ideas,
science practices, and crosscutting concepts gives researchers
and instructors a fair degree of control over how they want to
realize and assess “doing science” in their context. How
students might be productively engaged in 3D performances in
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the context of college-level general22,23 and organic chem-
istry24−26 remains an active area of research in the field.
Given the large quantity of assessment-related studies

published by the chemistry education research community,
one would hope that the sorts of performances that determine
student success in chemistry courses would trend more toward
“doing science” and less toward “performance of disaggregated
skills”. Indeed, Matz and colleagues found that an increased
emphasis on 3D tasks on exams was a signature of chemistry
and biology transformation efforts at Michigan State
University.27 Unfortunately, there is little information on the
sorts of tasks that populate chemistry exams nationwide.
Without such information, when studies report on “improved
exam scores” or “improved course grades”, the field has little
context by which to judge what that means.
“Success” in a chemistry course could represent substantive

engagement in predicting, explaining, or modeling phenomena
in terms of atomic/molecular behavior, or it could simply
represent facility with arithmetic and a good memory for
polyatomic ion names. This commentary was borne from
observations made while examining what “success” meant in
three large-enrollment general chemistry learning environ-
ments. These three environments were each enacted at large
research-intensive universities in the Midwest and represent
how thousands of students per year experienced a general
chemistry course. Here, we will unpack what we observed and
argue that “success” in general chemistry should be defined by
intellectual work authentic to the chemical sciences.

■ WHAT “SUCCESS” MEANT IN THREE GENERAL
CHEMISTRY ENACTMENTS

As part of a more extensive study relating learner and learning
environment characteristics to student explanations, we sought
to characterize the intellectual work required for success in
each of three general (i.e., introductory) chemistry contexts.
The characteristics of each learning environment are not the

focus of this commentary, so we will simply call these courses
Learning Environment A, Learning Environment B, and Learning
Environment C. Assessment emphasis was characterized using
the “3-Dimensional Learning Assessment Protocol” (or 3D-
LAP).28 The 3D-LAP specifies criteria an assessment item
must satisfy to have the potential for eliciting evidence that
students can connect core ideas to phenomena via engagement
in science practices. Note that the 3D-LAP can only detect the
potential to elicit use of knowledge; other studies on actual
student responses must be done to determine the extent to
which this potential is realized.
Summative assessments used as part of two-semester general

chemistry enactments in each context were collected for
analysis. First-semester exams analyzed were administered
during the fall of 2019. Second-semester exams analyzed were
administered during the spring of 2019. Due to the sudden
pivot to remote instruction brought about by the COVID-19
pandemic, exams given during the spring of 2020 are likely not
representative of the status quo for any learning environment.
Institutional Review Board approval was obtained for this data
collection effort.
Two authors (R.L.S. and L.J.S.) independently coded the

items contained in each assessment using the 3D-LAP. Tasks

Box 1. Codes Describing Assessment Tasks Given in
General Chemistry Courses During the F19 and Sp19
Semesters

Figure 1. Two tasks from our data set that fulfill 3D-LAP criteria for potentially engaging students in using mathematical skills to connect big ideas
to phenomena. The correct answer selections are indicated in blue.
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were assigned one of three mutually exclusive descriptors
(described by Box 1). A total of 758 individual items were
characterized. The two coders agreed on the coding of 93% of
these responses, with a Cohen’s Kappa of 0.87. Following
independent coding, the authors met and reached a consensus
on the assignment of all codes. Consensus codes for all
characterized assessment items and a discussion of disagree-
ments in coding are appended to this manuscript as Supporting
Information.
3D tasks were those items that met 3D-LAP criteria for

potentially engaging students in using core ideas to engage in
science and engineering practices as framed by crosscutting
lenses. Notably, a 3D task might require mathematical or
representational skills; see Figure 1 for two examples of such
tasks taken from our data set.29

These items require students to use a mathematical
representation to connect core ideas to a phenomenon. The
“Math Modeling Task” asks students to use a representation of
potential energy vs internuclear distance to explain how and
why an attractive interaction between two atoms is disrupted.
The “Mathematical Thinking Task” requires students to
recognize how free energy changes relate to enthalpy and
entropy changes and to explicitly connect this relationship to a
phenomenon (urea dissolving in water). We selected multiple-
choice questions for inclusion in Figure 1 to highlight that 3D
prompts can be (and are) given to large-enrollment classes.
Both prompts shown in this figure were given to approximately
2500 students.
“Math” and “Other” tasks required the use of skills or factual

recall but did not satisfy all 3D-LAP criteria; that is, these
prompts could not provide evidence of students’ use of core
ideas to predict, explain, or model phenomena. Common
“math” problems included dimensional analysis, calculation of
the enthalpy change for a reaction, and prediction of how a
change in one ideal gas law parameter would affect another
parameter. Common “other” problems included drawing (or
selecting) Lewis structures and determining electron config-
urations and nomenclature.
In Figure 2, we report the percentage of points on midterm

examinations dedicated to tasks that have the potential to elicit
evidence of 3D performances, decontextualized math skills,
and other competencies across the three learning environments
under study. Students enrolled in Learning Environment A (n =
2450 in F19 and 950 in Sp19) took common assessments
throughout both semesters. Likewise, students whose general
chemistry experience occurred in Environment B (n = 950 in
F19 and 550 in Sp19) took the same midterm exams. Students
enrolled in Learning Environment C (n = 1300 in F19 and 1050
in Sp19) were engaged in a common midterm assessment
during F19. However, each section of Environment C had
different examinations for the remainder of the tests examined.
Each examination given is represented by a separate bar in
Figure 2.
A Pearson’s χ2 test indicated a significant and substantive

relationship between learning environment and assessment
emphasis (χ2(2) = 136.74, p < 0.001, Cramer’s V = 0.45).
Posthoc analysis of the results of this test showed a strong
positive association between Environment A and exam
emphasis on 3D items (Figure S4 in the Supporting
Information). Indeed, it is apparent from Figure 2 that
Learning Environment A placed substantial emphasis on
students explaining how and why atomic/molecular phenom-
ena occur on all first-semester assessments (32−42% of points)

and most second-semester assessments (14−57% of points).
Interestingly, 3D Learning was more consistently emphasized
on first-semester exams than on second-semester exams in
Learning Environment A. The third midterm administered
during the second-semester included relatively few questions
that required students to connect big ideas to phenomena
explicitly, while the first midterm given during that same
semester had the greatest emphasis on 3D performances of any
exam in our data set. By contrast, Learning Environments B and
C dedicated little to no points to items characterized as 3-
dimensional in either semester of instruction. For midterm
examinations 2 and 3 given during the first-semester course,

Figure 2. Percentage of points on midterm examinations given across
three learning environments that had the potential to elicit evidence
of 3D performances, decontextualized math skills, and other
competencies. GC1 represents the first semester of the general
chemistry sequence while GC2 represents the second-semester
course. Each bar represents a distinct exam form.
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one section of Environment C included one item coded as 3-
dimensional. This item accounted for 14% of the total points
on midterm 2 and 20% on midterm 3. Virtually all points on
exams given during the second-semester course in both types
of environments failed to meet the 3D LAP criteria for having
the potential to elicit evidence of 3D performances.
Given that 3D performances were not emphasized on

midterms in Learning Environments B and C, one might
reasonably wonder what was assessed on exams given in these
courses. It seems, judging from the codes summarized in
Figure 2, that the answer to this was often “decontextualized
math”. More than half of the points on midterms 1 and 2 given
in Learning Environments B and C during the F19 semester
were tagged with this code. Indeed, one of the midterm 2
forms administered to Environment C-enrolled students
dedicated 79% of points to items that required students to
perform mathematical skills. Assessment focus on “math”
continued unabated in second-semester courses: Most Environ-
ment B and C midterm 2 and 3 forms analyzed dedicated 50%
or more of their total points to math problems. Relatedly,
midterm 3 given as part of the second-semester course in
Learning Environment A can be accurately characterized as a
math test, given that 65% of points on this test were allocated
to assessing “math” and only 14% had the potential to elicit
evidence of 3D performances.

■ INFERRING PRIORITIES FROM ASSESSMENT
EMPHASIS

We have intentionally told the reader nothing about Learning
Environments A−C apart from the performances emphasized
on midterm exams given in each context. Our purpose was to
strip away all other aspects of the curricular activity system at
each study site and point out what can be inferred solely from
what was assessed. Learning Environments B and C, from our
perspective, are not chemistry classes. One could succeed
perfectly well in either of these courses without ever
connecting core chemistry ideas to causes for phenomena on
high stakes assessments (which make up >45% of students’
grades). By contrast, students with inequitable access to
precollege mathematics preparations would (and have)
performed inequitably on such assessment tasks.30−32

Learning Environment A placed substantial emphasis on 3D
tasks (14−57%), though executing calculations and performing
skills also received a large share of points. From assessment
emphasis alone, it appears that A required engagement in
authentic disciplinary work (i.e., 3D performances) far more
frequently than B and C. Success in A required that students
connect large-grain ideas to causes for chemical phenomena.
However, executing 3D performances was not sufficient for
success in A; skills and calculations were allotted a larger share
of points than 3D tasks on all but one midterm examined.
We are uncertain whether Environment A struck an

appropriate balance of 3D items, math items, and other
items; no literature base provides insight on the extent to
which assessments should emphasize 3D items relative to other
types of tasks. Despite this, it seems reasonable that we should
dedicate a substantial chunk of course points to assessing 3D
learning if we care about this sort of intellectual work. Course
transformations that report assessment emphasis typically
dedicate 35−55% of points on high stakes assessments to 3D
items, which seems like a “substantial chunk” of total points to
us.27,29

At this point, the reader may be thinking that we are
opposed to assessing skills. This is not the case. Skills,
mathematical and otherwise, are certainly needed to engage in
the disciplinary work of chemistry. For example, using Lewis
structures as models to explain differences in boiling point
requires that one draw a Lewis structure.33,34 However, the
skill of “Lewis structure drawing” is not inherently meaningful.
If Lewis structures are never used as models, it is difficult to
defend their incorporation into a curriculum. Instead, we argue
for progressing away from assessing skills in isolation and
toward applying these skills to predict and explain phenomena.

■ LET’S ASSESS AND SUPPORT PERFORMANCES
THAT MATTER

Atomic/molecular models allow us to understand aspects of
our existence that are otherwise unintelligible and design
solutions to pressing problems. Indeed, the mRNA vaccines
that serve to protect much of the world from COVID-19 were
enabled by advances in lipid nanoparticle packaging:35

chemistry in action! If we want our students engaged in
“doing chemistry”, then they should explain how and why
things happen in terms of atomic/molecular behavior and
design products and processes for defined functions. A great
deal of work remains to be done regarding how all learners can
be effectively supported in authentic performances by learning
environment and assessment features. For example, it is
unknown what task and learning environment features give the
message to chemistry-enrolled students that the goal of a given
activity is “figuring out” rather than “learning about”. However,
we can say with no reservations that environments which never
(or almost never) ask students to connect big ideas to why
phenomena happen (e.g., Environments B and C) have little
chance of engaging said students in “doing chemistry”. We find
it tragic that thousands of students march through a
“chemistry” course without ever having the chance to
experience the tremendous predictive and explanatory power
of atomic/molecular models. Relatedly, it is challenging to
defend gating access to STEM professions based on how well
someone can perform a set of disconnected skills they will
never need to use again.

Practical Considerations for Integrating 3D tasks into
Chemistry Courses

Three-dimensional assessment tasks should be a part of
learning environments designed to coherently emphasize
connecting big ideas to how and why phenomena happen.
We strongly suspect that the legion of papers describing
student difficulties with connecting atomic/molecular behavior
to observable events (e.g., emergent properties of metals,36 gas
behavior,37,38 phase changes39) sampled students enrolled in
environments similar to B or C; that is, sampled students were
likely never supported in reasoning about phenomena in terms
of atoms and molecules. Students are undoubtedly capable of
explaining phase changes,40 acid−base reactions,22 emission
spectra,41 and dissolution42 if appropriately supported. Indeed,
one can find examples of impressively sophisticated models for
explaining evaporation and condensation constructed by fifth-
grade students engaged in a model-focused curriculum.43

Stated succinctly, our students are all capable of making sense
of the world in terms of atomic/molecular behavior if we signal
that this is important and provide appropriate support in all
aspects of the learning environments we enact.
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It must be acknowledged that creating learning environ-
ments focused on connecting core ideas to phenomena is a
nontrivial undertaking. There are suites of materials for general
chemistry,44,45 organic chemistry,46 and laboratory
courses47−50 that attempt to coherently emphasize aspects of
scientific practice. However, these are best considered
“curricular overhauls” rather than “curricular tweaks”. Indeed,
ongoing work in our groups suggests that tweaking instruc-
tional practices in an otherwise traditional course does not
effectively support students in explaining phenomena. One
could envision (at least) two paths toward more 3D chemistry
learning environments: (1) a sudden “paradigm shift” in which
one adopts and refines an existing evidence-based curriculum
such as Chemistry, Life, the Universe, and Everything,44 or (2)
a slow evolution of the status quo where instructional and
assessment materials emphasize ever-more opportunities for
students to predict, explain, and model observable events using
ideas such as energy and bonding interactions. Regardless of
whether sudden transformation or slow evolution is more
tractable in a particular context, the central point of this
commentary is that change is sorely needed in some general
chemistry enactments. We simply cannot continue forcing
students to march through a gauntlet of decontextualized skills
and facts and try to pass this off as chemistry. Such a course
misrepresents the power of the chemical sciences as a
discipline and selects students for continuation in STEM
based on often irrelevant proficiencies.
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